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Abstract. A maximum distance separable (MDS) block code is a linear code
whose distance is maximal among all linear block codes ofiratelt is well
knownthat MDS block codes do exist if the field size is more thdn this paper

we generalize this concept to the class of convolutional codes of a fixed rate
k/n and a fixed code degréeln order to achieve this result we will introduce

a natural upper bound for the free distance generalizing the Singleton bound.
The main result of the paper shows that this upper bound can be achieved in all
cases if one allows sufficiently many field elements.
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1 Introduction

Let F be a finite field and le¥ C F" be an [, k] linear block code. Let/ (%)
be the distance ot, i.e. d(%) is equal to the minimum Hamming distance
between any two different code wordsy € %.

The main linear coding problem asks for the construction of lineak][
codes whose distane&%) is maximal among all linear], k] codes.

The distancei (%) is always upper bounded by the Singleton bound [9],
i.e. one has the inequality
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d®) <n—k+1. (1.1)

If the base fieldr has sufficiently many elements then the Reed Solomon con-
struction shows that there ave ] codes whose distance is equahte k + 1.

Such codes are called maximum distance separable (MDS) codes. It is the pur-
pose of this paper to derive a generalization for the Singleton bound which is
valid for convolutional codes and to prove that there exist codes which achieve
this generalized Singleton bound. We call then such a convolutional code an
MDS convolutional code.

In the literature there were already several papers [6, 12] which considered
the concept of a maximum distance separable convolutional code. In each of
these approaches it was necessary to restrict the total class bf iatenvolu-
tional codes to a suitable subclass. This is simply due to the fact that there is in
general no upper bound for the free distance of akateconvolutional code.

We argue that the single most important parameter for akyateonvolu-
tional code is thalegreeand we will define this parameter in a moment. The
set of all convolutional codes of ratgn and degree at mogtforms a finite
set and consequently the free distances of these codes have to be bounded from
above. The generalized Singleton bound which we are going to derive will have
the property that every convolutional code of rafe and degreé will have
a free distance of less than this bound and the main result of this paper states
that there are codes which achieve this distance.

In the sequel we follow the module theoretic approach to convolutional
codes as it was described in [16]. This has the advantage that we can utilize by
duality well known first order representations studied in the systems literature.
The difference to the classical approach as provided in [1, 11] will turn out to
be minor.

Consider the polynomial ring@ = F[z]. For the purpose of this paper we
will define a convolutional code as @&submodule of the modulR”. SinceR
is a principal ideal domain (PID) the submod#ds free and it has therefore
a well defined rank. If € has rankkc we will say that the convolutional code
% has transmission rateg'n.

As it was shown in [16§ is dual to a linear behavicf* := #B C F*[[z]]
andZ B has a well defined McMillan degréeUsing this duality we will define
the degree of the convolutional codeas the McMillan degree of the behavior
6+

The degree is also easily computed from the modtlgirectly. For this
let G(z) be ann x k polynomial matrix whose columns form akrbasis of
the submodul&. We say thatG (z) is a generator matrix for the convolutional
code?. In terms ofG (z) the degree is exactly equal to the maximal degree of
thek x k full size minors ofG (z) (See [16] for details). Note that our definition
is independent of the particular choice of generator matrix. Indeé€ (f)
and G,(z) are two generator matrices then there exists a unimodular matrix
U (z) such thatG,(z) = G1(z)U(z) and thek x k full size minors ofG»(z)
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correspond to the full size minors 6f1(z) multiplied by the constant factor
detU(z). In particular the highest degree of the minors are the same.

Let v; be the degree of thgh column ofG(z). l.e.v; = max; degg;;(z).

We denote byG, the high order coefficient matrix af (z). In generalG

has not full rankk. Every module? of rankk has however an x k generator
matrix G (z) whose column degreas, ..., v, are non-increasing and whose
high order coefficient matrig ., has rank. The degreé is in this case equal to

§ = ), vi and we say thaf (z) is in column proper formThe ordered indices

V1 > - - - > g are invariants of the convolutional code and we call these indices
thecolumn degreeer Kronecker indice®f the convolutional cod® .

For anyn-component vector € ", we define its weight and denote it by
wt(v), the number of all its nonzero components. The weight of a polynomial
with coefficients irF” is then the sum of the weights of all its coefficients. Finally
we define the free distance of the convolutional céde F"[z] through:

dfree = mln{Wt(U(Z)) | U(Z) €Y, U(Z) 7& 0} .

Remark 1.1The module theoretic approach as presented above is slightly non-
standard. In the coding literature [1, 4, 11] convolutional codes are usually
defined as linear subspaces (i.e. submodule®)'affhereRr is either the field
of rationaldF(z) or the field of formal Laurent serié¢$(z)). If the code is defined
overlF((z)) ithasto be required that the code is generated lsapolynomial
generator matrixG(z). Over F(z) such a representation is guaranteed. The
column span o6 (z) with respect tdF[z] corresponds then to the finite weight
code words of the column span generateddyy) with respect taF(z). The
restriction to finite weight code words is of little significance. In fact McEliece
[10, Section 2] points out that finite weight code words are the only ones that
can occur in engineering practice. For this paper it is of importance that the set
of ratek/n convolutional codes of degréecan be equipped with the structure
of a variety and this explains our preference for the module theoretic approach.
The paper is structured as follows: In Section 2 we give a natural bound on
the free distance which codes of rate: and degreé must satisfy. This bound
naturally generalizes the Singleton bound [9, Chapter 1] of linear block codes.
The main theorem (Theorem 2.10) states that there exists a code attaining this
upper bound, as long as we allow sufficiently large field sizes. We will call
such codes MDS convolutional codes. In Section 3 we exhibit some first order
representations for the convolutional codes that are used along the paper. In
Section 4 we present a detailed proof of the main result, that is, the existence
of MDS-convolutional codes. Finally in the last section we explain shortly the
underlying geometric aspects of the construction.
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2 Main Results

Let% be a convolutional code of rakgn and degreé defined over an arbitrary
base fieldr. Let G be a polynomial encoder in column proper form with ordered
column degrees; > --- > v,. We have the following upper bound on the free
distance of the code:

Lemma 2.1 Let£ be the number of indicas among the ordered indiceg >
- > v having the value; = v;. Then the free distance must satisfy

dfree <n(v+1)—£¢+1. (2.1)
Proof. LetG, be the high order coefficient matrix 6f(z). After some possible
permutation of the rows df (z) we can use elementary column operations and

transform the last columns of the matrixG ., into a matrix[ I{/EI] whereM is

a matrix of size(n — ¢) x £ overF. The transforming operations can be done
by an invertible matrix’ € G, which acts on the lagtcolumns of the matrix
G (z). This transformation has no effect on the column spae&(ej and it also
does not affect the column degregs

After this transformation the last column of the new generator mét(i»
will have (¢ — 1) polynomials of weight strictly less than-+ 1, one with weight
exactlyv, + 1, and the remainin@: — £) polynomials with weight less or equal
thanv, + 1. Therefore the inpu®, O, . . ., 0, 1)’ gives a codeword with weight
less or equal than

=D+ +D+n -0+ =n(vi+1)—2+1.
This gives the upper boun@.l). O
The set of raté/n convolutional codes of degréds partitioned into sets

of codes with different column degrees> - - - > . Taking the maximum of
the bound2.1) over all such possible sets we obtain the following:

Theorem 2.2 For every base fieléf and every raté /n convolutional codes
of degrees, the free distance is bounded:by

divee < (n—k) (18/k) +1) +8+1 . (2.2)

Proof. The upper bound2.1) is largest ify; is as large as possible addas
small as possible. The largest possible valuesfas v, = |§/k]. Minimizing
£ results in the constraint length values

vi=8/k]+ 1 ..., v =L8/k] + L vigr1=L8/k],..., v = [§/K]

Substituting, = [8/k] and¢ = k—8-+k |8/k] in (2.1) we getthe boun@®.2).
O
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Remark 2.3In the systems literature, the above set of indices are sometimes
referred to as the ‘generic set of column indices’. McEliece [10, Section 4] calls
a code having a right prime generator matrix with the generic set of column
indices ‘a compact code’.

Remark 2.4The upper bound2.2) on the free distance seems to be new. In
the coding literature [3, 4, 10] there are many known upper bounds for con-
volutional codes of a fixed rate and a fixed degree. These bounds usually are
valid for a particular finite fieldr, . In contrast to this(2.2) is valid for any field

(even an infinite field) and we believe that the bound naturally generalizes the
Singleton bound.

The main theorem 2.10 will state that there exist always kateconvo-
lutional codes of degre& whose free distance is equal to the right hand side
of (2.2). Based on this we define:

Definition 2.5 A ratek/n code of degreé whose free distance achieves the
upper bound given in(2.2) will be called an MDS convolutional code. The
bound (2.2) will be called the generalized Singleton bound.

Remark 2.6MDS convolutional codes were defined before in the literature.
Justesen and Hughes [6] study maximum distance separable convolutional
codes among the class of systematic polynomial encoders. Since systematic
polynomial encoders represent a very restricted class of convolutional codes
the results are quite different from the ones presented here.

Piretand Krol [12] consider MDS convolutional codes with respect to a non-
standard Hamming metric. They consider subspacé® afhereR = [F(z) is
the field of rationals. Their Hamming distance is then defined as the number
of coordinates where two vectors insi@&é differ. This definition amounts to
a linear block code over the infinite fieRl = F(z) and the standard Singleton
bound(1.1) applies.

The concepts studiedin[6, 12] are therefore different from the MDS concept
we consider in this paper.

The following lemma gives sufficient conditions for a code to be an MDS
convolutional code:

Lemma 2.7 If a codewordv(z) in € has the property that any of its com-
ponents have weight at lea@ + 1) then the weight of the codewordz) is
necessarily greater than or equal to

(n—k)(I8/k] +1) +8+1 . (2.3)

We will refer to the property that arycomponents of an component vector
have weight more thah+ 1 as theweight property
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Proof. Let

v(@) = (1@, ..., 0@) €% .
The weight property implies that at least- k + 1 of the components af(z)
must have the weight more or equal |8y k] + 1. Indeed, taking the first
components of, by the weight property, the sum of their weight:ig + 1,
therefore there is one component, saywith the weight>|§/k] + 1. Cutv;
from the sequence and adg, ;.The new sequence of components has again
the weight property, so there is once again a componentysayth weight
>|8/k] + 1. With this reasoning we obtain that at least- k + 1 of the
components must have the weight more or equabfd&| + 1. We have now
thatn — k of the components have weight at leagis/ k] + 1, and from the
weight property that the remainiggcomponents have weight greater tldarl.
Therefore

Wt(v(z)) = (n = k) ([8/k] + D + (6 + 1)

which is equal to the upper bourid.2). O

Before we state the main theorem we summarize some known results:
For § = 0 the bound(2.2) coincides with the Singleton bound (see
e.g. [9]). In this situation we therefore have:

Lemma 2.8 If G is ann x k generator of an MDS block code théhgenerates
also an MDS convolutional codes of rdign, degree§ = 0 and free distance
n —k + 1. In particular if |F| > n, MDS convolutional codes of rate/'n and
degree0 do exist.

The next result implies that rat¢ A MDS codes do exist for every value &f
The result was derived by Justesen [5]. A systems theoretic proof of this result
is given in [19].

Theorem 2.9 ([5]) Let 8, n be fixed and assume thitis a finite field with
g := |F| > 38 elements. Then there exists a rafes MDS convolutional code.

The main result of this paper now states:

Theorem 2.10 For any ratek/n and any degreé there exist MDS convolu-
tional codes for sufficiently large field sizes.

The proof of Theorem 2.10 will be given in Section 4. We conclude the
section with three illustrative examples:

S

Example 2.11Let
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be an encoder for a rate 1/2 convolutional code of de§jee€el, overfFs. In this
situation the bound2.2) is dy,.. < 4. G(z) is a non-catastrophic encoder. We
claim that the code defined l6y(z) has free distance equal to 4, i.e. represents
an MDS code. Indeed, looking at an arbitrary codeword

(1@ +D
v(z) = (I(z)(z+2)>’ 1(z) € F3[¢]

we easily see that its weight can not get smaller than2= 4 which is the
MDS-bound for these parameters.

OverlF, one verifies that there is no non-catastrophic encoder generating an
MDS code of rate 12 and degreé = 1.

Example 2.12L et

z—-1 1
G=| -2 1
2z—-3) 1

be an encoder for a ratg/2 convolutional code&s’ of degrees = 1, overFs.

The encoder is non-catastrophic and the bo(hd) is ds,.. < 3. We claim
that the cod&¥ defined byG (z) has free distance equal to 3, i.e. represents an
MDS code. Write

-11 10
G=Go+Gi1z, Gog=|-21], Gi1=1]10
-31 20

A codewordv(z) can be written as:

v(z) = vo+ v1z + -+ -+ vyp12" Tt

i ) i
=(G0+G12)((.0>+(.1)Z+"'+<.V>Zy>, ir ji€Fs .
Jo J1 Jy

Equating coefficients we obtain:

" 3 o 111\ (i
UoZGo(,) andvlzGo(,)—i—Gl(,): 211 J1 . (24)
Jo J1 -312/ \io

Without loss of generality we will assume thgt# 0. If ig = 0 then it follows
that jo # 0 and the weight wivg) = 3. On the other hand if, # 0 then
wt(vg) > 2 sinceGyg is a generator matrix for an MDS/2 block code and
wt(vy) > 1 since the 3x 3 matrix appearing if2.4) is invertible.

It follows that wi(v(z)) > 3 = djr.e = 3= % is MDS.
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Example 2.13Let

(Z*+1 (z—1)
G =| BZ+1 -2
(522 +1) (2z — 3)

be defined over the fiell;. ThenG(z) defines a non-catastrophic encoder of
rate 23 and degreé = 3. A similar argument to the one in the previous
example shows that,... = 6, i.e.G(z) defines an MDS convolutional code.

3 First Order Representations for Convolutional Codes

This section reviews some first order representations for convolutional codes
that are heavily used in the next sections. As it was shown in [16] we have the
following existence and uniqueness theorems:

Theorem 3.1 Assume¥’ C [F"[z] is a ratek/n convolutional code of degree
LetlK be the algebraic closure &f Then there exist matrices, L € F@¢+m—kx?
and M e F@+m-k>n gych that

% ={v(z) € F'[z] | Ix(z) € F’[z]: zK + L)x(z) + Mv(z) =0} . (3.1)

Moreover the following conditions are satisfied

1. K has full column rank
2. (K | M) has full row rank
3. rank(zoK +L | M) =68 +n —k,Vzo € K.

The theorem allows one to work with matrix triplé&, L, M) instead of a
polynomial description. A convolutional code which is described by the matri-
ces(K, L, M) will be simply denoted by (K, L, M). If § = 0, (3.1) reduces

to the parity check equatioWv(z) = 0. The representatiof3.1) is unique in

the following sense:

Theorem 3.2 Let (K, L, M) and (K’, L', M") be two matrix triples with the
sizes as in the previous theorem and satisfying the minimality conditi@$.
Then¥ (K, L, M) =%(K’', L', M) if and only if

(K',L',M'y=(SKT™ Y, SLT™L, sM) (3.2)
for someT € Gl (F) and S € Glsy,_i (F).

Starting with a(K, L, M) representation for a convolutional codewe can
derive an input/state/output representation. Performing a suitable similarity
transformation and permutation of the components(ef we can rewrite the

(K, L, M) matrix triple in the following way (compare with [16, Section 1V]):
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S A T A

In the partitioning,A € F**%, B € F*k, C € F"=%>% andD e F*=0xk Let:

x(z) = x02" +x127 P44 xy; x €eFr=0,...,y ,
v(z) = vz’ + v P4t v, eFL =0,y .
If one partitions the vectar, into v, = ;’j , Wherey, hasn — k components

andu, hask component then the convolutional code is equivalently described
by the familiar looking (A, B, C, D)’ representation:

xt+1 - Ax, + BM[

vi=Cx;+Du;, x=0, x,4,1=0. (3:3)

This system is known as the input/state/output representation for a convolutional
code. It describes the dynamics fasysstematic and rational encodéfve refer
to [16, 18, 20] for more details.

We say that the matricgs\, B) form acontrollablepair if

rank(B AB--- A" 'B) =4 ,

and we say thatA, C) form anobservable paiif (A’, C*) is a controllable pair.
Once(A, B) form a controllable pair an¢A, C) form an observable pair then
it was shown in [16, 18, 20] that the systé&3) represents a non-catastrophic
convolutional code of degreeand ratek/n.

If one is interested in the construction of convolutional codes with some
designed distance there is no limitation if one attempts to construct matrices
A, B, C, D, with (A, B) controllable and A, C) an observable pair. The fol-
lowing result was obtained by such a construction:

Theorem 3.3 ([16]) Letr := max{n — k, k}, and assume that the cardinality
of the fieldF satisfies
)
|F| > ér ’7 —‘
n—=k

Then there exists a rakg' n convolutional code of degréehaving free distance

dfreeZS—l-l .

Remark 3.4The proof of Theorem 3.3 as given in [16] came with a concrete
construction of a set of matrices B, C, D. The reader observes that for very
high rates the free distance ®f+ 1 is only a fraction away from the optimal
upper bound?2.2). For low rates the distance 8+ 1 is less than optimal.
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In order to prove Theorem 2.10 we will need a strengthening of Theorem 3.3:

Theorem 3.5 Leté, k, n, p be fixed and assume that

(] L)

If the matricesA, B, C have the property thatB AB --- A”~1B) is the parity

check of an MDS block code and tHat® A’C’ - - - AP‘1’C’> is the generator
matrix of an MDS block code then for any codeword

v(z) = (y(z)) c U:n[Z]
u(z)

either
Wt(u(z)) > 6 +1 or wt(v(z)) > (n —k) ([§/k] +1D) +6+1 .

Before we give the proof we want to mention that the choice @ not the
minimum that we can have so that the result is correct. The proof for a smaller
choice ofp would involve more cases. For the purpose of this paper this is not
necessary.

Proof. Assume
u(z) = uoz’ +urz’ t+-+u,
y(@) =yor¥ + 3 4y,

wherey is the degree ob, and thatug # 0. The first equations of the sys-
tems(3.3) give that (see [16]):
(Uy, ..., up) €ker(B AB--- A”B) .

If vy < pthenwiu(z)) > é§ + 1 and the proof is complete.
We therefore assume that> p and that wiu(z)) < 8. By the ‘pigeonhole
principle’ there exist an index < p — £ and an input sequence

Uigl = Uitz = =u;p0 =0 .

In analogy to the proof of [18, Theorem 3.1] it follows that the statg # 0
and that

Yi+1 C
Yit2 CA

. = . Xit1 -
Yige CA-L

The assumption on the matr(>C’ ACt--- AP‘l’Cf> gives that
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Wt(y)Z(n—k)-§—8+1:(n—k)<2{nik—‘+L%J+1>_5+1

228+(n—k)(L%J+1)—8+1=(n—k)<\‘%J+l>+3+l.

O]

In the proof of Theorem 2.10 the following lemma will be needed:

Lemma 3.6 Let §, k, n, p be fixedr = max{n — k, k} and assume that the
cardinality of the fieldr satisfiegF| > rp. Then there exist matrices, B, C
satisfying the conditions of Theoresb.

Proof. Leta € [ be an element of multiplicative order at least Then

« 0 --- 0 la o? - ot
. 2 4 2(k—1)
0 o2 "-. lo“o® -+«
A= « s B = s
¢ Do :
0 -.- 0 o 1ol a® ... @f*=D
1 ... 1
a ... aa
Co— o .. o

anfkfl . a&(nfkfl)

satisfy the conditions of Theorem 3.5. O

4 Proof of the Main Result

In this section we will give the proof for Theorem 2.10, the main result of this
paper. The idea of the proof goes as follows:

We exhibit a parameterization on the set of all fgte convolutional codes
of degrees using a largeF-vector space, wherk is a finite field. Then we
show that the set of codes which are not MDS forms an algebraic subset. Over
a finite field an algebraic subset might be the whole parameter space. Over
the algebraic closure however the algebraic subset describing the convolutional
codes which are not MDS forms a strictly proper subset. This reasoning will
allow us to predict an MDS convolutional code with entries in a finite extension
of the (finite) base field which is itself a finite field.

For the parameterization we will use the first order representation as pre-
sented in Theorem 3.1 of Section 3. We do this by viewing a triple of matrices
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(K, L, M) as a pointin the vector spaE&+"—%@+m By Theorem 3.2 this pa-
rameterization is not unigue. This is however of minor importance in the proof.
In the last section we will show that the proof can also be derived in a variety
which parameterizes the rat¢n convolutional codes of degréeexactly. We
start the proof with a short Lemma:

Lemma 4.1 The set of matriceéK, L, M) satisfying the property, 2 and 3
of TheorenB.1is Zariski open and nonempty insifig =% @+m

Proof. We recall from the paper of Ravi and Rosenthal [14] that the conditions
2 and 3 can be equivalently written as the following rank condition:

K 0...0MO...... 07
LK . :|0M"°
OL .0 § blocks (4.2)
e K .M 0
| 0...0 L|0...... 0 M |
25 — 1 blocks

has full row rank. Thus allK, L, M) matrices satisfying the conditions2, 3

are in the complementary set of all zeros of the polynomial equations describing
the determinant of some full size minors of the matriggand (4.1) being

0. Therefore the set of all matrix 3-tupléx, L, M) satisfying the conditions

1, 2, 3 is Zariski open irf6+"—0(+m (see [2, Chapter 6] for basic properties

of the Zariski topology) and it is obviously nonempty since there is an one to
one correspondence between this set and the set of all convolutional codes as
we defined them. O

The rest of the section will be devoted to the proof of the main theorem.

Proof of Theorem 2.1Q.et [ be a fixed finite field, withy elements, having
characteristip. Let K denote the algebraic closure bfAs an algebraically
closed fieldK is infinite. We will call a matrix with all full size minors invertible,
an MDS matrix.

Consider now some fixed numberst, n, p with k < n andp chosen as in
Theorem 3.5.

We are looking at the set of all 3-tuple matriggs, L, M) with the prop-
erties 1 2, 3 and of sizes as in Theorem 3.1, such that the mpkfix M] is an
MDS matrix. Let this set be denoted B, V is the intersection of two open
nonempty sets, one given by &k, L, M) such that the conditions 2, 3 are
satisfied, and the other given by the complementary of the set of the zeros of all
the full size minors of K | M]. Over the algebraic closuié, the intersection

of nonempty open sets is nonempty ané therefore a nonempty Zariski open
set inK(5+n—k)(28+n).
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Let now (K, L, M) be an element iV, and let
j={1<ji<jo<---<jx=n}

be a subset of the sét, ..., n} having cardinalityk. We would like to show
that the coder’ defined by(K, L, M) has the property that tHecomponents
{vi() |i=1,...,k}, of acode word(z) € ¥ satisfy either
k
D Wt () =8+ 1 orwtw(x) = (n — k) (18/k] + D +5+1 .
i=1
In order to apply Theorem 3.5, |& be anm x n permutation matrix such that

Pu(z) = @8)

where thek components;, (z), ..., v;,(z) of v(z) are mapped onto thecom-
ponents of«(z).

Partition the matrixl\/HDj‘1 = [M1 | N] whereM, is the matrix formed by
the firstn — k columns ofMPj‘1 and N denotes the rest of the columns in
MPj‘l. The property oV tells us that the matrikk | M] is invertible.

For everyK, L, M and every] we define matrices\;, B;, Cj, D; in the
following way:

Is
0

[K | Mq] ™t [K L | MPj_l] = [ &

0 -B
L _Dj] . (42

Rewriting the equation(3.1) in the new terms we obtain the, B, C, D)
polynomial description from the previous chapter:

ds—A 0 —B7|*@
[ =G Lk =Dy } r@
u(z)
If the matricesA;, B, Cj satisfy the conditions of Theorem 3.5 then the weight
Zf.‘zl wt(vj,(z)) > é + 1 or the weight ol (z) is larger than the boun@.2).
The algebraic conditions oA, B, C expressed in Theorem 3.5 translate
into algebraic conditions inside the parameter sg&ée” 9@+ | et

=0. (4.3)

S ={(K. L. M) e Forn-b@in st

(B 4B+ A7) and (¢f AlC ... AP7¥cY) are MDY .

Applying Lemma 3.6 one sees thgtN V is a nonempty Zariski open subset
Of K(§+n—k)(28+n).

LetJ ={ ={1<j1 < jo<--- < jx <n}} be the set of alk-subsets
of {1,...,n}, and consider alfS; N vV | j € J}. All of these sets form a finite
number of open nonempty sets¥h therefore their intersection is nonempty.
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It implies the existence of a vector= (K, L, M) having the property of all
the setsS; N V.

Sofar we obtained a vecteore V having the componentsi, the algebraic
closure off, and lying in the intersection

(S NV) c Ve Kero@m

jeJ
Since the extensiofi C K is algebraic, it implies that every component of
x is algebraic ovef, therefore in a finite extension. If we denote withthe
components of we have that alk; € F[x;,1 < j < (6 +n — k)(26 + n)],
which is a finite extension ovér, therefore is finite of degree say. Therefore
the code?d = ¢ (K, L, M) associated to the matricég, L, M) will be a code
over a finite fieldF,», with m possibly rather large.

We will show that this code is actually an MDS convolutional code, in other

words it has the free distance equal to the upper baQrf). Let

(@) = (1@, ... mR) €F

be a nonzero code word. We will show that the weight @ is larger than the
upper bound by applying Lemma 2.7 and Theorem 3.5.

Since the cod&’ belongs to the intersection of all the Zariski open sets
S;NV, we can apply Theorem 3.5 for all thecombinations of the components

v1, U2, ..., v, to form the part: of the codeword. By construction of the sets
S; NV, we get that either the weight of thecombination of components
v1, U2, ..., U, iISMore thard + 1, or the weight of the whole codeword is larger
than

(n—k)(18/k| +1) +5+1

which is the bound we want. If we have the first situation forkatlombina-
tions of the components we get the conditions of Lemma 2.7. The weight of
the codeword is therefore greater then the upper bRl In either case we
predict the existence of an MDS co@eover the finite fieldr,». O

Remark 4.2The proof does not construct MDS convolutional codes in an ex-
plicit way. Concrete constructions exist whee= 0 (Reed-Solomon construc-
tion) and wherk = 1 (see Theorem 2.9).

5 Remarks on the Geometry of the Construction

We conclude this paper with some remarks about the algebraic geometric aspect
of the constructions considered in the previous section.

As it was explained in [8, 13, 14] a submodule of rdnknd degreé in
[F"[z] describes a quotient sheaf of rakkand degreé over the projective
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line P1. The column degrees; > --- > v, of the submodules C F'[7]
correspond then to the Grothendieck indices of the quotient sheaf. By a general
theorem of Grothendieck it is possible to equip the set of all kasilkbmodules
(quotient sheaves) of degréavith the structure of a scheme. Such a scheme
is referred to as guot schemén the algebraic geometry literature. The quot
scheme which parameterizes the rardubmodules of degreturns out to be

a smooth projective variety [13]. This variety has been of prominent interest
recently in the area of conformal quantum field theory and we refer to [15] for
more details.

If the degreé = 0 the Grothendieck quot scheme is exactly the Grassmann
variety Grasé, ") consisting of allk dimensional subspaces of the vector
spacel”. This variety parameterizes the set of all linear block codes ofﬁrate
defined over the fiel@l. For an arbitrary degrekthe Grothendieck quot scheme
parameterizes in a natural way all régteonvolutional codes of degrée

Linear systems described by matrix triples, L, M) have been studied
widely in the systems literature and probably the most comprehensive account
is given in the monograph of Kuijper [7]. It was pointed out by Lomadze [8]
that a matrix pencil of the forrfx K + L | M] represents exactly the linear free
resolution of the associated quotient sheaf and in this way such matrix pencils
appear naturally in the algebraic geometry literature as well. Finally we would
like to note that we can view3.2) as a group action of the reductive group
Gls.« x Gls on the vector space consisting of all matrix triplés L, M) of a
fixed size. The uniqueness Theorem 3.2 expresses the fact that the group orbits
in (3.2 correspond to the submodulesfdfz], i.e. the convolutional codes.

Actually much more is true: The geometric quotient in the sense of GIT
(=geometric invariant theory) induced by the group acti®) is exactly the
Grothendieck quot scheme. The minimality conditions provided in Theorem 3.1
and characterized by the sétc Fé+"=b@+m gppearing in the proof of the
main theorem, guarantee that the associated orbit is a ‘stable orbit’ in the sense
of GIT. This is true for an arbitrary base field and this statement is a geometric
formulation of the uniqueness Theorem 3.2. The reader who is interested in
more detalils is referred to [14]. For the purpose of this paper the following is
important. The open sét c F@¢+—k@+n which we introduced in the proof
of Theorem 2.10 describes exactly the stable orbits and the quotigntder
the group actior{3.2) describes the Grothendieck quot scheXiﬁgl. The sets
S; induces Zariski open sets inside the schetje and by abuse of notation
we will denotes these sets wias well. The set of MDS convolutional codes
contains then the Zariski open subset

ﬂSj C X,‘z’n .

The main result states th@l Sj is nonempty as soon as the field size is suffi-
ciently large. A set which contains a non-empty Zariski open subset is some-
times referred to asgeneric seaind in this way we can say that the set of MDS
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convolutional codes forms a generic set inside the set okyateonvolutional
codes of degreé as soon as the field size is sufficiently large.

For § = 0 the result says that the set of MDS block codes viewed as a
subset of the Grassmann variety forms a Zariski open subset and that this set is
nonempty as soon as the field is sufficiently large. In the block code situation
we know that|F| > n is sufficient to guarantee that the set is nonempty. In
particular the existence of MDS block codes over the figld as studied by
Piret and Krol [12] follows from our theory.

After generalizing the notion of MDS block code it naturally arises the
guestion on the nature of the dual code. We know that a dual of an MDS-
block code is MDS, so we want to find out if this generalizes to the case of
general convolutional codes with degrge- 0. In the sequel we cover two
special cases where this turns out to be true and then we give two examples of
MDS-convolutional codes whose dual is not MDS.

In order to introduce the notion of a dual convolutional code in our module
theoretical setting, consider the following bilinear form:

<,>: F'[z] x F'[z] — F[Z] (5.1)
(v(z), w(z)) — v(w()" .

Using this bilinear form we define the dual of a coflas

Et = {w@) |< v@), wi) >=0,Yv(z) € €} .

One always has that
¢+ 2% .

If the code® has a minimal basis encoder (i.e. it is non-catastrophic) then
¢+ =4.

The following two lemmas cover some cases where the dual of an MDS
convolutional code is MDS.

Lemma 5.1 If € is a convolutional code of degrége= 0 then% is MDS if and
only if ¢+ is MDS.

Lemma 5.2 Assumé& = 1, n = 2. A non-catastrophic cod# of rate1/2 is
MDS if and only if¢+ is MDS.

We will present now a very simple example of arat8 MDS convolutional
code which has a non-MDS convolutional code of ragt@ &s its dual. In this
example the degree= 1 and the finite field i§s:
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Example 5.3Letk = 1,n = 3,8 = 1 and consider the generator matrix
G =(c+2 @+ +D)" .

Then the code generated lB}(z) is non-catastrophic and MDS but the dual
code is not an MDS convolutional code.

Indeed it is easy to see that any codewo(d) = G(2)i(z), i(z) € F¥[z]
has weight at least 6, so the code generated @y is MDS. The dual code has
a generator matrix given by:

z4+10
Gt = o 1],
2z+12

which is not MDS.

The above example shows that in general the dual code of an MDS con-
volutional code is not an MDS convolutional code anymore in contrast to the
situation of block codes. In [17] more details on the issue of duality of MDS
convolutional codes were given.
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