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Abstract The analytic inversion of the Method of Auxiliary
Sources (MAS) matrix plays an important role in the rig-
orous investigation of the accuracy of the method. In this
paper we investigate the accuracy of MAS when the method
is applied to plane wave scattering under oblique incidence
by an infinite, dielectric circular cylinder. For this scattering
configuration, we prove that the MAS matrix is analytically
invertible and hence obtain a concrete expression for the dis-
cretization error. A basic contribution of this paper lies in the
analytic determination of the auxiliary sources’ locations, for
which the corresponding system’s matrix becomes singular.
Furthermore, we calculate the computational error resulting
from numerical matrix inversion, and compare it to the ana-
lytical error. The dependence of both types of errors on the
angle of incidence and on the dielectric permittivity is inves-
tigated. Finally, error minimization indicates the auxiliary
sources’ optimal location.

Keywords Electromagnetic scattering · Oblique incidence ·
MAS · Dielectric cylinder · Error estimation

1 Introduction

The relative advantages and disadvantages of the Method of
Auxiliary Sources (MAS), when compared to standard inte-
gral equation techniques in computational Electromagnet-
ics, have been meticulously documented in the bibliography
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[1–8]. In particular, in [8] it was explicitly demonstrated that
MAS offers significant computational cost reduction with
respect to the Moment Method. Although MAS offers algo-
rithmic simplicity and low computational cost, its applicabil-
ity to specific scattering and radiation problems may become
cumbersome, due to poor robustness. No generally reliable
procedure is known for the successful location of the auxil-
iary sources (ASs) inside the problem domain, and the imme-
diate consequence of this fact is a potential MAS inadequacy
to efficiently satisfy the appropriate boundary conditions. The
only general requirement is that the ASs should enclose all
singularities of the scattered field’s analytical continuation
in the scatterer’s interior [3–5]. However, since in a generic
scattering geometry the singularities of the scattered field are
not known, the above requirement provides limited informa-
tion for practical purposes.

The optimal location of the ASs with respect to the min-
imization of the boundary condition error involved in the
MAS solution for particular scattering geometries is investi-
gated in [9–16]. More precisely, plane wave scattering from
a perfectly conducting (PEC) infinite circular cylinder was
carried out in [9] and [10] for normal incidence, while in
[11] the conclusions derived were extended to oblique inci-
dence. In [12] and [13] the MAS accuracy and optimization
for normally incident plane wave scattering from an imped-
ance and a dielectric circular cylinder were fully investigated,
whereas different approaches were utilized in [14–16] for
conducting, impedance and dielectric cylinders. In [9–13]
it was observed that, irrespective of the cylinder’s material,
the circular cross section of the structure leads to a circu-
lant (or composed of circulant blocks) MAS matrix, which is
analytically invertible via eigenvalue analysis. Exact expres-
sions for the expected discretization error were derived and
compared to the actual numerical error associated with a LU
matrix decomposition and inversion. The condition number
was compactly expressed as well, whereas resonance effects
were also pinpointed.

The above considerations motivate an extension of MAS
optimization to more generic configurations. If MAS is
finally optimized for a generic scatterer, the number of
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unknowns it requires may be orders of magnitude less than the
moment method, and this feature will facilitate the analysis of
extremely large scatterers. To achieve this goal, a complete
investigation of some canonical configurations is essential
before generalizing the procedure to arbitrary geometries.
The purpose of this article is the completion of the work per-
formed in [9–13], describing MAS error estimation for the
most general case of plane wave illumination (oblique inci-
dence) on an infinite, dielectric circular cylinder. The method
invoked requires a set of ASs dissimilar to the one in the nor-
mal incidence case [13], and full vector wave analysis must be
implemented for the calculation of the radiated fields. Fur-
thermore, the resulting MAS matrix is composed of 4×4
circulant blocks and a novel technique is proposed towards
its analytical inversion.

The paper is organized as follows: Sect. 2 presents the for-
mulation of the problem and the analytical inversion of the
MAS linear system, while Sect. 3 presents the derivation of
the analytical error expressions. Section 4 presents numerical
results while optimization issues are thoroughly discussed.
Section 5 summarizes and concludes the article.

An e jωt time convention is assumed and suppressed
throughout the paper.

2 Analytical considerations

Assume an infinite, circular dielectric cylinder of radius b and
relative dielectric permittivity εr , located in free space with
wavenumber k0 and intrinsic impedance Z0. The structure is
illuminated by a transverse magnetic (TMz) plane wave (with
respect to the z-axis) impinging from an elevation angle θi
(see Fig. 1). The incident wavevector is assumed to lie on the
xOz plane, without loss of generality. Under these assump-
tions, the incident electromagnetic field at an arbitrary point
(ρ, ϕ, z) is fully determined by the z-component of its electric
field [17]
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Fig. 1 Geometry of the scattering problem

E inc
z (r) = E0 exp{− jk · r} (1)

where
r = ρ cos ϕ x̂ + ρ sin ϕ ŷ + z ẑ (2)

k = kx x̂ + kz ẑ = k0 sin θi x̂ + k0 cos θi ẑ (3)
are the observation vector and the incident wavevector respec-
tively and E0 is the amplitude of the z component of the
incident electric field.

The MAS solution is constructed, by considering two
fictitious auxiliary surfaces S1 and S0, both conformal to the
actual boundary S [6]. Surface S1 is located in the scatterer’s
interior, and has a circular cross section of radius a1 < b,
while surface S0 is located in the scatterer’s exterior and has
a circular cross section of radius a0 > b. Thus, the auxil-
iary surfaces are assumed to be cylinders of radii a1 and a0
respectively, each hosting a number of N ASs (see Fig. 2).

According to the MAS fundamental concept, the first set
of ASs located on S1 radiates in free space in the absence of
the dielectric scatterer, while the second set of ASs located
on S0 radiates inside an infinite space filled by the material
of the dielectric scatterer. The scattered field is described as
a weighted superposition of the fields radiated by the first set
of ASs, whereas the field inside the scatterer is described as
a weighted superposition of the fields radiated by the second
set of ASs.

The n-th AS (1 ≤ n ≤ N ) on the surfaces S1 and S0 is
assumed to model the current distribution:

I1
n

(
ρ′, φ′, z′)= (

Anϕ̂+Bn ẑ
) δ

(
φ′−φn

)
δ
(
ρ′−a1

)

ρ′ e− jkz z′

(4)

I0
n

(
ρ′, φ′, z′)= (

Cnϕ̂+Dn ẑ
)δ

(
φ′−φn

)
δ
(
ρ′−a0

)

ρ′ e− jkz z′

(5)
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Fig. 2 Location of the sources. Black bullets and arrows represent Aux-
iliary Sources (ASs), while white and gray bullets represent Collocation
Points (CPs) and Midpoints (MPs), respectively
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where An, Bn, Cn, Dn are unknown current coefficients,
which will be determined by the solution of the MAS lin-
ear system, and φn = n(2π/N ) is the azimuth angle of the
n-th AS.

The electric and magnetic fields E0
n and H0

n radiated by
the interior sources are computed by using the integral
operator

[
E0

n(r)

H0
n(r)

]

=
⎡

⎢
⎣

∫∫∫

R3

¯̄Ge 0(r, r′) · I1
n(r′)dr′

∫∫∫

R3

¯̄Gm 0(r, r′) · I1
n(r′)dr′

⎤

⎥
⎦ (6)

with kernel the free space dyadic electric and magnetic Green’s

function ¯̄Ge 0(r, r′) and ¯̄Gm 0(r, r′) [18]. The electric and
magnetic fields E1

n and H1
n radiated by the exterior sources

are computed by using the integral operator

[
E1

n(r)

H1
n(r)

]

=
⎡

⎢
⎣

∫∫∫

R3

¯̄Ge 1(r, r′) · I0
n(r

′)dr′

∫∫∫

R3

¯̄Gm 1(r, r′) · I0
n(r

′)dr′

⎤

⎥
⎦ (7)

with kernel the dyadic electric and magnetic Green’s

function ¯̄Ge 1(r, r′) and ¯̄Gm 1(r, r′)of the homogeneous space
with dielectric permittivity ε1 = ε0εr [18]. The integration is
performed in both cases over the entire 3D space. The radi-
ated electric and magnetic fields at an arbitrary point (ρ, ϕ, z)
are computed by expanding the dyadic electric and magnetic
Green’s functions into cylindrical vector wave functions [18]
and integrating.

Now, the MAS square linear system is constructed with
respect to the unknown AS weights An , Bn , Cn , Dn by impos-
ing the boundary conditions (continuity of the z and ϕ compo-
nents of the total electric and magnetic fields) at N collocation
points (CPs) on a cross section of the scatterer’s surface

N∑

n=1

E0
nz(b, φm, z) −

N∑

n=1

E1
nz(b, φm, z)

= −E inc
z (b, φm, z) (m = 1, . . . N )

N∑

n=1

E0
nφ(b, φm, z) −

N∑

n=1

E1
nφ(b, φm, z)

= −E inc
φ (b, φm, z) (m = 1, . . . N )

N∑

n=1

H0
nφ(b, φm, z) −

N∑

n=1

H1
nφ(b, φm, z)

= −H inc
φ (b, φm, z) (m = 1, . . . , N )

N∑

n=1

H0
nz(b, φm, z)−

N∑

n=1

H1
nz(b, φm, z) = 0 (m = 1, . . . N )

(8)

The linear system can be written in compact, block matrix
form, as:
⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

E0
ϕ̂ϕ̂

E0
ϕ̂ẑ E1

ϕ̂ϕ̂
E1

ϕ̂ẑ

E0
ẑϕ̂ E0

ẑẑ E1
ẑϕ̂ E1

ẑẑ

H0
ϕ̂ϕ̂

H0
ϕ̂ẑ H1

ϕ̂ϕ̂
H1

ϕ̂ẑ

H0
ẑϕ̂ 0 H1

ẑϕ̂ 0

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

⎡

⎢
⎣

A
B

−C
−D

⎤

⎥
⎦ = −

⎡

⎢
⎢⎢
⎣

Einc
ϕ

Einc
z

Hinc
ϕ

0

⎤

⎥
⎥⎥
⎦

(9)

The matrix of the system is a 4 × 4 block matrix of N × N
complex matrices with

[
E0,1

φ̂φ̂

]

mn
≡ − j

4
exp{− jkzz}

×
∞∑

l=−∞

⎡

⎣ J̇l
(
kx0,1ρ

1,0
<

)
Ḣ (2)

l

(
kx0,1ρ

1,0
>

)

+ l2k2
z

k2
0,1 a1,0 b k2

x0,1

Jl
(
kx0,1ρ

1,0
<

)

×H (2)
l

(
kx0,1ρ

1,0
>

)
]

exp { jl(φm − φn)}
[

E0,1
φ̂ ẑ

]

mn
≡ − j

4
exp{− jkzz}

×
∞∑

l=−∞

[
lkz

k2
0,1 b

Jl
(
kx0,1ρ

1,0
<

)
H (2)

l

(
kx0,1ρ

1,0
>

)
]

× exp { jl(φm − φn)}
[

E0,1
ẑφ̂

]

mn
≡ − j

4
exp{− jkzz}

×
∞∑

l=−∞

[
lkz

k2
0,1 a1,0

Jl
(
kx0,1ρ

1,0
<

)
H (2)

l

(
kx0,1ρ

1,0
>

)
]

× exp { jl(φm − φn)}
[

E0,1
ẑ ẑ

]

mn
≡ − j

4
exp{− jkzz}

×
∞∑

l=−∞

[
k2

x0,1

k2
0,1

Jl
(
kx0,1ρ

1,0
<

)
H (2)

l

(
kx0,1ρ

1,0
>

)
]

× exp { jl(φm − φn)}
[

H0,1
φ̂φ̂

]

mn
≡ − 1

4ωµ0
exp{− jkzz}

×
∞∑

l=−∞

lkz

kx0,1

[
1

ρ
1,0
>

J̇l
(
kx0,1ρ

1,0
<

)
H (2)

l

(
kx0,1ρ

1,0
>

)

+ 1

ρ
1,0
<

Jl
(
kx0,1ρ

1,0
<

)
Ḣ (2)

l

(
kx0,1ρ

1,0
>

)]

× exp { jl(φm − φn)}
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[
H1

φ̂ ẑ

]

mn
≡ − 1

4ωµ0
exp{− jkzz}

∞∑

l=−∞
kx1 J̇l

(
kx1ρ

0
<

)
H (2)

l

×(
kx1ρ

0
>

)
exp { jl(φm − φn)}

[
H0

φ̂ ẑ

]

mn
≡ − 1

4ωµ0
exp{− jkzz}

∞∑

l=−∞
kx0 Jl

(
kx0ρ

1
<

)
Ḣ (2)

l

×(
kx0ρ

1
>

)
exp { jl(φm − φn)}

[
H1

ẑφ̂

]

mn
≡ − 1

4ωµ0
exp{− jkzz}

∞∑

l=−∞
kx1 Jl

(
kx1ρ

0
<

)
Ḣ (2)

l

×(
kx1ρ

0
>

)
exp { jl(φm − φn)}

[
H0

ẑφ̂

]

mn
≡ − 1

4ωµ0
exp{− jkzz}

∞∑

l=−∞
kx0 J̇l

(
kx0ρ

1
<

)
H (2)

l

×(
kx0ρ

1
>

)
exp { jl(φm − φn)}

[
H0,1

ẑ ẑ

]

mn
≡ 0 (10)

where Jl(x) and H (2)
l (x) are the cylindrical Bessel and

Hankel functions of order l, the dot denotes derivation with
respect to the entire argument, ρ

0,1
< ≡ min(a0,1, b), ρ

0,1
> ≡

max(a0,1, b), kx0,1 =
√

k2
0,1 − k2

z and k1 = k0
√

εr . Further-

more, A, B,C, D are N × 1 column vectors containing the
unknown AS weights An, Bn, Cn, Dn , and Einc

ϕ , Einc
z , Hinc

ϕ
are N × 1 column vectors consisting of the incident field’s
components sampled at the N CPs. It is interesting to note that
when kz = 0(θi = 90◦) the matrix elements given by (10)
coincide with the corresponding ones of the normal incidence
problem derived in [13].

The study of the MAS accuracy is based on the analytic
inversion of (9). A technique similar to that of [11] and [19]
can be invoked for the diagonalization of each block, which
will result in the inversion of the MAS matrix. Since each
block of the MAS matrix is a circulant matrix, the eigenvalues
and corresponding eigenvectors have explicit expressions
[20], which yield

F = G DF G−1 (11)

where F represents any of the sixteen blocks of the MAS
matrix, DF is a diagonal matrix containing the eigenvalues
of F, which are respectively given by (q = 1, . . . , N )
[

DE0,1
φ̂φ̂

]

q
≡ − j N

4
exp{− jkzz}

×
∞∑

s=−∞

⎡

⎣ J̇q+s N
(
kx0,1ρ

1,0
<

)
Ḣ (2)

q+s N

(
kx0,1ρ

1,0
>

)

+ (q + s N )2k2
z

k2
0,1 a1,0 b k2

x0,1

Jq+s N
(
kx0,1ρ

1,0
<

)

×H (2)
q+s N

(
kx0,1ρ

1,0
>

)
⎤

⎦

[
DE0,1

φ̂ ẑ

]

q
≡− j N

4
exp{− jkzz}

×
∞∑

s=−∞

[
(q + s N )kz

k2
0,1 b

Jq+s N
(
kx0,1ρ

1,0
<

)
H (2)

q+s N

× (
kx0,1ρ

1,0
>

)
]

[
DE0,1

ẑφ̂

]

q
≡− j N

4
exp{− jkzz}

×
∞∑

s=−∞

[
(q + s N )kz

k2
0,1 a1,0

Jq+s N
(
kx0,1ρ

1,0
<

)
H (2)

q+s N

× (
kx0,1ρ

1,0
>

)
]

[
DE0,1

ẑ ẑ

]

q
≡ − j N

4
exp{− jkzz}

×
∞∑

s=−∞

[
k2

x0,1

k2
0,1

Jq+s N
(
kx0,1ρ

1,0
<

)
H (2)

q+s N

× (
kx0,1ρ

1,0
>

)
]

[
DH0,1

φ̂φ̂

]

q
≡ − N

4ωµ0
exp{− jkzz}

∞∑

s=−∞

(q + s N )kz

kx0,1

×
[

1

ρ
1,0
>

J̇q+s N
(
kx0,1ρ

1,0
<

)
H (2)

q+s N

(
kx0,1ρ

1,0
>

)

+ 1

ρ
1,0
<

Jq+s N
(
kx0,1ρ

1,0
<

)
Ḣ (2)

q+s N

(
kx0,1ρ

1,0
>

)
]

[
DH1

φ̂ ẑ

]

q
≡ − N

4ωµ0
exp{− jkzz}

×
∞∑

s=−∞

[
kx1 J̇q+s N

(
kx1ρ

0
<

)
H (2)

q+s N

(
kx1ρ

0
>

)]

[
DH0

φ̂ ẑ

]

q
≡ − N

4ωµ0
exp{− jkzz}

×
∞∑

s=−∞

[
kx0 Jq+s N

(
kx0ρ

1
<

)
Ḣ (2)

q+s N

(
kx0ρ

1
>

)]

[
DH1

ẑφ̂

]

q
≡ − N

4ωµ0
exp{− jkzz}

×
∞∑

s=−∞

[
kx1 Jq+s N

(
kx1ρ

0
<

)
Ḣ (2)

q+s N

(
kx1ρ

0
>

)]

[
DH0

ẑφ̂

]

q
≡ − N

4ωµ0
exp{− jkzz}

×
∞∑

s=−∞

[
kx0 J̇q+s N

(
kx0ρ

1
<

)
H (2)

q+s N

(
kx0ρ

1
>

)]
,

(12)
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and G is the eigenvector square matrix, which is common for
all blocks F. The eigenvector matrix is identical to the case
of oblique incidence on a perfectly conducting cylinder [11],
because there the MAS matrix is also composed of circulant
blocks.

Now, by using (9) and (11), we obtain the diagonalization
of the MAS matrix

Z =

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

E0
ϕ̂ϕ̂

E0
ϕ̂ẑ E1

ϕ̂ϕ̂
E1

ϕ̂ẑ

E0
ẑϕ̂ E0

ẑẑ E1
ẑϕ̂ E1

ẑẑ

H0
ϕ̂ϕ̂

H0
ϕ̂ẑ H1

ϕ̂ϕ̂
H1

ϕ̂ẑ

H0
ẑϕ̂ 0 H1

ẑϕ̂ 0

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

G 0 0 0

0 G 0 0

0 0 G 0

0 0 0 G

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

DE0
ϕ̂ϕ̂

DE0
ϕ̂ẑ

DE1
ϕ̂ϕ̂

DE1
ϕ̂ẑ

DE0
ẑϕ̂

DE0
ẑẑ

DE1
ẑϕ̂

DE1
ẑẑ

DH0
ϕ̂ϕ̂

DH0
ϕ̂ẑ

DH1
ϕ̂ϕ̂

DH1
ϕ̂ẑ

DH0
ẑϕ̂

0 DH1
ẑϕ̂

0

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

×

⎡

⎢
⎢⎢⎢
⎢⎢
⎢
⎣

G−1 0 0 0

0 G−1 0 0

0 0 G−1 0

0 0 0 G−1

⎤

⎥
⎥⎥⎥
⎥⎥
⎥
⎦

(13)

where 0 is the N × N null matrix. Thus, the analytic inver-
sion of Z is reduced to the analytic inversion of the 4N ×4N
matrix

D =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

DE0
ϕ̂ϕ̂

DE0
ϕ̂ẑ

DE1
ϕ̂ϕ̂

DE1
ϕ̂ẑ

DE0
ẑϕ̂

DE0
ẑẑ

DE1
ẑϕ̂

DE1
ẑẑ

DH0
ϕ̂ϕ̂

DH0
ϕ̂ẑ

DH1
ϕ̂ϕ̂

DH1
ϕ̂ẑ

DH0
ẑϕ̂

0 DH1
ẑϕ̂

0

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(14)

Now by successive use of the matrix identity
[

X Y
Z W

]−1

=
[−Z−1W(I−Y−1XZ−1W)−1Y−1 (I−Z−1WY−1X)−1Z−1

(I−Y−1XZ−1W)−1Y−1 −Y−1X(I−Z−1WY−1X)−1Z−1

]
,

(15)

which holds if all the inversions appearing on the right hand
side are feasible, we describe in two steps an analytic method
for the inversion of D.

Step 1: We split D into four 2×2 block matrices

D =
[

X Y
Z W

]
(16)

where

X =
[

DE0
ϕ̂ϕ̂

DE0
ϕ̂ẑ

DE0
ẑϕ̂

DE0
ẑẑ

]

Y =
⎡

⎢
⎣

DE1
ϕ̂ϕ̂

DE1
ϕ̂ẑ

DE1
ẑϕ̂

DE1
ẑẑ

⎤

⎥
⎦

Z =
[

DH0
ϕ̂ϕ̂

DH0
ϕ̂ẑ

DH0
ẑϕ̂

0

]

W =
⎡

⎢
⎣

DH1
ϕ̂ϕ̂

DH1
ϕ̂ẑ

DH1
ẑϕ̂

0

⎤

⎥
⎦

By taking into account (14) and (15), we conclude that the
inversion of the 4×4 block matrix D is reduced to the inver-
sions of the 2×2 block matrices Y, Z, (I − Y−1XZ−1W),
(I−Z−1WY−1X). Hence, the inversion of the original matrix
D is obtained by inverting matrices with half dimension.

Step 2: Here, we have to invert 2×2 block diagonal matrices,
whose inversion is obtained by using the following matrix
identity
⎡

⎣
X Y

Z W

⎤

⎦

−1

=
⎡

⎣
W −Y

−Z X

⎤

⎦

×
⎡

⎢
⎣

(XW − YZ)−1 0

0 (XW − YZ)−1

⎤

⎥
⎦ (17)

which holds if and only if the matrices commute in pairs, and
is therefore applicable to diagonal blocks.

3 Analytic error estimation

The above analysis is utilized to express analytically the
boundary condition error at the midpoints (MPs) between
each two successive CPs. The MPs are defined by the azi-
muth angles φ = φm + φ̃, 1 ≤ m ≤ N , where φ̃ ≡ π/N
and φm ≡ m(2π/N ) is the azimuth angle of the mth CP. By
following techniques similar to [11] and [13], we express the
tangential components of the electric fields radiated by the
ASs at the MPs
⎡

⎢⎢
⎢⎢
⎢⎢
⎣

Ẽrad
ϕ

Ẽrad
z

H̃rad
ϕ

H̃rad
z

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢
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⎢
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Ẽ0
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Ẽ0
ϕ̂ẑ Ẽ1
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Ẽ0
ẑϕ̂ Ẽ0

ẑẑ Ẽ1
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ẑẑ
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ẑϕ̂ 0 H̃1
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⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎣

A

B

−C

−D

⎤

⎥⎥⎥
⎥⎥
⎦

(18)

where the symbol ∼ above each variable denotes the corre-
sponding quantity evaluated at the MPs. Furthermore we have

F̃ = G DF̃G−1 (19)

where F̃ represents any of the sixteen blocks of the matrix in
(18) and DF̃ is a diagonal matrix containing the eigenvalues
of F̃, which are respectively given by (q = 1, . . . , N )
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The accuracy of the method at the MPs is validated by
the mean square residual error in the boundary condition

e(a0, a1, b, N ) =

∥
∥∥
∥∥
∥∥
∥

⎡

⎢⎢
⎣

Ẽrad
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Ẽrad
z

H̃rad
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⎦ +
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Ẽinc
z

H̃inc
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⎤

⎥⎥
⎦

∥
∥∥
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∥

2∥
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∥∥
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∥

⎡

⎢⎢
⎣

Ẽinc
ϕ

Ẽinc
z

H̃inc
ϕ Z0
0

⎤

⎥⎥
⎦

∥
∥∥
∥∥
∥∥
∥

2

(21)

where Ẽinc
ϕ , Ẽinc

z , H̃inc
φ are the incident fields’ components

evaluated at the MPs, and ||.||2 is the standard 2-norm. Thus,
the highest possible accuracy for the MAS solution is achieved
by minimizing e in (21) for appropriate a0 and a1 for given
b, N, θi and εr .

4 Numerical results and discussion

The expressions derived in the previous sections are val-
idated by examining several cases for various parameters.
The analytical error is calculated by use of (21). The com-
putational error is calculated by the LU decomposition and
numerical inversion of the MAS matrix. Figs. 3 and 4 show
the comparison between the analytical and the computational
error with respect to a1 for incidence angles θi = 45◦, 70◦,
respectively. Three sets of curves are plotted in each figure,
for N = 20, 30 and 40. The vertical axis maps the base 10
logarithm of the error, while the horizontal axis maps the ra-
tio a1/b. Furthermore, the MAS matrix condition number is
plotted in Fig. 5 for θi = 45◦ and N = 20, 30, 40, while
for different incidence angles the behavior of the condition
number remains almost identical.

It is worth noting that, for a wide range of radius a1,
the analytical and the computational error coincide, as ex-
pected. However, for small values of a1 the analytical error
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Fig. 3 Numerical and analytical midpoint error plots as a function of
a1/b for b = 0.5λ, a0 = λ, εr = 5, θi = 45◦ and various numbers of
unknowns N

Fig. 4 Numerical and analytical midpoint error plots as a function of
a1/b for b = 0.5λ, a0 = λ, εr = 5, θi = 70◦ and various numbers of
unknowns N

remains bounded (and low), while the computational error
demonstrates a highly irregular behavior. This discrepancy is
due to the high values of the system’s condition number in this
range of a1, which evidently affects the numerical error, but
leaves the analytical error intact. Figure 5 indicates that the
condition number grows steeper than exponentially when a1
approaches 0. Moreover, the range of the erratic fluctuation
increases with the number N of the ASs, which determines
the dimension of the MAS matrix, an effect clearly inferred
by the curves in Fig. 5. The curves of Figs. 3 and 5 show that
the computational error succumbs to noise influence for con-
dition numbers greater than 1016 (MATLAB implementation
with double precision arithmetic).

Fig. 5 MAS matrix condition number as a function of a1/b for b =
0.5λ, a0 = λ, εr = 5, θi = 45◦ and various numbers N of auxiliary
sources

A different kind of disagreement appears when a1
approaches b. In this case, the condition number remains
sufficiently low (see Fig. 5), and hence it is not responsible
for the problem. This situation is due to the fact that the
diagonal elements in the blocks of the MAS matrix become
unbounded, since the ASs and the CPs tend to coincide. The
final outcome is that both types of errors, although unequal,
attain excessively high levels when the fictitious surface ap-
proaches the actual boundary.

Furthermore, spike-like features appear in several loca-
tions for both the analytical and the computational errors.
These peaks are associated with resonances, caused by van-
ishing denominators in the expression (21). As discussed in
[11], the locations of these resonances are related to the roots
of Bessel functions and their derivatives. From expression
(15) it is evident that the resonances of the current prob-
lem are a superposition of the resonances inherited by the
normal incidence problem [13] corresponding to the inver-
sion of each block matrix Y, Z, and the resonances gen-
erated by the inversion of the terms (I − Y−1XZ−1W) and
(I−Z−1WY−1X). These terms express the coupling between
the blocks of the MAS matrix and are present only in the
oblique incidence problem.

To assess the dependence of the MAS accuracy on the
location of the exterior ASs, Fig. 6 compares the analytical
with the computational error as a function of a0 for incidence
angle θi = 70◦. It is concluded that the error is practically
independent of the location of S0, provided the outer aux-
iliary surface is sufficiently far from S. This result is also
observed and discussed in the normal incidence case [13],
where it is proven that there are no resonances associated
with the location of S0.

Finally, the effect of the dielectric permittivity on the error
is shown in Fig. 7, where the logarithm of the error is plotted
as a function of εr . Like in [13], the protrusions observed in
Fig. 7 do not represent resonances [caused by vanishing
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Fig. 6 Numerical and analytical midpoint error plots as a function of
a0/b for b = 0.5λ, a1 = 0.2λ, εr = 5, θi = 70◦ and various numbers
of unknowns N

Fig. 7 Numerical and analytical midpoint error plots as a function of
εr for b = 0.5λ, a1 = 0.2λ, a0 = 2λ, θi = 45◦ and various numbers
of unknowns N

denominators in (21)], but are due to the rapidly oscillating
behavior of the functions involved in the matrix blocks in (18).

By using the above analysis, we determine the range of
the auxiliary surface radii, which yield the most accurate
numerical solution. In particular, ratio a1/b should be cho-
sen as small as possible, provided that the condition num-
ber of the system does not exceed a certain upper bound.
The arithmetic precision of the calculations determine the
acceptable condition number levels. For our own implemen-
tation (MATLAB with double precision arithmetic) inner
auxiliary surfaces radii, corresponding to a condition num-
ber higher than 1016 should be avoided. On the other hand,
the MAS accuracy is independent of the ratio a0/b, provided
that the latter is not chosen too close to 1. Finally, regarding

the particular incidence angle θi , it is necessary to examine
which radii of the interior auxiliary surface generate reso-
nances, in order that a1 is not chosen in the vicinity of these
radii.

5 Conclusions

The MAS accuracy for oblique incidence TMz plane wave
scattering from a dielectric, infinite, circular cylinder was
fully investigated. The MAS linear system was inverted an-
alytically, yielding exact expressions for the discretization
error. Numerical results revealed smooth behavior of this er-
ror for a wide range of ASs radii, with the exception of a
denumerable set of resonance locations. These locations were
determined analytically as the ASs radii for which the MAS
matrix becomes singular. On the other hand, the actual com-
putational error, calculated through numerical matrix inver-
sion, showed significant corruption due to numerical noise,
for condition numbers exceeding a specific threshold, deter-
mined by the arithmetic precision of the calculations. The
analytical error decreases with the number of the ASs, thus
verifying the MAS theoretically guaranteed convergence to
the exact solution. In practice, though, this convergence is
not easily observable, due to poor conditioning, which intro-
duces severe numerical instabilities. Finally, several criteria
facilitating the optimal choice of the auxiliary surface loca-
tion were explicitly stated, deduced from both the analytical
and numerical results.

The analysis presented can be exploited for the applica-
tion of MAS in more general geometries involving cylindrical
symmetry. Specifically, the conclusions drawn in this paper
about the optimal location of the ASs can be extended into
scattering problems involving layered dielectric cylinders, a
configuration which is quite intricate to simulate via standard
techniques. Practical projections in the future may include
direct and inverse scattering from vegetation, modelled as
an array of inhomogeneous dielectric cylinders, with obvi-
ous applications in remote sensing. Also the analysis is very
helpful in the simulation of embedded dielectric resonator
cylindrical antennas, which often replace their perfect elec-
tric conductor counterparts at high frequencies when ohmic
losses of the latter are prohibitive.
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