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Abstract
In this paper, we construct a class of ℤ4ℤ4ℤ4-additive cyclic codes generated by 
3-tuples of polynomials. We discuss their algebraic structure and show that genera-
tor matrices can be constructed for all codes in this class. We study asymptotic prop-
erties of this class of codes by using a Bernoulli random variable. Moreover, let 
0 < 𝛿 < 1 be a real number such that the entropy h4(

(k+l+t)𝛿

6
) <

1

4
, we show that the 

relative minimum distance converges to � and the rate of the random codes con-
verges to 1

k+l+t
, where k, l, and t are pairwise co-prime positive odd integers. Finally, 

we conclude that the ℤ4ℤ4ℤ4-additive cyclic codes are asymptotically good.

Keywords  ℤ4ℤ4ℤ4-additive cyclic codes · Relative minimum distance · 
Asymptotically good code

1  Introduction

Codes over finite rings gained researchers interest after Hammons et al. developed 
binary images under a Gray map of linear cyclic codes over ℤ4 in [23]. For instance, 
the class of finite rings of the form �pm + u�pm has been widely used as alphabets of 
certain constacyclic codes. In 2010, Dinh [10] determined the algebraic structures 
of constacyclic codes of length ps over �pm + u�pm and their dual codes. In 2012, 
Dinh et al.  [8] gave the algebraic structures of constacyclic codes of length 2ps over 
�pm + u�pm and their dual codes. In 2018, Dinh et al. [11] investigated the algebraic 
structures of negacyclic codes of length 4ps over �pm + u�pm and their dual codes. In 
addition, constacyclic codes of length 4ps over �pm + u�pm are investigated in [12] 
and [13]. Moreover, Dinh et al.  [14] provided all constacyclic codes of length 3ps 
over �pm + u�pm.
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It is well known that the ideals of ℤq[x]

⟨xn−1⟩ are same as the cyclic codes over ℤq (see, 
for example, [29]). The researchers in [21, 28] introduced the additive cyclic codes, 
which are a special case of generalized quasi-cyclic codes. Moreover, Borges 
et al. [6] investigated ℤ2ℤ4-additive codes which were later extended by Abualrub 
et al. for additive cyclic codes in [1] and Gao et al. for double cyclic codes over ℤ4 
[20]. These works were further extended to ℤ2ℤ2ℤ4 by Wu et al. [30] and ℤ2ℤ4ℤ8

-additive cyclic codes by Aydogdu and Gursoy [3].
From the application point of view, it is necessary to study the asymptotic prop-

erties of these cyclic codes, because the rate of cyclic codes is used to measure the 
proportion of the number of information coordinates of a family of cyclic codes to 
the total number of coordinates, and the relative minimum distance of cyclic codes 
is used to measure error-correcting capability. In particular, it would be interesting 
to find out whether cyclic codes are asymptotically good, i.e., whether the rate and 
the relative minimum distance of cyclic codes are both positively bounded from 
below when the length of the code goes to infinity. This has been an open problem 
for quite fifty-five years as can be seen in [2]. In 2006, Martínez-Pérez and Willems, 
discussed in [25] whether the class of cyclic codes is asymptotically good. In 2015, 
Fan et al. showed that there exist numerous asymptotically good quasi-abelian codes 
attaining the GV-bound in [17], and in [15], they proved that quasi-cyclic codes 
of index 11

2
 are asymptotically good. Moreover, in 2016, they also showed that the 

quasi-cyclic codes of index 11

3
 are asymptotically good in [16]. Further, in [27], Shi 

et al. proved that there are additive cyclic codes that are asymptotically good.
In 2019, Fan and Liu proved that ℤ2ℤ4-additive cyclic codes are asymptotically 

good by using a Bernoulli random variable in [18]. Few other works such as [31, 32] 
generalised [18] for ℤpℤps and ℤprℤps where p is any prime number and 1 ≤ r < s. 
Recently, Gao et  al.  [19] investigated the ℤ4-double cyclic codes and found them 
asymptotically good.

The above mentioned literature is concerned with doubly additive cyclic codes. 
In this paper, we work on ℤ4ℤ4ℤ4-additive cyclic codes; we show that these codes 
are asymptotically good.

The paper is organized as follows: In Sect. 2, we discuss the algebraic structure of 
ℤ4ℤ4ℤ4-additive codes over ℤ4-module. Then, we identify ℤ4ℤ4ℤ4-additive cyclic 
codes of length n = � + � + � with ℤ4[x]-submodules of ℝ

�
×ℝ

�
×ℝ

�
, where 

ℝ
�
=

ℤ4[x]

⟨x�−1⟩ , ℝ�
=

ℤ4[x]

⟨x�−1⟩ and ℝ
�
=

ℤ4[x]

⟨x�−1⟩ . In Sect. 3, we define a class of cyclic codes 
Cabc as ℤ4ℤ4ℤ4-additive cyclic codes in ℤkm

4
× ℤ

lm
4
× ℤ

tm
4

 as

which can be seen as ℤ4[x]-submodules of ℝkm ×ℝlm ×ℝtm , for 
(a(x), b(x), c(x)) ∈ ℝkm ×ℝlm ×ℝtm . Then we proved that Cabc is an ℝkltm-submod-
ule of ℝkm ×ℝlm ×ℝtm generated by (a(x),  b(x),  c(x)). In Sect.  4, we study the 
asymptotic properties of this class of cyclic codes using a Bernoulli random vari-
able  Yf  , which implies that ℤ4ℤ4ℤ4-additive cyclic codes are asymptotically good. 
In Sect. 5, we conclude the paper with some open directions for future work.

Cabc = {(f (x)a(x), f (x)b(x), f (x)c(x)) ∈ ℝkm ×ℝlm ×ℝtm | f (x) ∈ ℝkltm},
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2 � Preliminary

Consider the quaternary ring ℤ4 and define a Gray map � ∶ ℤ4 ⟶ ℤ
2
2
 given as 

�(0) = (0, 0), �(1) = (0, 1), �(2) = (1, 1), �(3) = (1, 0) . It can also be extended 
for ℤn

4
 to ℤ2n

2
 , where n is an odd positive integer, given by

ℤ4 is equipped the Lee weight and the Gray image is equipped the Hamming weight. 
The Hamming weight is the number of non zero coordinates of the Gray image. The 
relation between the Lee weight wtL and the Hamming weight wtH for each element 
xi ∈ ℤ4, i = 0,… , 3 is given by

For example, wtL(0) = 0, wtL(1) = 1, wtL(2) = 2, wtL(3) = 1 . Therefore, for 
x = (x0, x1,… , xn−1) ∈ ℤ

n
4
, the Lee weight wtL(x) can be defined as

The Lee distance between any two elements x = (x0, x1,… , xn−1) and 
y = (y0, y1,… , yn−1) in ℤn

4
 is defined as

Now, it can be seen that � is a distance preserving map from (ℤn
4
, dL) to (ℤ2n

2
, dH) . 

Let C be a nonzero code of length n in ℤn
4
 then the minimum Lee weight wtL(C) is 

defined as

The minimum Lee distance of the code C is defined as

Define

where �, � and � are positive integers. Thus, the set ℤ�

4
× ℤ

�

4
× ℤ

�

4
 is an abelian 

group. For (a, b, c) ∈ ℤ
�

4
× ℤ

�

4
× ℤ

�

4
 and d ∈ ℤ4, we define a multiplication opera-

tion ⋅ as

(x0, x1,… , xn−1) ⟼ (�(x0),�(x1),… ,�(xn−1)).

wtL(xi) = wtH(�(xi)).

wtL(x) = wtH(�(x)) =

n−1∑
j=0

wtL(xj).

dL(x, y) =

n−1∑
j=0

wtL(xj − yj).

wtL(C) = min{wtL(x) | x ∈ C, x ≠ 0}.

dL(C) = min{wtL(x − y) | x, y ∈ C, x ≠ y}.

ℤ4ℤ4ℤ4 = {(�, �, �) | �, �, � ∈ ℤ4},

ℤ
�

4
× ℤ

�

4
× ℤ

�

4
= {(a, b, c) ∈ ℤ

�

4
× ℤ

�

4
× ℤ

�

4
| a ∈ ℤ

�

4
, b ∈ ℤ

�

4
, c ∈ ℤ

�

4
},

d ⋅ (a, b, c) = (da (mod 4), db (mod 4), dc (mod 4)).
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So, the set ℤ�

4
× ℤ

�

4
× ℤ

�

4
 is closed with respect to multiplication for any d ∈ ℤ4 . 

Hence the abelian group ℤ�

4
× ℤ

�

4
× ℤ

�

4
 is a ℤ4-module. We now present some defini-

tions related to this module ℤ�

4
× ℤ

�

4
× ℤ

�

4
.

Definition 2.1  A subset C of ℤ�

4
× ℤ

�

4
× ℤ

�

4
 is called a ℤ4ℤ4ℤ4-additive code of 

length n = � + � + � , if C is a subgroup of ℤ�

4
× ℤ

�

4
× ℤ

�

4
 , where the first � coor-

dinates of C are entries from ℤ4 , which is also true for the next � and the last � 
coordinates.

Definition 2.2  Let C ⊆ ℤ
𝛼

4
× ℤ

𝛽

4
× ℤ

𝛾

4
 be a ℤ4-additive code then C is called a ℤ4ℤ4ℤ4

-additive cyclic code of block length (�, �, �) , if whenever (a0,… , a
�−1, b0,… , 

b
�−1, c0,… , c

�−1) is in C, then (a
�−1, a0,… , a

�−2, b�−1, b0,… , b
�−2, c�−1, c0,… , c

�−2) 
is also in C.

Let ℝ
�
=

ℤ4[x]

⟨x�−1⟩ , ℝ�
=

ℤ4[x]

⟨x�−1⟩ , ℝ�
=

ℤ4[x]

⟨x�−1⟩ and define a map

given by

where a(x) = a0 + a1x +⋯ + a
�−1x

�−1, b(x) = b0 + b1x +⋯ + b
�−1x

�−1, c(x)

= c0 + c1x +⋯ + c
�−1x

�−1 . Thus, using the map � it can be seen clearly that ℤ4ℤ4ℤ4

-additive cyclic codes are ℤ4[x]-submodules of ℝ
�
×ℝ

�
×ℝ

�
.

Note that if C is a ℤ4-free, then there exists ℤ4-free basis for C. If cardinal-
ity of a ℤ4-free basis set is r then the rank of C is r. The rate of C is defined as 
R(C) =

rank(C)

n
 and the relative distance of C is defined as Δ(C) = dL(C)

n
.

Definition 2.3  [25] If there exists a sequences of ℤ4-free ℤ4ℤ4ℤ4-additive cyclic 
codes {Ci}

∞
i=0

 of length ni , where ni → ∞ and if the relative distance and rate of 
Ci are positively bounded from below, then these class of ℤ4ℤ4ℤ4-additive cyclic 
codes are said to be asymptotically good.

3 � A class of ℤ
4
ℤ

4
ℤ

4
‑additive cyclic codes

Let ℝkm =
ℤ4[x]

⟨xkm−1⟩ , ℝlm =
ℤ4[x]

⟨xlm−1⟩ , ℝtm =
ℤ4[x]

⟨xtm−1⟩ and ℝkltm =
ℤ4[x]

⟨xkltm−1⟩ , where m, k,  l,  t 
are positive integers such that gcd(m, 4) = 1 and k,  l,  t,  4 are pairwise co-prime 
positive integers. It is easy to see that ℤ4ℤ4ℤ4-additive cyclic codes in 
ℤ

km
4

× ℤ
lm
4
× ℤ

tm
4

 are ℤ4[x]-submodules of ℝkm ×ℝlm ×ℝtm , for 
(a(x), b(x), c(x)) ∈ ℝkm ×ℝlm ×ℝtm.

For any f (x) ∈ ℤ4[x] and (a(x), b(x), c(x)) ∈ ℝkm ×ℝlm ×ℝtm , we define the 
scalar multiplication, denoted by ⋆ , as follows f (x) ⋆ (a(x), b(x), c(x)) = (f (x)a(x)

� ∶ ℤ
�

4
× ℤ

�

4
× ℤ

�

4
⟶ ℝ

�
×ℝ

�
×ℝ

�

(a, b, c) ⟼ (a(x), b(x), c(x))
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mod (xkm − 1), f (x)b(x) mod (xlm − 1), f (x)c(x) mod (xtm − 1)). For convenience, 
we write it as

Clearly, ℝkm ×ℝlm ×ℝtm is closed under the usual addition and scalar multiplication 
⋆ of ℝkltm = ℤ4[x]∕⟨xkltm − 1⟩ . Let

then Cabc is an ℝkltm-submodule of ℝkm ×ℝlm ×ℝtm generated by (a(x), b(x), c(x)),   
i.e., Cabc is a ℤ4ℤ4ℤ4-additive cyclic code generated by (a(x), b(x), c(x)).

We have the following lemma.

Lemma 3.1  Let Cabc be a ℤ4ℤ4ℤ4-additive cyclic code with the generator polyno-
mial F(x) = (a(x), b(x), c(x)) ∈ ℝkm ×ℝlm ×ℝtm, where a(x),  b(x)  and    c(x) are 
ℤ4[x]-monic polynomials. Let

be a monic parity-check polynomial of Cabc with degree h0, where 
g1(x) = gcd(a(x), xkm − 1), g2(x) = gcd(a(x), xlm − 1), and g3(x) = gcd(a(x), xtm − 1), 
then Cabc can be generated by the set {F(x), xF(x),… , xh0−1F(x)}.

Proof  Let f (x) ∈ Cabc , i.e., f (x) = v(x)F(x) , where v(x) ∈ ℤ4[x] . Since h(x) is 
monic, there exist polynomials p(x), r(x) ∈ ℤ4[x] such that

where deg r(x) < deg h(x) or r(x) = 0 . Therefore,

Now since,

then there exist three polynomials d1(x), d2(x) and d3(x) such that

It is also given that 
g1(x) = gcd(a(x), xkm − 1), g2(x) = gcd(a(x), xlm − 1) and g3(x) = gcd(a(x), xtm − 1), 
there exist three polynomials e1(x), e2(x) and e3(x) such that 
a(x) = e1(x)g1(x), b(x) = e2(x)g2(x) and c(x) = e3(x)g3(x). Therefore, h(x)F(x) = 0 
in ℝkm ×ℝlm ×ℝtm. Consequently, f (x) = r(x)F(x). Let

f (x) ⋆ (a(x), b(x), c(x)) = (f (x)a(x), f (x)b(x), f (x)c(x)).

Cabc = {(f (x)a(x), f (x)b(x), f (x)c(x)) ∈ ℝkm ×ℝlm ×ℝtm | f (x) ∈ ℝkltm},

h(x) = lcm

{
xkm − 1

g1(x)
,
xlm − 1

g2(x)
,
xtm − 1

g3(x)

}

v(x) = p(x)h(x) + r(x),

f (x) = v(x)F(x) = (p(x)h(x) + r(x))F(x) = p(x)h(x)F(x) + r(x)F(x).

h(x) = lcm

{
xkm − 1

g1(x)
,
xlm − 1

g2(x)
,
xtm − 1

g3(x)

}
,

h(x) = d1(x)

(
xkm − 1

g1(x)

)
or h(x) = d2(x)

(
xlm − 1

g2(x)

)
or h(x) = d3(x)

(
xtm − 1

g3(x)

)
.
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which implies that f(x) can be expressed as a ℤ4-linear combination of the elements 
F(x), xF(x),… , xh0−1F(x) . This proves the lemma. 	�  ◻

Lemma 3.2  [5] Let C = ⟨f (x)⟩ be a ℤ4-cyclic code of length m. Then C is ℤ4-free if 
and only if there exists a polynomial q(x) ∈ ℤ4[x] such that f (x) = q(x)g(x) and 
C = ⟨g(x)⟩ , where g(x)|(xm − 1) and gcd

(
q(x),

xm−1

g(x)

)
= 1.

Now by Lemmas 3.1 and 3.2, we get the following result.

Proposition 3.3  Let Cabc be a ℤ4ℤ4ℤ4-additive cyclic code with the generator poly-
nomial F(x) = (a(x), b(x), c(x)) ∈ ℝkm ×ℝlm ×ℝtm, where a(x), b(x), c(x) are ℤ4[x] 
monic polynomials. Let C1 = ⟨a(x)⟩,C2 = ⟨b(x)⟩ and C3 = ⟨c(x)⟩ be ℤ4-free cyclic 
codes and

If h(x) = lcm
{

xkm−1

g1(x)
,
xlm−1

g2(x)
,
xtm−1

g3(x)

}
 is a monic parity-check polynomial of Cabc with 

degree h0, then Cabc is a ℤ4-free module of rank h0 . Moreover, the set 
{F(x), xF(x),… , xh0−1F(x)} is a basis of Cabc.

Proof  By Lemma  3.1, we can see that Cabc can be generated by the 
set {F(x), xF(x),… , xh0−1F(x)}. Therefore, it is sufficient to show that 
{F(x), xF(x),… , xh0−1F(x)} is linearly independent over ℤ4 . Now, suppose that there 
exist k0, k1,… , kh0−1 ∈ ℤ4 such that

Let k(x) =
∑h0−1

i=0
kix

i, then k(x)F(x) = 0 if and only if k(x)a(x) = 0 , 
k(x)b(x) = 0 and k(x)c(x) = 0 in Rkltm . In other words, we can say that 
(xkm − 1)|k(x)a(x) ,   (xlm − 1)|k(x)b(x) and (xtm − 1)|k(x)c(x) , also that 
g1|(xkm − 1) , g2|(xlm − 1) and g3|(xtm − 1) . Now using Lemma  3.2, there exist 
q1(x), q2(x), q3(x) ∈ ℤ4[x] such that 

1.	 a(x) = q1(x)g1(x) and gcd
(
q1(x),

xkm−1

g1(x)

)
= 1,

2.	 b(x) = q2(x)g2(x) and gcd
(
q2(x),

xlm−1

g2(x)

)
= 1,

3.	 c(x) = q3(x)g3(x) and gcd
(
q3(x),

xtm−1

g3(x)

)
= 1.

f (x) = (r0 + r1x +⋯ + rh0−1x
h0−1)F(x)

= r0F(x) + r1xF(x) +⋯ + rh0−1x
h0−1F(x),

g1(x) = gcd(a(x), xkm − 1), g2(x)
= gcd(b(x), xlm − 1), g3(x) = gcd(c(x), xtm − 1).

k0F(x) + xF(x) +⋯ + xh0−1F(x) =

h0−1∑
i=0

kix
iF(x) = 0.
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Since (xkm − 1)|k(x)a(x) , (xlm − 1)|k(x)b(x) and (xtm − 1)|k(x)c(x). Therefore, 
(xkm − 1)|k(x)q1(x)g1(x) , (xlm − 1)|k(x)q2(x)g2(x) and (xtm − 1)|k(x)q3(x)g3(x) which 
implies

Also, since

So 
(

xkm−1

g1(x)

)
|k(x), 

(
xlm−1

g2(x)

)
|k(x) and 

(
xtm−1

g3(x)

)
|k(x).

Therefore, lcm
{

xkm−1

g1(x)
,
xlm−1

g2(x)
,
xtm−1

g3(x)

}
|k(x) , i.e., h(x)|k(x) and the monic polynomial 

h(x) has deg h0 . Now, if deg(h(x)) ≤ (h0 − 1), then k(x) = 0. This implies that 

F(x), xF(x),… , xh0−1F(x) are linearly independent over ℤ4. So the set 
{F(x), xF(x),… , xh0−1F(x)} is a basis of Cabc. 	�  ◻

Note that ℤ4ℤ4ℤ4-additive cyclic codes are ℤ4-free. Now, using the results of a Prop-
osition 3.3, we shown a method to determine a generator matrix of the code Cabc. For the 
polynomials a(x) = a0 + a1x +⋯ + akm−1x

km−1 , b(x) = b0 + b1x +⋯ + blm−1x
lm−1 

and c(x) = c0 + c1x +⋯ + ctm−1x
tm−1 , the circulant matrices A, B and C are defined 

as follows:

thus the circulant matrix for ℤ4ℤ4ℤ4 over ℤ4 can be constructed as

(
xkm − 1

g1(x)

)
|k(x)q1(x),

(
xlm − 1

g2(x)

)
|k(x)q2(x) and

(
xtm − 1

g3(x)

)
|k(x)q3(x).

gcd

(
q1(x),

xkm − 1

g1(x)

)
= 1, gcd

(
q2(x),

xlm − 1

g2(x)

)
= 1 and gcd

(
q3(x),

xtm − 1

g3(x)

)
= 1.

A =

⎛
⎜⎜⎜⎝

a0 a1 … akm−1
akm−1 a0 … akm−2
⋮ ⋮ ⋱ ⋮

a1 a2 … a0

⎞
⎟⎟⎟⎠
,

B =

⎛⎜⎜⎜⎝

b0 b1 … blm−1
blm−1 b0 … blm−2
⋮ ⋮ ⋱ ⋮

c1 c2 … c0

⎞⎟⎟⎟⎠
,

C =

⎛⎜⎜⎜⎝

c0 c1 … ctm−1
ctm−1 c0 … ctm−2
⋮ ⋮ ⋱ ⋮

c1 c2 … c0

⎞⎟⎟⎟⎠
,

(1)M =

⎛
⎜⎜⎜⎝

A B C

A B C

⋮ ⋮ ⋮

A B C

⎞
⎟⎟⎟⎠
kltm×(k+l+t)m

.
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Thus,

If the parity-check polynomial of Cabc, h(x) = lcm
{

xkm−1

g1(x)
,
xlm−1

g2(x)
,
xtm−1

g3(x)

}
 has deg h0, 

then rank(Cabc) = h0. Therefore, the first h0 rows of M form a generator matrix of 
Cabc . Now, we present an example to illustrate the method discussed above.

Example 3.4  Let m = 9, k = l = t = 1,   
a(x) = x2 + x + 1, b(x) = x6 + x3 + 1, c(x) = x2 + x + 1 , we find rank(Cabc).

At first, we find that g1(x) = gcd(a(x), x9 − 1) = x2 + x + 1 , 
g2(x) = gcd(b(x), x9 − 1) = x6 + x3 + 1 , g3(x) = gcd(c(x), x9 − 1) = x2 + x + 1 . 
Therefore, 

h(x) = lcm

h(x) = lcm{
x9−1

g1(x)
,

x9−1

g2(x)
,

x9−1

g3(x)
} = (x − 1)(x2 + x + 1)(x6 + x3 + 1).

The circulant matrices corresponding to the polynomials a(x), b(x) and c(x) are

Therefore, from (1), we have

Hence, the first 9 rows of M form a generator matrix for Cabc. So, by Proposition 3.3, 
we have rank(Cabc) = deg(h(x)) = 9.

Cabc = {(x0, x1,… , xkltm−1)M ∈ ℤ
km
4

× ℤ
lm
4
× ℤ

tm
4
| (x0, x1,… , xkltm−1) ∈ ℤ

kltm
4

}.

A =C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

M =
(
A B C

)
9×27.
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4 � Asymptotically good ℤ
4
ℤ

4
ℤ

4
‑additive cyclic codes

There is a long standing question whether the class of cyclic codes is asymptotically 
good. This has been an open problem for more than half a century as can be seen in 
[2]. Important research has been done related to this question by many researchers 
(see [15–18, 24] etc). To consider this question, entropy function has an important 
role (see [9]). Define a forth order entropy function h4(x) as follows,

where, 0 ≤ x ≤ 1. Further, let � be a real number such that 0 < 𝛿 < 1 and h4(
𝛿

2
) <

1

4
.

We can see that xm − 1 = (x − 1)(xm−1 + xm−2 +⋯ + 1), and using the Chinese 
Remainder Theorem (CRT), we have

The cyclic code generated by xm−1 + xm−2 +⋯ + 1 is just the code consisting of 
multiple of the all-one vector, and then we only consider the cyclic codes generated 
by x − 1 which are defined as,

Now, for (a(x), b(x), c(x)) ∈ �km × �lm × �tm , let

Then reformulating Cabc as a ℤ4ℤ4ℤ4-additive cyclic code, we want to discuss the 
asymptotic properties of the rate R(Cabc) and the relative distance Δ(Cabc) of Cabc. 
First, we will have discussion on the asymptotic properties of

where (a�(x), b�(x), c�(x)) ∈ �m × �m × �m .
Thus �m × �m × �m and �km × �lm × �tm can be viewed as probability spaces of 

ℝm ×ℝm ×ℝm and ℝkm ×ℝlm ×ℝtm , respectively. Moreover, let Cabc be a random 
code of the probability space �km × �lm × �tm with random variable R(Cabc) and 
Δ(Cabc). Also, let Ca′b′c′ be a random code of the probability space �m × �m × �m 
with random variable R(Ca�b�c� ) and Δ(Ca�b�c� ). Clearly, if we are using R(Cabc) and 
Δ(Cabc) as random variables on the probability space �km × �lm × �tm , then by the 
definition of asymptotically good codes, the problem has been transformed into 
studying of probabilities of ℙr(Δ(Cabc) ≥ �) and ℙr(rank(Cabc) = m − 1) , where � is 
a real number such that 0 < 𝛿 < 1 and ℙr denotes the probabilities of random vari-
ables R(Cabc) and Δ(Cabc).

h4(x) = x log4 3 − x log4 x − (1 − x) log4(1 − x),

ℤ4[x]

⟨xm − 1⟩ =
ℤ4[x]

⟨xm−1 + xm−2 +⋯ + 1⟩ ⊕
ℤ4[x]

⟨x − 1⟩ .

𝕁
m
= ⟨x − 1⟩

ℝm
, 𝕁

kltm
=

�
x
kltm − 1

xm − 1
(x − 1)

�

ℝkltm

,

𝕁
km

=

�
x
km − 1

xm − 1
(x − 1)

�

ℝkm

, 𝕁
lm

=

�
x
lm − 1

xm − 1
(x − 1)

�

ℝlm

, 𝕁
tm

=

�
x
tm − 1

xm − 1
(x − 1)

�

ℝtm

.

Cabc = {(f (x)a(x), f (x)b(x), f (x)c(x)) ∈ ℝkm ×ℝlm ×ℝtm | f (x) ∈ 𝕁kltm}.

Ca�b�c� = {(f (x)(a�(x), f (x)b�(x), f (x)c�(x)) ∈ ℝm ×ℝm ×ℝm | f (x) ∈ 𝕁m},
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To see the relation between R(Cabc) and R(Ca�b�c� ), we define a map � ′ as

where (a(x), b(x), c(x)) =
(
a�(x)

xkm−1

xm−1
, b�(x)

xlm−1

xm−1
, c�(x)

xtm−1

xm−1

)
 . Clearly, � ′ is a ℝkltm

-isomorphism and

Moreover, this also implies

By using the definition of relative distance, define,

and

Now, if Δ(Cabc) ≥ Δ(Ca�b�c� ) then

Lemma 4.1 ℙr(Δ(Cabc) ≥ �) ≥ ℙr(Δ(Ca�b�c� ) ≥
k+l+t

3
�).

Proof  Let Δ(Ca�b�c� ) ≥
k+l+t

3
� and Δ(Cabc) ≥

3

k+l+t
Δ(Ca�b�c� ) then Δ(Cabc) ≥ � . Thus,

Since � ′ is an isomorphism, we have |�m × �m × �m| = |�km × �lm × �tm|. So, we get

 	�  ◻

�
� ∶ �

m
× �

m
× �

m
⟶ �

km
× �

lm
× �

tm

(a�(x), b�(x), c�(x)) ⟼ (a(x), b(x), c(x))

(a(x), b(x), c(x)) = �
�(a�(x), b�(x), c�(x)), Cabc = �

�(Ca�b�c� ).

wtL(a(x), b(x), c(x)) = wtL(a(x)) + wtL(b(x)) + wtL(c(x))

= kwtL(a
�(x)) + lwtL(b

�(x)) + twtL(c
�(x))

≥ wtL(a
�(x), b�(x), c�(x)).

Δ(Cabc) =
dL(Cabc)

(k + l + t)m
=

wtL(Cabc)

(k + l + t)m

Δ(Ca�b�c� ) =
dL(Ca�b�c� )

3m
=

wtL(Ca�b�c� )

3m
.

(k + l + t)mΔ(Cabc) ≥ 3mΔ(Ca�b�c� ), i.e., Δ(Cabc) ≥
3

k + l + t
Δ(Ca�b�c� ).

|Δ(Cabc) ≥ �| ≥ ||||Δ(Ca�b�c� ) ≥
k + l + t

3
�
||||.

ℙr(Δ(Cabc) ≥ �) =
|(Δ(Cabc) ≥ �)|
|𝕁km × 𝕁lm × 𝕁tm| ≥

|Δ(Ca�b�c� ) ≥
k+l+t

3
�|

|𝕁m × 𝕁m × 𝕁m|
= ℙr

(
Δ(Ca�b�c� ) ≥

k + l + t

3
�

)
.
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Now, in order to study the asymptotic properties of ℙr(Δ(Cabc) ≥ �) using 
Lemma 4.1, we need to study the asymptotic properties of ℙr(Δ(Ca�b�c� ) ≥

k+l+t

3
�) . 

For that we need the following definition. For any f (x) ∈ �m and 
(a�(x), b�(x), c�(x)) ∈ �m × �m × �m over the probability space �m × �m × �m . We 
have

Definition 4.2  The Bernoulli random variable Yf  is defined as

Given that f (x) ∈ �m , consider the set {f (x)a�(x) ∈ ℝm | a�(x) ∈ 𝕁m} . It can be 
inferred that this set is an ideal of ℝm generated by f(x). Let �f = ⟨f (x)⟩ ⊆ �m and 
|�f | = 2df .

We have the following:

Lemma 4.3  If 𝕀f × 𝕀f × 𝕀f ⊆ ℝm ×ℝm ×ℝm, and

then

Proof  Since |ℝm ×ℝm ×ℝm| = 43m = 26m and |�f × �f × �f | = 23df then the fraction 
of 3m� over the length 6m is 3m�

6m
=

�

2
. Additionally 0 < 𝛿 < 1, so, 0 <

𝛿

2
<

1

2
<

3

4
. 

Therefore, by extending the results in [ [17], Corollary   3.5, Remark   3.2] for 
ℤ4ℤ4ℤ4, we have

	�  ◻

Now, by Lemma 4.3 we have the following:

Lemma 4.4 �(Yf ) ≤ 43df h4(
�

2
)−

3df

2  , where � denotes the expectation of a random 
variable.

Proof  From Lemma 4.3, |(�f × �f × �f )
≤3m�| ≤ 43df h4(

�

2
) . So

Yf =

{
1 1 ≤ wtL(a

�(x), b�(x), c�(x)) ≤ 3m�

0 otherwise.

(�f × �f × �f )
≤3m� = {(f1(x), f2(x), f3(x)) ∈ �f × �f × �f | wtL(f1(x), f2(x), f3(x)) ≤ 3m�},

|(�f × �f × �f )
≤3m�| ≤ 43df h4(

�

2
) = 26df h4(

�

2
).

|(�f × �f × �f )
≤3m�| ≤ 43df h4(

�

2
) = 26df h4(

�

2
).
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 	�  ◻

By CRT, we have

where q1(x), q2(x),… , qr(x) are monic basic irreducible factors of 
xm−1 + xm−2 +⋯ + 1 ∈ ℤ4[x] . Let qk(x), for 1 ≤ k ≤ r, be a polynomial lowest 
degree among q1(x), q2(x),… , qr(x) . Then the minimal Galois ring among them is 
ℤ4[x]

⟨qk(x)⟩ and it contains a non-zero ring of least size 2km . By CRT, the ideals in �m cor-
respond to the ideals in ℤ4[x]

⟨q1(x)⟩ ×
ℤ4[x]

⟨q2(x)⟩ ×⋯ ×
ℤ4[x]

⟨qr(x)⟩ (see [19,  Lemma 9] and [7]). So, 
the minimal size of the non-zero ideal contained in �m is equal to 2km.

Lemma 4.5  [19] The number of non-zero ideals of size 2d contained in �m is at most 
(2m)

d

km , where km ≤ d ≤ 2(m − 1).

Now, we will show that lim
i→∞ ℙ

r
(Δ(Ci

a�b�c�
) ≥ �) = 1 . For that, by Lemmas 4.4 

and 4.5, we prove an useful lemma:

Lemma 4.6  Let 0 < 𝛿 < 1 be a real number and h4(
𝛿

2
) <

1

4
, then

Proof  Let Yf  for f (x) ∈ Jm be a Bernoulli variable with a value 0 or 1. Let 
Y =

∑
f (x)∈J

m

Y
f
, then Y is a non-negative integer random variable over the prob-

ability space �m × �m × �m . Y stands for the cardinality of f (x) ∈ �m such that 
the weight of the codewords is at most 3m� and Δ(Ca�b�c� ) =

wtL(Ca�b�c� )

3m
 , we get 

ℙr(Δ(Ca�b�c� ) ≤ 𝛿) = ℙr(Y > 0) . By Markov’s inequality [26,   Theorem  3.1], 
ℙr(Y > 0) ≤ 𝔼(Y) . So, we only need to find the value of �(Y) . From [22], we have

𝔼(Yf ) = ℙr(Yf = 1) =
|(𝕀f × 𝕀f × 𝕀f )

≤3m�| − 1

|𝕀f × 𝕀f × 𝕀f |

≤
43df h4(

�

2
)

23df = 4
3df

2

= 43df h4(
�

2
)4−

3df

2

= 43df h4(
�

2
)−

3df

2 .

𝕁m = ⟨x − 1⟩Rm
≅

ℤ4[x]

⟨xm−1 + xm−2 +⋯ + 1⟩
=

ℤ4[x]

⟨q1(x)⟩ ×
ℤ4[x]

⟨q2(x)⟩ ×⋯ ×
ℤ4[x]

⟨qr(x)⟩ ,

ℙr(Δ(Ca�b�c� ) ≤ �) ≤

2(m−1)∑
i=km

4
−3j(

1

3
−h4(�2)−

log4 2m

3km
)
.

�(�Y1 + Y2) = ��(Y1) + �(Y2).
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So, �(Y) = �(
∑

f (x)∈�
m

Y
f
) , for any ideal � of �m , denoted as (� ≤ �m) . Let 

�
∗ = {f (x) ∈ � | �f = � } , where 𝕀f = ⟨f (x)⟩

ℝm
⊆ 𝕁m . Since df = rank(�f ) then 

�
∗ = {f (x) ∈ � | df = rank(�) } . Therefore,

and 0 ≠ � ≤ �m then km ≤ rank(�) = d ≤ 2(m − 1) . So,

For � ≤ �m with rank(�) = j & |�∗| ≤ |�| = 2i . Using Lemma 4.4, we have

By Lemma 4.5, for � ≤ �m with rank� = j which is less than (2m)
j

km and we know that 
log4 2m ≤

j log4 2m

km
as km ≤ j , so

Thus, we have

 	�  ◻

Remark 4.7  By [4,   Lemma 2.6] there exist positive integers m1,m2,… such that 
gcd(mi, 4) = 1,mi → ∞, limi→∞

log4 mi

kmi

= 0 where kmi
 are defined as in Lemma 4.5.

Let

�m =
⋃
�⊆�m

�
∗

�(Y) =
∑
�≤�m

∑
f (x)∈�∗

�(Yf ) =

2(m−1)∑
i=km

∑
� ≤ �m

rank� = j

∑
f (x)∈�∗

�(Yf ).

∑
f∈�∗

�(Yf ) ≤
∑
f∈�∗

43df h4(
�

2
)−

3df

2

=
∑
f∈�∗

43jh4(
�

2
)−

3j

2 .

�(Y) ≤

2(m−1)∑
j=km

(2m)
j

km 4−j+3jh4(
�

2
)

=

2(m−1)∑
j=km

4
3j

3km
log4 2m4

−3j

3
+3jh4(

�

2
)

�(Y) ≤

2(m−1)∑
j=km

4
−3j(

1

3
−h4(�2)−

log4 2m

3km
)
.

ℙr(Δ(Ca�b�c� ) ≤ �) ≤

2(m−1)∑
i=km

4
−3j(

1

3
−h4(�2)−

log4 2m

3km
)
.
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be a random ℤ4ℤ4ℤ4-cyclic code of length 3mi , where (a�(x), b�(x), c�(x)) ∈ �mi
× �mi

× �mi

.
Now, by using Lemma 4.6, we have one of the main results of the paper in the 

following proposition.

Proposition 4.8  Let 0 < 𝛿 < 1 be a real number and h4(
𝛿

2
) <

1

4
 then

Proof  From the assumptions on � and h4, we have h4(
𝛿

2
) <

1

4
<

1

3
 which implies that 

1

3
− h4(

𝛿

2
) > 0 . Since lim

i→∞
log4 mi

k
mi

= 0, then limi→∞
log4 2mi

kmi

= 0 . Therefore, for a 

given 𝜖 > 0 there exists a non-negative integer N such that for i > N , we have 
1

3
− h4(

𝛿

2
) −

log4 2mi

3kmi

≥ 𝜖 > 0. From Lemma 4.6, we have

Also, since limi→∞
log4 mi

kmi

= 0, then limi→∞
log4 2mi

3kmi

= 0 which yields 

lim
i→∞ 3m

i
→ ∞. Therefore, lim

i→∞ 4
−3k

mi
(�−

log4 2mi

3kmi

)
= 0 , i.e., 

lim
i→∞ ℙ

r
(Δ(Ci

a�b�c�
) ≤ �) = 0 which implies that

	�  ◻

From Proposition 4.8, 0 < 𝛿 < 1 and h4(
𝛿

2
) <

1

4
 it can be seen that,

In other words, we can say that if 0 < 𝛿 < 1 and h4(
1

2

k+l+t

3
𝛿) <

1

4
 , i.e., h4(

k+l+t

6
𝛿) <

1

4
 , 

then we have

Ci
a�b�c�

= {f (x)a�(x), f (x)b�(x), f (x)c�(x) ∈ ℝmi
×ℝmi

×ℝmi
|f (x) ∈ 𝕁mi

}

lim
i→∞

ℙr(Δ(C
i
a�b�c�

) ≥ �) = 1.

lim
i→∞

ℙr(Δ(C
i
a�b�c�

) ≤ �) ≤ lim
i→∞

2(m−1)∑
j=kmi

4
−3j(

1

3
−h4(

�

2
)−

log4 2mi

3kmi

)

≤ lim
i→∞

2(m−1)∑
j=kmi

4−3j�

≤ lim
i→∞

2(m−1)∑
j=kmi

4−3kmi �

≤ lim
i→∞

2mi4
−3kmi

�

= lim
i→∞

4
−3kmi

(�−
log4 2mi

3kmi

)
.

lim
i→∞

ℙr(Δ(C
i
a�b�c�

) ≥ �) = 1.

lim
i→∞

ℙr(Δ(C
i
a�b�c�

) ≥ �) = 1.
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Now, by Proposition  4.8 and Lemma  4.1, we have one of the main results of the 
paper in the following proposition.

Proposition 4.9  If h4(
k+l+t

6
𝛿) <

1

4
 then lim

i→∞ ℙ
r
(Δ(Ci

abc
) ≥ �) = 1.

Proof  By Proposition 4.8, 0 < 𝛿 < 1 and h4(
k+l+t

6
𝛿) <

1

4
 , we have

From Lemma 4.1, we have

So lim
i→∞ ℙ

r
(Δ(Ci

abc
) ≥ �) = 1 . 	�  ◻

Now, we will prove that lim
i→∞ ℙ

r
(rank(Ci

abc
) = m

i
− 1) = 1 . For that, we need 

the following lemma:

Lemma 4.10  Let

where (a�(x), b�(x), c�(x)) ∈ �m × �m × �m . Then rank(Ca�b�c� ) ≤ m − 1 . Note that 
rank(Ca�b�c� ) = m − 1 if and only if there is no basic irreducible factor q(x) of x

m−1

x−1
 in 

ℤ4[x] such that

Proof  Suppose ga�b�c� (x) = gcd(a�(x), b�(x), c�(x), xm − 1) and consider

We have (x − 1)|ga�b�c� (x) , i.e., ⟨ga�b�c� (x)⟩ ⊆ ⟨x − 1⟩ = �m , which implies that

Clearly, rank(Ca�b�c� ) < m − 1 if and only if deg(ga�b�c� (x) > 1) if and only if there is 
a basic irreducible factor q(x) of x

m−1

x−1
 in ℤ4[x] such that

Therefore, it is easy to see that rank(Ca�b�c� ) = m − 1 if and only if ga�b�c� (x) = x − 1 if 
and only if there is no basic irreducible factor q(x) of x

m−1

x−1
 in ℤ4[x] such that

lim
i→∞

ℙr(Δ(C
i
a�b�c�

) ≥
k + l + t

3
�) = 1.

lim
i→∞

ℙr(Δ(C
i
a�b�c�

) ≥
k + l + t

3
�) = 1.

lim
i→∞

ℙr(Δ(C
i
abc

) ≥ �) ≥ lim
i→∞

ℙr(Δ(C
i
a�b�c�

) ≥
k + l + t

3
�) = 1.

Ca�b�c� = {(f (x)a�(x), f (x)b�(x), f (x)c�(x)) ∈ ℝm ×ℝm ×ℝm | f (x) ∈ 𝕁m},

q(x)|a�(x), q(x)|b�(x) and q(x)|c�(x).

(a�(x), b�(x), c�(x)) ∈ �m × �m × �m.

rank(Ca�b�c� ) = deg(
xm − 1

ga�b�c� (x)
) ≤ m − 1.

q(x)|a�(x), q(x)|b�(x) and q(x)|c�(x).
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	�  ◻

Proposition 4.11  Let m1,m2,… be positive integers such that gcd(mi, 4) = 1 and 
limi→∞

log4 mi

kmi

= 0, for mi → ∞ where kmi
 are as defined in Lemma 4.5. Let

then lim
i→∞ ℙ

r
(rank(Ci

a�b�c�
) = mi − 1) = 1.

Proof  For any i, suppose that

where q1(x), q2(x),… , qri (x) are monic basic irreducible factors of 
xm−1 + xm−2 +⋯ + 1 ∈ ℤ4[x] . Using CRT, we have

define a function

where a�
j
(x) = a�(x)( mod qj), j = 1, 2,… , ri for 

(a�(x), b�(x), c�(x)) ∈ �mi
× �mi

× �mi
. By Lemma 4.10, we have rank(Ci

a�b�c�
) ≤ mi − 1 

and rank(Ci
a�b�c�

) < mi − 1 if and only if there is basic irreducible factor 
qj(x), j = 1, 2,… , ri of x

mi−1

x−1
 in ℤ4[x] such that qj(x)|a�(x), qj(x)|b�(x) and qj(x)|c�(x) 

which can only defined when a�
j
(x) = b�

j
(x) = c�

j
(x) = 0 . In other words, 

rank(Ci
a�b�c�

) = mi − 1 if and only if (a�
j
(x), b�

j
(x), c�

j
(x)) ≠ (0, 0, 0) . Let kj = deg qj(x) 

then � ℤ4[x]

⟨qj(x)⟩ � = 4kj . Since there is a surjective homomorphism

so there are 43kj − 1 polynomial triples (a�
j
(x), b�

j
(x), c�

j
(x)) ≠ (0, 0, 0) . i.e., 

ℙr((a
�
j
(x), b�

j
(x), c�

j
(x)) ≠ (0, 0, 0)) =

4
3kj−1

4
3kj

= 1 − 4−3kj which yields,

Since kmi
≤ kj then ri ≤

mi−1

kmi

≤
mi

kmi

 (Lemma 4.5).

q(x)|a�(x), q(x)|b�(x) and q(x)|c�(x).

Ci
a�b�c�

= {(f (x)a�(x), f (x)b�(x), f (x)c�(x)) ∈ ℝmi
×ℝmi

×ℝmi
|f (x) ∈ 𝕁mi

}

xmi − 1 = (x − 1)(xmi−1 + xmi−2 +⋯ + 1)

= (x − 1)q1(x), q2(x),… , qri (x).

𝕁mi
= ⟨x − 1⟩Rmi

≅
ℤ4[x]

⟨xmi−1 + xmi−2 +⋯ + 1⟩
=

ℤ4[x]

⟨q1(x)⟩ ×
ℤ4[x]

⟨q2(x)⟩ ×⋯ ×
ℤ4[x]

⟨qri(x)⟩
,

(a�(x)) ⟼ (a�
1
(x), a�

2
(x),… , a�

ri
(x))

𝕁mi
⟶

ℤ4[x]

⟨qj(x)⟩ ,

ℙr(rank(C
i
a�b�c�

) = mi − 1) =

ri∏
j=1

(1 − 4−3kj ).
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Therefore,

Since limi→∞
mi

kmi
4
3kmi

= 0 and lim
i→∞(1 − 4−3kmi )4

3kmi =
1

e
, therefore

Thus, lim
i→∞ ℙ

r
(rank(Ci

a�b�c�
) = m

i
− 1) ≥ 1 , i.e., 

lim
i→∞ ℙ

r
(rank(Ci

a�b�c�
) = m

i
− 1) = 1 . 	�  ◻

By the isomorphism � ′ , it gives us Ci
abc

= �
�(Ci

a�b�c�
) and using Propo-

sition  4.11, we have one of the main results of the paper in the following 
proposition.

Proposition 4.12  lim
i→∞ ℙ

r
(rank(Ci

abc
) = mi − 1) = 1.

Proof  From isomorphism �
′ , Ci

abc
= �

�(Ci
a�b�c�

) and rank(Ci

abc
) = rank(� �(Ci

a�b�c�
))

= rank(Ci

a�b�c�
) and using Proposition 4.11 we have lim

i→∞ ℙ
r
(rank(Ci

abc
) = m

i
− 1) = 1 . 	

� ◻

Now, by using Propositions  4.9 and 4.12 we get the asymptotic properties of 
ℙr(Δ(C

i
abc

) ≥ �) and ℙr(rank(C
i
abc

) = mi − 1) as follows.

Corollary 4.13  Let 
Ci
abc

= {(f (x)a(x), f (x)b(x), f (x)c(x)) ∈ ℝkmi
×ℝlmi

×ℝtmi
|f (x) ∈ 𝕁kltmi

} and 
m1,m2,… such that gcd(mi, 4) = 1 and limi→∞

log4 mi

kmi

= 0 for mi → ∞.

•	 If h4(
k+l+t

6
𝛿) <

1

4
, then lim

i→∞ ℙ
r
(ΔCi

abc
≥ �) = 1.

•	 lim
i→∞ ℙ

r
(rank(Ci

abc
) = mi − 1) = 1.

Considering all the results mentioned above, a main result of this paper can be 
stated in the following theorem.

Theorem  4.14  Let 0 < 𝛿 < 1 be a real number and h4(
k+l+t

6
𝛿) <

1

4
 then there 

exists a sequence of ℤ4-free ℤ4ℤ4ℤ4-additive cyclic codes {Ci}
∞
i=0

 of block length 
(kmi, lmi, tmi) , when mi → ∞ , such that

•	 limi→∞ R(Ci) =
1

k+l+t

ℙr(rank(C
i
a�b�c�

) = mi − 1) ≥ (1 − 4−3kmi )
mi

kmi

= (1 − 4−3kmi )
4
3kmi

mi

kmi
4
3kmi

.

lim
i→∞

(1 − 4−3kmi )
4
3kmi

mi

kmi
4
3kmi = (

1

e
)0 = 1.
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•	 Δ(Ci) ≥ �

Consequently, ℤ4ℤ4ℤ4-additive cyclic codes are asymptotically good.
Proof  By Corollary  4.13, if h4(

k+l+t

6
𝛿) <

1

4
 then lim

i→∞ ℙ
r
(ΔC

i
≥ �) = 1 and 

limi→∞ ℙr(rank(Ci) = mi − 1) = 1. It implies that, there exists an integer N > 0 such 
that for i > N , we have rank(Ci) = mi − 1 and Δ(Ci) ≥ �. Thus, if we delete the first 
N codes and then for the remaining codes we have rank(Ci) = mi − 1 and Δ(Ci) ≥ �. 
The asymptotic rate of Ci is

and the asymptotic relative distance of Ci is Δ(Ci) ≥ � . Now, it can be seen that the 
relative distance and the rate of Ci are positively bounded from below. So, by defini-
tion, ℤ4ℤ4ℤ4-additive cyclic codes are asymptotically good. 	�  ◻

Example 4.15  We find a sequence of codes {Ci}
∞
i=0

 of ℤ4ℤ4ℤ4-additive cyclic codes 
and their rate converges to 1

3
 and relative distance greater than or equal to 1

8
 , and to 

show they are asymptotically good.
Assume that k = l = t = 1 , let � =

1

8
 and h4(

1

16
) = .21817511 < .25 . So, 

ℝkm = ℝm =
ℤ4[x]

⟨xm−1⟩ = ℝlm = ℝtm = ℝkltlm , where m, k, l and t are positive integers 
such that gcd(m, 4) = 1 and k, l, t and 4 are pairwise co-prime. Therefore, it is easy to 
see that ℤ4ℤ4ℤ4-additive cyclic codes in ℤm

4
× ℤ

m
4
× ℤ

m
4
 are ℤ4[x]-submodules of 

ℝm ×ℝm ×ℝm , for (a(x), b(x), c(x)) ∈ ℝm ×ℝm ×ℝm . Hence, consider a sequence 
of codes {Ci}

∞
i=0

 of ℤ4ℤ4ℤ4-additive cyclic codes as follows.
Let Ci

abc
= {(f (x)a(x), f (x)b(x), f (x)c(x)) ∈ ℝmi

×ℝmi
×ℝmi

|f (x) ∈ 𝕁mi
} and mi be 

the positive integers such that gcd(mi, 4) = 1 . Further, limi→∞
log4 mi

kmi

= 0 for mi → ∞ , 

where kmi
 is as defined in Lemma  4.5. Now by Corollary  4.13, we get 

lim
i→∞ ℙ

r
(ΔCi

abc
≥

1

8
) = 1 and lim

i→∞ ℙ
r
(rank(Ci

abc
) = m

i
− 1) = 1 . Therefor, by 

Theorem 4.14

•	 limi→∞ R(Ci) =
1

3
•	 Δ(Ci) ≥

1

8

Now, it can be seen that the relative distance and the rate of Ci are positively bounded 
from below. Hence, the sequence of codes {Ci}

∞
i=0

 of ℤ4ℤ4ℤ4-additive cyclic codes 
is asymptotically good.

5 � Conclusion

In this paper, we have discussed ℤ4ℤ4ℤ4-additive cyclic codes of different com-
ponent lengths and constructed a class of ℤ4ℤ4ℤ4-additive cyclic codes Cabc . 
Moreover, we have found a basis set for Cabc and presented a method to determine 

lim
i→∞

R(Ci) = lim
i→∞

rank(Ci)

kmi + lmi + tmi

= lim
i→∞

mi − 1

(k + l + t)mi

=
1

k + l + t



503

1 3

ℤ4ℤ4ℤ4‑additive cyclic codes are asymptotically good﻿	

a generator matrix for the code Cabc . By using a probabilistic method, we have 
constructed a random sequence of codes Ci

abc
 of ℤ4ℤ4ℤ4-additive cyclic codes. 

Moreover, we have studied the asymptotic properties of these classes of ℤ4ℤ4ℤ4

-additive cyclic codes and then we proved lim
i→∞ ℙ

r
(ΔCi

abc
≥ �) = 1 and 

limi→∞ ℙr(rank(C
i
abc

) = mi − 1) = 1 . Additionally, we have determined the asymp-
totic rates and relative distances of these classes of codes using probabilistic meth-
ods and found that they are asymptotically good. Also, we have presented a support-
ing example for these classes of codes.

In the future, it would be interesting to study the asymptotic properties of other 
families of codes, such as other additive cyclic codes generated by 3-tuples of poly-
nomials of different code lengths.
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