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Abstract. We present a simple construction of long linear codes from shorter
ones. Our approach is related to the product code construction; it generalizes
and simplifies substantially the recent “Propagation Rule” by Niederreiter and
Xing. Many optimal codes can be produced by our method.
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Recently H. Niederreiter and C. P. Xing proposed a sophisticated construction
of long linear codes from shorter ones [3]. For a given [n, k, d] code over [,
and integers A, r, s satisfying 2 < h < g,1 <r < hand 0 < s < r they
obtained a linear [N, K, D] code over [, with

N=h-n,
K=k(s+1)+r—s,

D > min{(h —5)-d,(h —7r) -n}.

The main ingredients of their construction are: representing an arbitrary
linear code as a (generalized) algebraic geometric code, and ramification theory
of algebraic function fields. They also present several examples to show that
their construction is a powerful method for finding good long codes from shorter
ones.

The aim of this note is to show that the Niederreiter-Xing construction is in
fact a very special case of a quite elementary construction that uses only basic
linear algebra. All codes considered here are linear codes over [,. The param-
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eters of a code C are denoted by length (C), dim(C) and d(C) := minimum
distance of C. For our construction we need:

(1) acode C of length m and dimension k, and
(2) a collection of k (= dim(C)) codes Wy, ..., W, all of them having the
same length n.

Elements of C will be written as row vectors, and elements of W; as column

vectors. We fix a basis (¢!, ..., ¢®)) of C and denote by G the k x m matrix
whose rows are ¢V, ..., ¢® . Thus G is a generator matrix of C.For1 < j <k
we set
. 1 j
Cj:= span{c( )L, c(f)} C [FZ’.

Then C; is a code of length m and dimension j, and
GG c---cCG=C.

Let M be the set of all n x k matrices whose j-th column is in W;, for
1 < j < k. Obviously M is a linear space of dimension

k
dim(M) =) dim(W)).
j=1

Theorem. Notations as above. Then the linear code
W:.={A-G|A e M}

has parameters as follows:

length (W) = length (C) - length (W;) =m - n,

k
dim(W) =) dim(W)),
j=1
d(W) > min{d(W;)-d(C;)|1 < j <k}.

Proof. First we observe that an element X = A - G € W is an n X m matrix
and hence can be considered as a vector in [F;"'”. Itis then clear that W is a linear
code of length m - n = length (C) -length (W;) (note that all W, have the same
length n). For A € M we denote by a”) ¢ [F’; the i-th row of A; then

al . G
A‘G: :
a® . G

witha”) - G € C for 1 <i < n. Since the rows of G are linearly independent,
it follows that A # 0 implies A - G # 0, hence



Linear Codes 55
k
dim(W) = dim(M) = > dim(W)).
j=1

Now let X € W be a nonzero codeword in W. We write X = A - G with a
matrix A € M and denote by wy, ..., wy the columns of A (where w; € W;
for 1 < j < k). Let! := max{j|w; # 0}. Then a® - G € C, for all rows
a, ..., a™ of A. There are at least d; := d(W,) nonzero components of wy,
and hence the matrix A has at least d; nonzero rows. For these rows, the vector
a'’ . G e C; has weight > d(C)). It follows that

weight (X) = ) " weight (¢ - G) > d; - d(C)). O

i=1

Remark 1. The definition of the code W (as well as the assertion on its minimum

distance) depends not only on the codes C, Wy, ..., W; but also on the choice
of the basis (¢!, ..., c®) of C.
Remark 2. Choosing W = --- = W, = B where B is a code of length n,

our construction yields the product code W = B ® C, cf. [2, p. 568]. Thus
our Theorem can be considered as a generalization of the well-known fact that
d(B®QC) = d(B)-d(C).Our construction is also related to a code construction
due to Zinoviev [2, p. 510].

Remark 3. The Niederreiter-Xing construction [3] can be seen to be a special
case of our construction (in a non-obvious manner). With notation as in our
Theorem, the code C is taken a generalized Reed-Solomon (GRS) code of
length 4 and dimension r + 1 (with 2 < h < gand 1 < r < h) and the
subcodes C; € C are chosen to be GRS codes of dimension j and minimum
distance d(Cj) = h+1—j(forl < j <r+1).LetW; =-.. = W beacode
with parameters [n, k, d], and choose W, = --- = W, to be the repetition
code with parameters [n, 1, n]. The resulting code W has by the Theorem above
the parameters

length (W) =h -n,

r+1
dim(W) =) dim(W)) = (s + 1) -k + (r — ),
j=1

d(W) = min{d(W;) -d(C;) |1 < j <r+1}
=min{d - (h—s),n-(h —r))},

which is the main result of [3].
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Remark 4. As pointed out in [3], the Niederreiter-Xing construction yields
many good codes. In our construction one has much more freedom to choose
the codes C and W; properly, so we can produce many other good long codes.
We illustrate this by the following examples.

Example 1. ¢ = 2, C has parameters [2, 2, 1] and C; has parameters [2, 1, 2].
Choose Wi, W, with parameters [20, 19, 2], resp. [20, 14, 4]. Then W has
parameters [40, 33, 4]. In fact, W is optimal: there is no binary [40, 33, §] code
with § > 4 (see [1]).

Example 2. ¢ = 5, C has parameters [3, 3, 1], d(C1) = 3,d(C) = 2,d(C3)
= 1, and Wy, W,, W3 are codes with parameters [12, 12, 1], resp. [12, 11, 2],
resp. [12, 9, 3]. The resulting code W has then parameters [36, 32, 3]. Also this
code W is optimal.

Example 3. ¢ = 2. It is not known whether there is a code B with parameters
[79, 38, 20]. Assume it exists. Then we choose C with parameters [2, 2, 1]
and C; € C with parameters [2, 1, 2], and we choose W; with parameters
[79, 6,39] and W, = B. Our construction would produce a binary code W
with parameters [158, 44, d > 39].
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