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Abstract. Erlang is a functional programming language developed by Ericsson
Telecom, which is particularly well suited for implementing concurrent pro-
cesses. In this paper we show how methods from the area of term rewriting are
presently used at Ericsson. To verify properties of processes, such a property is
transformed into a termination problem of a conditional term rewriting system
(CTRS). Subsequently, this termination proof can be performed automatically
usingdependency pairs.

The paper illustrates how the dependency pair technique can be applied for
termination proofs ofconditional TRSs. Secondly, we present three refinements
of this technique, viz.narrowing, rewriting, andinstantiating dependency pairs.
These refinements are not only of use in the industrial applications sketched in
this paper, but they are generally applicable to arbitrary (C)TRSs. Thus, in this
way dependency pairs can be used to prove termination of even more (C)TRSs
automatically.
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1 Introduction

In a patent application [24], Ericsson developed a protocol for a query lookup
in a distributed database. In several products of Ericsson, for example their
newer telecommunication switches, this database plays a key role in the re-
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covery after a shutdown or crash of the system. Clearly, this critical part of
the software should be trustworthy. This paper originates from an attempt to
verify this protocol’s implementation written in Erlang. To save the amount of
work and to increase reliability, the aim was to perform as much as possible
of this verification automatically. Model checking techniques were not appli-
cable, since the properties to be proved require the consideration of the infinite
state space of the processes. A user guided approach based on theorem proving
by a specialized proof checking tool was successful, but very labour intensive
[1]. We describe two of the properties which had to be verified in Sect. 2 and
Sect. 7, respectively, and we show that they can be represented as non-trivial
termination problems of CTRSs.

In general, proving termination of CTRSs is considerably more difficult
than showing termination of unconditional TRSs. Therefore, standard tech-
niques (see e.g. [14, 18, 31]) fail with the termination proofs required for the
protocol verification described above. Moreover, due to the complexity and the
safety requirements arising with practical applications in industry, a high degree
of automation is desirable for the termination proofs required. These reasons
motivate why we chose to apply thedependency pair technique [2, 3, 5, 8]
(i.e., the currently most powerful termination proof method that is amenable to
automation). However, it turned out that (without further extensions) even the
dependency pair technique could not perform the required termination proofs
automatically.

In Sect. 3 we show that termination problems of CTRSs can be reduced
to termination problems of unconditional TRSs. After recapitulating the basic
notions of dependency pairs in Sect. 4, we present three important extensions,
viz. narrowing (Sect. 5),rewriting (Sect. 6), andinstantiating dependency pairs
(Sect. 7), which are particularly useful in the context of CTRSs. With these re-
finements, the dependency pair approach could solve the termination problems
automatically.

2 A Process Verification Problem

We have to prove properties of processes in a network. A processPn receives
messages from a processPn−1 that consist of a list of data items and an integer
M. For every item in the list, processPn computes a new list of data items.
For example, the data items could be telephone numbers and the process could
generate a list of calls to that number on a certain date. The resulting list may
have arbitrary length, including zero. The integerM in the message indicates
how many items of the newly computed list should be sent to the next process
Pn+1. The restriction on the number of items that may be sent is imposed for
practical optimization reasons.

Of course, processPn may have computed more thanM new items and in
that case, it stores the remaining answers in an accumulator (implemented by
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Fig. 1. ProcessPn in a network

an extra argumentStore of the process). However, whenever it has sent the
first M items to the next processPn+1, processPn may receive a new message
from Pn−1. To respond to the new message, it first checks whether its store
already contains at leastM items. In this case, it sends the firstM items from
its store toPn+1 and depending on the incoming message, probably some new
items are computed afterwards. Otherwise, if the store contains fewer thanM
items, then processPn+1 has to wait until the new items are computed. After
this computation, the firstM items from the newly obtained item list and the
store are sent toPn+1. Again, those items that exceed the limitM are stored
in the process accumulator. Finally, in order to empty the store, processPn−1

repeatedly sends the empty list to processPn. In the end, so is the claim, process
Pn will send the empty list as well.

We describe how we are able to formally verify this claim with a high de-
gree of automation. The Erlang code executed by the processes is given below
(to save space, the code for obvious library functions likeapp andleq is not
presented).

process(NextPid,Store) ->
receive

{Items,M} ->
case leq(M,length(Store)) of

true ->
{ToSend,ToStore} = split(M,Store),
NextPid!{ToSend,M},
process(NextPid,app(map f(self(),Items),

ToStore));
false ->

{ToSend,ToStore} =
split(M,app(map f(self(),Items),

Store)),
NextPid!{ToSend,M},
process(NextPid,ToStore)

end
end.

map f(Pid,nil) -> nil;
map f(Pid,cons(H,T)) -> app(f(Pid,H),map f(Pid,T)).

For a listL,split(M,L) returns a pair of lists{L1,L2} whereL1 contains
the firstM elements (orL if its length is shorter thanM) andL2 contains the rest of
L. The command ‘!’ denotes the sending of data andNextPid!{ToSend,M}
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stands for sending the itemsToSend and the integerM to the process with the
identifierNextPid. A process can obtain its own identifier by calling the func-
tion self(). For every item in the listItems, the functionmap f(Pid,
Items) computes new data items by means of the functionf(Pid,Item).
So the actual computation thatf performs depends on the process identifier
Pid. Hence, to compute new data items for the incomingItems, a pro-
cessPn has to pass its own identifier to the functionmap f, i.e., it calls
map f(self(),Items).

Note that a process itself is not a terminating function: in fact, it has been
designed to be non-terminating. Our aim is not to prove its termination, but to
verify a certain property, which can be expressed in terms of termination. As
part of the correctness proof of the software, we have to prove that if a processPn
continuously receives the message{nil,M} for any integerM, then eventually
the process will send the message{nil,M} as well. This property must hold
independent of the value of the store and of the way in which new data items
are generated from given ones. Therefore,f has been left unspecified, i.e.,f
may be any terminating function which returns a list of arbitrary length.

The framework of term rewriting [10, 17] is very useful for this verification.
We prove the desired property by constructing a CTRS containing a binary
functionprocess whose arguments represent the stored data itemsStore and
the integerM sent in the messages. In this example, we may abstract from the
process communication. Thus, the Erlang functionself()becomes a constant
and we drop the send command (!) and the argumentNextPid in the CTRS.
Since we assume that the process constantly receives the message{nil,M},
we hard-code it into the CTRS. Thus, the variableItems is replaced bynil.
As we still want to reason about the variableM, we added it to the arguments
of theprocess. To model the functionsplit (which returns apair of lists) in
the CTRS, we use separate functionsfstsplit andsndsplit for the two components
of split’s result. Thus,fstsplit(m, store) results in the firstm elements of
the store andsndsplit(m, store) results in all but the firstm elements of the
store. Now the idea is to force the functionprocess to terminate ifToSend is
the empty listnil. So we only continue the computation if application of the
functionempty to the result offstsplit yields false. Thus, if all evaluations w.r.t.
this CTRS terminate, then the original process eventually outputs the demanded
value. As usual, the semantics of a rule ‘s1→∗ t1, s2→∗ t2 | l → r ’ is that a
redexlσ may only be reduced torσ if s1σ reduces tot1σ ands2σ reduces to
t2σ (i.e., the vertical bar| separates the conditions from the actual rule).

leq(m, length(store))→∗ true,

empty(fstsplit(m, store))→∗ false |
process(store,m)

→ process(app(map f(self, nil), sndsplit(m, store)),m) (1)
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leq(m, length(store))→∗ false,

empty(fstsplit(m, app(map f(self, nil), store)))→∗ false |
process(store,m)

→ process(sndsplit(m, app(map f(self, nil), store)),m) (2)

The auxiliary Erlang functions as well as the functions forempty, fstsplit,
andsndsplit are straightforwardly expressed by unconditional rewrite rules.

fstsplit(0, x)→ nil
fstsplit(s(n), nil)→ nil

fstsplit(s(n), cons(h, t))→ cons(h, fstsplit(n, t))
sndsplit(0, x)→ x

sndsplit(s(n), nil)→ nil
sndsplit(s(n), cons(h, t))→ sndsplit(n, t)

empty(nil)→ true
empty(cons(h, t))→ false

leq(0,m)→ true
leq(s(n), 0)→ false

leq(s(n), s(m))→ leq(n,m)
length(nil)→ 0

length(cons(h, t))→ s(length(t))
app(nil, x)→ x

app(cons(h, t), x)→ cons(h, app(t, x))
map f(pid, nil)→ nil

map f(pid, cons(h, t))→ app(f(pid, h),map f(pid, t))

The rules for the Erlang functionf are not specified, since we have to verify
the desired property forany terminating functionf. However, as Erlang has an
eager (call-by-value) evaluation strategy, if a terminating Erlang functionf is
straightforwardly transformed into a (C)TRS (such as the above library func-
tions), then any evaluation w.r.t. these rules is finite. Now to prove the desired
property of the Erlang process, we have to show that the whole CTRS with all
its extra rules for the auxiliary functions only permits finite evaluations.

The construction of the above CTRS is rather straightforward, but it pre-
supposes an understanding of the program and the verification problem and
therefore it can hardly be mechanized. But after obtaining the CTRS, the proof
that any evaluation w.r.t. this CTRS is finite should be done automatically.

In this paper we describe an extension of the dependency pair technique
which can perform such automatic proofs. Moreover, this extension is of general
use for termination proofs of TRSs and CTRSs. Hence, our results significantly
increase the class of systems where termination can be shown mechanically.

3 Termination of Conditional Term Rewriting Systems

A CTRS is a TRS where conditionss1 = t1, . . . , sn = tn may be added to
rewrite rulesl → r. In this paper, we restrict ourselves to CTRSs where all
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variables in the conditionssi, ti also occur inl. Depending on the interpreta-
tion of the equality sign in the conditions, different rewrite relations can be
associated with a CTRS, cf. e.g. [11, 12, 15, 16, 20, 22, 23, 26, 27, 29, 32]. In
our verification example, we transformed the problem into anoriented CTRS
[32], where the equality signs in conditions of rewrite rules are interpreted
as reachability (→∗). Thus, we denote rewrite rules by

s1→∗ t1, . . . , sn→∗ tn | l→ r. (3)

In fact, we even have anormal CTRS, because allti are ground normal forms
w.r.t. the TRS which results from dropping all conditions.

A reduction ofC[lσ ] to C[rσ ] with rule (3) is only possible ifsiσ reduces
to tiσ for all 1 ≤ i ≤ n. Formally, the rewrite relation→R of a CTRSR can
be defined as→R=

⋃
j≥0→Rj

, where

R0 = ∅ and
Rj+1 =

⋃

‘ s1→∗t1,...,sn→∗tn|l→r’ ∈R
{lσ → rσ | siσ →∗Rj

tiσ for all 1≤ i ≤ n},

cf. e.g. [23, 29].
A CTRS R is terminating iff →R is well founded. But termination is

not enough to ensure that every evaluation with a CTRS is finite. For ex-
ample, assume that evaluation of the conditionleq(m, length(store)) in our
CTRS would require the reduction ofprocess(store,m). Then evaluation of
process(store,m) would yield an infinite computation. Nevertheless,
process(store,m) could not be rewritten further and thus, the CTRS would
be terminating. But in this case, the desired property wouldnot hold for the
original Erlang process, because this would correspond to a deadlock situation
where no messages are sent at all.

For that reason, instead oftermination one is often much more interested
in decreasing CTRSs [15]. In this paper, we use a slightly modified notion of
decreasingness, because in our evaluation strategy conditions are checked from
left to right, cf. [33]. Thus, thei-th conditionsi →∗ ti is only checked if all
previous conditionssj →∗ tj for 1≤ j < i hold.

Definition 1 (Left-Right Decreasing) A CTRS R is left-right decreasingif
there exists a well-founded relation > containing the rewrite relation→R and
the subterm relation 
 such that lσ > siσ holds for all rules like (3), all i ∈
{1, . . . , n}, and all substitutions σ where sjσ →∗R tjσ for all j ∈ {1, . . . , i−1}.

This definition of left-right decreasingness exactly captures the finiteness
of recursive evaluation of terms. (Obviously, decreasingness implies left-right
decreasingness, but not vice versa.) Hence, now our aim is to prove that the
CTRS corresponding to the Erlang process is left-right decreasing.

A standard approach for proving termination of a CTRSR is to verify ter-
mination of the TRSR′ which results from dropping all conditions (and for
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decreasingness one has to impose some additional demands). But this approach
fails for CTRSs where the conditions are necessary to ensure termination. This
also happens in our example, because without the conditionsempty(. . .) →∗
false the CTRS is no longer terminating (and thus, not left-right decreasing
either).

A solution for this problem is to transform CTRSs intounconditional TRSs,
cf. [13, 19, 28]. For unconditional rules, let tr( l → r ) = {l → r}. If α is a
conditional rule, i.e.,α = ‘s1→∗ t1, . . . , sn→∗ tn | l→ r ’, we define

tr(α) = {l→ if1,α(x, s1)} ∪ {ifi,α(x, ti)→ ifi+1,α(x, si+1) |1≤ i < n}
∪{ifn,α(x, tn)→ r}

wherex is the tuple of all variables inl and theif’s are new function symbols.
To ease readability, instead ofifi,α we often just writeifm for somem ∈ N where
ifm is a function symbol which has not yet been used before.

Let Rtr = ⋃
α ∈R tr(α). For CTRSs without extra variables,Rtr is indeed

an (unconditional) TRS. (An extension todeterministic CTRSs [12] with extra
variables is also possible.) The transformation of Rule (1) results in

process(store,m)→ if1(store,m, leq(m, length(store))) (4)
if1(store,m, true)→ if2(store,m, empty(fstsplit(m, store))) (5)
if2(store,m, false)

→ process(app(map f(self, nil), sndsplit(m, store)),m). (6)

Now we aim to prove termination ofRtr instead ofR’s left-right decreasingness.
In [19], this transformation is restricted to a limited class of convergent

CTRSs. However, in the following we show that for our purpose this restriction
is not necessary. In other words, termination ofRtr indeed implies left-right
decreasingness (and thus also termination) ofR. Thus, this transformation is
a generally applicable technique to reduce the termination problem of CTRSs
to a termination problem of unconditional TRSs. (A similar approach was pre-
sented in [28] for decreasingness proofs (instead ofleft-right decreasingness)
by using a transformation where all conditions of a rule have to be checked in
parallel.) We first prove that any reduction withR can be simulated byRtr. So
in particular, the equational theory ofR is a subset ofRtr ’s equational theory.

Lemma 2 Let q, q ′ be terms without if’s. If q →+R q ′, then q →+Rtr q
′.

Proof . There must be aj ∈ N such thatq →+Rj
q ′ (j is the depth of the

reduction). We prove the theorem by induction on the depth and the length of
the reductionq →+R q ′ (i.e., we use a lexicographic induction relation).

The reduction has the formq →R p→∗R q ′ and by the induction hypothesis
we knowp→∗Rtr q

′. Thus, it suffices to proveq →+Rtr p.
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If the reductionq →R p is done with an unconditional rule ofR, then the
conjecture is trivial. Otherwise, we must haveq = C[lσ ], p = C[rσ ] for some
contextC and some rule like (3). As the depth of the reductionssiσ →∗R tiσ is
less than the depth of the reductionq →+R q ′, by the induction hypothesis we
havesiσ →∗Rtr tiσ . This impliesq →+Rtr p. �

Now the desired result is a direct consequence of Lemma 2.

Corollary 3 (Left-Right Decreasingness of R and Termination of Rtr) If
Rtr is terminating, then R is left-right decreasing (and thus, it is also
terminating).

Proof . It is well known that if→Rtr is well founded, then→Rtr ∪
 is well
founded, too (this is a direct consequence of→Rtr being closed under context).
Hence, the transitive closure(→Rtr ∪
)+ is well founded, too. By Lemma 2,
this relation satisfies all conditions imposed on the relation> in Def. 1. Hence,
R is left-right decreasing. �

The converse of this corollary does not hold. IfR is the CTRS witha→ b,
f(a)→ b, and the conditional rulef(x)→∗ x | g(x)→ g(a), theng(a)→+ g(a)
holds in the transformed TRSRtr, but not in the original CTRS. Thus, the trans-
formed TRSRtr is not terminating although the original CTRSR is left-right
decreasing.

However, independently, in the meanwhile this transformation has also been
studied by Ohlebusch [30] and he could prove a (restricted) completeness result
for this transformation, viz. that left-right decreasingness ofR at least implies
innermost termination ofRtr. (In [30], our notion of left-right decreasingness
is called “quasi-decreasingness”.)

In our example, the conditional rule (2) is transformed into three additional
unconditional rules. But apart from theif-root symbol of the right-hand side,
the first of these rules is identical to (4). Thus, we obtain two overlapping rules
in the transformed TRS which correspond to the overlapping conditional rules
(1) and (2). However, in the CTRS this critical pair isinfeasible [15], i.e., the
conditions of both rules exclude each other. Thus, our transformation of CTRSs
into TRSs sometimes introduces unnecessary rules and overlap.

Therefore, whenever we construct a rule of the formq → ifk(t) and there
already exists a ruleq → ifn(t), then we identifyifk andifn. This does not affect
the soundness of our approach, because termination of a TRS where all occur-
rences of a symbolg are substituted by a symbolf with the same arity always
implies termination of the original TRS.1 Thus, we obtain the additional rules:

1 This possibility to eliminate unnecessary overlap is an advantage of our transformation com-
pared to the one of [28], where the transformed unconditional TRSs remain overlapping. In
practice, proving termination of non-overlapping TRSs is significantly easier, since one may use
techniques specifically tailored toinnermost termination proofs, see below.
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if1(store,m, false)→
if3(store,m, empty(fstsplit(m, app(map f(self, nil), store)))) (7)

if3(store,m, false)→
process(sndsplit(m, app(map f(self, nil), store)),m) (8)

If termination of a CTRS depends on its conditions, then in general ter-
mination of the transformed TRS can only be shown if one examines which
terms may follow each other in a reduction. However, in the classical approach-
es based on simplification orderings (cf. e.g. [14, 31]), such considerations do
not take place. Hence, they fail in proving the termination of (4)–(8). For this
reason, such transformations into unconditional TRSs have rarely been applied
for termination (or decreasingness) proofs of CTRSs. However, we will dem-
onstrate that with thedependency pair approach this transformation is very
useful.

To verify our original goal, we now have to prove termination of the trans-
formed TRS which consists of (4)–(8), the rules for all auxiliary (library) func-
tions from Sect. 2, and the (unknown) rules for the unspecified functionf. Note
that if an auxiliary Erlang function is straightforwardly transformed into a TRS,
then this TRS is non-overlapping. Thus, we assume that all possible rules for
the unspecified functionf are non-overlapping as well. Then it is sufficient just
to proveinnermost termination of the resulting TRS, since innermost termi-
nation of non-overlapping systems implies their termination, cf. e.g. [21]. In
order to apply verification on a large scale, the aim is to perform such proofs
automatically.

In the rest of the paper we present some extensions of the dependency pair
technique that make this possible. The dependency pair technique (including
these extensions) has been implemented in a tool written in Erlang which pro-
vides both a user friendly interface for manual applications of dependency pairs
and the possibility to perform fully automatic termination proofs of TRSs using
dependency pairs [9]. See [4] for a collection of benchmarks to demonstrate
the power of the dependency pair approach.

4 Dependency Pairs

Dependency pairs allow the use of existing methods like simplification order-
ings for automated termination and innermost termination proofs where they
were not applicable before. In this section we briefly recapitulate the basic con-
cepts of this approach and we present the theorems that we need for the rest of
the paper. For further details and explanations see [3, 5, 8].

In contrast to the standard approaches for termination proofs, which com-
pare left and right-hand sides of rules, we only examine those subterms that
are responsible for starting new reductions. For that purpose we concentrate on
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the subterms in the right-hand sides of rules that have a defined2 root symbol,
because these are the only terms a rewrite rule can ever be applied to.

More precisely, for every rulef (s1, . . . , sn)→ C[g(t1, . . . , tm)] (wheref
andg are defined symbols), we compare the argument tupless1, . . . , sn and
t1, . . . , tm. To avoid the handling of tuples, for every defined symbolf we
introduce a freshtuple symbolF . To ease readability, we assume that the orig-
inal signature consists of lower case function symbols only, whereas the tuple
symbols are denoted by the corresponding upper case symbols. Now instead
of the tupless1, . . . , sn andt1, . . . , tm we compare theterms F(s1, . . . , sn) and
G(t1, . . . , tm).

Definition 4 (Dependency Pair) Let R be a TRS. If f (s1, . . . , sn)→
C[g(t1, . . . , tm)] is a rule of R and g is a defined symbol, then 〈F(s1, . . . , sn),
G(t1, . . . , tm)〉 is a dependency pairof R.

For the rules (4)–(8), (besides others) we obtain the following dependency pairs.

〈PROCESS(store,m), IF1(store,m, leq(m, length(store)))〉 (9)
〈IF1(store,m, true), IF2(store,m, empty(fstsplit(m, store)))〉 (10)
〈IF2(store,m,false),PROCESS(app(map f(self, nil), sndsplit(m, store)),m)〉 (11)
〈IF1(store,m, false),

IF3(store,m, empty(fstsplit(m, app(map f(self, nil), store))))〉 (12)
〈IF3(store,m,false),PROCESS(sndsplit(m, app(map f(self, nil), store)),m)〉 (13)

To trace newly introduced redexes in an innermost reduction, we consider
special sequences of dependency pairs, so-calledinnermost chains. A sequence
of dependency pairs〈s1, t1〉 〈s2, t2〉 . . . is an innermost chain if there exists a
substitutionσ such that for all consecutive pairs〈sj , tj 〉 and〈sj+1, tj+1〉 in the

sequence we havetjσ
i→∗R sj+1σ . Here, “

i→” denotes innermost reductions
(i.e., rewrite steps where only innermost redexes are contracted). In this way, the
right-hand side of every dependency pair can be seen as the newly introduced

redex that should be traced and the reductionstjσ
i→∗R sj+1σ are necessary to

normalize the arguments of the redex that is traced. Note that when regarding
innermost reductions, arguments of a redex should be in normal form before the
redex is contracted. Thus, we may restrict ourselves to substitutionsσ where
all sjσ are in normal form.

Definition 5 (Innermost R-chains) Let R be a TRS. A sequence of depen-
dency pairs 〈s1, t1〉 〈s2, t2〉 . . . is called an innermostR-chainif there exists a

substitution σ , such that all sjσ are in normal form and tjσ
i→∗R sj+1σ holds

for every two consecutive pairs 〈sj , tj 〉 and 〈sj+1, tj+1〉 in the sequence.

2 Root symbols of left-hand sides aredefined and all other functions areconstructors.
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We always assume that different (occurrences of) dependency pairs have
disjoint variables and we always regard substitutions whose domains may be
infinite. In [3] we showed that the absence of infinite innermost chains is a
(sufficient and necessary) criterion for innermost termination.

Theorem 6 (Innermost Termination Criterion) A TRS R is innermost ter-
minating iff there exists no infinite innermost R-chain.

To improve this criterion we introduced the following graph which con-
tains arcs between all those dependency pairs which may follow each other in
innermost chains.

Definition 7 (Innermost Dependency Graph) The innermost dependency
graphof a TRS R is the directed graph whose nodes are the dependency pairs
and there is an arc from 〈s, t〉 to 〈v,w〉 if 〈s, t〉 〈v,w〉 is an innermost R-chain.

In our example, (besides others) there are arcs from (9) to (10) and (12),
from (10) to (11), from (12) to (13), and from both (11) and (13) to (9). The
subgraph of the innermost dependency graph containing the nodes (9)–(13) is
depicted in Fig. 2.

Since the innermost dependency graph is in general not computable, we use
an estimation of this graph for automation purposes (cf. [3, 5, 8]). The estima-
tion is such that all arcs in the original graph are also present in the estimated
graph. Letcap(t) result fromt by replacing all subterms with defined root sym-
bols by different fresh variables. Theestimated innermost dependency graph
is the directed graph whose nodes are the dependency pairs and there is an arc
from 〈s, t〉 to 〈v,w〉 iff cap(t) andv are unifiable by a mguµ wheresµ and
vµ are normal forms. It is not difficult to see that whenever〈s, t〉 〈v,w〉 is an
innermost chain, then there is also an arc from〈s, t〉 to 〈v,w〉 in the estimated
innermost dependency graph. Thus, this estimated graph is indeed a supergraph
of the (real) innermost dependency graph.

A non-empty setP of dependency pairs is called acycle iff for all 〈s, t〉,
〈v,w〉 ∈ P, there is a path from〈s, t〉 to 〈v,w〉 in the innermost dependency
graph, which only traverses pairs fromP. Obviously, every cycle in this graph
is also a cycle in theestimated innermost dependency graph.

In our example, the dependency pairs (9)–(13) form the cyclesP1 =
{(9), (10), (11)}, P2 = {(9), (12), (13)}, andP3 = {(9), (10), (11), (12),

(9)

(10) (12)

(11) (13)

Fig. 2. Subgraph of the innermost dependency graph in our example
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(13)}. However, (9)–(13) are not on a cycle with anyother dependency pair
(e.g., dependency pairs from the rules of the auxiliary library functions or the
unspecified functionf, since we assume thatf does not callprocess). This leads
to the following refined criterion.

Theorem 8 (Modular Innermost Termination Criterion) A finite TRS R is
innermost terminating iff for each cycle P in the innermost dependency graph
there exists no infinite innermost R-chain of dependency pairs from P.

Note that for the soundness of this theorem one indeed has to regardall cy-
cles, not just the minimal ones (i.e., not just those cycles which contain no other
cycles as proper subsets). For example, the TRS with the rulesf(0) → g(1),
f(1)→ g(0), andg(x)→ f(x) has three dependency pairs

〈F(0),G(1)〉, (14)
〈F(1),G(0)〉, (15)
〈G(x), F(x)〉 (16)

and three cyclesP1 = {(14), (16)}, P2 = {(15), (16)}, andP3 = {(14), (15),
(16)}. There is no infinite innermost chain from any of the minimal cyclesP1

orP2. Nevertheless, the TRS is not innermost terminating, and indeed there is
an infinite innermost chain from the non-minimal cycleP3.

In our definition, a cycle is aset of dependency pairs. Thus, a cycle never
contains multiple occurrences of the same dependency pair and for a finite TRS
there only exist finitely many cyclesP. Theautomation of the dependency pair
technique is based on the generation of inequalities. For every cycleP (in the
estimated graph) we search for a quasi-ordering≥P such that for any sequence
of dependency pairs〈s1, t1〉〈s2, t2〉〈s3, t3〉 . . . from P and for any substitution
σ with tjσ→∗R sj+1σ (for all j ) we have

s1σ ≥P t1σ ≥P s2σ ≥P t2σ ≥P s3σ ≥P t3σ ≥P . . .

Moreover, for at least one〈s, t〉 inPwe demand thestrict inequalitysσ >P tσ .
Here,>P must be a well-founded orderingcompatible with ≥P (i.e., we have
“>P ◦ ≥P ⊆ >P or ≥P ◦ >P ⊆ >P”). Then there exists no innermost
chain of dependency pairs fromP which traverses all dependency pairs inP
infinitely many times.

In the following we require that both≥P and>P must beclosed under
substitution. Thensj ≥P tj andsj >P tj ensuresjσ ≥P tjσ andsjσ >P tjσ ,
respectively, for all substitutionsσ .

We also restrict ourselves toweakly monotonic quasi-orderings≥P. (A
quasi-ordering≥P is weakly monotonic if s ≥P t implies f (. . . s . . .) ≥P

f (. . . t . . .).) Then to guaranteetjσ ≥P sj+1σ whenevertjσ→∗R sj+1σ holds,
it is sufficient to demandl ≥P r for all rulesl→ r of the TRS that may be used
in this reduction. As we restrict ourselves tonormal substitutionsσ , not all rules



Verification of Erlang Processes by Dependency Pairs 51

are usable in a reduction oftσ . In general, ift contains a defined symbolf ,
then allf -rules areusable and moreover, all rules that areusable for right-hand
sides off -rules are alsousable for t .

Definition 9 (Usable Rules) Let R be a TRS. For any symbol f let RlsR(f ) =
{l→ r ∈ R | root(l) = f }. For any term we define the usable rules:

• UR(x) = ∅,
• UR(f (t1, . . . , tn)) = RlsR(f ) ∪

⋃
l→r∈RlsR(f )

UR′(r) ∪
⋃n
j=1UR′(tj ),

where R′ = R \ RlsR(f ). Moreover, for any set P of dependency pairs we
define UR(P) =

⋃
〈s,t〉∈P UR(t).

Note that this is indeed a recursive definition (sinceR is decreasing toR′ in
the second equation definingUR).

Now we obtain the following theorem for automated3 innermost termination
proofs.

Theorem 10 (Innermost Termination Proofs) A finite TRS is innermost ter-
minating if for each cycle P there is a weakly monotonic quasi-ordering ≥P

and a well-founded ordering>P compatible with≥P, where both≥P and>P

are closed under substitution, such that

• l ≥P r for all rules l→ r ∈ UR(P),
• s ≥P t for all dependency pairs 〈s, t〉 from P, and
• s >P t for at least one dependency pair 〈s, t〉 from P.

We already demonstrated that for Thm. 8 (and hence, also for Thm. 10) consid-
ering just the minimal cycles would be unsound. In fact, for Thm. 10 it would
also be unsound just to considermaximal cycles (i.e., those cycles which are
not contained in any other cycle). The problem is that it is not sufficient if
just one dependency pair of each maximal cycle is strictly decreasing. There
must be a strictly decreasing dependency pair for every subcycle as well. As
a counterexample regard the TRSf(s(x)) → f(s(x)), f(s(x)) → f(x). Its (on-
ly) maximal cycle is{〈F(s(x)), F(s(x))〉, 〈F(s(x)), F(x)〉}. But the constraints
F(s(x)) ≥ F(s(x))andF(s(x)) > F(x) for this cycle are easily fulfilled although
this TRS is clearly not innermost terminating. Thus, it is crucial to considerall
cyclesP for Thm. 10.

In Sect. 2 we presented the rules for the auxiliary functions in our process
example. Proving absence of infinite innermost chains for the cycles of their
dependency pairs is very straightforward using Thm. 10. So all library func-
tions of our TRS are innermost terminating. Moreover, as we assumedf to be a
terminating function, its cycles do not lead to infinite innermost chains either.

3 Additional refinements for the automation can be found in [3, 8].
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Recall that (9)–(13) are not on cycles together with the remaining depen-
dency pairs. Thus, what is left for verifying the desired property is proving
absence of infinite innermost chains for the cyclesP1,P2,P3, where all rules
of the whole TRS are possible candidates for being usable rules (also the rules
for the unspecified functionf).

Thm. 10 demandss ≥P t resp.s >P t for dependency pairs〈s, t〉 on cycles.
However for (9)–(13), these inequalities are not satisfied by any quasi-simpli-
fication ordering.4 Thus, the automated proof fails here. Moreover, it is unclear
which inequalities we have to add for the usable rules, since the rules forf are
not given. Therefore, we have to extend the dependency pair technique.

5 Narrowing Dependency Pairs

To prove the absence of infinite innermost chains, for a dependency pair〈v,w〉 it
would be sufficient to demandvσ ≥P wσ resp.vσ >P wσ just for those instan-
tiationsσ where an instantiated right componenttσ of a previous dependency
pair〈s, t〉 reduces tovσ . For example, (11) only has to be regarded for instanti-
ationsσ where the instantiated right componentIF2(store,m, empty(fstsplit (m,
store)))σ of (10) reduces to the instantiated left componentIF2(store,m,
false)σ of (11). In fact, this can only happen ifstore is not empty, i.e., if
store reduces to the formcons(h, t). However, this observation has not been
used in the inequalities of Thm. 10 and hence, we could not find an ordering
for them. Thus, the idea is to perform the computation ofempty on the level of
the dependency pair. For that purpose the well-known concept ofnarrowing is
extended to pairs of terms.

Definition 11 Let R be a TRS. If a term t R-narrows to a term t ′ via the
substitution µ, then the pair of terms 〈s, t〉 R-narrows to the pair 〈sµ, t ′〉.
In the following, we will usually speak of ‘narrowing’ instead of ‘R-narrow-
ing’ if the TRSR is clear from the context. For example, the narrowings of the
dependency pair (10) are

〈IF1(x, 0, true), IF2(x, 0, empty(nil))〉 (10a)
〈IF1(nil, s(n), true), IF2(nil, s(n), empty(nil))〉 (10b)
〈IF1(cons(h, t), s(n), true), IF2(cons(h, t), s(n), empty(cons(h, fstsplit(n, t))))〉.

(10c)

Thus, if a dependency pair〈s, t〉 is followed by some dependency pairs
〈v,w〉 in an innermost chain and ift is not already unifiable withv (i.e., at least
one rule is needed to reducetσ to vσ ), then in order to ‘approximate’ the pos-
sible furtherR-reductions oftσ we may replace〈s, t〉 by all itsR-narrowings.

4 Essentially, the reason is that the left-hand side of dependency pair (9) is embedded in the
right-hand sides of the pairs (11) and (13).
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Hence, we can replace the dependency pair (10) by the new pairs (10a)–(10c),
which already contain one ‘hidden’ step of the nextR-reduction.

This enables us to extract necessary information from the last arguments of
if’s, i.e., from the former conditions of the CTRS. Thus, the narrowing refine-
ment is the main reason why the transformation of CTRSs into TRSs is useful
when analyzing the termination behaviour with dependency pairs. The number
of narrowings for a pair is finite (up to variable renaming) and it can easily be
computed automatically.

Note however that narrowing may indeed only be applied for dependency
pairs whose right-hand side does not unify with any left-hand side of a de-
pendency pair (after variable renaming). As an example regard the following
TRS.

g(f(a))→ h(a)

f(b)→ c

h(x)→ g(f(x))

This TRS is not innermost terminating as we have the infinite innermost re-

ductiong(f(a))
i→ h(a)

i→ g(f(a))
i→ . . . The only dependency pairs on a

cycle are〈G(f(a)),H(a)〉 and〈H(x),G(f(x))〉. But if the latter dependency pair
is narrowed to〈H(b),G(c)〉, then there is no cycle any more in the innermost de-
pendency graph and hence, we would falsely conclude innermost termination.
This example also demonstrates why this requirement is still necessary even if
we would restrict ourselves to non-overlapping systems.

Before showing how narrowing helps in solving the inequalities of the pro-
cess example, we first prove the soundness of our technique.

Theorem 12 (Narrowing Pairs) Let P be a set of pairs of terms and let 〈s, t〉
∈ P such that Var(t) ⊆ Var(s) and such that for all (renamings of ) 〈v,w〉
∈ P, the terms t and v are not unifiable. Let P′ result from P by replacing
〈s, t〉 by all its narrowings. If there exists no infinite innermost chain of pairs
from P′, then there exists no infinite innermost chain of pairs from P either.

Proof . Suppose there is an innermostR-chain

. . . 〈v1, w1〉 〈s, t〉 〈v2, w2〉 . . .
of pairs fromP. It suffices to prove that then there exists a narrowing〈s ′, t ′〉
of 〈s, t〉 such that. . . 〈v1, w1〉 〈s ′, t ′〉 〈v2, w2〉 . . . is an innermostR-chain as
well. Here,〈s, t〉 resp.〈s ′, t ′〉may also be the first pair in the chain (i.e.,〈v1, w1〉
may be missing). If this has been proved, then all occurrences of〈s, t〉 in an
infinite innermost chain may be replaced by pairs fromP′.

For the above innermost chain, there must be a substitutionσ such that all
instantiated left-hand sides of the pairs are normal forms and every instantiated
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right-hand side reduces innermost to the instantiated left-hand side of the next
pair in the innermost chain. Note thattσ cannot be equal tov2σ , as otherwise

σ would be a unifier oft andv2. Hence, we havetσ
i→R q

i→∗R v2σ for some
termq.

The reductiontσ
i→R q cannot take place ‘inσ ’, because all variables of

t are contained ins and hence, thensσ would not be a normal form. Thus,t
contains some subtermf (u) such that a rulel→ r has been applied tof (u)σ .
In other words,l matchesf (u)σ (i.e. lρ = f (u)σ ). So the reduction has the
following form:

tσ = tσ [f (u)σ ]π = tσ [lρ]π
i→R tσ [rρ]π = q.

As in the usual definition of narrowing, we assume that the variables of
l→ r have been renamed to fresh ones. Therefore we can extendσ to ‘behave’
like ρ on the variables ofl andr (but it still remains the same on the variables
of all pairs in the innermost chain). Nowσ is a unifier ofl andf (u) and hence,
there also exists a most general unifierµ. By the definition of most general
unifiers, then there must be a substitutionτ such thatσ = µτ .

Let t ′ be the termtµ[rµ]π and lets ′ besµ. Then〈s, t〉 narrows to〈s ′, t ′〉.
As we may assumes ′ andt ′ to be variable disjoint from all other pairs, we may
extendσ to behave likeτ on the variables ofs ′ andt ′. Then we have

w1σ
i→∗R sσ = sµτ = s ′τ = s ′σ and

t ′σ = t ′τ = tµτ [rµτ ]π = tσ [rσ ]π = tσ [rρ]π = q i→∗R v2σ.

Hence,. . . 〈v1, w1〉 〈s ′, t ′〉 〈v2, w2〉 . . . is also an innermostR-chain. �

So we may always replace a dependency pair by all its narrowings. How-
ever, while this refinement is sound, in general it destroys the necessity of our
innermost termination criterion in Thm. 8. For example, the TRS with the rules
f(s(x)) → f(g(h(x))), g(h(x)) → g(x), g(0) → s(0), h(0) → 1 is innermost
terminating. But if the dependency pair〈F(s(x)), F(g(h(x)))〉 is replaced by its
narrowings〈F(s(0)), F(g(1))〉 and 〈F(s(x)), F(g(x))〉, then 〈F(s(x)), F(g(x))〉
forms an infinite innermost chain (using the instantiation{x/0}).

Nevertheless, in the application domain of process verification, we can re-
strict ourselves to TRSs with the unique normal form property.5 In fact, the
TRSs resulting from the translation of Erlang functions are always non-over-
lapping. As non-overlapping innermost terminating TRSs are confluent, they
also satisfy the unique normal form property. Hence, the requirement of the
unique normal form property in the following theorem could also be replaced
by non-overlappingness.

5 A TRS is said to have the unique normal form property iff for every termt , whenevers1∗←
t →∗ s2 with s1 ands2 in normal form, then we haves1 = s2.
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The theorem shows that for such TRSs, narrowing dependency pairs indeed
is a completeness preserving technique. More precisely, whenever innermost
termination can be proved with the pairsP, then it can also be proved with the
pairsP′.

Theorem 13 (Narrowing Pairs Preserves Completeness) LetR be an inner-
most terminating TRS with the unique normal form property and let P, P′ be
as in Thm. 12. If there exists no infinite innermost R-chain of pairs from P,
then there exists no infinite innermost R-chain of pairs from P′ either.

Proof . We show that every innermostR-chain. . . 〈v1, w1〉 〈s ′, t ′〉 〈v2, w2〉 . . .
from P′ can be transformed into an innermost chain fromP of same length.
There must be a substitutionσ such that for all pairs the instantiated left-hand
side is a normal form and the instantiated right-hand side reduces to the instan-
tiated left-hand side of the next pair in the innermost chain. So in particular we
have

w1σ
i→∗R s ′σ and t ′σ

i→∗R v2σ.

We know that〈s, t〉 narrows to〈s ′, t ′〉 via a substitutionµ. As the variables
in 〈s, t〉 are disjoint from all other variables, we may extendσ to ‘behave’ like
µσ on the variables ofs and t . Then we havesσ = sµσ = s ′σ and hence,

w1σ
i→∗R sσ .

Moreover, by the definition of narrowing,tµ→R t
′. This impliestµσ→R

t ′σ and astσ = tµσ , we havetσ→R t
′σ

i→∗R v2σ wherev2σ is a normal
form. AsR is innermost terminating and every term has a unique normal form,
repeated application ofinnermost reduction steps totσ also yields the normal

form v2σ , i.e., tσ
i→∗R v2σ . Thus,. . . 〈v1, w1〉 〈s, t〉 〈v2, w2〉 . . . is also an

innermostR-chain. �

Hence,independent of the technique used to check the absence of infinite
innermost chains, for TRSs with the unique normal form property, narrowing
dependency pairs preserves the success of the innermost termination proof. So
we may narrow dependency pairs without the risk that the new pairs we ob-
tain form an infinite innermost chain, whereas the original system is innermost
terminating. Thus, in Thm. 6 and 8 when replacing the dependency pairs ofR
by their narrowings, one still obtains a sufficient and necessary criterion for
innermost termination.

Moreover, narrowing can of course be repeated anarbitrary number of
times. Thus, after replacing (10) by (10a)–(10c), we may subsequently replace
(10a) and (10b) by their respective narrowings.

〈IF1(x, 0, true), IF2(x, 0, true)〉 (10aa)
〈IF1(nil, s(n), true), IF2(nil, s(n), true)〉 (10ba)
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This excludes them from being on a cycle in the estimated innermost depen-
dency graph. Thus, now instead of the dependency pairs (9)–(13) we consider
(9), (10c), (11), (12), and (13). A further narrowing of (10c) is not necessary
for our purposes (but according to Thm. 13 it would not harm either). The right
component of the dependency pair (11) unifies with the left component of (9)
and therefore, (11) must not be narrowed. Instead we narrow (9).

〈PROCESS(nil,m), IF1(nil,m, leq(m, 0))〉 (9a)
〈PROCESS(cons(h, t),m), IF1(cons(h, t),m, leq(m, s(length(t))))〉 (9b)
〈PROCESS(store, 0), IF1(store, 0, true)〉 (9c)

By narrowing (10) to (10c), we determined that we only have to regard instan-
tiations wherestore has the formcons(h, t) andm has the forms(n). Thus,
(9a) and (9c) do not occur on a cycle and therefore, (9) can be replaced by (9b)
only.

As (11)’s right component does not unify with left components any longer,
we may now narrow (11) as well. By repeated narrowing steps and by dropping
those pairs which do not occur on cycles, (11) can be replaced by

〈IF2(cons(h, t), s(n), false), PROCESS(sndsplit(n, t), s(n))〉 (11aac)
〈IF2(cons(h, t), s(n), false), PROCESS(app(nil, sndsplit(n, t)), s(n))〉 (11ad)
〈IF2(cons(h, t), s(n), false),

PROCESS(app(map f(self, nil), sndsplit(n, t)), s(n))〉 (11d)

Now for the cycleP1, it is (for example) sufficient to demand that (11aac),
(11ad), and (11d) are strictly decreasing and that (9b), (10c), and all usable
rules are weakly decreasing. Similar narrowings can also be applied for the
pairs (12) and (13) which results in analogous inequalities for the cyclesP2

andP3.
Most standard orderings amenable to automation arestrongly monotonic

path orderings (cf. e.g. [14, 31]), whereas here we only needweak monotonic-
ity. Hence, before synthesizing a suitable ordering, some of the arguments of
function symbols may be eliminated, cf. [8]. For example, in our inequalities
one may eliminate the third argument ofIF2. Then every termIF2(t1, t2, t3) in
the inequalities is replaced byIF′2(t1, t2) (whereIF′2 is a new binary function
symbol). By comparing the terms resulting from this replacement instead of
the original terms, we can take advantage of the fact thatIF2 does not have
to be strongly monotonic in its third argument. Similarly, in our example we
will also eliminate the third arguments ofIF1 and IF3 and the first argument
of sndsplit. Note that there are only finitely many (and only few) possibilities
to eliminate arguments of function symbols. Therefore all these possibilities
can be checked automatically. In this way, the recursive path ordering (rpo)
[14] satisfies the inequalities for (11aac), (9b), (10c), for the dependency pairs
resulting from (12) and (13), and for all (known) usable rules. However, the
inequalities resulting from (11ad) and (11d)
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IF′2(cons(h, t), s(n)) > PROCESS(app(nil, sndsplit′(t)), s(n))

IF′2(cons(h, t), s(n)) > PROCESS(app(map f(self, nil), sndsplit′(t)), s(n))

are not satisfied because of theapp-terms on the right-hand sides (as theapp-
rules forceapp to be greater thancons in the precedence of the rpo). Moreover,
themap f-term in the inequalities requires us to consider the usable rules corre-
sponding to the (unspecified) Erlang functionf as well.

To get rid of these terms, one would like to perform narrowing onmap f and
app. However, in general narrowing onlysome subterms of right components is
unsound.6 Instead, we always have to replace a pair byall its narrowings. But
then narrowing (11ad) and (11d) provides no solution here, since narrowing the
sndsplit-subterm results in pairs containing problematicapp- andmap f-terms
again. In the next section we describe a technique which solves the above
problem.

6 Rewriting Dependency Pairs

While performing only somenarrowing steps is unsound, for non-overlapping
TRSs it is at least sound to perform only one of the possiblerewrite steps. So
if t → r, then we may replace a dependency pair〈s, t〉 by 〈s, r〉.

Note that this technique is only applicable todependency pairs, but not
to rules of the TRS. Indeed, by reducing the right-hand side of a rule, a non
(innermost) terminating TRS can be transformed into a terminating one, even
if the TRS is non-overlapping. As an example regard the TRS with the rules
0→ f(0), f(x)→ 1 which is clearly not innermost terminating. However, if the
right-hand side of the first rule is rewritten to1, then the resulting TRS is ter-
minating. The following theorem proves that our refinement of the dependency
pair approach is sound.

Theorem 14 (Rewriting Pairs) Let R be non-overlapping and let P be a set
of pairs of terms. Let 〈s, t〉 ∈ P, let t →R r and let P′ result from P by
replacing 〈s, t〉 with 〈s, r〉. If there exists no infinite innermost chain of pairs
from P′, then there exists no infinite innermost chain from P either.

Proof . By replacing all (renamed) occurrences of〈s, t〉with the corresponding
renamed occurrences of〈s, r〉, every innermost chain. . . 〈s, t〉 〈v,w〉 . . . from
P can be translated into an innermost chain fromP′ of same length. The reason

6 As an example regard the TRSf(0,1)→ s(1), f(x,0)→ 1, a→ 0, andg(s(y))→ g(f(a, y)).
If we would replace the dependency pair〈G(s(y)),G(f(a, y))〉 by only one of its narrowings,
viz. 〈G(s(0)),G(1)〉, then one could falsely prove innermost termination, although the term
g(s(1)) starts an infinite innermost reduction.
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is that there must be a substitutionσ with tσ
i→∗R vσ wherevσ is a normal

form. Sotσ is weakly innermost terminating7 and asR is non-overlapping, by
[22, Thm. 3.2.11 (1a) and (4a)]tσ is confluent and terminating. Witht→R r,
we obtaintσ→R rσ . Hence,rσ is terminating as well and thus, it also reduces
innermost to some normal formq. Now confluence oftσ implies q = vσ .
Therefore,. . . 〈s, r〉 〈v,w〉 . . . is an innermost chain, too. �

The above theorem enables us to perform a rewrite step in the right-hand
side of a dependency pair and to continue with this dependency pair instead of
the original one. Note that a weakening of Thm. 14 by just demanding inner-
most confluence instead of non-overlappingness ofR is not possible; not even
if we only allow innermost reductions in the right-hand side of a dependency
pair. As a counterexample considerh(f(x)) → h(g(s(x))), h(g(a)) → h(f(a)),
g(s(x))→ b, s(a)→ a. This TRS is innermost confluent, but not innermost ter-
minating (sinceh(f(a)) starts a cycling reduction). Thus, the setP of all depen-
dency pairs forms an infinite innermost chain. But if we perform an innermost
rewrite step on the dependency pair〈H(f(x)),H(g(s(x)))〉, then it is replaced by
〈H(f(x)),H(b)〉. Now the resulting set of pairs has no infinite innermost chains
any more, and thus, we could falsely conclude innermost termination.

However, the demand that the TRS should be non-overlapping may be
weakened by demanding that it isinnermost normal form preserving, i.e., for

any termt , whenevers
i←∗ t → r holds for a normal forms, thenr

i→∗ s.
Non-overlapping TRSs are innermost normal form preserving, but not vice ver-
sa (considera → a, a → b). In practice, however, the above version of Thm.
14 is most important, since it is usually much easier to show that a TRS is
non-overlapping than that it is innermost normal form preserving.

The converse of Thm. 14 holds as well ifP is obtained from the dependen-
cy pairs by repeated narrowing and rewriting steps. So similar tonarrowing,
rewriting dependency pairs also preserves the necessity of our criterion.

Theorem 15 (Rewriting Pairs Preserves Completeness) Let R be an inner-
most terminating TRS with the unique normal form property and let P, P′ be
as in Thm. 14. If there exists no infinite innermost R-chain of pairs from P,
then there exists no infinite innermost R-chain of pairs from P′ either.

Proof . In an innermost chain. . . 〈s, r〉 〈v,w〉 . . . from P′, replacing all (re-
named) occurrences of〈s, r〉 by corresponding renamings of〈s, t〉 yields an
innermost chain fromP of same length. The reason is that there must be aσ

with rσ
i→∗R vσ . AsR is innermost terminating, there must be a normal formq

7 We call aterm t (innermost) terminating if all (innermost) reductions starting int are finite.
Analogously,t is weakly (innermost) terminating if there exists a finite (innermost) reduction
starting int .
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which is reachable fromtσ by innermost reduction steps, i.e.,tσ
i→∗R q. Thus,

tσ→R rσ
i→∗R vσ impliesq = vσ by the unique normal form property ofR,

and hence,tσ
i→∗R vσ . �

In our example we may now eliminateapp andmap f by rewriting the pairs
(11ad) and (11d). Even better, before narrowing, we could first rewrite (11),
(12), and (13). Moreover, we could simplify (10c) by rewriting it as well. Thus,
the resulting pairs on the cycles we are interested in are:

〈PROCESS(cons(h, t),m), IF1(cons(h, t),m, leq(m, s(length(t))))〉 (9b)
〈IF1(cons(h, t), s(n), true), IF2(cons(h, t), s(n), false)〉 (10c′)
〈IF2(store,m, false), PROCESS(sndsplit(m, store),m)〉 (11′)
〈IF1(store,m, false), IF3(store,m, empty(fstsplit(m, store)))〉 (12′)
〈IF3(store,m, false), PROCESS(sndsplit(m, store),m)〉 (13′)

Analogous to Sect. 5, now we narrow(11′), (12′), (13′), perform a rewrite step
for one of(12′)’s narrowings, and delete those resulting pairs which are not on
any cycle. In this way,(11′), (12′), (13′) are replaced by

〈IF2(cons(h, t), s(n), false), PROCESS(sndsplit(n, t), s(n))〉 (11′′)
〈IF1(cons(h, t), s(n), false), IF3(cons(h, t), s(n), false)〉 (12′′)
〈IF3(cons(h, t), s(n), false), PROCESS(sndsplit(n, t), s(n))〉 (13′′)

By eliminating the first argument ofsndsplit and the third arguments ofIF1, IF2,
andIF3 (cf. Sect. 5), we obtain the following inequalities. Note that according
to Thm. 10, these inequalities prove the absence of infinite innermost chains
for all three cycles built from (9b),(10c′), and(11′′)–(13′′), since for each of
these cycles (at least) one of its dependency pairs is strictly decreasing.

PROCESS(cons(h, t),m) ≥ IF′1(cons(h, t),m)
IF′1(cons(h, t), s(n)) ≥ IF′2(cons(h, t), s(n))
IF′1(cons(h, t), s(n)) ≥ IF′3(cons(h, t), s(n))
IF′2(cons(h, t), s(n)) > PROCESS(sndsplit′(t), s(n))
IF′3(cons(h, t), s(n)) > PROCESS(sndsplit′(t), s(n))

sndsplit′(x) ≥ x
sndsplit′(nil) ≥ nil

sndsplit′(cons(h, t)) ≥ sndsplit′(t)
l ≥ r for all rulesl→ r with root (l) ∈ {leq, length}

Now these inequalities are satisfied by the rpo. Thesndsplit′-, leq-, andlength-in-
equalities are the only ones which correspond to the usable rules, since the rules
for map f and f are no longer usable. Hence, the TRS of Sect. 3 is innermost
terminating. In this way, left-right decreasingness of the CTRS from Sect. 2
could be proved automatically. Therefore, the desired property holds for the
original Erlang process.
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7 Verifying Networks of Processes

In many applications, one is not only interested in verifying certain properties
of a single process in a network, but instead one wants to verify a property of
the whole network of processes. If these processes work asynchronously, then
the exact order of the messages passed through the network is often indeter-
ministic. Modelling this kind of behaviour usually results in TRSs which are
overlapping (and in fact, not confluent).

In this section we extend the well-known result that innermost termination
of non-overlapping TRSs implies their termination to the class of overlapping
TRSs which result from describing process networks in our framework. Then
we show that our techniques of narrowing and rewriting dependency pairs can
also be applied to overlapping TRSs. Moreover, we introduce a third technique
to modify dependency pairs, viz.instantiating dependency pairs, which is par-
ticularly useful when dealing with non-confluent TRSs. With these extensions,
we show how an important property for a network of Erlang processes could
be successfully verified.

In this verification problem, we have a ring of three asynchronous processes
(similar to the process described in Sect. 2). The aim is to prove that if the first
process disregards its input (i.e., it performs as if it repeatedly gets the empty
list as input), then eventually, the third process will also send the empty list. Of
course, if one can prove this for a ring of three processes, then a similar proof
for any other number of processes works analogously.

To model this situation, we use a CTRS similar to the one of Sect. 2. How-
ever, as we have to regard all three processes simultaneously, we need a new
defined symbolring to describe the current state of the whole network. The term

ring(st1, in2, st2, in3, st3,m)

describes a situation where the stores of the processes 1, 2, and 3 have the values
st1, st2, andst3, respectively. The variablein2 is a list of lists containing all
messages which have been sent from Process 1 to Process 2, but which have
not yet been received by Process 2. Similarly,in3 is the list of those messages
sent from Process 2 to Process 3, which have not yet been received by Process
3. The messages sent from Process 3 to Process 1 are ignored, because in our
verification problem we assume that Process 1 receives no new input any more.
Again,m is the (maximum) length of messages allowed.

In order to prove the desired conjecture, we force the reduction to terminate
as soon as all processes in the ring can only send the empty message. In addition
to the auxiliary functions of Sect. 2 we now also need the functionshead and
tail which are defined by the following rules.

head(cons(h, t))→ h tail(cons(h, t))→ t

The CTRS to describe the behaviour of the three processes in the ring is the
following one.
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empty(fstsplit(m, st1))→∗ false |
ring(st1, in2, st2, in3, st3,m)→
ring(sndsplit(m, st1), cons(fstsplit(m, st1), in2), st2, in3, st3,m) (17)

leq(m, length(st2))→∗ true,

empty(fstsplit(m, st2))→∗ false |
ring(st1, in2, st2, in3, st3,m)→
ring(st1, in2, sndsplit(m, st2), cons(fstsplit(m, st2), in3), st3,m) (18)

leq(m, length(st2))→∗ false,

empty(fstsplit(m, app(map f(2, head(in2)), st2)))→∗ false |
ring(st1, in2, st2, in3, st3,m)→
ring(st1, tail(in2), sndsplit(m, app(map f(2, head(in2)), st2)),

cons(fstsplit(m, app(map f(2, head(in2)), st2)), in3), st3,m) (19)

empty(map f(2, head(in2)))→∗ true |
ring(st1, in2, st2, in3, st3,m)→ ring(st1, tail(in2), st2, in3, st3,m) (20)

leq(m, length(st3))→∗ true,

empty(fstsplit(m, st3))→∗ false |
ring(st1, in2, st2, in3, st3,m)→
ring(st1, in2, st2, in3, sndsplit(m, st3),m) (21)

leq(m, length(st3))→∗ false,

empty(fstsplit(m, app(map f(3, head(in3)), st3)))→∗ false |
ring(st1, in2, st2, in3, st3,m)→
ring(st1, in2, st2, tail(in3), sndsplit(m,app(map f(3,head(in3)), st3)),m) (22)

empty(map f(3, head(in3)))→∗ true |
ring(st1, in2, st2, in3, st3,m)→ ring(st1, in2, st2, tail(in3), st3,m) (23)

Rule (17) describes how Process 1 sends a message consisting of the first
m items in its storest1. To that end,fstsplit(m, st1) is added to those other items
in2 which were already sent as an input to Process 2, but which have not yet
been received by this next process. These firstm items are taken out of the store
st1, i.e., its new value issndsplit(m, st1).

The rules (18) and (19) describe the case where Process 2 sends a message. If
its store already contains at leastm items, then Rule (18) applies and the firstm

itemsfstsplit(m, st2) are directly sent to Process 3, after which these items are
removed from its store. Otherwise, ifst2 contains less thanm items, then Rule
(19) isused to receiveoneof the incomingmessages fromin2, i.e.,in2 is replaced
by tail(in2). For these received itemshead(in2), the process computes new
itemsmap f(2, head(in2)) and appends these newly computed items to its store.
Afterwards it sends the firstm items of the new extended store to Process 3.
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Finally, Rule (20) deletes those messages fromin2 that Process 2 would not
generate any new items from (i.e., wheremap f(2, head(in2)) is empty). This
rule is required in order to allow Process 2 to continue receiving messages from
tail(in2), even iffstsplit(m, app(map f(2, head(in2)), st2)) is empty.

Similarly, Rules (21) and (22) describe the sending of messages by Process
3. The only difference is that messages sent by Process 3 are not delivered to
Process 1 again, but they are ignored. Analogous to Rule (20), Rule (23) is used
to remove those messages fromin3 for which Process 3 does not compute new
items. Thering-term will be irreducible as soon as none of the processes can
send a non-empty message any longer.

To prove the desired conjecture, we have to show that this CTRS is left-right
decreasing. Note that this CTRS indeed models anasynchronous behaviour of
the processes. The reason is that we do not determine in which order the process-
es send messages to the next process in the ring. Consequently, the translation
of this CTRS yields a non-confluent unconditional TRS. In the following TRS,
“. . . ” abbreviates the arguments “st1, in2, st2, in3, st3,m”.

ring(. . .)→ if1(. . . , empty(fstsplit(m, st1))) (24)
if1(. . . ,false)→ ring(sndsplit(m, st1),cons(fstsplit(m, st1), in2), st2, in3, st3,m)

(25)
ring(. . .)→ if2(. . . , leq(m, length(st2))) (26)

if2(. . . , true)→ if3(. . . , empty(fstsplit(m, st2))) (27)
if3(. . . , false)→ ring(st1, in2, sndsplit(m, st2), cons(fstsplit(m, st2), in3), st3,m)

(28)
if2(. . . , false)→ if4(. . . , empty(fstsplit(m, app(map f(2, head(in2)), st2)))) (29)
if4(. . . , false)→ ring(st1, tail(in2), sndsplit(m, app(map f(2, head(in2)), st2)),

cons(fstsplit(m, app(map f(2, head(in2)), st2)), in3), st3,m)

(30)
ring(. . .)→ if5(. . . , empty(map f(2, head(in2)))) (31)

if5(. . . , true)→ ring(st1, tail(in2), st2, in3, st3,m) (32)

ring(. . .)→ if6(. . . , leq(m, length(st3))) (33)
if6(. . . , true)→ if7(. . . , empty(fstsplit(m, st3))) (34)

if7(. . . , false)→ ring(st1, in2, st2, in3, sndsplit(m, st3),m) (35)
if6(. . . , false)→ if8(. . . , empty(fstsplit(m, app(map f(3, head(in3)), st3)))) (36)
if8(. . . , false)→ ring(st1, in2, st2, tail(in3),

sndsplit(m, app(map f(3, head(in3)), st3)),m) (37)

ring(. . .)→ if9(. . . , empty(map f(3, head(in3)))) (38)
if9(. . . , true)→ ring(st1, in2, st2, tail(in3), st3,m) (39)

According to Corollary 3 now it suffices to show that this TRS is termi-
nating. Note that this TRS is obviously not simply terminating. For example,
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by adding the embedding rulesfstsplit(m, st1) → st1, sndsplit(m, st1) → st1,
empty(l)→ l, andcons(h, t)→ t to the first two rules (24) and (25), one can
obtain a cycling reduction ofring(false, in2, st2, in3, st3,m) to itself.

In fact, to prove termination of this TRS using the dependency pair approach
in combination with simplification orderings, we again need our refinements of
narrowing and rewriting dependency pairs. However, recall that the refinements
of the theorems 12–15 were restricted toinnermost termination proofs. In the
example of Sect. 3, the resulting TRS was non-overlapping and thus, innermost
termination was enough to conclude its termination. However, now we have a
TRS which is not confluent and hence, none of the existing results for proving
termination by innermost termination is applicable.

Nevertheless, the following theorem shows that for TRSs like the one in
our example, innermost termination still implies termination. Note that our
TRS is a hierarchical combination of a non-overlapping TRSR1 (which de-
fines the auxiliary functions) and an overlapping TRSR2 with the ring- and
if-rules to describe the network verification problem. In fact, TRSs of this form
occur frequently in the process verification domain, since the auxiliary Erlang
functions always result in non-overlapping rules, whereas the description of an
asynchronous process network often requires overlapping rules. The following
theorem gives a syntactical characterization of these TRSs, and it shows that for
such systems, innermost termination already implies termination. Hence, this
theorem is an important result in order to facilitate their termination proofs.

Theorem 16 (Sufficiency of Innermost Termination) Let R = R1 ∪ R2,

where R1 is non-overlapping,R2 is non-collapsing, and R2-rules do not form
critical pairs with R1-rules. Let ' contain all root symbols of left- and right-
hand sides of R2-rules, i.e., ' = {root(l)| l → r ∈ R2} ∪ {root(r)| l →
r ∈ R2}. If no R1-rule contains symbols from ' and if no R2-rule contains
symbols from ' below the root level, then innermost termination of R implies
termination of R.

Proof . For any ground termt , we writet = C[[ t1, . . . , tn]] provided thatC is
a non-empty context (i.e.,C �= �) which does not contain symbols from'
below the root level and provided that root(ti) ∈ ' for all 1 ≤ i ≤ n. Now it
is easy to see that ift = C[[ t1, . . . , tn]] and t →R s, then we have one of the
following three possibilities:

(i) s = C[[ t1, . . . , ti−1, si, ti+1, . . . , tn]] and ti →R si for some 1≤ i ≤ n
(in this case, we speak of abottom rewrite step)

(ii) s = C ′[[s1, . . . , sm]], C →R C
′, and{s1, . . . , sm} ⊆ {t1, . . . , tn}

(in this case, we speak of atop rewrite step)
(iii) s = ti for some 1≤ i ≤ n

(in this case, we have atop collapsing rewrite step).
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The reason is that reducing a termt with root(t) ∈ ' again yields a term whose
root is from' and that symbols of' do not occur below the root level in any
rule ofR. Thus, if the root of the redex is inC, then we really must have a step
of the form (ii) or (iii).

Now assume thatR is innermost terminating, but not terminating. Lett
be a minimal ground term (w.r.t. the subterm relation) such thatt starts an in-
finite R-reduction. Again, we must havet = C[[ t1, . . . , tn]] for some context
C. Due to the minimality oft , its subtermst1, . . . , tn are terminating. Thus, in
the infinite reduction oft , there cannot be any top collapsing rewrite step and
there can only be finitely many bottom rewrite steps. Hence,C starts an infinite
R-reduction as well.

In other words, ifR is not terminating, then there exists a non-terminating
contextC which does not contain any'-symbol below the root level. To use
standard notation, we will now denote this contextC by q, since a context is
just a term possibly containing ‘�’ symbols.

First suppose thatq does not contain any'-symbol at all. Then the only
rules applicable in any reduction ofq are fromR1. However,R’s innermost
termination implies that all innermost reductions starting fromq are finite.
Thus,q is innermost terminating w.r.t.R1 and sinceR1 is non-overlapping,
by [22, Thm. 3.2.11 (1a)] we know thatq is also terminating, which yields a
contradiction.

Thus, innermost termination ofR in fact implies termination ofR1 for all
terms without symbols from'. Now suppose that the root ofq is from', i.e.,
q has the formf0(“s0”) with f0 ∈ ' and “s0” are terms without symbols from
'. Thus, the infiniteR-reduction off0(“s0”) must have the following form.

f0(“s0”)→∗R1
f0(“ t0”)→R2 f1(“s1”)→∗R1

f1(“ t1”)→R2 f2(“s2”)→∗R1
. . .

Here, we havefi ∈ ' for all i, the terms “si” and “ti” do not contain any
symbols from', and we have “si” →∗R1

“ ti”.
Hence, there must be substitutionsσi and rulesfi(“ li”) → fi+1(“ri”) in

R2 such that “li”σi = “ ti” and “ri”σi = “si+1”. Let σ ′i be the substitution
with σ ′i (x) = (σi(x)) ↓R1. (For terms without symbols from', the normal
form w.r.t. R1 is well defined, since these terms are terminating andR1 is
non-overlapping.) SinceR2 does not form critical pairs withR1-rules, we have
“ li”σ ′i = (“ li”σi) ↓R1= “ ti” ↓R1= “si” ↓R1. Moreover, we have(“ri”σ ′i ) ↓R1=
“si+1” ↓R1 by the convergence ofR1 for terms without symbols from'. This
implies

f0(“s0”↓R1)→R2 f1(“r0”σ ′0)→∗R1
f1(“s1”↓R1)→R2 f2(“r1”σ ′1)→∗R1

f2(“s2”↓R1)→R2 . . .

SinceR1 is terminating, we can use innermost steps to reduce each “ri”σ ′i
to its normal form “si+1” ↓R1. Moreover, all theR2-steps in the above reduction
are innermost steps as well, since the arguments “si” ↓R1 are in normal form.
Thus, the above reduction is an infiniteinnermost reduction, which yields a
contradiction to the innermost termination ofR. �
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Thus in our example, innermost termination of the transformed TRS indeed
implies termination of the TRS and thus, it implies left-right decreasingness of
the original CTRS. Hence, in this way the property of the process network can
be proved.

As indicated, to perform this innermost termination proof, we again need
our refinements of narrowing and rewriting dependency pairs. However, as this
TRS is not confluent, for this purpose these techniques now have to be extended
to overlapping TRSs.

It turns out that such an extension is indeed possible, because for the
theorems 13–15 it is in fact sufficient to demand non-overlappingness (resp.
the unique normal form property) just for the usable rulesU(P) instead of
the whole TRSR. In our example, the usable rules of theRING-cycles only
consist of the rules for the auxiliary functions, i.e., the rules (24)–(39) are not
usable. As demonstrated in Sect. 2, these auxiliary rules are non-overlapping.
Thus, the following extensions of the theorems 13–15 allow us to apply our
new techniques for TRSs like the one above, too. In this way, conjectures about
asynchronous networks of processes can now be verified by dependency pairs
as well.

Theorem 17 (Completeness of Narrowing for Non-Confluent Systems) Let
R be an innermost terminating TRS, let P, P′ be as in Thm. 12 and let U(P)
have the unique normal form property. If there exists no infinite innermost R-
chain of pairs from P, then there exists no infinite innermost R-chain of pairs
from P′ either.

Proof . The proof is similar to the one of Thm. 13. The only difference is the

proof thattσ→∗R v2σ impliestσ
i→∗R v2σ for the normal formv2σ . The reason

is that innermost termination ofR implies that there must exist some normal

form q such thattσ
i→∗R q. Note that all rules used in any reduction oftσ are

contained inU(P). Thus, the unique normal form property ofU(P) is enough
to concludeq = v2σ . �

Theorem 18 (Rewriting Pairs for Non-Confluent TRSs) LetRbe a TRS and
let P be a set of pairs of terms such that U(P) is non-overlapping. Let 〈s, t〉 ∈
P, let t →R r and let P′ result from P by replacing 〈s, t〉 with 〈s, r〉. If there
exists no infinite innermost chain of pairs from P′, then there exists no infinite
innermost chain from P either.

Proof . Again, the proof is similar to the proof of Thm. 14. The only extra

observation needed is thattσ
i→∗R vσ implies tσ

i→∗U(P) vσ , since all rules
applicable in a reduction oftσ are contained inU(P). Hence, by non-over-
lappingness ofU(P) we can apply [22, Thm. 3.2.11 (1a) and (4a)] to conclude
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termination and confluence oftσ w.r.t.U(P). But as all rules applicable in re-
ductions oftσ are already contained inU(P), this means thattσ is terminating
and confluent w.r.t.R as well. Thus, now the rest of the proof is identical to the
one of Thm. 14. �

Theorem 19 (Completeness of Rewriting for Non-Confluent TRS) Let R
be an innermost terminating TRS, let P, P′ be as in Thm. 18, and let U(P)
have the unique normal form property. If there exists no infinite innermost
R-chain of pairs from P, then there exists no infinite innermost R-chain of
pairs from P′ either.

Proof . The changes to the proof of Thm. 15 are similar as in the proof of Thm.
17. We havetσ→∗R vσ for some normal formvσ and innermost termination of

R implies tσ
i→∗R q for some normal formq. Again, all these reduction steps

only use rules fromU(P). Thus,U(P)’s unique normal form property implies
vσ = q. �

Note that with these refined theorems we can also handle TRSs where dif-
ferent, but equivalentif-symbols are not identified (cf. Sect. 3). However in
practice, such an identification is still useful, since it simplifies the TRSs con-
siderably.

In particular, due to the above extended theorems, now we may apply nar-
rowing and rewriting to the dependency pairs resulting from the rules (24)–
(39). The only dependency pair resulting from Rule (24) which is on a cycle
is 〈RING(. . .), IF1(. . .)〉. Narrowing and rewriting this dependency pair (and
deleting those resulting pairs which are not on cycles) yields

〈RING(cons(h, t), . . . , s(n)), IF1(cons(h, t), . . . , s(n), false)〉. (40)

Next we regard the dependency pair〈IF1(. . .), RING(. . .)〉 resulting from
Rule (25). One would like to perform narrowing on this dependency pair. How-
ever, this is not possible since its right-hand side unifies with the left-hand sides
of the dependency pairs resulting from the rules (26), (31), (33), and (38). In
fact, this problem is typical when regarding overlapping TRSs.

Nevertheless, the only pair which may occur before〈IF1(. . .), RING(. . .)〉
in an innermost chain is (40). When regarding (40), one immediately sees that
therefore one only has to regard instantiations of〈IF1(. . .), RING(. . .)〉 where
st1 is replaced bycons(h, t) andm is replaced bys(n).

Recall that when estimating the innermost dependency graph, for every
dependency pair〈s, t〉 we check for which (renamings of) dependency pairs
〈v,w〉, cap(w) unifies withs (where their mgu must satisfy some additional
normality condition). Here,cap(w) results from replacing all subterms ofw
with defined root symbols by different fresh variables. Letµ1, . . . , µk be all
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mgu’s ofs and terms of the formcap(w). Then one may replace the dependency
pair〈s, t〉 by its instantiations〈sµ1, tµ1〉, . . . ,〈sµk, tµk〉, since (specializations
of) these instantiations are the only ones that are needed in infinite innermost
chains. This leads to the technique ofinstantiating dependency pairs.

Theorem 20 (Instantiating Pairs) Let P be a set of pairs of terms with 〈s, t〉
∈ P and let Var(w) ⊆ Var(v) for all 〈v,w〉 ∈ P. Let

P′ = P \ {〈s, t〉} ∪ {〈sµ, tµ〉 |µ = mgu(cap(w), s), 〈v,w〉 ∈ P},
where we again assume that different occurrences of pairs from P are variable
disjoint. Then there exists no infinite innermost chain of pairs from P′ iff there
exists no infinite innermost chain of pairs from P.

Proof . If . . . 〈v1, w1〉 〈s, t〉 〈v2, w2〉 . . . is an innermost chain, then there exists

a substitutionσ such thatw1σ
i→∗R sσ . Letw1 have the formC[p1, . . . , pn],

where the contextC contains no defined symbols and allpi have a defined root
symbol. As reductions cannot take place inσ (since otherwise,v1σ would not

be a normal form), we know thatsσ = Cσ [q1, . . . , qn] wherepiσ
i→∗R qi .

We havecap(w1) = C[y1, . . . , yn], where theyi are fresh variables. Letσ ′

be the modification ofσ such thatσ ′(yi) = qi . Then we obtaincap(w1)σ
′ =

sσ = sσ ′, i.e., cap(w1) and s are unifiable. Letµ be the mgu ofcap(w1)

ands. Thus, there exists a substitutionτ such thatσ ′ = µτ . As the variables
of all (occurrences of all) pairs may be assumed disjoint, we may modifyσ

to behave likeτ on the variables of〈sµ, tµ〉. Then we havew1σ
i→∗R sσ =

sσ ′ = sµτ = (sµ)σ and we also have(tµ)σ = tµτ = tσ i→∗R v2σ . Thus,
. . . 〈v1, w1〉 〈sµ, tµ〉 〈v2, w2〉 . . . is an innermost chain, too.

In this way, one can replace all occurrences of〈s, t〉 in innermost chains by
pairs ofP′, except for the very first pair in the chain. However, if〈s, t〉 〈v1, w1〉
〈v2, w2〉 . . . is an infinite innermost chain, then〈v1, w1〉 〈v2, w2〉 . . . is an in-
finite innermost chain as well. Thus, by deleting the possibly remaining first
occurrence of〈s, t〉 in the end, every infinite innermost chain ofP can indeed
be transformed into an infinite innermost chain ofP′.

For the other direction, let. . . 〈sµ, tµ〉 . . . be an innermost chain. As dif-
ferent occurrences of dependency pairs may be assumed variable disjoint, we
can extend every substitutionσ to behave likeµσ on the variables ofs. Hence,
this direction of the theorem is immediately proved. �

It should be remarked that the technique of instantiating dependency pairs
can also be used for termination instead of innermost termination proofs. When
using dependency pairs for arbitrary termination proofs, one has to prove ab-
sence of infinite chains (instead ofinnermost chains), where〈s1, t1〉 〈s2, t2〉 . . .
is anR-chain if there exists a substitutionσ such thattjσ →∗R sj+1σ for all
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consecutive pairs〈sj , tj 〉 and〈sj+1, tj+1〉, cf. [2, 8]. Letren(t) result from re-
naming all occurrences of variables to fresh variables (in particular, different
occurrences of the same variable are also renamed to different new variables).
If P′ = P \ {〈s, t〉} ∪ {〈sµ, tµ〉 |µ = mgu(ren(cap(w)), s), 〈v,w〉 ∈ P},
then there exists no infinite chain of pairs fromP′ iff there exists no infinite
chain of pairs fromP. The proof is very similar to the proof of Thm. 20. The
only difference is that now we writew1 asC[p1, . . . pn] whereC contains no
defined symbolsor variables and allpi either have a defined root symbolor
they are variables. Then we know thatsσ = C[q1, . . . , qn] with piσ →∗R qi
andren(cap(w1)) = C[y1, . . . , yn] where theyi are fresh variables. The rest
of the proof is completely analogous.

In our example, the only right-hand side of a pair whosecapunifies with the
left-hand sideIF1(st1, in2, st2, in3, st3,m, false) of the dependency pair from
Rule (25) isIF1(cons(h, t), in2, st2, in3, st3, s(n), false) from Pair (40). Thus,
we can instantiatest1 by cons(h, t) andm by s(n) in the dependency pair
〈IF1(. . .), RING(. . .)〉 from Rule (25). Subsequent rewriting yields

〈IF1(cons(h, t), . . . , s(n), false), RING(sndsplit(n, t), . . . , s(n))〉. (41)

The only dependency pair resulting from Rule (26) which is on a cycle is

〈RING(. . .), IF2(. . . , leq(m, length(st2))〉. (42)

For the dependency pair〈IF2(. . .), IF3(. . .)〉 from Rule (27) we proceed in
a similar way as for the one from Rule (24) which yields

〈IF2(. . . , cons(h, t), . . . , s(n), true), IF3(. . . , cons(h, t), . . . , s(n), false)〉.
(43)

Rule (28) gives rise to a dependency pair〈IF3(. . .),RING(. . .)〉. The only
dependency pair which may precede this one in innermost chains is (43). Thus,
by the instantiation technique,st2 can be replaced bycons(h, t) andm can be
replaced bys(n). Subsequent rewriting yields

〈IF3(st1, in2, cons(h, t), . . .), RING(st1, in2, sndsplit(n, t), . . .)〉. (44)

The dependency pair〈IF2(. . .), IF4(. . .)〉 from Rule (29) yields the following
narrowing.

〈IF2(st1, cons(h, t), . . .), IF4(st1, cons(h, t), . . .)〉 (45)

For the dependency pair resulting from Rule (30) we only have to regard
the instantiation wherein2 is replaced bycons(h, t). Rewriting this pair yields

〈IF4(st1, cons(h, t), . . .), RING(st1, t, . . .)〉. (46)
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Similarly, narrowing the dependency pair〈RING(. . .), IF5(. . .)〉 from Rule
(31) yields

〈RING(st1, cons(h, t), . . .), IF5(st1, cons(h, t), . . .)〉. (47)

So the dependency pair〈IF5(. . .), RING(. . .)〉 from Rule (32) only has to be
regarded for the instantiation ofin2 by cons(h, t) and thus, rewriting it results in

〈IF5(st1, cons(h, t), . . .), RING(st1, t, . . .)〉. (48)

Finally, for the dependency pairs resulting from the rules (33)–(39) we pro-
ceed in an analogous way and we obtain seven pairs similar to (42)–(48). Now
the resulting constraints from the dependency pair approach are satisfied by the
lexicographic path ordering (lpo) [25] if one eliminates the last arguments of all
IF-symbols and the first argument ofsndsplit before (to benefit from the fact that
these symbols do not have to be strongly monotonic in these arguments). In this
way, all of the above dependency pairs are weakly decreasing and the ones with
a RING-term as their right component are strictly decreasing. The precedence
used for this lpo should makeRING and theIF-symbols equally great, whereas
the tuple symbols should be greater than all lower case symbols. Of course,
here we assume that the rules for the functionf are also weakly decreasing w.r.t.
the lpo. The reason is that now we consider a problem where non-empty lists
must be processed and thus, thef-rules are usable as well. Hence, as soon as the
actual rules for the functionf are determined, their weak decreasingness has to
be checked.

Thus, in this section we have demonstrated that although asynchronous net-
works are described by non-confluent (C)TRSs, provinginnermost termination
is still sufficient for their termination proof. Subsequently, we have shown that
our techniques of rewriting and narrowing dependency pairs can be extended
to TRSs where just the usable rules (i.e., the rules for the auxiliary functions)
satisfy non-overlappingness requirements. Finally, we have introduced a third
technique for manipulating dependency pairs, viz. instantiation. In this way,
now dependency pairs can also be used to prove statements about asynchro-
nous networks of processes.

8 Conclusion

We have shown that the dependency pair approach can be successfully ap-
plied for process verification tasks in industry. While our work was motivated
by specific process verification problems, in this paper we developed several
techniques which are of general use in term rewriting.

First of all, we showed how dependency pairs can be utilized to prove
that conditional term rewriting systems are decreasing and terminating.
Moreover, we presented three refinements which considerably increase the
class of systems where dependency pairs are successful. The first refinement
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of narrowing dependency pairs for innermost termination was already
introduced in [8]. However, [8] did not contain an explicit proof of its
soundness, and completeness of the technique for TRSs with unique normal
forms is a new result. It ensures that application of the narrowing technique
preserves the success of such an innermost termination proof. In fact, our
narrowing refinement is the main reason why the approach of handling
CTRSs by transforming them into TRSs is successful in combination with
the dependency pair approach (whereas this transformation is usually not of
much use for the standard termination proving techniques). To strengthen
the power of dependency pairs we also introduced the novel technique of
rewriting dependency pairs and proved its soundness and completeness for
innermost termination of non-overlapping TRSs. Finally, the refinement of
instantiating dependency pairs was presented and we showed how to lift the
non-overlappingness restrictions for narrowing and rewriting dependency
pairs in order to apply these techniques to non-confluent TRSs. We also
developed a new syntactical characterization for a class of (possibly)
non-confluent TRSs where innermost termination implies termination, which
captures those rewrite systems describing asynchronous process networks.
This paper is a substantially revised and extended version of [6] and [7].

Note that we have used the modularity results for the dependency pair
technique [5] for both a split and conquer approach and for dealing with the
incompleteness of our specification. For many reasons, in practice it is more
rule than exception that a specification lacks some information, like the
definition of the functionf in our example. Usually, at a certain level of
abstraction one stops specifying and, hence, for many built-in functions the
specification is preferably hidden (e.g., one could add a date as a time stamp
to every message where in many cases the computation of this date is
not relevant). Thus, assuming some properties of the missing part of the
specification and proving them for that part when it becomes available makes
sense. In that context the modularity of the dependency pair technique is of
great help.

Our techniques have shown to be successfully applicable in small,
but real examples, where eventuality properties had to be proved. These
experiences demonstrate that our approach is particularly useful for verifying
properties of processes where a lot of data manipulation is involved and
where communication plays a minor role. Typically, these are the properties
that are hard to handle by model-checking. The examples in this paper
represent such situations where model-checking cannot be used because of
the arbitrary lengths of the stores. These problems have also been tackled by
a specialized proof checker for Erlang [1]. Compared to dependency pairs,
the proof checker approach is more generally applicable. But since in that
approach the proofs had, up to a great extend, to be provided by hand, the
dependency pair approach has the important advantage that it is much better
suitable for automation.
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