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Abstract
We obtain geometric characterizations of the dual functions for quadratic bent and 
vectorial bent functions in terms of quadrics. Additionally, using the zeros of the 
polynomial Xq+1

+ X + a which have been studied recently in the literature, we pro-
vide some examples of binomial quadratic bent functions on �q4 and �q6 , where q is a 
power of 2.
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1 Introduction

A Boolean function on �2n is a mapping from �2n to the prime field �2 . If f is a 
Boolean function defined on �2n , then the Walsh transform of f is defined as

where b ⋅ x is a scalar product from �2n × �2n to �2 and �2n is considered as a vector 
space over �2 . A Boolean function f on �2n is said to be bent if its Walsh transform 
satisfies Wf (b) = ±2n∕2 for all b ∈ �2n . Then n is an even integer.

Bent functions were introduced by Rothaus [17] and then they were studied by Dil-
lon [8]. Bent functions are well-studied objects as they find applications not only in 

Wf (b) =
∑

x∈�2n

(−1)f (x)+b⋅x,
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cryptography but also in coding theory, sequences, combinatorics and design theory. 
They also have interesting connections with finite geometry [1–3]. Vectorial bent func-
tions were investigated in [16] and their duals were considered recently in [7]. For a 
summary of background and recent development on bent functions, we refer the reader 
to [6, 15].

Quadratic Boolean functions are those in the form

In [13, 19], the bentness of functions of the form (1) with coefficients ci from the 
subfield �2 were considered. In [9, 10], some cases with ci ∈ �2e , where n/e is an 
even integer, were considered. Concerning the cases with coefficients ci from �2n , 
only monomial bent functions were considered, cp. [18].

Given a bent function f on �2n , one can define its dual function, denoted by f̃  , 
by considering the signs of the values of the Walsh transform Wf (b) of f. More pre-
cisely, f̃  is defined by the equation:

The dual of a bent function is bent again, and ̃̃f = f  . The bentness property is inde-
pendent of the choice of the scalar product, but the values of the dual function will 
be changed.

In the first part of the paper we consider general quadratic bent functions and 
give a geometric characterization of the dual functions for quadratic bent and vecto-
rial bent functions in terms of quadrics. In particular, for a quadratic bent function 
f(x), we show that the dual bent function f̃ (b) is equal to 0 or 1 depending whether 
f (x) + b ⋅ x = 0 is a hyperbolic or elliptic quadric, respectively. It provides the value 
of dual function f̃ (b) directly from the original function f(x). Such a direct connec-
tion between bent function and its dual has not been noticed before.

It is known that a quadratic function f(x) is bent if and only if the associated bilin-
ear form B(x, y) = f (x + y) + f (x) + f (y) is non-degenerate. This statement implies 
the following characterization for quadratic bent functions.

Lemma 1.1 The quadratic Boolean function (1) is bent if and only if

is a linearized permutation polynomial, i.e. Lf (x) = 0 has only solution 0.

In the remaining part of the paper, we consider some binomial quadratic bent 
functions with coefficients from �2n . In the cases we study, application of Lemma 1.1 
leads to equations of the form

(1)f (x) =

n−1∑

i=0

Tr
�2n∕�2

(cix
1+2i ), ci ∈ �2n .

(−1)f̃ (x)2n∕2 = Wf (x).

Lf (x) =

n−1∑

i=1

(ci + c2
i

n−i
)x2

i

Xq+1 + X + a = 0.
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The solutions of these types of equations were recently described in [14], from 
which we obtain our main results.

The paper is organized as follows. In Sect. 2, Theorems 2.1 and 2.2 describe 
the dual functions for quadratic bent and vectorial bent functions. In Sects. 3 and 
4, we characterize binomial quadratic bent functions on �q4 and �q6 (Theorems 3.6, 
3.7 and 4.6).

2  The dual functions of quadratic bent functions

In this section we consider general quadratic bent and vectorial bent functions. 
We show that the dual functions for bent and vectorial bent functions can be char-
acterized in terms of quadrics.

Let V = V(n, q) be a vector space of dimension n = 2k over a field F = �q , 
where q is a power of 2. A quadratic form on V is a mapping Q ∶ V → F such that 

1. Q(�x) = �2Q(x) for all � ∈ F , x ∈ V ,and
2. B(x, y) = Q(x + y) + Q(x) + Q(y) is a bilinear form.

A quadratic form is non-degenerate if the property B(x, y) = 0 = Q(x) for all 
y ∈ V  implies x = 0 . A vector x ∈ V  is singular if Q(x) = 0 . The set of singular 
points of Q defines a quadric in the projective space PG(2k − 1, q).

Let Q be a non-degenerate quadratic form on 2k-dimensional vector space V 
over F. The coordinate system can be chosen so that Q is equivalent to one of the 
following two expressions: 

1. x1x2 + x3x4 +⋯ + x2k−1x2k , or
2. x2

1
+ ax1x2 + x2

2
+ x3x4 +⋯ + x2k−1x2k  , where a ∈ F  and the polynomial 

�2 + a� + 1 is irreducible over F.

In the former case the quadratic form Q defines a hyperbolic quadric in 
PG(2k − 1, q) , and in the latter case Q defines an elliptic quadric. Hyperbolic 
quadric Q(u) = 0 in PG(2k − 1, q) contains (qk−1)(qk−1+1)

q−1
 points, elliptic quadric 

Q(u) = 0 in PG(2k − 1, q) contains (q
k+1)(qk−1−1)

q−1
 points [4] .

2.1  Quadratic bent functions

For the dual of a quadratic bent function, we obtain the following geometric 
characterization.

Theorem  2.1 Let f ∶ �22k → �2 be a quadratic bent function. Then the dual bent 
function f̃  for f(x) is given by:
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Proof If f(x) is a bent function then f(x) is a non-degenerate quadratic form. So the 
bilinear form B(x, y) = f (x + y) + f (x) + f (y) is non-degenerate. Then the bilinear 
form Bb(x, y) for the quadratic form f (x) + b ⋅ x is equal to

Hence the quadratic form f (x) + b ⋅ x is either hyperbolic or elliptic. If it is hyper-
bolic then the equation f (x) + b ⋅ x = 0 has

solutions, including 0. Therefore,

Hence f̃ (b) = 0 . Similarly, if f (x) + b ⋅ x is elliptic then the equation f (x) + b ⋅ x = 0 
has

solutions, including 0. Therefore,

Hence f̃ (b) = 1 . The proof is complete.   ◻

The previous theorem provides the value of dual function f̃ (b) directly from 
the original function f(x). Such a direct connection between bent function and its 
dual has not been noticed before.

Remark 1 We consider the special case when f is a monomial bent function with 
Gold exponent. Let � ∈ �22k , r ∈ ℕ and d = 2r + 1 . Let f ∶ �22k → �2 be defined by

f̃ (b) =

{
0, if f (x) + b ⋅ x = 0 is a hyperbolic quadric,

1, if f (x) + b ⋅ x = 0 is an elliptic quadric.

Bb(x, y) = [f (x + y) + b ⋅ (x + y)] + [f (x) + b ⋅ x] + [f (y) + b ⋅ y] = B(x, y).

(qk − 1)(qk−1 + 1)

q − 1
+ 1 =

(2k − 1)(2k−1 + 1)

2 − 1
+ 1 = 22k−1 + 2k−1

2k(−1)f̃ (b) =Wf (b)

=
∑

x∈V

(−1)f (x)+b⋅x

=(+1) ⋅ (22k−1 + 2k−1) + (−1) ⋅ (22k − 22k−1 − 2k−1)

=2k.

(qk + 1)(qk−1 − 1)

q − 1
+ 1 =

(2k + 1)(2k−1 − 1)

2 − 1
+ 1 = 22k−1 − 2k−1

2k(−1)f̃ (b) =Wf (b)

=
∑

x∈V

(−1)f (x)+b⋅x

=(+1) ⋅ (22k−1 − 2k−1) + (−1) ⋅ (22k − 22k−1 + 2k−1)

= − 2k.
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This type of functions were studied in [11, 12]. As shown in [11], f is bent if and 
only if

Using Theorem 2.1, the dual of f is

2.2  Quadratic vectorial bent functions

Let K/F be an extension of finite fields of characteristic 2 and dimF K = 2k . Let 
⟨⋅, ⋅⟩ ∶ K × K → F be a non-degenerate bilinear form over F. For a finite field F we 
denote

A function f ∶ K → F is a vectorial bent function if the Boolean function 
f�(x) = tr(�f (x)) is bent for all � ∈ F∗ . The functions f�(x) = tr(�f (x)) are called 
component functions of f(x). Below we choose a scalar product from K × K to �2 as

Theorem 2.2 Let K ⊃ F be finite fields of characteristic 2 and let f ∶ K → F be a 
quadratic vectorial bent function. Let f�(x) = tr(�f (x)) , where � ∈ F∗ . Then the dual 
bent function f̃� for component function f� is given by:

Proof Let f(x) be a vectorial bent function. Then f�(x) = tr(�f (x)) is bent and f�(x) is 
a non-degenerate quadratic form for all � ∈ F∗ . Hence f(x) is a non-degenerate quad-
ratic form over F and the associated bilinear form B(x, y) = f (x + y) + f (x) + f (y) is 
non-degenerate. Fix � ∈ F∗ . Then the bilinear form Bb(x, y) for the quadratic form 
�f (x) + ⟨b, x⟩2 is equal to

and it is non-degenerate. Hence the quadratic form �f (x) + ⟨b, x⟩2 is either hyper-
bolic or elliptic. If it is hyperbolic (resp. elliptic) then the equation �f (x) + ⟨b, x⟩2 = 0 
has (q

k−1)(qk−1+1)

q−1
 (resp. (q

k+1)(qk−1−1)

q−1
 ) solutions in PG(2k − 1,F) , where 2k = dimF K.

Recall that PG(2k − 1,F) can be considered as the set of all 1-dimensional F-sub-
spaces in K. Let S be a subset in K∗ which represents all elements of PG(2k − 1,F) 

f (x) = Tr
�22k∕�2

(�xd).

� ∉ {xd ∣ x ∈ �22k}.

f̃ (b) =

{
0, if Tr

�22k∕�2
(𝛼xd) + b ⋅ x = 0 is a hyperbolic quadric,

1, if Tr
�22k∕�2

(𝛼xd) + b ⋅ x = 0 is an elliptic quadric.

tr(x) = TrF∕�2 (x).

b ⋅ x = tr(⟨b, x⟩).

f̃�(b) =

�
0, if �f (x) + ⟨b, x⟩2 = 0 is a hyperbolic quadric,

1, if �f (x) + ⟨b, x⟩2 = 0 is an elliptic quadric.

Bb(x, y) = [�f (x + y) + ⟨b, x + y⟩2] + [�f (x) + ⟨b, x⟩2] + [�f (y) + ⟨b, y⟩2] = �B(x, y),



512 K. Abdukhalikov et al.

1 3

(elements of S generate distinct 1-dimensional F-subspaces in K). Hence |S| = q2k−1

q−1
 

and K∗ = {�u ∣ � ∈ F∗, u ∈ S} . Therefore,

where

If �f (u) + ⟨b, u⟩2 = 0 is hyperbolic then |Nb| =
(qk−1)(qk−1+1)

q−1
 . Therefore,

Hence

If �f (u) + ⟨b, u⟩2 = 0 is elliptic then |Nb| =
(qk+1)(qk−1−1)

q−1
 . Therefore,

Hence

The proof is complete.   ◻

Theorem 2.2 provides the value of dual function f̃�(b) for the component function 
f�(x) directly from the original function f�(x).

qk(−1)f̃� (b) =Wf�
(b)

=
�

x∈K

(−1)f� (x)+tr(⟨b,x⟩)

=
�

x∈K

(−1)tr(�f (x))+tr(⟨b,x⟩)

=1 +
�

�∈F∗, u∈S

(−1)tr(�f (�u))+tr(⟨b,�u⟩)

=1 +
�

�∈F∗, u∈S

(−1)tr(��
2f (u))+tr(�⟨b,u⟩)

=1 −
q2k − 1

q − 1
+

�

�∈F, u∈S

(−1)tr(�(
√
�f (u)+⟨b,u⟩))

=
q − q2k

q − 1
+
�

u∈S

�

�∈F

(−1)tr(�(
√
�f (u)+⟨b,u⟩))

=
q − q2k

q − 1
+ �Nb�q,

Nb = {u ∈ S ∣
√
�f (u) + ⟨b, u⟩ = 0} = {u ∈ S ∣ �f (u) + ⟨b, u⟩2 = 0}.

q − q2k

q − 1
+ |Nb|q =

q − q2k

q − 1
+

q(qk − 1)(qk−1 + 1)

q − 1
= qk.

f̃�(b) = 0.

q − q2k

q − 1
+ |Nb|q =

q − q2k

q − 1
+

q(qk + 1)(qk−1 − 1)

q − 1
= −qk.

f̃�(b) = 1.
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Remark 2 We consider the special case when f is a monomial vectorial bent function 
with Gold exponent. Let � ∈ K , r ∈ ℕ and d = 2r + 1 . Let f ∶ K → F be defined by

In [18], it was proved that f is vectorial bent if and only if � ∉ {xgcd(d,t) ∣ x ∈ K} , 
where t = 2k + 1 . For each � ∈ F∗ , the dual bent function f̃� for component function 
f� is given by:

3  Binomial quadratic bent functions on �q4

In this section, let q = 2m , n = 4m , F = �q,K = �q2 ,E = �q4 . Let TrM∕L(x) and 
NM∕L(x) be the trace and the norm functions with respect to a finite field extension 
M/L. For convenience, we abbreviate

We consider the bentness of the function f ∶ E → �2 defined by

where �, � ∈ E.

3.1  The roots of the polynomial Pa(X) = Xq+1 + X + a

For a ∈ E , let

We recall the following sequence of polynomials from [14]:

for r ≥ 0 . Also, adopting the notation in [14], we define

For a ∈ E , we denote H(a) = tr

(
NE∕F(a)

G(a)2

)
 and E(a) = aF(a)q+1

G(a)2
 . From [14], we 

have the following characterization on the number of roots of Pa(X).

f (x) = TrK∕F(�x
d).

f̃�(b) =

�
0, if �TrK∕F(�x

d) + ⟨b, x⟩2 = 0 is a hyperbolic quadric,

1, if �TrK∕F(�x
d) + ⟨b, x⟩2 = 0 is an elliptic quadric.

Tr(x) = TrE∕�2 (x), tr(x) = TrF∕�2 (x).

f (x) = Tr(�xq+1 + �xq
2+1),

Pa(X) = Xq+1 + X + a.

A0(X) = 0,A1(X) = 1,A2(X) = 1,

Ar+2(X) = Ar+1(X)
q + XqAr(X)

q2 ,

F(X) =A4(X) = 1 + Xq + Xq2 ,

G(X) =A5(X) + XA3(X)
q = Xq3+q + Xq2+1 + Xq3 + Xq2 + Xq + X + 1.
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Lemma 3.1 ( [14]) Let a ∈ E . Then the polynomial Pa(X) = Xq+1 + X + a has 0, 1, 2 
or q + 1 zeros in E. Furthermore, if Na is the number of roots of Pa(x) in E, then the 
following hold. 

1. Na = 0 if and only if G(a) ≠ 0 and H(a) ≠ 0.
2. Na = 1 if and only if F(a) ≠ 0 and G(a) = 0.
3. Na = 2 if and only if G(a) ≠ 0 and H(a) = 0.

4. Na = q + 1 if and only if there exists u ∈ E�K such that a =
(u + uq)q

2+1

(u + uq
2
)q+1

 . Then 

the q + 1 zeros in E of Pa(X) are x0 =
1

1 + (u + uq)q−1
 and x� =

(u + �)q
2−q

1 + (u + uq)q−1
 

for � ∈ F.

Lemma 3.2 (cp. [5]) The quadratic polynomial Q(X) = aX2 + bX + c ∈ K[X] , 
b ≠ 0 , has two zeros in K if and only if TrK∕�2

(
ac

b2

)
= 0.

3.2  Bent functions on �q4

Let

Lemma 3.3 S ∩ K = SK.

Proof Let � be a primitive element of E. Hence S = ⟨�q−1⟩ . We have �(q−1)i ∈ K 
if and only if (�(q−1)i)q2−1 = 1 if and only if (q − 1)(q2 − 1)i ≡ 0 (mod q4 − 1) if 
and only if i ≡ 0 (mod q2 + 1) since gcd(q − 1, q2 + 1) = 1 . On the other hand, 
SK = ⟨�(q−1)(q2+1)⟩ .   ◻

Lemma 3.4 Let � ∈ E∗ and � ∈ E such that � + �q
2

= 1 . Let f ∶ E → �2 be defined 
by

Let a = �q3+q . Then a ∈ K , and f is bent if and only if the equation

has no solution in �qS.

S =
{
x ∈ E ∣ NE∕F(x) = 1

}
=
{
x ∈ E ∣ xq

3+q2+q+1 = 1
}
,

SK =
{
x ∈ K ∣ NK∕F(x) = 1

}
=
{
x ∈ K ∣ xq+1 = 1

}
.

f (x) = Tr(�xq+1 + �xq
2+1).

Xq+1 + X + a = 0
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Proof By Lemma 1.1, the function f is bent if and only if the polynomial

is a linearized permutation polynomial. For x ≠ 0 , we have

Let y = �qxq−1 . Then y ∈ �qS and xq−1 = �−qy . Hence (2) is equivalent to

which is true if and only if yq+1 + y + a = 0, where a = �q3+q . Therefore, Lf (x) is a 
linearized permutation polynomial if and only if the equation

has no solution in �qS , which completes the proof.   ◻

For a ∈ K , we have

Lemma 3.5 Let a ∈ K . If G(a) ≠ 0 and H(a) = 0 , then the equation

has two solutions in E, and these solutions are in K.

Proof From Lemma 3.1, we know that Pa(X) has two roots in E. Let x be a root of 
Pa(X) . By [14, Lemma 5], x is also a solution of the quadratic equation

Let

Then

Lf (x) = �q3xq
3

+ (� + �q
2

)xq
2

+ �xq

(2)
Lf (x) = 0 ⟺ �q2xq

2

+ xq + �q3x = 0

⟺ xq
2−1 + �−q2xq−1 + �q3−q2 = 0.

(�−qy)q+1 + �−q2�−qy + �q3−q2 = 0,

Xq+1 + X + a = 0

F(a) =1 + a + aq ∈ F,

G(a) =1 + a2 + a2q = F(a)2 ∈ F,

H(a) =tr

(
aq+1

G(a)

)
= tr

(
aq+1

1 + a2 + a2q

)
.

Pa(X) = Xq+1 + X + a = 0

Q(X) = F(a)X2 + G(a)X + aF(a)q = 0.

E(a) =
aF(a)q+1

G(a)2
=

aF(a)2

G(a)2
=

a

G(a)
.

TrK∕�2(E(a)) = tr

(
TrK∕F

(
a

G(a)

))
= tr

(
1 + F(a)

G(a)

)
= tr

(
1

G(a)
+

1

F(a)

)
= 0.



516 K. Abdukhalikov et al.

1 3

By Lemma 3.2, the solutions of Q(X) = 0 are in K, which proves the lemma.   ◻

Now we obtain the main theorems.

Theorem 3.6 Let � ∈ E∗ . Let � ∈ E such that � + �q
2

= 1 . Let f ∶ E → �2 be defined 
by

Then f is bent if and only if

Proof Let a = �q3+q . Then a ∈ K . Note that F(a) = 1 + �q3+q + �q2+1 . Let � = �w , 
where � ∈ F , w ∈ S.

1. Assume that F(a) = 0 . By Lemma 3.1, there exists u ∈ E�K such that 

a =
(u + uq)q

2+1

(u + uq
2
)q+1

 . Let c = (u + uq)q−1 ∈ S . We have

Hence a ∈ (1 + c)−2S . By Lemma 3.1, Pa(X) has a root x0 = (1 + c)−1 . We have

Note that a = �q3+q = �2uq
3+q ∈ �2S . Hence Pa(X) = 0 has a root x0 ∈ �S = �qS . 

Now we apply Lemma 3.4 and conclude that f(x) is not bent.
2. We now assume that F(a) ≠ 0 . If H(a) ≠ 0 , then the equation Pa(X) = 0 has 

no root in E by Lemma 3.1, and hence no root in �S . It remains to consider the case 
H(a) = 0 . Then by Lemma 3.5, Pa(X) has two roots in K. Let x1 ∈ K be a root of 
Pa(X).

Suppose x1 ∈ �S = �qS . Then by Lemma 3.3, x1 = �v , for some v ∈ SK . We have

On the other hand,

Therefore,

f (x) = Tr(�xq+1 + �xq
2+1) = Tr(�xq+1) + TrK∕�2 (x

q2+1).

(3)�q3+q + �q2+1 ≠ 1.

a =
(u + uq)q

2+1

(u + uq
2
)q+1

=
(u + uq)q

2+1

((u + uq) + (u + uq)q)q+1

=
(u + uq)q

2−q

(1 + (u + uq)q−1)q+1
=

((u + uq)q−1)q

(1 + (u + uq)q−1)q+1

=
cq

(1 + c)q+1
= (1 + c)−2

cq

(1 + c)q−1
.

x0 ∈ �S = �qS ⟺ (1 + c)−1 ∈ �S ⟺ (1 + c)−2 ∈ �2S ⟺ a ∈ �2S.

x
q+1

1
+ x1 + a = 0 ⟺ �2 + x1 + a = 0 ⟺ x1 = a + �2.

�2 = x
q+1

1
= (a + �2)q+1 = (aq + �2)(a + �2)

= aq+1 + �2aq + �2a + �4

= aq+1 + �2(F(a) + 1) + �4.
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We have

which implies F(a) = 0 , a contradiction to our assumption. Thus, if H(a) = 0 , then 
Pa(X) also has no root in �S . This completes the proof.   ◻

Theorem 3.7 Let � ∈ E∗ and � ∈ E . Let f ∶ E → �2 be defined by

Then f is bent if and only if

Proof 1. Suppose that � + �q
2

≠ 0 . Consider the function 
h(y) = Tr(�yq+1) + TrK∕�2 (y

q2+1) . Making substitution y = x(� + �q
2

)1∕2 we get

where � = �(� + �q
2

)(q+1)∕2 . Then Condition (3) for the function h(y) and � implies 
that

2. Now suppose that � + �q
2

= 0 . Then f (x) = Tr(�xq+1) . Let � be a primitive ele-
ment of E. By Lemma 1.1, the function f(x) is bent if and only if the polynomial 
Lf (x) = �q3xq

3

+ �xq is a linearized permutation polynomial. For x ≠ 0 , we have 
Lf (x) = 0 ⟺ �x + �qxq2 = 0 ⟺ �q−1xq2−1 = 1 ⟺ (�xq+1)q−1 = 1 ⟺ �xq+1 ∈ F∗.

Since F∗ = ⟨�(q+1)(q2+1)⟩ , we have that f(x) is bent 
⟺ � ∉ ⟨�q+1⟩ ⟺ �(q2+1)(q−1) ≠ 1 ⟺ �q2+1 ∉ F∗

⟺ �q2+1 + (�q2+1)q ≠ 0  , 
which completes the proof.   ◻

Remark 3 Condition (4) can be written as

Remark 4 For the special case � + �q
2

= 0 of Theorem  3.7, it was proved in [18, 
Theorem  2] that the function f (x) = Tr(�xq+1) is bent if and only if � ∉ ⟨�q+1⟩ , 
where � is a primitive element of E.

Remark 5 From Theorem 2.1, the dual of f is given by

F(a) =
aq+1 + �4

�2
.

aq+1 + �4 = �q4+q3+q2+q + �4 = �4uq
3+q2+q+1 + �4 = �4 + �4 = 0,

f (x) = Tr(�xq+1 + �xq
2+1) = Tr(�xq+1) + TrK∕�2((� + �q

2

)xq
2+1).

(4)�q3+q + �q2+1 ≠ (� + �q
2

)q+1.

h�(x) = h(y) =Tr(�(� + �q
2

)(q+1)∕2xq+1) + TrK∕�2((� + �q
2

)xq
2+1)

=Tr(�xq+1 + �xq
2+1),

�q
2+1

(� + �q
2
)q+1

+
�q

3+q2

(� + �q
2
)q+1

≠ 1,

�q
2+1 + �q

3+q2 ≠ (� + �q
2

)q+1.

TrK∕F(NE∕K(�)) ≠ NK∕F(TrE∕K(�)).
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4  Binomial quadratic bent functions on �q6

In this section, let q = 2m,F = �q,F
� = �q2 ,K = �q3 ,E = �q6 . We consider the 

bentness of the function f ∶ E → �2 defined by

where �, � ∈ E.

4.1  The roots of the polynomial Pa(X) = Xq
2
+1

+ X + a

For a ∈ E , let

We recall the following sequence of polynomials from [14]:

for r ≥ 0 . Also, define

For a ∈ E , denote H(a) = tr

(
NE∕F(a)

G(a)2

)
 and E(a) = aF(a)q+1

G(a)2
.

Lemma 4.1 ( [14]) Let a ∈ E . Then the polynomial Pa(X) = Xq2+1 + X + a has 0, 1, 
2 or q2 + 1 zeros in E. Furthermore, if Na is the number of roots of Pa(x) in E, then 
the following holds. 

1. Na = 0 if and only if G(a) ≠ 0 and H(a) ≠ 0.
2. Na = 1 if and only if F(a) ≠ 0 and G(a) = 0 . In this case, (aF(a)q−1)

1

2 is the unique 
zero in E.

3. Na = 2 if and only if G(a) ≠ 0 and H(a) = 0.
4. Na = q2 + 1 if and only if F(a) = 0.

f̃ (b) =

{
0, if Tr(𝛼xq+1 + 𝛽xq

2+1) + b ⋅ x = 0 is a hyperbolic quadric,

1, if Tr(𝛼xq+1 + 𝛽xq
2+1) + b ⋅ x = 0 is an elliptic quadric.

f (x) = Tr(�xq+1 + �xq
3+1),

Pa(X) = Xq2+1 + X + a.

A0(X) = 0,A1(X) = 1,A2(X) = 1,

Ar+2(X) = Ar+1(X)
q2 + Xq2Ar(X)

q2 ,

F(X) = A3(X) = 1 + Xq2 ,

G(X) = A4(X) + XA2(X)
q2 = Xq4 + Xq2 + X + 1.
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4.2  Bent functions on �q6

Let

Lemma 4.2 Let � ≠ 0 . Let � ∈ E such that � + �q
3

= 1 . Let f ∶ E → �2 be defined 
by

Let a = �q5+q2 = (�q2 )q
3+1 ∈ K . Then f is bent if and only if the equation

has no solution in �q2S′.

Proof By Lemma 1.1, the function f is bent if and only if the polynomial

is a linearized permutation polynomial. For x ≠ 0 , we have

Let y = �q2xq
2−1 . Then y ∈ �q2S� . By substituting xq2−1 = �−q2y , the equation (6) is 

equivalent to

which means yq2+1 + y + a = 0, where a = �q5+q2 . Therefore, Lf (x) is a linearized 
permutation polynomial if and only if the equation

has no solution in �q2S′ , which completes the proof.   ◻

For a ∈ K , we have

S =
{
x ∈ E ∣ NE∕F(x) = 1

}
=

{
x ∈ E ∣ x

q6−1

q−1 = 1

}
,

SK =
{
x ∈ K ∣ NK∕F(x) = 1

}
=

{
x ∈ K ∣ x

q3−1

q−1 = 1

}
,

S� =
{
x ∈ E ∣ NE∕F� (x) = 1

}
=

{
x ∈ E ∣ x

q6−1

q2−1 = 1

}
.

f (x) = Tr(�xq+1 + �xq
3+1).

(5)Pa(X) = Xq2+1 + X + a = 0

Lf (x) = �q5xq
5

+ (� + �q
3

)xq
3

+ �xq

(6)
Lf (x) = 0 ⟺ �q4xq

4

+ xq
2

+ �q5x = 0

⟺ xq
4−1 + �−q4xq

2−1 + �q5−q4 = 0.

(�−q2y)q
2+1 + �−q4�−q2y + �q5−q4 = 0,

Xq2+1 + X + a = 0
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In the following lemma we consider the case F(a) = 0 , that is, when a = 1.

Lemma 4.3 The equation

has no root in �q2S′ if and only if �q4+q2+1 ≠ 1.

Proof By Lemma 4.1, the Eq. (5) has q2 + 1 roots. If x is a root of (5), then

which implies x ∈ S� . Therefore, x ∉ �q2S� if and only if �q2 ∉ S� , if and only if

which proves the lemma.   ◻

We now consider the case F(a) ≠ 0.

Lemma 4.4 Let F(a) ≠ 0 and G(a) = 0 . The Eq. (5) has no root in �q2S′ if and only if 
�(q−1)(q4+q2+1) ≠ 1.

Proof By Lemma 4.1, the Eq. (5) has the unique root

We have x ∈ �q2S� if and only if aF(a)q2−1 ∈ �2q2S�, if and only if

which is if and only if

Modulo (q6 − 1) , we have

This proves the lemma.   ◻

Lemma 4.5 Let G(a) ≠ 0 and H(a) = 0 . Let N(�) = NE∕F� (�) = �q4+q2+1 . The Eq. (5) 
has no root in �q2S′ if and only if at least one of the following is true.

F(a) =aq
2

+ 1,

G(a) =aq
2

+ aq + a + 1.

Xq2+1 + X + 1 = 0

x
q6−1

q2−1 = xq
4+q2+1 = xq

4

xq
2+1 = xq

4

(x + 1) = xq
4+1 + xq

4

= (xq
2+1 + x)q

4

= 1,

(�q2 )q
4+q2+1 = �q4+q2+1 ≠ 1,

x =
(
aF(a)q

2−1
)1∕2

.

aq
4+q2+1

(
�−2q2

)q4+q2+1

= 1,

�(q3−1)(q4+q2+1) = 1.

(q3 − 1)(q4 + q2 + 1) = q7 + q5 + q3 − q4 − q2 − 1 = q(1 + q4 + q2) − q4 − q2 − 1 = (q − 1)(q4 + q2 + 1).
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1. 
(
�q4+1 + �q5

�q4+q + 1

)q4+q2+1

≠ 1.

2. N(�)2 + G(a)N(�) ≠ aq
2+q+1.

Proof By Lemma 4.1, the Eq. (5) has two roots. Let x be a root of (5). Then x ∈ �q2S� 
if and only if

Substituting xq2+1 = x + a into the above, we obtain xq4+1 + axq
4

= N(�), which 
gives

We note that a ≠ 1 . From (5) and (7), we get

Since x ∈ �q2S� , it follows that x�−q2 ∈ S� , which is equivalent to

Since x is a root of (5),

The proof follows.   ◻

Theorem 4.6 Let � ∈ E∗ . Let � ∈ E such that � + �q
3

= 1 . Let f ∶ E → �2 be defined 
by

Let N(�) = NE∕F� (�) = �q4+q2+1 and let a = �q5+q2 ,G(a) = aq
2

+ aq + a + 1 . Then f 
is bent if and only if one of the following is true. 

1. a = 1 and N(�) ≠ 1.
2. a ≠ 1,G(a) = 0 , and N(�)q−1 ≠ 1.

3. G(a) ≠ 0 and 
(
�q4+1 + �q5

�q4+q + 1

)q4+q2+1

≠ 1.

xq
4+q2+1 = (�q2 )q

4+q2+1 = �q4+q2+1 = N(�).

(7)xq
2+1 + aq

2

x = N(�).

x =
N(�) + a

aq
2
+ 1

=
N(�) + a

F(a)
.

(
�q4+1 + �q5

�q4+q + 1

)q4+q2+1

= 1.

(
N(�) + a

F(a)

)q2+1

+
N(�) + a

F(a)
+ a = 0

⟺ (N(�) + a)q
2+1 + (N(�) + a)F(a)q

2

= aF(a)q
2+1

⟺ N(�)2 + G(a)N(�) = aq
2+q+1.

f (x) = Tr(�xq+1 + �xq
3+1) = Tr(�xq+1) + TrK∕�2 (x

q3+1).
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4. G(a) ≠ 0 and N(�)2 + G(a)N(�) ≠ aq
2+q+1

.

Proof Let H(a) = TrF�∕�
2

(
NE∕F� (a)

G(a)2

)
 . We have

and so

Hence, the Eq.  (5) always has a solution. From Lemma 4.2, the function f is bent 
if and only if (5) has no solutions in �q2S′ . In view of Lemma 4.1, we only need to 
consider the following cases. 

1. F(a) = 0 , that is, when a = 1 . By Lemma 4.3, the Eq. (5) has no root in �q2S′ if 
and only if �q4+q2+1 ≠ 1.

2. F(a) ≠ 0 and G(a) = 0 . By Lemma 4.4, the Eq. (5) has no root in �q2S′ if and only 
if �(q−1)(q4+q2+1) ≠ 1.

3. G(a) ≠ 0 . By Lemma 4.5, the Eq. (5) has no root in �q2S′ if and only if 

 or 

The proof now follows.   ◻

Remark 6 It was proved in [18, Theorem  2] that the function f (x) = Tr(�xq+1) is 
bent if and only if � ∉ ⟨�q+1⟩ , where � is a primitive element of E.

Remark 7 Similar to Sect.  2, the condition � + �q
3

= 1 in Theorem  4.6 can be 
replaced by � + �q

3

≠ 0 with a change of variable y = x(� + �q
3

)1∕2.

Remark 8 From Theorem 2.1, the dual of f is given by

Remark 9 Let �, � ∈ E . Let f ∶ E → �2 be defined by

NE∕F� (a) =aq
4+q2+1 = aq

2+q+1 = NK∕F(a) ∈ F,

G(a) =aq
4

+ aq
2

+ a + 1 = aq
2

+ aq + a + 1 = TrK∕F(a) + 1 ∈ F,

H(a) = TrF�∕�2

(
NE∕F� (a)

G(a)2

)
= TrF∕�2 ⋅ TrF�∕F

(
NE∕F� (a)

G(a)2

)
= 0.

(
�q4+1 + �q5

�q4+q + 1

)q4+q2+1

≠ 1,

N(�)2 + G(a)N(�) ≠ aq
2+q+1.

f̃ (b) =

{
0, if Tr(𝛼xq+1 + 𝛽xq

3+1) + b ⋅ x = 0 is a hyperbolic quadric,

1, if Tr(𝛼xq+1 + 𝛽xq
3+1) + b ⋅ x = 0 is an elliptic quadric.

f (x) = Tr(�xq+1 + �xq
2+1).
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By Lemma 1.1, the function f is bent if and only if the polynomial

is a linearized permutation polynomial. Unfortunately, the polynomial Lf  is not in 
the form of Pa(X) in Lemma 4.1 and a different method will be required to study its 
roots.
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