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Abstract. Differentially uniform power mappings of the form f (x)"xd over
GF(pn) are considered. We construct an infinite family of 2-uniform mappings in
the binary case. In the nonbinary case we give two large families of k-uniform
mappings with low values of k. We also show how to construct families of
sequences from differentially 1-uniform power mappings, which have parameters
as good as the best presently known comparable families of sequences.
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1 Introduction

Let f (x) be a mapping f :GF (pn)PGF (pn). Let N(a, b) denote the number of
solutions x3GF (pn) of f (x#a)!f (x)"b where a, b3GF(pn) and let

*
f
"maxMN (a, b) D a, b3GF (pn), aO0N .

Nyberg [8] defined a mapping f to be differentially k-uniform if *
f
"k. This

concept is of interest in cryptography since differential and linear cryptanalysis
exploit weaknesses of the uniformity of the functions which are used in DES and in
many other block ciphers.

The purpose of this paper is to give some results on the differential uniformity
of functions of the form f (x)"xd over GF (pn) where p is a prime. For practical
applications one would like functions for which *

f
is small. In the binary case the

solutions come in pairs and therefore *
f
"2 is the smallest possible value. Such

a function is called almost perfect nonlinear (APN).



It is known that in the binary case the function is APN for d"2k#1 when
n/gcd(k, n) is odd and for d"2n!2 when n is odd (Nyberg [8], Beth and Ding
[1]). Cusick [4] showed that if two m-sequences of period 2n!1 differ by
a decimation of d and have a three level crosscorrelation function with values
!1,!1$2 n`1

2 then the corresponding function f (x)"xd is also APN. Chabaud
and Vaudenay [2] give some similar connections between differential and linear
cryptanalysis. Beth and Ding [1] conjectured that f (x)"xd for d"2m!1,
26m6n!1, is APN whenever n and 2n!1 are primes. Numerical results show
that this conjecture does not hold in general. In Theorem 1 we will, however,
construct an infinite family of APN mappings of this form.

In the nonbinary case we give two examples of infinite families of k-uniform
mappings with small k. It is interesting to note that a special case of one of the
families for p"3 gives a 1-uniform mapping which turns out to be a counter-
example to a conjecture due to Dembowski and Ostrom [5] about planar permu-
tation polynomials (see also Mullen [7]). This counterexample has also been
discovered by Coulter and Matthews [3] but proved in a different way. We finally
show how to construct families of sequences with good correlation properties from
differentially uniform 1-mappings of the form f (x)"xd. These sequences have
parameters as good as the best presently known comparable sequence families.

2 Mappings with Low Differential Uniformity

In this section we construct three infinite families of mappings of the form
f (x)"xd with low differential uniformity. The first is a family of APN mappings.

Theorem 1 ¸et n"2m!1, d"2m!1, m72 and let f (x)"xd be a mapping over
GF(pn), then *

f
"2.

Proof. Since N(a, b)"N (1, b
ad) when aO0, it is sufficient for any b to find the

maximum number of solutions of

(1) (x#1)2m~1#x2m~1"b.

We multiply both sides by x(x#1) and obtain

(x#1)2mx#x2m(x#1)"bx(x#1)

or

(2) x2m
"bx2#(b#1)x .

Raising both sides to the 2m~1 power gives

(x2m)2m~1
"x2n

"x"b2m~1x2m
#(b2m~1

#1)x2m~1

and thus

b2m~1x2m
#(b2m~1

#1)x2m~1
#x"0.

We now use (2) to obtain

b2m~1`1x2#(b2m~1`1#b2m~1
#1)x#(b2m~1

#1)x2m~1
"0.

Squaring and applying (2) again, we obtain

(3) b2m`2x4#(b2m`2#b2m`1#b2m
#b#1)x2#(b2m`1#b2m

#b#1)x"0.
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This equation has at most 4 solutions, two of which are x"0 and x"1. If we
substitute x"0 and x"1 into (1), we get that b"1. Hence, x"0 and x"1
cannot be solutions of (1) except when b"1, and therefore (1) has at most
2 solutions if bO1. If b"1, then it follows from (3) that (1) has the two solutions
x"0 and x"1. We therefore conclude that the maximum number of solutions of
(1) for any b3GF (2n) is 2, i.e., *

f
"2. K

In the following two theorems we will present a family of nonbinary functions
with low differential uniformity, based upon properties of the quadratic character.
Let QR denote the set of quadratic residues of GF(pn) and let QNR denote the set
of quadratic non-residues. We define the quadratic character of GF(pn) by

s(m)"G
0 if m is 0

1 if m is a QR

!1 if m is a QNR.

Theorem 2 ¸et p be a prime, pn,3 (mod4), d"pn~1
2

!1 and let f (x)"xd be
a mapping over GF(pn). ¹hen for pn'7,

*
f
"G

1 if pn"27

2 if s (5)"!1 (i.e., p,3, 7 (mod20))

3 if s (5)"1 (i.e., p,11, 19 (mod20)) .

Proof. We consider the equation

(x#1)d!xd"b .

Since d is even, x"0 and x"!1 contribute to b"1 and b"!1 respectively.
We next assume that xO0 and xO!1. From s(x)"xpn~1

2 , we obtain

s(x#1)
1

x#1
!s (x)

1

x
"b ,

which gives

bx2#(b!s (x#1)#s(x) )x#s (x)"0.

Depending on the values of (s (x), s(x#1)) we have four possible equations.
Solving the equations and computing x

i
(x

i
#1), i"1, 2, and x

1
x
2

for the roots of
the second degree equations one verifies that the following holds, where b@"1

b
.

s(x) s(x#1) Equation x x#1 x
1
x
2

x(x#1)

I 1 1 bx2#bx#1"0 ~1$J1~4b{
2

1$J1~4b{
2

1
b

!1
b

II 1 !1 bx2#(b#2)x#1"0 ~1~2b{$J1`4b{2
2

1~2b{$J1`4b{2
2

1
b

—

III !1 1 bx2#(b!2)x!1"0 ~1`2b{$J1`4b{2
2

1`2b{$J1`4b{2
2

!1
b

—

IV !1 !1 bx2#bx!1"0 ~1$J1`4b{
2

1$J1`4b{
2

!1
b

1
b

It is important to note that s (!1)"!1 since pn,3 (mod4). In order for I to have
a solution x it is necessary that s (x(x#1))"s (!1

b
)"1 i.e., s (b)"!1. Observe

that I has at most one solution since s (x
1
x
2
)"s (1

b
)"!1. Similarly, IV can only

have a solution when s(b)"1 and in this case IV has at most one solution.
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Therefore for any b3GF(pn)CM0N, I and IV can not give solutions simultaneously,
and hence they contribute at most one solution altogether.

Suppose x
1
and x

2
are the two solutions of II (resp. III), then direct calculations

give

x
1
(x

1
#1)x

2
(x

2
#1)"!b@2

and therefore

s (x
1
(x

1
#1)x

2
(x

2
#1))"!1

which implies that II (resp. III) has at most one solution each.
Let x

1
be a solution of II and y

1
a solution of III. Then

s(x
1
)"1, s (x

1
#1)"!1 and s (y

1
)"!1, s (y

1
#1)"1.

Let x
2

and y
2

be the other solution of II and III respectively, when we discard the
condition on s(x

2
), s (x

2
#1), s (y

2
) and s (y

2
#1). Note that x

1
"!(y

2
#1) and

x
2
"!(y

1
#1). Since x

1
x
2
"1

b
and s (x

1
)"1 we have s(b)"s(x

2
)"

s(!(y
1
#1))"!1. On the other hand, since y

1
y
2
"!1

b
and s (y

1
)"!1 we

have s(b)"s(y
2
)"s (!(x

1
#1))"1, which is a contradiction. Hence, for any

b3GF(pn)CM0N, II and III can not give solutions simultaneously and therefore
they contribute at most one solution altogether.

In the case b"0 the number of solutions in GF (pn) of (x#1)d"xd is
gcd(d, pn!1)!1"1. Since x"0 and x"!1 contribute to b"1 and b"!1
respectively, we have to check whether the four equations I—IV contribute 2 solu-
tions to the cases b"1 or b"!1. It is straightforward to verify that these cases
give exactly 2 solutions when s (5)"1 and 0 solutions otherwise.

It follows that *
f
"3 when s(5)"1 and *

f
62 otherwise. To show that

*
f
"2 when s(5)"!1 it is sufficient to find an element b@3GF(pn)CM0N such that

s(b@ )"1, s (1#4b@ )"1 and s (1#4b@2)"1 since this will lead to a solution of IV
and one solution of either II or III. Such an element can be found by standard
methods (character sums and computer search) when pn'7 except for pn"27.

K

Theorem 3 ¸et p be an odd prime, d"pn~1
2

#2 and let f (x)"xd, then

*
f
6G

1 if p"3 and n even

3 if pO3 and pn,1 (mod4)

4 otherwise.

Proof. Since d"pn~1
2

#2, we have

(x#1)
pn~1

2 `2!x
pn~1

2 `2"b .

We assume that xO0 and xO!1 since they contribute to b"1 and b"
(!1)d`1 respectively. Further, since s (x)"x pn~1

2 , we obtain

s (x#1)(x2#2x#1)!s (x)x2"b
and therefore

(s (x#1)!s (x))x2#2s (x#1)x#s (x#1)!b"0.

Depending on the values of (s (x), s(x#1)) we have four possible equations.
Solving the equations and computing x

1
(x

1
#1) ("x

2
(x

2
#1)) and x

1
x
2

for the
roots of the second degree equations one verifies that the following holds:
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s(x) s(x#1) Equation x x#1 x(x#1) x
1
x
2

I 1 1 2x#1!b"0 ~1`b
2

1`b
2

— —

II 1 !1 !2x2!2x!1!b"0 ~1$J~1~2b
2

1$J~1~2b
2

~1~b
2

1`b
2

III !1 1 2x2#2x#1!b"0 ~1$J~1`2b
2

1$J~1`2b
2

~1`b
2

1~b
2

IV !1 !1 !2x!1!b"0 ~1~b
2

1~b
2

— —

It is important to observe that in order for II (resp. III) to have solutions it is
necessary that s(~1~b

2
)"s (x(x#1))"!1 and s(!1!2b)O!1 (resp.

s(~1`b
2

)"!1 and s (!1#2b)O!1). Further, if a solution of II (resp. III) exists
then the solution is unique whenever s (1`b

2
)"s (x

1
x
2
)"!1 (resp. s (1~b

2
)"

s(x
1
x
2
)"!1).

We first assume that !13QR, i.e., s (!1)"1. We consider four possible
cases depending on the values of the elements s(~1`b

2
) and s (1`b

2
).

Case 1. (s (~1`b
2

)"1, s (1`b
2

)"1). In this case there is clearly a solution of I while
IV has no solution since s(~1~b

2
)"s (1`b

2
)"1. There is no solution of II (resp. III)

since a solution x would lead to !1"s (x(x#1))"s(~1~b
2

)"1 (resp. !1"
s(x (x#1))"s (~1`b

2
)"1) which is impossible.

Case 2. (s(~1`b
2

)"1, s(1`b
2

)"!1). Since s(1`b
2

)"!1, there is no solution of I.
Further, s(~1`b

2
)"1 and s (1~b

2
)"1 implies that there are no solutions of III and

IV respectively. Since s (1`b
2

)"!1 there is at most one solution of II.

Case 3. (s (~1`b
2

)"!1, s(1`b
2

)"1). It follows as in the previous case that there
are no solutions of I, II and IV and that III contains at most one solution.

Case 4. (s (~1`b
2

)"!1, s(1`b
2

)"!1). In this case there is no solution of I while
IV has a solution. Since s (~1~b

2
)"s (~1`b

2
)"!1, there is exactly one solution of

II when s(!1!2b)O!1 and exactly one solution of III when s (!1#2b)
O!1 and no solutions otherwise. Note that in the case p"3 we have
!1!2b"1~b

2
and !1#2b"1`b

2
. Hence, when p"3, this case gives no

solutions of II and III.
Hence, if !13QR, i.e., pn,1 (mod 4), we have showed the following:

Case s(~1`b
2

) s(1`b
2

) I II III IV pO3 p"3

1 1 1 1 0 0 0 1 1
2 1 !1 0 61 0 0 61 1
3 !1 1 0 0 61 0 61 1
4 !1 !1 0 61 61 1 16d63 1

We next consider the case !13QNR, i.e., s (!1)"!1.
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Case 1. (s (~1`b
2

)"1, s (1`b
2

)"1). In this case I has a solution. Since
s(~1~b

2
)"s (1~b

2
)"!1 also IV has a solution. There is no solution of III since

s(~1`b
2

)"1. Further, II has at most two solutions.

Case 2. (s(~1`b
2

)"1, s(1`b
2

)"!1). Since s(1`b
2

)"!1, s(~1~b
2

)"1, s(~1`b
2

)"1
and s(~1~b

2
)"1, there are no solutions of I, II, III and IV respectively.

Case 3. (s (~1`b
2

)"!1, s(1`b
2

)"1). Since s (~1`b
2

)"!1 and s (1~b
2

)"1, there
are no solutions of I and IV respectively, while II and III contain at most two
solutions each.

Case 4. (s (~1`b
2

)"!1, s(1`b
2

)"!1). Since s (~1`b
2

)"!1, s(~1~b
2

)"1, and
s(1~b

2
)"1, it follows that there are no solutions of I, II and IV respectively, while

III has at most two solutions.

Thus if !13QNR, i.e., pn,3 (mod 4), we have shown the results listed in the
table below:

Case s(~1`b
2

) s(1`b
2

) I II III IV

1 1 1 1 62 0 1 26d64
2 1 !1 0 0 0 0 0
3 !1 1 0 62 62 0 64
4 !1 !1 0 0 62 0 62

It is also straightforward to verify that the cases b"1 and b"!1 never
contribute more solutions than the cases I—IV. In conclusion, we have therefore
shown that *

f
"1 when p"3 and that *

f
63 when pO3 and pn,1 (mod4) and

that *
f
64, otherwise. K

It is also straightforward to decide when equality holds. For instance, to show
that *

f
"3 in the case pO3 and pn,1 (mod4) it is sufficient to find an element

b3GF(pn) such that s(~1~b
2

)"s(1~b
2

)"!1, s(!1!2b)"1 and s(!1#2b)"1.
In particular, if pn,5 (mod8), b"0 has this property since 23QNR. In the case
pn,1 (mod8), standard methods i.e., exponential sums for the quadratic character
can be applied to find such an element for pn sufficiently large and then a computer
search can settle small values of pn. It turns out that *

f
"3 whenever pnO17.

Similarly, we may settle when *
f
"4 in the remaining case.

It is of interest to observe that in the special case p"3 and n even in
Theorem 3, the function is differentially 1-uniform. In the literature this is called
a planar permutation polynomial. It has been conjectured [5] that all planar
permutation polynomials are of the form f (x)"+

i, j
a
i,j

xpi`pj. The case p"3 and
n even is a counterexample to this conjecture, since f (x)"xd is not of this form
when d"3n~1

2
#2. This counterexample and several others have also been proved

by Coulter and Matthews [3] by a different method using Chebyshev polynomials.
Their result states that f (x)"xd, where d"3a`1

2
, is a planar permutation

polynomial when gcd(a, n)"1 and a is odd.
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3 Sequences with Good Correlations

Based on any differentially 1-uniform mapping f (x)"xd one can construct a
family of sequences with good correlation properties. Let u be a complex pth root
of unity and let ¹r (x)"+n~1

i/0
xpi denote the trace mapping. Then for any differen-

tially 1-uniform mapping f (x)"xd,

+
x|GF(pn)

uf(x`a)~f(x)" +
b|GF(pn)

ub"0

for all a3GF (pn)CM0N. Let cO0 and

S (c, j)" +
x|GF(pn)

uTr(cf(x)`jx)

then

DS (c, j) D2" +
x,y|GF(pn)

uTr(c(f(x)~f(y))`j(x~y))

" +
y,z|GF(pn)

uTr(c(f(y`z)~f(y))`jz)

"pn# +
z|GF(pn)CM0N

uTr(jz) +
b|GF(pn)

uTr(cb)

"pn .

It follows that

DS(c, j) D"K +
x|GF(pn)

uTr(cf(x)`jx) K"Jpn

for all j3GF (pn) whenever cO0.
Let a be a primitive (pn!1)th root of unity in GF (pn). Let Ms

c
(t)N be the

sequence of period pn!1 defined by

s
c
(t)"¹r(cadt#at ) .

Then

F"MMs
c
(t)N D c3GF(pn)N

is a family of pn cyclically distinct sequences with maximum correlation bounded
by 1#Jpn in magnitude. This follows since,

h (q)"
pn~2
+
t/0

usc1(t`q)~sc2(t)

"

pn~2
+
t/0

uTr((c1adq~c2)adt`(aq~1)at)

"!1# +
x|GF(pn)

uTr(cxdt`jx) ,
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where c"c
1
adq!c

2
and j"aq!1. Hence, Dh(q) D61#Jpn, except when c

1
"c

2
and q"0. Thus, family F has the same parameters as the best presently known
families of sequences found in Kumar and Moreno [6]. It is perhaps interesting to
note that these sequences correspond to d"2 or d"pk#1 where n/gcd(n, k) is
odd. Observe that f (x)"x2 and f (x)"xpk`1 are also planar permutation poly-
nomials.

4 Conclusions

We have found some binary APN mappings of the form f (x)"xd as well as
families of nonbinary mappings with low differential uniformity. We have given
examples of sequences with good correlation properties based upon differentially
1-uniform mappings of the form f (x)"xd. Similar techniques lead to several other
families of mappings with low differential uniformity that will be the topic for
a future paper.
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