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Abstract
In this paper, a necessary condition which is sufficient as well for a pair of consta-
cyclic 2-D codes over a finite commutative ring R to be an LCP of codes has been 
obtained. Also, a characterization of non-trivial LCP of constacyclic 2-D codes over 
R has been given and total number of such codes has been determined. The above 
results on constacyclic 2-D codes have been extended to constacyclic 3-D codes 
over R. The obtained results readily extend to constacyclic n-D codes, n ≥ 3 , over 
finite commutative rings. Furthermore, some results on existence of non-trivial LCP 
of constacyclic 2-D codes over a finite chain ring have been obtained in terms of its 
residue field.

Keywords  LCP of codes · Constacyclic codes · 2-D codes · n-D codes · Finite 
commutative rings · Finite chain rings

Mathematics Subject Classification  94B05 · 94B15 · 94B60

1  Introduction

Let (C, D) be a pair of linear codes having length m over a finite commutative ring 
R. Then (C, D) is called a linear complementary pair (LCP) of codes over R if Rm is 
a direct sum of C and D,i.e., Rm = C + D and C ∩ D = {0} . Linear complementary 
dual (LCD) codes form a special case of LCP of codes wherein D is the dual code of 
C. LCD codes have been first introduced in 1992 by Massey [1]. LCD and LCP of 
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codes have applications in countering fault injection attacks and side channel attacks 
during implementation of cryptographic algorithms [2–4]. The LCP of codes (C, D) 
has security parameter equal to minimum of minimum distance of C and minimum 
distance of D⊥ . In case of LCD codes, the security parameter becomes minimum 
distance of C. Thus, the problem of constructing LCD codes with best security 
parameter amounts to the problem of constructing LCD codes with largest ’mini-
mum distance’. LCD codes over finite fields and rings have been studied extensively 
in literature. For reference, see [5–9]. Parallel to the growing interest in LCD codes, 
LCP of different classes of codes over finite fields and rings have also been studied 
recently [10–16]. It has been proved by Carlet et al. [10] that C is equivalent to D⊥ 
for an LCP (C, D) of 2D cyclic codes over the field Fq having length coprime to q. 
Similar results have been proved by Güneri et al. for LCP of cyclic n-D codes [11]. 
LCP of constacyclic codes over R, where R is a finite chain ring of characteristic k 
(k coprime to length of the code) have been studied by Hu and Liu [15]. Moreover, 
LCP of constacyclic codes of arbitrary length have been explored over a finite chain 
ring by Thakral et al. [16].

The class of constacyclic 2-D codes is an important generalization of cyclic 2-D 
codes. Basic theory of binary cyclic 2-D codes was first studied by Imai et al. [17]. 
Some of the works on cyclic 2-D codes are presented in [18–22]. Quite recently, 
structure of constacyclic 2-D codes over a finite field has been given by Bhardwaj 
and Raka [23]. Further, multidimensional constacyclic codes over a finite field have 
been explored by Bhardwaj and Raka in [24]. Algebraic structure of multidimen-
sional cyclic code over a finite chain ring have been determined by Disha and Dutt 
in [25].

In present work, LCP of constacyclic n-D codes over a finite commutative ring 
R have been studied. In this directon, a necessary as well as sufficient condition for 
a pair of constacyclic 2-D codes over R to be an LCP of codes has been obtained. 
Moreover, a characterization of all non-trivial LCP of constacyclic 2-D codes over 
R has been given. Furthermore, total number of such codes has been determined. 
Using the obtained results, a few examples of LCP of constacyclic 2-D codes over 
some finite chain rings have been given. These results have been extended to consta-
cyclic 3-D codes over finite commutative rings. Similar approach leads to the exten-
sion of results to constacyclic n-D codes, n ≥ 3 , over finite commutative rings. In 
particular, necessary and sufficient conditions for existence of a non-trivial LCP of 
constacyclic 2-D codes over finite chain rings have been obtained.

2 � Preliminaries

Let R be a finite commutative ring. A linear code C of length m over R is an R-sub-
module of Rm . A linear code C is called a �-constacyclic code of length m over R 
if for every codeword (c0, c1,… , cm−1) ∈ C , the codeword (�cm−1, c0,… , cm−2) 
belongs to C. The code C is cyclic if � = 1 . It is an established fact that a cons-
tacyclic code of length m over R is easily viewed as an ideal of the quotient ring 
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R[x]∕⟨xm − �⟩ . Let C be a linear code over R of length k1k2 whose codewords are 
viewed as k1 × k2 arrays as follows:

Let � and � be units in R. Then �-row shift ��(c) and �-column shift ��(c) of a code-
word c are defined as follows:

C is called a (�, �)-constacyclic two-dimensional code over R if it is closed under 
both �-row shift and �-column shift.

Define � ∶ Rk1k2 ⟶ R[x, y]∕
⟨
xk1 − �, yk2 − �

⟩
 as

where cij ∈ R.
It is easy to see that the map � is a ring homomorphism under which a (�, �)-con-

stacyclic 2-D code C is mapped to an ideal of R[x, y]∕
⟨
xk1 − �, yk2 − �

⟩
 . Similarly, a 

(�1, �2, �3)-constacyclic 3-D code of length k1k2k3 can be defined as an ideal of 
R[x1, x2, x3]∕

⟨
xk1
1

− �
1
, xk2

2

− �
2
, x

k
3

3

− �
3

⟩
.

3 � LCP of constacyclic 2‑D codes over finite commutative rings

A (�, �)-constacyclic 2-D code of length k1k2 over a finite commutative ring R can 
be viewed as an ideal of the ring S = R[x, y]∕

⟨
xk1 − �, yk2 − �

⟩
.

Clearly, the ring S ≅
R[x]∕

�
xk1 − �

�
⟨yk2 − �⟩ [y].

Let xk1 − � = f1(x)f2(x)⋯ fr(x) be a factorization of xk1 − � into maximum num-
ber of pairwise coprime monic polynomials over R. Then, by Chinese Remainder 
Theorem (CRT),

Then we can write

c = [cij], 0 ≤ i ≤ k1 − 1, 0 ≤ j ≤ k2 − 1.

��(c) =

⎡⎢⎢⎢⎣

�ck1−1,0 �ck1−1,1 ⋯ �ck1−1,k2−1
c0,0 c0,1 ⋯ c0,k2−1
⋮ ⋮ ⋮

ck1−2,0 ck1−2,1 ⋯ ck1−2,k2−1

⎤⎥⎥⎥⎦
,

��(c) =

⎡
⎢⎢⎢⎣

�c0,k2−1 c0,0 ⋯ c0,k2−2
�c1,k2−1 c1,0 ⋯ c1,k2−2

⋮ ⋮ ⋮

�ck1−1,k2−1 ck1−1,0 ⋯ ck1−1,k2−2

⎤
⎥⎥⎥⎦
.

�(c) =

k1−1∑
i=0

k2−1∑
j=0

cijx
iyj,

R[x]∕
�
xk1 − �

�
⟨yk2 − �⟩ [y] ≅

r�
i=1

R[x]∕⟨fi(x)⟩
⟨yk2 − �⟩ [y].
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where Ki = R[x]∕⟨fi(x)⟩.
Now, let yk2 − � = gi1(y)gi2(y)⋯ gisi (y) be a factorization of yk2 − � into 

maximum number of pairwise coprime monic polynomials in Ki[y] for each 
i = 1, 2,… , r . Again by CRT,

where Tij = Ki[y]∕
⟨
gij(y)

⟩
.

Let C be a (�, �)-constacyclic 2-D code of length k1k2 over R, then C can be 
expressed as follows:

for some ideal Cij of Tij , 1 ≤ i ≤ r and 1 ≤ j ≤ si.
The following theorem provides a necessary condition which is sufficient as 

well for a pair of (�, �)-constacyclic 2-D codes to be an LCP of codes over R, 
where R is a finite commutative ring.

Theorem 1  Let (C, D) be a pair of (�, �)-constacyclic 2-D codes of length k1k2 over 
a finite commutative ring R. Let S = R[x, y]∕

⟨

xk1 − �, yk2 − �
⟩

≅
⨁r

i=1

(

⨁si
j=1 Tij

)

,

C ≅
⨁r

i=1

(

⨁si
j=1 Cij

)

 and D ≅
⨁r

i=1

�⨁si
j=1

Dij

�
 be the CRT expressions of S, C 

and D respectively. Then, (C, D) is an LCP of constacyclic 2-D codes over R if and 
only if (Cij,Dij) is an LCP of codes over Tij , 1 ≤ i ≤ r and 1 ≤ j ≤ si . Moreover, 
(Cij,Dij) is always a trivial pair of LCP of codes.

Proof  First suppose that (C,  D) is an LCP of codes over R. Then, as ideals of S, 
C⊕ D = S . In terms of CRT expressions,

which implies that

Now we have that

S ≅

r⨁
i=1

Ki[y]∕
⟨
yk2 − �

⟩
,

S ≅

r⨁
i=1

Ki[y]∕
⟨
yk2 − �

⟩
≅

r⨁
i=1

(
si⨁
j=1

Ki[y]∕
⟨
gij(y)

⟩)
=

r⨁
i=1

(
si⨁
j=1

Tij

)
,

C ≅

r⨁
i=1

(
si⨁
j=1

Cij

)
,

{
r⨁

i=1

(
si⨁
j=1

Cij

)}⨁{
r⨁

i=1

(
si⨁
j=1

Dij

)}
=

r⨁
i=1

(
si⨁
j=1

Tij

)

(1)Cij + Dij = Tij, 1 ≤ i ≤ r and 1 ≤ j ≤ si.

(2)k1k2 = rankR(C + D) = rankR(C) + rankR(D).
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Also,

and

Substituting (3) and (4) in (2), we get that

which implies that

On the other hand,

From (5) and (6), we get that rankTij (Cij ∩ Dij) = 0, thereby implying that (Cij,Dij) is 
an LCP of codes. Also, (5) gives us that either Cij = Tij and Dij = {0} or Dij = Tij 
and Cij = {0} . Therefore, (Cij,Dij) is only trivial LCP of codes for 1 ≤ i ≤ r and 
1 ≤ j ≤ si.

Converse is easy to show. 	�  ◻

Theorem  2 given below determines all LCP of (�, �)-constacyclic 2-D codes 
over R which are non-trivial and Theorem 3 gives the total number of such codes.

Theorem 2  Let R be a finite commutative ring and (C, D) be a pair of (�, �)-consta-
cyclic 2-D codes of length k1k2 over R. Let R[x, y]∕
⟨

xk1 − �, yk2 − �
⟩

≅
⨁r

i=1

(

⨁si
j=1 Tij

)

,C ≅
⨁r

i=1

(

⨁si
j=1 Cij

)

 and 

D ≅
⨁r

i=1

(

⨁si
j=1 Dij

)

 be the CRT expressions of R[x, y]∕
⟨
xk1 − �, yk2 − �

⟩
 , C and D 

respectively. Then (C, D) is an LCP of codes over R which is non-trivial if and only 
if there exist atleast two distinct pairs (i,  j) and (i�, j�) such that Cij = Tij and 
Di�j� = Ti�j� .

(3)rankR(C) =

r∑
i=1

(
si∑
j=1

rankTij (Cij)deg(gij(y))

)
deg(fi(x))

(4)rankR(D) =

r∑
i=1

(
si∑
j=1

rankTij (Dij)deg(gij(y))

)
deg(fi(x).

k1k2 =

r∑
i=1

(
si∑
j=1

rankTij (Cij)deg(gij(y)

)
deg(fi(x))

+

r∑
i=1

(
si∑
j=1

rankTij (Dij)deg(gij(y))

)
deg(fi(x))

(5)1 = rankTij(Cij) + rankTij (Dij), 1 ≤ i ≤ r and 1 ≤ j ≤ si.

(6)1 = rankTij (Tij) = rankTij (Cij) + rankTij (Dij) − rankTij (Cij ∩ Dij).
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Proof  The result follows from Theorem 1 and the fact that if there does not exist 
any two distinct pairs (i, j) and (i�, j�) for which Cij = Tij and Di�j� = Ti�j� , then (C, D) 
becomes a trivial LCP of codes. 	�  ◻

Theorem 3  The number of LCP of (�, �)-constacyclic 2-D codes over R which are 
non-trivial is given by

where t =
∑r

i=1
si.

Proof  The proof is straightforward. 	� ◻

Following are some examples which illustrate above results.

Example 1  Consider cyclic 2-D codes having length k1k2 = 3 ⋅ 2 over Z4 
which are ideals of the the ring S = Z4[x, y]∕

⟨
x3 − 1, y2 − 1

⟩
 . We have that 

x3 − 1 = (x + 1)(x2 + x + 1) is a factorization of x3 − 1 into maximum pairwise 
coprime monic polynomials in Z4[x] . Then S ≅

⨁2

i=1
Ki[y]∕

�
y2 − 1

�
 , where 

K1 = Z4[x]∕⟨x + 1⟩ and K2 = Z4[x]∕
⟨
x2 + x + 1

⟩
 . Also, y2 − 1 = (y − 1)(y + 1) in 

K1[y] and y2 − 1 = (y + 2xy − 1)(y + 2xy + 1) in K2[y] . So, S ≅
⨁2

i=1
(
⨁2

j=1
Tij) , 

where T11 = K1[y]∕⟨y + 1⟩ , T12 = K1[y]∕⟨y − 1⟩ , T21 = K2[y]∕⟨y + 2xy − 1⟩ and 
T22 = K2[y]∕⟨y + 2xy + 1⟩ . By Theorem 3, the number of LCP of cyclic 2-D codes 
having length 3 ⋅ 2 over Z4 which are non-trivial is 7. Using Theorem 2, these codes 
are listed below: 

1.	 C1 = T11 ⊕ T12 ⊕ T21 ⊕ {0} = ⟨y − 1⟩K1
⊕ ⟨y + 1⟩K1

⊕ ⟨2xy + y + 1⟩K2
⊕ {0} 

and D1 = {0}⊕ {0}⊕ {0}⊕ T22 = {0}⊕ {0}⊕ {0}⊕ ⟨2xy + y − 1⟩K2
.

2.	 C2 = T11 ⊕ T12 ⊕ {0}⊕ T22 = ⟨y − 1⟩K1
⊕ ⟨y + 1⟩K1

⊕ {0}⊕ ⟨2xy + y − 1⟩K2
 

and D2 = {0}⊕ {0}⊕ T21 ⊕ {0} = {0}⊕ {0}⊕ ⟨2xy + y + 1⟩K2
⊕ {0}.

3.	 C3 = T11 ⊕ {0}⊕ T21 ⊕ T22 = ⟨y − 1⟩K1
⊕ {0}⊕ ⟨2xy + y + 1⟩K2

⊕ ⟨2xy + y − 1⟩K2
 and

	  D3 = {0}⊕ T12 ⊕ {0}⊕ {0} = {0}⊕ ⟨y + 1⟩K1
⊕ {0}⊕ {0}.

4.	 C4 = {0}⊕ T12 ⊕ T21 ⊕ T22 = {0}⊕ ⟨y + 1⟩K1
⊕ ⟨2xy + y + 1⟩K2

⊕ ⟨2xy + y − 1⟩K2
 and 

	 D4 = T11 ⊕ {0}⊕ {0}⊕ {0} = ⟨y − 1⟩K1
⊕ {0}⊕ {0}⊕ {0}.

5.	 C5 = {0}⊕ {0}⊕ T21 ⊕ T22 = {0}⊕ {0}⊕ ⟨2xy + y + 1⟩K2
⊕ ⟨2xy + y − 1⟩K2

 
and D5 = T11 ⊕ T12 ⊕ {0}⊕ {0} = ⟨y − 1⟩K1

⊕ ⟨y + 1⟩K1
⊕ {0}⊕ {0}.

6.	 C6 = {0}⊕ T12 ⊕ {0}⊕ T22 = {0}⊕ ⟨y + 1⟩K1
⊕ {0}⊕ ⟨2xy + y − 1⟩K2

 and 
	 D6 = T11 ⊕ {0}⊕ T21 ⊕ {0} = ⟨y − 1⟩K1

⊕ {0}⊕ ⟨2xy + y + 1⟩K2
⊕ {0}.

N =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, for t = 1,

1, for t = 2,

∑(t−1)∕2

i=1

�
t

i

�
, for t odd, t > 1,

∑(t∕2)−1

i=1

�
t

i

�
+

�
t

t∕2

�
∕2, for t even, t > 2,
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7.	 C7 = T11 ⊕ {0}⊕ {0}⊕ T22 = ⟨y − 1⟩K1
⊕ {0}⊕ {0}⊕ ⟨2xy + y − 1⟩K2

 and 
D7 = {0}⊕ T12 ⊕ T21 ⊕ {0} = {0}⊕ ⟨y + 1⟩K1

⊕ ⟨2xy + y + 1⟩K2
⊕ {0}.

Example 2  Let S = Z8[x, y]∕
⟨
x2 − 1, y2 − 1

⟩
 . We have that x2 − 1 = (x + 1)(x − 1) 

is a factorisation of x2 − 1 into maximum pairwse coprime monic polynomi-
als in Z8[x] . Then S ≅

⨁2

i=1
Ki[y]∕

�
y2 − 1

�
 , where K1 = Z8[x]∕⟨x + 1⟩ = Z8 

and K2 = Z8[x]∕⟨x − 1⟩ = Z8 . Now, y2 − 1 = (y − 1)(y + 1) in Z8[y] . Thus, 
S ≅

⨁2

i=1
(
⨁2

j=1
Tij) , where T11 = Z8[y]∕⟨y + 1⟩ = Z8 , T12 = Z8[y]∕⟨y − 1⟩ = Z8 , 

T21 = Z8[y]∕⟨y + 1⟩ = Z8 and T22 = Z8[y]∕⟨y − 1⟩ = Z8 . Thus, 
S ≅ Z8 ⊕ Z8 ⊕ Z8 ⊕ Z8 . By Theorem 3, the number of LCP of cyclic 2-D codes hav-
ing length 2 ⋅ 2 over Z8 which are non-trivial is 7. Using Theorem 2, these codes are 
listed below: 

1.	 C1 = {(x1, x2, x3, 0) | xi ∈ Z8 for i = 1, 2, 3} and D1 = {(0, 0, 0, x4) | x4 ∈ Z8}.
2.	 C2 = {(x1, x2, 0, x4) | xi ∈ Z8 for i = 1, 2, 4} and D2 = {(0, 0, x3, 0) | x3 ∈ Z8}.
3.	 C3 = {(x1, 0, x3, x4) | xi ∈ Z8 for i = 1, 3, 4} and D3 = {(0, x2, 0, 0) | x2 ∈ Z8}.
4.	 C4 = {(0, x2, x3, x4) | xi ∈ Z8 for i = 2, 3, 4} and D4 = {(x1, 0, 0, 0) | x1 ∈ Z8}.
5.	 C5 = {(x1, x2, 0, 0) | xi ∈ Z8 for i = 1, 2} and 
	 D5 = {(0, 0, x3, x4) | xi ∈ Z8 for i = 3, 4}.
6.	 C6 = {(x1, 0, x3, 0) | xi ∈ Z8 for i = 1, 3} and 
	 D6 = {(0, x2, 0, x4) | xi ∈ Z8 for i = 2, 4}.
7.	 C7 = {(0, x2, x3, 0) | xi ∈ Z8 for i = 2, 3} and 
	 D7 = {(x1, 0, 0, x4) | xi ∈ Z8 for i = 1, 4}.

4 � LCP of constacyclic 3‑D codes over finite commutative rings

In this section, the results of Sect.  3 are generalized to (�1, �2, �3)-constacyclic 3-D 
codes over a finite commutative ring R. The CRT expression of a constacyclic 2-D 
code established in the above section is extended to a constacyclic 3-D code and is 
explained extensively as follows:

A (�1, �2, �3)-constacyclic 3-D code of length k1k2k3 is defined to be an ideal of the 
quotient ring

Clearly,

S = R[x1, x2, x3]∕
⟨
xk1
1

− �
1
, xk2

2

− �
2
, x

k
3

3

− �
3

⟩
.

S ≅
R[x1]∕

⟨
xk1
1

− �
1

⟩
⟨
xk2
2

− �
2
, x

k
3

3

− �
3

⟩ [x2, x3].
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Let xk1
1

− �
1
=

r∏
i
1
=1

fi
1

 be a factorization of xk1
1

− �
1
 into maximum pairwise coprime 

monic polynomials in R[x1] . Applying CRT, we have that

where Ki
1

= R[x1]∕
⟨
fi
1

⟩
 for i

1
= 1, 2,… , r.

Therefore, we can write

Now, let xk2
2

− �
2
=

ri
1∏

i
2
=1

fi
1
i
2

 be a factorization of xk2
2

− �
2
 into maximum monic pair-

wise coprime polynomials over Ki
1

 for i
1
= 1, 2,… , r . Then again by applying CRT,

where Ki
1
i
2

= Ki
1

[x2]∕
⟨
fi
1
i
2

⟩
 for i

2
= 1, 2,… , ri

1

.

Further, let xk3
3

− �
3
=

r
i
1
i
2∏

i
3
=1

fi
1
i
2
i
3

 be a factorization of xk3
3

− �
3
 into maximum number 

of monic pairwise coprime polynomials over Ki
1
i
2

 for i
1
= 1, 2,… , r and 

i
2
= 1, 2,… , ri

1

 . By applying CRT, we have that

where Ki
1
i
2
i
3

= Ki
1
i
2

[x3]∕
⟨
fi
1
i
2
i
3

⟩
 for i

3
= 1, 2,… , ri

1
i
2

.

It can be easily seen that if C is a (�1, �2, �3)-constacyclic 3-D code of length k1k2k3 
over R, then

S ≅

r⨁
i
1
=1

R[x1]∕
⟨
fi
1

⟩
⟨
xk2
2

− �
2
, x

k
3

3

− �
3

⟩ [x2, x3] =
r⨁

i
1
=1

Ki
1

[x2, x3]⟨
xk2
2

− �
2
, x

k
3

3

− �
3

⟩ ,

S ≅

r⨁
i
1
=1

Ki
1

[x2]∕
⟨
xk2
2

− �
2

⟩
⟨
x
k
3

3

− �
3

⟩ [x3].

S ≅

r⨁
i
1
=1

ri
1⨁

i
2
=1

Ki
1

[x2]∕
⟨
fi
1
i
2

⟩
⟨
x
k
3

3

− �
3

⟩ [x3] =

r⨁
i
1
=1

ri
1⨁

i
2
=1

Ki
1
i
2

[x3]⟨
x
k
3

3

− �
3

⟩ ,

S ≅

r⨁
i
1
=1

ri
1⨁

i
2
=1

ri
1
i
2⨁

i
3
=1

Ki
1
i
2

[x3]⟨
fi
1
i
2
i
3

⟩

=

r⨁
i
1
=1

ri
1⨁

i
2
=1

ri
1
i
2⨁

i
3
=1

Ki
1
i
2
i
3

,
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where Ci
1
i
2
i
3

 is an ideal of Ki
1
i
2
i
3

.
Following results on constacyclic 3-D LCP of codes over R are generalizations 

of similar results on LCP of constacyclic 2-D codes proved in previous section. To 
avoid repetition, the proofs of these results have been omitted.

Theorem 4  Let C and D be (�1, �2, �3)-constacyclic 3-D codes of length k1k2k3 over 

R. Let S = R[x
1
, x

2
, x

3
]∕
�
x
k
1

1

− �
1
, x

k
2

2

− �
2
, x

k
3

3

− �
3

�
≅
⨁

r

i
1
=1

⨁r
i

1

i
2
=1

⨁r
i

1
i

2

i
3
=1

K
i
1
i
2
i
3

,

C ≅
⨁

r

i
1
=1

⨁r
i

1

i
2
=1

⨁r
i

1
i

2

i
3
=1

C
i
1
i
2
i
3

 , D ≅
⨁r

i
1
=1

⨁ri
1

i
2
=1

⨁ri
1
i
2

i
3
=1

Di
1
i
2
i
3

 be the CRT expres-

sions of S, C and D respectively as described above. Then (C, D) is an LCP of cons-
tacyclic 3-D codes over R if and only if (Ci

1
i
2
i
3

,Di
1
i
2
i
3

) is an LCP of codes over 
Ki

1
i
2
i
3

 . Moreover, (Ci
1
i
2
i
3

,Di
1
i
2
i
3

) over Ki
1
i
2
i
3

 is always a trivial pair of LCP of codes.

Theorem 5  Let C and D be (�1, �2, �3)-constacyclic 3-D codes of length k1k2k3 over 

R. Let S = R[x
1
, x

2
, x

3
]∕
�
x
k
1

1

− �
1
, x

k
2

2

− �
2
, x

k
3

3

− �
3

�
≅
⨁

r

i
1
=1

⨁r
i

1

i
2
=1

⨁r
i

1
i

2

i
3
=1

K
i
1
i
2
i
3

,

C ≅
⨁

r

i
1
=1

⨁r
i

1

i
2
=1

⨁r
i

1
i

2

i
3
=1

C
i
1
i
2
i
3

 , D ≅
⨁r

i
1
=1

⨁ri
1

i
2
=1

⨁ri
1
i
2

i
3
=1

Di
1
i
2
i
3

 be the CRT expres-

sions of S, C and D respectively. Then (C, D) is an LCP of codes over R which is 
non-trivial if and only if there exist atleast two distinct tuples (i

1
, i

2
, i

3
) and (j

1
, j

2
, j

3
) 

such that Ci
1
i
2
i
3

= Ki
1
i
2
i
3

 and Dj
1
j
2
j
3

= Kj
1
j
2
j
3

.

Theorem  6  The number of LCP of (�1, �2, �3)-constacyclic 3-D codes of length 
k1k2k3 over R which are non-trivial is given by

where t =
∑r

i
1=1

∑ri
1

i
2=1

ri
1
i
2

.

Example 3  Consider cyclic 3-D codes of length 2 ⋅ 2 ⋅ 2 over Z9 as ideals of the ring 
S = Z9[x1, x2, x3]∕

⟨
x2
1
− 1, x2

2
− 1, x2

3
− 1

⟩
 . We have that x2

1
− 1 = (x1 + 1)(x1 − 1) is 

a factorisation of x2
1
− 1 into maximum pairwse coprime monic polynomials in 

Z9[x1] . Then S ≅
⨁2

i
1
=1

Ki
1

[x2, x3]∕
�
x2
2
− 1, x2

3
− 1

�
 , where 

K1 = Z9[x1]∕⟨x1 + 1⟩ = Z9 and K2 = Z9[x]∕⟨x1 − 1⟩ = Z9 . Now, 

C ≅

r⨁
i
1
=1

ri
1⨁

i
2
=1

ri
1
i
2⨁

i
3
=1

Ci
1
i
2
i
3

,

N =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, for t = 1,

1, for t = 2,

∑(t−1)∕2

i=1

�
t

i

�
, for t odd, t > 1,

∑(t∕2)−1

i=1

�
t

i

�
+

�
t

t∕2

�
∕2, for t even, t > 2,
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x2
2
− 1 = (x2 − 1)(x2 + 1) in Z9[x2] . Thus, S ≅

⨁2

i
1
=1

⨁2

i
2
=1

K
i
1
i
2

[x3]∕
�
x2
3
− 1

�
 , 

where K11 = Z9[x2]∕⟨x2 + 1⟩ = Z9 , K12 = Z9[y]∕⟨x2 − 1⟩ = Z9 , 
K21 = Z9[y]∕⟨x2 + 1⟩ = Z9 and K22 = Z9[y]∕⟨x2 − 1⟩ = Z9 . Also, 
x2
3
− 1 = (x3 + 1)(x3 − 1) in Z9[x3] . Therefore, S ≅

⨁2

i
1
=1

⨁2

i
2
=1

⨁2

i
3
=1

K
i
1
i
2
i
3

, where 
K

i
1
i
2
i
3

= Z9 for each i
1
, i

2
, i

3
∈ {1, 2} . Thus, we have 

S ≅ Z9 ⊕ Z9 ⊕ Z9 ⊕ Z9 ⊕ Z9 ⊕ Z9 ⊕ Z9 ⊕ Z9 . By Theorem  6, the number of LCP 
of cyclic 3-D codes having length 2 ⋅ 2 ⋅ 2 over Z9 which are non-trivial is 127. A 
few of them are listed below: 

1.	 C1 = {(a1, a2, a3, a4, a5, a6, a7, 0) | ai ∈ Z9 for i = 1, 2,⋯ , 7} and
	  D1 = {(0, 0, 0, 0, 0, 0, 0, a8) | a8 ∈ Z9}.
2.	 C2 = {(a1, a2, a3, a4, a5, a6, 0, 0) | ai ∈ Z9 for i = 1, 2,⋯ , 6} and 
	 D2 = {(0, 0, 0, 0, 0, 0, a7, a8) | ai ∈ Z9 for i = 7,8}.
3.	 C3 = {(a1, a2, a3, a4, a5, 0, 0, 0) | ai ∈ Z9 for i = 1, 2,⋯ , 5} and 
	 D3 = {(0, 0, 0, 0, 0, a6, a7, a8) | ai ∈ Z9 for i = 6, 7, 8}.
4.	 C4 = {(a1, a2, a3, a4, 0, 0, 0, 0) | ai ∈ Z9 for i = 1, 2, 3, 4} and 
	 D4 = {(0, 0, 0, 0, a5, a6, a7, a8) | ai ∈ Z9 for i = 5, 6, 7, 8}.

A (�1, �2,… , �n)-constacyclic n-D code of length k1k2 ⋯ kn is defined as an ideal 
of R[x1, x2,… , xn]∕

⟨
xk1
1

− �
1
, xk2

2

− �
2
,… , xkn

n
− �

n

⟩
. Proceeding in a similar man-

ner as above, the CRT expression for a constacyclic n-D code over a finite commuta-
tive ring can be derived. Subsequently, the results can be extended to LCP of consta-
cyclic n-D codes, n ≥ 3 , over finite commutative rings.

5 � LCP of constacyclic 2‑D codes over finite chain rings

In this section, existence of non-trivial LCP of (�, �)-constacyclic 2-D codes of 
length k1k2 over a finite commutative chain ring is obtained. Let us recall some 
results before proceeding further.

Proposition 1  ([26, 27]): Let R be a finite commutative chain ring with maximal 
ideal < 𝛾 > and nilpotency index � . Then, we have the following: 

(a)	 There exists an element � ∈ R with multiplicative order pm − 1 , where p 
is a prime, such that every element r ∈ R can be uniquely expressed as r = 
r0 + r1� +⋯ + r�−1�

�−1 , where ri ∈ T  = {0, 1, �,… , �p
m−2} is the Teichmüller 

set of R.
(b)	 Let r = r0 + r1� +⋯ + r�−1�

�−1 where ri ∈ T  , 0 ≤ i ≤ � − 1 . Then r is a unit in 
R if and only if r0 ≠ 0 . Moreover, there exists an element �0 ∈ T  such that r0 = 
�
ps

0
.
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Theorem  7  (Theorem  7, [28]) Let � = �
ps

0
+ ��1 +⋯ + ��−1��−1 , where 

�0, �1,… , ��−1 ∈ T  and �0 ≠ 0 . Then the quotient ring R[x]∕
⟨
xp

s

− �
⟩
 is a chain 

ring if and only if �1 ≠ 0.

Theorem 8  (Theorem 1, [16]) A non-trivial LCP of �-constacyclic codes of length n 
over a finite chain ring R exists if and only if xn − � = f (x)g(x) , where f(x) and g(x) 
are monic, coprime polynomials of degree ≥ 1 over the residue field K.

Corollary 1  (Corollary 1, [16]) There does not exist any non-trivial LCP of �-cons-
tacyclic codes of length ps over a finite chain ring R with residue field K of charac-
teristic p.

Let R be a finite commutative chain ring with nilpotency index � and � be the gen-
erator of its maximal ideal. Let K be the residue field of R with characteristic p. Let 
� and � be units in R.

The ring S = R[x, y]∕
�
xk1 − �, yk2 − �

�
≅

R1[y]

⟨yk2 − �⟩ , where R1 = R[x]∕
⟨
xk1 − �

⟩
 . 

Let k1 = ps1 for some s1 > 0 . By Proposition  1, � = �
ps1

0
+ ��1 +⋯ + ��−1��−1 , 

where �0, �1,⋯ , ��−1 ∈ T  and �0 ≠ 0 . Let �1 ≠ 0 . Therefore, by Theorem 7, R1 is a 
finite chain ring. Let a(x) be the generator of its maximal ideal and K1 = R1∕⟨a(x)⟩ 
be its residue field. Let �1 ∶ R1 ⟶ K1 be an onto homomorphism defined by 
�1(r(x)) = r(x)(mod a(x)) for each r(x) ∈ R1 . It is easy to see that K1 = K.

A (�, �)-constacyclic 2-D code of length k1k2 can be considered as a �-consta-
cyclic code of length k2 over R1 . Thus, by Theorem 8, we have the following result 
which provides a necessary and sufficient condition for existence of a non-trivial 
LCP of constacyclic 2-D codes over a finite chain ring R with residue field K.

Theorem  9  Let R be a finite chain ring with residue field K of characteris-
tic p. Let k1 = ps1 for some s1 > 0 and � = �

ps1

0
+ ��1 +⋯ + ��−1��−1 , where 

�0, �1,⋯ , ��−1 ∈ T , �0 ≠ 0 and �1 ≠ 0 . A non-trivial LCP of (�, �)-constacyclic 2-D 
codes of length k1k2 over R exists if and only if yk2 − �1(�) = f (y)(g(y), where f(y) 
and g(y) are monic, coprime polynomials of degree ≥ 1 in K[y].

Analogously, S ≅
R2[x]

⟨xk1 − �⟩ , where R2 = R[y]∕
⟨
yk2 − �

⟩
. Let k2 = ps2 for some 

s2 > 0. By Proposition 1, � = �
ps1

0
+ ��1 +⋯ + ��−1��−1 , where �0, �1,⋯ , ��−1 ∈ T  

and �0 ≠ 0 . Let �1 ≠ 0 . Therefore, by Theorem 7, R2 is a finite chain ring. Let b(y) 
be the generator of its maximal ideal and K2 = R2∕⟨b(y)⟩ be the residue field. Let 
the map �2 ∶ R2 ⟶ R2∕⟨b(y)⟩ be defined by �2(s(y)) = s(y)(mod b(y)) for each 
s(y) ∈ R2 . Again, it is easy to see that K2 = K.

Now, a (�, �)-constacyclic 2-D code of length k1k2 can also be considered as a �
-constacyclic code of length k1 over the ring R2 . Thus, by Theorem 8, we have the 
following result.
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Theorem  10  Let R be a finite chain ring with residue field K of characteris-
tic p. Let k2 = ps2 for some s2 > 0 and � = �

ps2

0
+ ��1 +⋯ + ��−1��−1 , where 

�0, �1,⋯ , ��−1 ∈ T , �0 ≠ 0 and �1 ≠ 0 . A non-trivial LCP of (�, �)-constacyclic 2-D 
codes of length k1k2 over R exists if and only if xk1 − �2(�) = F(x)G(x) , where F(x) 
and G(x) are monic, coprime polynomials of degree ≥ 1 in K[x].

Example 4  Consider (3,1)-constacyclic 2-D codes of length 2 × 3 over the ring Z4 

with residue field Z2 . Then, the ring S =
Z4[x, y]

⟨x2 − 3, y3 − 1⟩ ,R1 = Z4[x]∕
�
x2 − 3

�
 and 

R2 = Z4[y]∕
⟨
y3 − 1

⟩
 . Note that by Theorem 7, R1 is a finite chain ring and R2 is not 

a finite chain ring. Also, y3 − 1 = (y + 1)(y2 + y + 1) in Z2[y] is a factorization of 
y3 − 1 into pairwise coprime, monic polynomials of degree ≥ 1 . Thus, by Theo-
rem 9, non-trivial LCP of (3,1)-constacyclic 2-D codes of length 2 × 3 exists over Z4
.

Following Corollary is an immediate consequence of Theorem 7, Corollary 1 
and the fact that a (�, �)-constacyclic 2-D code of length ps1ps2 can be considered 
as a �-constacyclic code of length ps2 over R1 as well as a �-constacyclic code of 
length ps1 over the ring R2.

Corollary 2  Let R be a finite chain ring with residue field K of characteristic 
p. Let � = �

ps1

0
+ ��1 +⋯ + ��−1��−1 , where �0, �1,⋯ , ��−1 ∈ T , �0 ≠ 0 and 

� = �
ps2

0
+ ��1 +⋯ + ��−1��−1 , where �0, �1,⋯ , ��−1 ∈ T , �0 ≠ 0 . There does not 

exist any non-trivial LCP of (�, �)-constacyclic 2-D codes of length ps1ps2 over R if 
either �1 ≠ 0 or �1 ≠ 0.

Proof  Suppose �1 ≠ 0 . By Theorem 7, R1 is a finite chain ring. Considering a (�, �)
-constacyclic 2-D code of length ps1ps2 as a �-constacyclic code of length ps2 over 
the ring R1 and applying Corollary 1, we get the desired result. Similarly, if �1 ≠ 0 , 
R2 is a finite chain ring. Now, consider a (�, �)-constacyclic 2-D code of length ps1ps2 
as a �-constacyclic code of length ps1 over the ring R2 . Therefore, by Corollary 1, we 
get the desired result.

6 � Conclusion

In this paper, LCP of constacyclic n-D codes over a finite commutative ring R 
have been studied. In this direction, a necessary as well as sufficient condition for 
a pair of constacyclic 2-D codes over R to be an LCP of codes has been obtained. 
Moreover, a characterization of all non-trivial LCP of constacyclic 2-D codes 
over R has been given. Furthermore, total number of such codes has also been 
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determined. Using the obtained results, a few examples of LCP of constacyclic 
2-D codes over some finite commutative rings have been given. Finally, these 
results have been extended to constacyclic 3-D codes over finite commutative 
rings. The obtained results readily extend to constacyclic n-D codes, n ≥ 3 , over 
finite commutative rings. In particular, necessary and sufficient conditions for 
existence of a non-trivial LCP of constacyclic 2-D codes over finite chain rings 
have been obtained.
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