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Abstract This work investigates capacitor placement on
a printed circuit board (PCB) to reduce the effect of
simultaneous switching noise as a genetic algorithm
(GA) search problem. The solution process makes use of
distributed computing resources available on a local
area network in order to solve larger problems more
efficiently. The objective is to determine the number of
added capacitors with minimum cost, and their position
on the PCB, while keeping the maximum voltage devi-
ation within some specified noise margin. The presence
of capacitors at the selected positions is represented by a
stream of zeros and ones, which is interpreted as a
genotype. At each generation, the GA assesses the fitness
function of a population of genotypes using linear
transient circuit analysis, which involves a single matrix
inversion, by determining the maximum voltage dip gi-
ven the capacitor locations. For large systems, the fitness
calculations are divided among several processors
according to a simple distributed computing algorithm.

Keywords Capacitor placement Æ Genetic algorithms Æ
Simultaneous switching noise Æ Printed circuit board Æ
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1 Introduction

Simultaneous switching noise (SSN) is a phenomenon
that occurs when a large number of high-speed chip
drivers switch simultaneously, causing a large current to
be injected in the power distribution grid of a printed
circuit board (PCB). Inductively induced voltage fluc-
tuations in the power distribution grids of a PCB often
manifest themselves in a variety of transient and

permanent system malfunctions including the appear-
ance of undesirable glitches on lines and the flipping of
bits in registers and memories.

Many authors have modeled and analyzed the SSN
phenomenon, and to mitigate its effects proposed plac-
ing decoupling capacitors on the PCB. Smith et al. [7]
studied impedance versus frequency profiles of the
power distribution system components of integrated
circuit CMOS boards including the voltage regulator
module, bulk decoupling capacitors, and high frequency
ceramic capacitors to deduce simulation models. The
models are analyzed in the time domain to find the re-
sponse to load transients. Chen et al. [1] proposed a
signal integrity analysis technique for simulating voltage
fluctuations on power/ground planes in complex pack-
aging structures using circuit and electromagnetic field
solvers to determine the value, the number, and the
location of the decoupling capacitor placed on packages
or printed circuit boards. Drewniak et al. [3] used
numerical modeling based on an integral equation for-
mulation with circuit extraction to quantify the local
decoupling phenomenon. They demonstrate that local
decoupling can effectively reduce high-frequency power-
bus noise for some PCB geometries. Yook et al. [10]
presented a methodology combining macro- and micro-
models, which allows for a system-level treatment of the
problem without losing the necessary detailed descrip-
tions of the power/ground planes, the signal traces, and
the vertical interconnections through vias or plated
holes. Capacitor placement is a traditional nonlinear
optimization problem in power systems that was solved,
using genetic algorithms, by Iba [4] and Sundhararajan
and Pahwa [8] to determine the minimum reactive power
compensation required for voltage support under heavy
loading conditions.

Earlier work [5] investigated the placement of single-
valued decoupling capacitors at selected positions of a
PCB to reduce the effect of SSN using a genetic
algorithm (GA) approach. This paper extends the GA
formulation to determine the optimal placement of
multi-valued capacitors on a PCB and presents a
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distributed computing circuit evaluation approach using
available local area network (LAN) resources, thus
allowing larger systems to be studied. The objective is to
reduce the cost of added capacitors while keeping the
maximum voltage dip or ground bounce within some
specified noise margin. The presence of capacitors of
known values at the selected positions is represented by
a stream of zeros and ones, which is interpreted as a
genotype and manipulated using GA operators to sys-
tematically approach the optimal solution. At each step
or generation of the GA the fitness evaluations of
genotypes are assessed using linear transient circuit
analysis [6] by determining maximum voltage dip, given
the values and locations of capacitors specified in the
genotype. The circuit analysis is made more efficient by
formulating the problem in such a way that the transient
analysis of a genotype involves the formation and
inversion of the nodal admittance matrix only once at
the onset of the circuit evaluation process.

The rest of the paper is organized as follows. Section 2
presents the formulation of the capacitor placement
problem. Genetic algorithms are reviewed in Sect. 3.
Section 4 presents the distributed computation technique
used to speed up the GA search. The transient circuit
analysis method is discussed in Sect. 5, and results are
presented in Sect. 6. Conclusions are given in Sect. 7.

2 Problem formulation

The formulation of capacitor placement on a PCB as a
GA search problem is best explained through an
example. Consider the system shown in Fig. 1, which
represents a PCB layout containing 16 integrated circuits

(IC) and the corresponding 16 possible places to place
capacitors, with values of 0.5 or 1 lF. Each inch of wire
is modeled as an RLC section, and the IC is modeled as
a current source with a triangular wave shape, as shown
in Fig. 2. The behavior of the circuit in terms of the
voltage deviation resulting from the simultaneous
switching of the ICs can be predicted using the linear
transient analysis method [6]. The location and value of
capacitors will have a significant influence on the
observed maximum voltage deviation, and the problem
is to determine the minimum cost of capacitors that will
yield a maximum voltage dip smaller than some specified
noise level. The presence of capacitors at their proposed
values and locations can be indicated by two simple
arrays as shown in Fig. 3, which indicate that nodes
9, 19, and 43 have capacitors of 0.5 lF, and that nodes
31 and 39 have 1-lF capacitors, whereas other nodes do
not have any.

The use of GA will permit a systematic search of the
possible combinations in order to determine a ‘‘best’’
solution without necessarily being exhaustive in the
search. The quality of a particular design is evaluated by
a cost or fitness function, which decreases with an
increasing cost of capacitors and voltage deviation. The
fitness function is given by:

F ðCG;DVmaxÞ ¼ aCG þ Fmax þ cðDVspec � DVmaxÞ

where CG is the cost of capacitors used in a particular
genotype G, Fmax and Fmin are the maximum and min-
imum fitness values, and a=(Fmin–Fmax)/Cmax, where
Cmax is the total cost of capacitors. The constant c
should be selected so that the largest permissible voltage
deviation (DVspec) does not bring the fitness of a solution
with CG capacitors below that of a solution with CG+1

Fig. 1 Example PCB layout

Fig. 2 Equivalent RLC 1-in. section with current source (a) and
corresponding wave shape (b)

Fig. 3 Arrays indicating nodal location and presence of capacitors
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capacitors, which means that c should obey the follow-
ing inequality:

c 6� a
DVspec

:

3 Genetic algorithms overview

Many real world problems are complex and have high-
dimensional spaces with limited domain knowledge that
is difficult to search using brute force, even when using
powerful computers. Genetic algorithms (GA) constitute
a systematic approach to sample the solution space and
reach an ‘‘optimum’’ solution in a process that mimics
natural biological evolution by applying the genetic
operators of selection, crossover, and mutation on a
population of individuals to produce a new, fitter one.
GA can be customized to suit any given application and
has no restrictive assumptions on the objective function
but requires some experimentation to find good settings
of its strategy parameters, namely the population size,
the crossover and mutation probabilities, and the num-
ber of generations, which are problem-dependent. Even
though GA are heuristic in nature, with no guarantee of
reaching a global optimum, there is usually a high
confidence associated with the individuals produced at
the end of the search. GA may have high CPU
requirements but, even in the simple algorithm used in
this paper, they inherently permit the use of parallel or
distributed computing for evaluating the fitness function
of individuals within a population.

The GA process (Fig. 4) starts from an initial pop-
ulation of N individuals, produced at random. The
fitness of each of the N individuals is then evaluated,
and M of these individuals (parents) are selected to
produce new individuals (offspring) using a crossover
process. A process called mutation is usually applied to
avoid getting stuck in local minima manifested by
premature convergence. To appreciate further the GA

search mechanism we shall now briefly describe the
three genetic operators of selection, crossover, and
mutation.

3.1 Selection

The two methods most commonly used for selection are
the roulette wheel and the tournament selection meth-
ods. In the roulette wheel method the individuals are
aligned as contiguous segments of a line with each seg-
ment length proportional to its fitness, as shown for 10
individuals in Fig. 5. A random number, of uniform
distribution, is then generated and the individual whose
segment spans the random number is selected. The
process is repeated over several trials until the desired
number M of individuals is obtained.

In tournament selection a number of K individuals
are chosen at random from the N offspring and the fit-
test of this group is selected. This process is repeated M
times to complete the mating population. Here the
choice of K is critical, as a small value makes the chance
of selecting weaker individuals higher.

3.2 Crossover

This is the process by which the genotypes of two par-
ents from the selected individuals are mixed to produce
two offspring. As illustrated in Fig. 6, a cut is taken at
random and the genes of the parents to the left of the cut
are interchanged to produce the two offspring. This is a

Fig. 4 Genetic algorithm structure

Fig. 5 Roulette wheel selection

Fig. 6 Single point crossover
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single point crossover process. In a multi-point cross-
over two or more cuts are taken to produce more off-
spring [2].

3.3 Mutation

This is the process whereby a gene in an offspring
genotype is randomly changed from 0 to 1 or vice versa
with a probability that is usually kept low to allow some
properties to appear in individuals but not create dis-
order in the search process as a whole. A proper selec-
tion of the mutation probability will avoid convergence
to a local minimum and will thus improve the quality of
solutions produced.

4 Distributed processing

In this work, the distributed computing process is
applied on the fitness evaluation of the population of
each generation. All processes shown in Fig. 4 except the
‘‘Evaluate Fitness’’ process would be carried out on the
main processor, termed a master. In the fitness evalua-
tion phase, as illustrated in Fig. 7, the members of one
population are divided equally into groups and distrib-
uted among the master and several other computing
processors (the slaves). At the onset of the distributed

computing process the master reads from a file the net-
work address of each potential slave that would con-
tribute to the problem solution and identifies its
readiness through the presence of a flag. The circuit data
file is then read by the master and dispatched to the
available slave processors which would then have all
information on the circuit problem being solved, namely
the network topology, parameters, and location and size
of the decoupling capacitors to be added.

Each slave receives a set of genes, which is interpreted
and processed using the function ‘‘Evaluate Circuit’’.
The slave produces results corresponding to that par-
ticular genotype, which are the maximum voltage devi-
ation observed in the circuit evaluation (DVmax) and the
node at which it occurs (Nmax). The master also follows
the same process on its assigned group. Once all the
slaves and the master are done evaluating the whole
population, the master uses the collected data to carry
out the genetic operators on the present population or to
stop when enough generations have been processed, as
illustrated in Fig. 4.

To keep track of which members each slave received,
the master has some bookkeeping to do; it assigns to
each slave a start index, a genotype size, and number of
genotypes sent to a particular slave. When slave X, for
example, receives a group of genes, it will divide them
into several genotypes, given the genotype size, and
evaluates for each the corresponding DVmax and Nmax in
the same order in which the group of genes was received.
When slave X returns results prior to slave Y even
though the latter was sent the data earlier, this simple
bookkeeping process insures that the returned results
will fit in the corresponding slot.

5 Circuit analysis

The methodology of circuit analysis will be illustrated
using the circuit shown in Fig. 8. Prior to the turn-on of
the chip, the initial conditions on the circuit [i.e., vC(0),
iL1(0), iL2(0)] can be determined by simple DC analysis.
Linear transient analysis [6] will be used to determine the
voltage and current conditions at time t+Dt given those
at time t. The voltage-current relationship for the
capacitor during an interval Dt can be discretized using
the trapezoidal rule to give:

vC t þ Dtð Þ ¼ vC tð Þ þ Dt
2C

iC tð Þ þ iC t þ Dtð Þ½ �: ð1Þ

Fig. 7 Distributed fitness evaluation of one population Fig. 8 Small test system to illustrate circuit analysis
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The quantities iC(t) and vC(t) are known from either a
previous solution point or initial conditions. So if we
assign Gec=2C/Dt and Iec=–iC(t) – (2C/Dt)vC(t), then
Eq. 1 can be represented by a Norton equivalent circuit
(Fig. 9). The model of inductor L1 (and similarly for
inductor L2) can be obtained from Eq. 1 by the principle
of duality:

iL1 t þ Dtð Þ ¼ iL1 tð Þ þ Dt
2L1

vL1 tð Þ þ vL1 t þ Dtð Þ½ �: ð2Þ

Here again, the quantities iL1(t) and vL1(t) are known
from either a previous solution point or initial
conditions. So by assigning Geq=Dt/2L1 and
Ieq=iL1(t)+(Dt/2L1)vL1(t), Eq. 2 can also be represented
by a Norton equivalent circuit. By replacing the capac-
itor and inductors of the circuit of Fig. 8 with their
equivalent circuits we obtain a linear transient circuit
whose parameters depend on the voltage and current
conditions at time t, as shown in Fig. 9.

The resulting circuit can be solved using straightfor-
ward DC analysis. Its nodal equations in matrix form
can be written as follows:

Gv ¼ I ð3Þ

where:

G ¼

G1 þ Gc1 �Gc1

�Ge1 G2 þ Gc1 �G2

�G2 G2 þ Gc2 �Gc2

�Gc2 Gc2 þ Gec

0
BB@

1
CCA;

v ¼

v1 t þ Dtð Þ
v2 t þ Dtð Þ
v3 t þ Dtð Þ
v4 t þ Dtð Þ

0
BB@

1
CCA;

and

I ¼

�Ie1 þ G1VDD

�I1 t þ Dtð Þ þ Ie1
�Ic2

Ie2 � Icc

0
BB@

1
CCA:

Time is divided into an appropriate number of
increments all of equal duration Dt. Fixing Dt causes the
equivalent conductance representing an inductance or
capacitance to be constant for a given network for the
duration of the transient analysis. This makes it possible

for the conductance matrix G in Eq. 3 to be formed and
triangulated using optimal pivot ordering only once at
the onset of the analysis. At each time-step of the linear
transient analysis only the right-hand side of Eq. 3 needs
updating, making the transient analysis much faster,
which is a critical requirement for an efficient overall
solution process. This transient analysis process is pre-
sented in the flowchart shown in Fig. 10.

6 Results

Four systems were used to test the developed GA-based
capacitor placement tool. Systems S1 and S2 are sub-
circuits of the larger system (S3) shown in Fig. 1, which
consists of 46 nodes including ground. System S2 con-
tains 22 nodes and 8 IC chips with an equal number of
capacitors, and system S1 contains 10 nodes and 4 IC
chips. System S4, shown in Fig. 11, is a large PCB
consisting of 64 IC chips.

The validity of the circuit analysis method was
established by comparing the solution it produces with
those of PSPICE [9]. The circuit simulation for system
S3 was carried out for 10 ns in increments of 0.01 ns.
Figure 12 shows the voltage waveforms for some of the
nodes of S3 without any capacitors, which is an identical
match with the corresponding ones obtained from
PSPICE. Figure 13 shows the plots for the same nodes
when capacitors are added at nodes 9, 19, 31, 39, and 43,
which again gives a perfect match with results obtained
from PSPICE.

The best solution obtained using the GA tool for S1 is
the addition of one capacitor at node 7, at IC3, with an
average number of 22 generations. The maximum volt-
age deviation observed was 0.0486 V at node 6. The best

Fig. 10 Transient linear analysis procedureFig. 9 Equivalent transient linear circuit
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solution for S2 is the addition of two capacitors at nodes
9 and 21, i.e., at IC4 and IC7, with an average of 43
generations. The maximum voltage deviation observed
was 0.123 V at node 16. The best solution for system S3

had five capacitors at nodes 9, 19, 31, 39, and 43, with a
maximum voltage deviation of 0.159 V.

To show the effectiveness of the GA search, a manual
search was carried out to find the first ‘‘best’’ locations
for S3 using a sequential approach. System S3 was first
simulated using PSPICE without any capacitor and the
node with the largest voltage deviation is selected to
place a capacitor. This process was then repeated with
the capacitor added to identify a new location and place
another capacitor there, until the observed voltage
deviation was within the specified limit of 0.2 V. Using
this sequential approach, it was found that six capacitors
were needed to reduce the voltage to within 0.2 V. The
GA tool, on the other hand, was able to find a solution
with five capacitors, instead of six.

The effect of the various GA parameters was inves-
tigated: the population size, the probability of mutation,
and crossover probability. Table 1 shows the fitness
variation in S3 as the population size changes. Each
column reports some summary statistics on the fitness of
the best solutions observed after 10 runs. One can clearly
observe an improvement in the quality of solutions ob-
tained as the population size increases, which is indi-
cated by an increase in the average of the best solutions
and a decrease in the corresponding standard deviation.

An increase in the mutation probability from 0.01 to
0.05 increased the likelihood of obtaining the best
solution at each run of the simulations but caused the
population to have a lower average fitness. In other
words the best solution is more likely to emerge from a
population with a high variety of individuals. The results

Fig. 11 A PCB with 64 chips and capacitor locations shown as
encircled nodes

Fig. 12 Voltages at some nodes of S3 without capacitors

Fig. 13 Voltages at some nodes of S3 with capacitors at nodes 9,
19, 31, 39, and 43

Table 1 Variation of fitness with population size for S3

Fitness Population size

5 10 15 20

Best 0.7514 0.7603 0.7603 0.7603
Worst 0.5378 0.6709 0.7013 0.7013
Average 0.6513 0.7266 0.7279 0.7371
r 0.0613 0.0296 0.0230 0.0235
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from 10 simulation runs on system S3 are shown in
Table 2, obtained for the conditions noted below the
table. The results show that in 90% of the cases a
superior solution with five capacitors is obtained. (The
number of capacitors is the number of 1s in the chro-
mosome.)

The distributed computing was carried out on a Sun
Ultra 30 server (the master) and Ultra 10 workstations
(the slaves) running the Solaris 2.6 operating system.
The CPU speed and memory of each machine were
300 MHz and 256 MB, respectively. Table 3 shows
several runs carried out on system S4 (shown in Fig. 11)
with a varying number of slave processors.

Figure 14 shows the speed-up ratio as the number
of slave processors increases from 0 to 7 for systems
S3 and S4. Clearly there are important benefits of
using the simple distributed computing process.
However, the saving in computation time is initially
linear and then tends to saturate as the number of
slave processors increases. The saturation is essentially
due to some form of diminished returns as the number
of processors increases, which is enhanced by the fact
that the serial part of the calculation becomes more
significant as the load on each processor is reduced.
The saturation is more evident in the case of system
S3 since the six slave processors and the master would

be sharing the evaluation of a relatively small popu-
lation size of 30. In this case, the load of each pro-
cessor is obtained from the result of the integer
division of 30/7 with the remainder being allocated
among the slave processors until it is exhausted. So
the load of the master and slaves would be 4, 5, 5, 4,
4, 4, and 4. In the case of 7 slave processors, the load
of the master and slaves would be 3, 4, 4, 4, 4, 4, 4,
and 3. The time required for the master processor to
solve system S3 under the conditions given in Table 2
is 1,315 s.

7 Conclusion

In this work we have investigated capacitor placement
on a printed circuit board to reduce the effect of SSN as
a GA search problem. The solution process makes use of
distributed computing resources available on a LAN in
order to solve large problems efficiently. The objective
used in the formulation was to reduce the cost of added
capacitors, while keeping the maximum voltage devia-
tion within some specified noise margin. The presence of
capacitors at the selected positions was represented by a
stream of zeros and ones, which is interpreted as a
genotype and manipulated using GA operators to sys-
tematically approach an optimal solution. The fitness of
a genotype was defined as a decreasing function of the
cost of capacitors needed and the voltage deviation ob-
tained using linear transient circuit analysis. In addition
to the main problem definition and formulation this
work tackled the issue of establishing some guidelines to
set the various parameters of the GA. Through several
simulation runs on various systems, it was established
that the GA requires a population size equal to about
double the size of the genotype and a number of gen-
erations increasing in some polynomial form. For large
systems, it was possible to achieve a speed-up ratio of
about five with seven slave processors by dividing the
fitness calculations among several processors available
on a LAN according to a simple distributed computing
algorithm.

Table 2 Results of 10 runs on system S3

No. Best
fitness

DV (V) Best chromosome Average
fitness

1 0.7574 0.1703 0001001010100010 0.4518
2 0.7603 0.1589 0010001000101010 0.5483
3 0.7603 0.1589 0001001000101010 0.5238
4 0.7603 0.1589 0010001000101010 0.4843
5 0.7603 0.1589 0010001000101010 0.4858
6 0.7259 0.0963 0010001010011001 0.4879
7 0.7603 0.1589 0010001000101010 0.3915
8 0.7514 0.1944 0010001000100101 0.5462
9 0.7603 0.1589 0001001000101010 0.4736
10 0.7603 0.1589 0001001000101010 0.5779

Population size: 30
Number of generations: 50
Mutation probability: 0.05

Table 3 Eight runs with a varying number of slave processors for
system S4

Number
of slaves

Average
fitness

Best
fitness

DV (V) Num
caps

Time
(s)

0 0.4555 0.6802 0.1163 26 101,934
1 0.4572 0.7277 0.1575 22 64,559
2 0.5030 0.7302 0.1163 22 44,020
3 0.5203 0.7275 0.1596 22 34,481
4 0.4734 0.7302 0.1163 22 27,653
5 0.4907 0.7288 0.1397 22 24,739
6 0.5275 0.7380 0.1928 21 20,598
7 0.5126 0.7302 0.1163 22 20,014

Population size: 120
Number of generations: 200
Mutation probability: 0.05

Fig. 14 Speed-up ratio versus number of slave processors for
systems S3 and S4
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