
AAECC 13, 53–56 (2002)

2002

Note on Niederreiter-Xing’s Propagation Rule
for Linear Codes
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Abstract. We present a simple construction of long linear codes from shorter
ones. Our approach is related to the product code construction; it generalizes
and simplifies substantially the recent “Propagation Rule” by Niederreiter and
Xing. Many optimal codes can be produced by our method.
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Recently H. Niederreiter and C. P. Xing proposed a sophisticated construction
of long linear codes from shorter ones [3]. For a given [n, k, d] code over �q

and integers h, r, s satisfying 2 ≤ h ≤ q, 1 ≤ r < h and 0 ≤ s ≤ r they
obtained a linear [N, K, D] code over �q with

N = h · n,

K = k(s + 1) + r − s,

D ≥ min{(h − s) · d, (h − r) · n}.

The main ingredients of their construction are: representing an arbitrary
linear code as a (generalized) algebraic geometric code, and ramification theory
of algebraic function fields. They also present several examples to show that
their construction is a powerful method for finding good long codes from shorter
ones.

The aim of this note is to show that the Niederreiter-Xing construction is in
fact a very special case of a quite elementary construction that uses only basic
linear algebra. All codes considered here are linear codes over �q . The param-
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eters of a code C are denoted by length (C), dim(C) and d(C) := minimum
distance of C. For our construction we need:

(1) a code C of length m and dimension k, and
(2) a collection of k (= dim(C)) codes W1, . . . , Wk, all of them having the

same length n.

Elements of C will be written as row vectors, and elements of Wj as column
vectors. We fix a basis (c(1), . . . , c(k)) of C and denote by G the k × m matrix
whose rows are c(1), . . . , c(k). Thus G is a generator matrix of C. For 1 ≤ j ≤ k

we set

Cj := span{c(1), . . . , c(j)} ⊆ �m
q .

Then Cj is a code of length m and dimension j , and

C1 ⊆ C2 ⊆ · · · ⊆ Ck = C.

Let M be the set of all n × k matrices whose j -th column is in Wj , for
1 ≤ j ≤ k. Obviously M is a linear space of dimension

dim(M) =
k∑

j=1

dim(Wj).

Theorem. Notations as above. Then the linear code

W := {A · G | A ∈ M}
has parameters as follows:

length (W) = length (C) · length (Wj) = m · n,

dim(W) =
k∑

j=1

dim(Wj),

d(W) ≥ min{d(Wj) · d(Cj ) | 1 ≤ j ≤ k}.

Proof. First we observe that an element X = A · G ∈ W is an n × m matrix
and hence can be considered as a vector in �m·n

q . It is then clear that W is a linear
code of length m ·n = length (C) · length (Wj) (note that all Wj have the same
length n). For A ∈ M we denote by a(i) ∈ �k

q the i-th row of A; then

A · G =




a(1) · G
...

a(n) · G




with a(i) · G ∈ C for 1 ≤ i ≤ n. Since the rows of G are linearly independent,
it follows that A = 0 implies A · G = 0, hence
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dim(W) = dim(M) =
k∑

j=1

dim(Wj).

Now let X ∈ W be a nonzero codeword in W . We write X = A · G with a
matrix A ∈ M and denote by w1, . . . , wk the columns of A (where wj ∈ Wj

for 1 ≤ j ≤ k). Let l := max{j |wj = 0}. Then a(i) · G ∈ Cl for all rows
a(1), . . . , a(n) of A. There are at least dl := d(Wl) nonzero components of wl ,
and hence the matrix A has at least dl nonzero rows. For these rows, the vector
a(i) · G ∈ Cl has weight ≥ d(Cl). It follows that

weight (X) =
n∑

i=1

weight (a(i) · G) ≥ dl · d(Cl). �

Remark 1. The definition of the code W (as well as the assertion on its minimum
distance) depends not only on the codes C, W1, . . . , Wk but also on the choice
of the basis (c(1), . . . , c(k)) of C.

Remark 2. Choosing W1 = · · · = Wk = B where B is a code of length n,
our construction yields the product code W = B ⊗ C, cf. [2, p. 568]. Thus
our Theorem can be considered as a generalization of the well-known fact that
d(B⊗C) = d(B) ·d(C). Our construction is also related to a code construction
due to Zinoviev [2, p. 510].

Remark 3. The Niederreiter-Xing construction [3] can be seen to be a special
case of our construction (in a non-obvious manner). With notation as in our
Theorem, the code C is taken a generalized Reed-Solomon (GRS) code of
length h and dimension r + 1 (with 2 ≤ h ≤ q and 1 ≤ r < h) and the
subcodes Cj ⊆ C are chosen to be GRS codes of dimension j and minimum
distance d(Cj ) = h+1−j (for 1 ≤ j ≤ r+1). Let W1 = · · · = Ws+1 be a code
with parameters [n, k, d], and choose Ws+2 = · · · = Wh to be the repetition
code with parameters [n, 1, n]. The resulting code W has by the Theorem above
the parameters

length (W) = h · n,

dim(W) =
r+1∑
j=1

dim(Wj) = (s + 1) · k + (r − s),

d(W) ≥ min{d(Wj) · d(Cj ) | 1 ≤ j ≤ r + 1}
= min{d · (h − s), n · (h − r)},

which is the main result of [3].
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Remark 4. As pointed out in [3], the Niederreiter-Xing construction yields
many good codes. In our construction one has much more freedom to choose
the codes C and Wj properly, so we can produce many other good long codes.
We illustrate this by the following examples.

Example 1. q = 2, C has parameters [2, 2, 1] and C1 has parameters [2, 1, 2].
Choose W1, W2 with parameters [20, 19, 2], resp. [20, 14, 4]. Then W has
parameters [40, 33, 4]. In fact, W is optimal: there is no binary [40, 33, δ] code
with δ > 4 (see [1]).

Example 2. q = 5, C has parameters [3, 3, 1], d(C1) = 3, d(C2) = 2, d(C3)

= 1, and W1, W2, W3 are codes with parameters [12, 12, 1], resp. [12, 11, 2],
resp. [12, 9, 3]. The resulting code W has then parameters [36, 32, 3]. Also this
code W is optimal.

Example 3. q = 2. It is not known whether there is a code B with parameters
[79, 38, 20]. Assume it exists. Then we choose C with parameters [2, 2, 1]
and C1 ⊆ C with parameters [2, 1, 2], and we choose W1 with parameters
[79, 6, 39] and W2 = B. Our construction would produce a binary code W

with parameters [158, 44, d ≥ 39].
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