
Vol.:(0123456789)

Applicable Algebra in Engineering, Communication and Computing (2024) 35:337–349
https://doi.org/10.1007/s00200-022-00551-w

1 3

ORIGINAL PAPER

Several classes of permutation polynomials with trace 
functions over �pn

Yan‑Ping Wang1,2 · Zhengbang Zha3 · Xiaoni Du1 · Dabin Zheng2

Received: 2 January 2021 / Revised: 25 February 2022 / Accepted: 2 March 2022 /  
Published online: 22 April 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Permutation polynomials over finite fields constitute an active research area and 
have important applications in many areas of science and engineering. In this paper, 
several classes of permutation polynomials with trace functions are presented over 
�
pn
(p = 2, 3) by investigating the number of solutions to special equations.
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1 Introduction

Let q be a power of prime p and �q denote the finite field with q elements. Define � ∗
q
 

to be the multiplicative group of �q . A polynomial f (x) ∈ �q[x] is called a permuta-
tion polynomial over �q if the associated polynomial mapping f ∶ c ↦ f (c) from �q 
into �q is a bijection [8].

Permutation polynomials over finite fields have wide applications in coding the‑
ory [6], combinatorial designs [8], and cryptography [10]. Many constructions of 
permutation polynomials appeared in the recent years, the reader may refer to [4, 8, 
Chapter 7], [11, Chapter 8], [12] and references therein for more information.

Finding new permutation polynomials, especially, permutation polynomials with 
good cryptographic properties are of great interest in both theoretical and applied 
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aspects. The trace function has wide application in constructing the sparse permuta‑
tion polynomials over finite fields. For instance, Charpin, Kyureghyan and Suder [3] 
studied the permutation properties of the sparse polynomials

where s, t are positive integers, and � ∈ �
∗
2n

 . Moreover, they exhibited the differential 
uniformity of some sparse permutation polynomials in [3]. Based on the trace func‑
tions over finite fields, Zeng, Tian and Tu [16] proposed four classes of permutation 
polynomials with the following form:

where m ∣ n , and s satisfies either s(2m + 1) ≡ 2m + 1 (mod 2n − 1) or 
s(2m − 1) ≡ 2m − 1 (mod 2n − 1) , � is an element of �2n , L(x) = Trn

m
(x) + x or x. By 

using of Magma, Li, Qu, Chen and Li [7] got all permutation polynomials over �ql of 
the form

with q = 2k , kl < 14 , c ∈ �
∗

ql
 and a ∈ [1, ql − 2] . Kyureghyan and Zieve [5] searched 

all permutation polynomials of the shape

Over �qn for odd q = pm , n > 1 and qn ≤ 5000 , where � ∈ �
∗
qn

 . Following on the 
research in [5], Ma and Ge [9], Zha et al. [17] further investigated permutation poly‑
nomials of the form (1) over �qn for some values of p, k and n. The recent progress on 
permutation polynomials derived from trace functions can be seen in [1, 2, 14, 15, 
19] and references therein.

The purpose of this paper is to construct new permutation polynomials with trace 
functions over finite fields. We obtain five classes of permutation polynomials with 
trace functions over �pn by determining the number of solutions of special equations.

The paper is organized as follows. Section 2 gives some preliminaries on neces‑
sary concepts and related results. In Sect. 3, three classes of permutation polynomi‑
als with trace functions are presented over �2n . In Sect. 4, we introduce two classes 
of permutation polynomials with trace functions over �3n . In Sect. 5, the conclusion 
is given.

2  Preliminaries

In this section, we recall the definitions and some results which will be applied in 
the sequel.

Definition 1 Let n and m be positive integers with m ∣ n . The trace function Trn
m
(x) 

from �pn to �pm is defined by

Fs,t,� (x) = xs + �Trn
1

(
xt
)
∈ �2n [x],

f (x) =
(
�Trn

m
(x) + �

)s
+ L(x) ∈ �2n [x],

f (x) = cx + Trkl
k
(xa)

(1)f (x) = x + �Trmn
m
(xk)
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If m = 1 , then Trn
1
(x) is called the absolute trace function.

For later usage we need the following results on the number of solutions of 
linearized equation over finite fields.

Lemma 1 ([18, Lemma 3.1]) Let � ∈ �2n . For 0 ≠ r ∈ ℤn , the equation

has solutions in �2n if and only if Trn
e
(�) = 0 , where e = gcd(n, r) . Moreover, if 

Trn
e
(�) = 0 , then Eq. (2) has 2e solutions in �2n.

Lemma 2 ([13, Theorem  2]) Let q = 3n and n be a positive integer. Let 
f (x) = x3 + ax + b , where a, b ∈ �q and a ≠ 0 . Then the factorizations of f(x) over �q 
are characterized as follows: 

 (i) f(x) factors over �q as a product of three linear factors if and only if −a is a 
square in �q , say −a = c2 , and Trn

1
(
b

c3
) = 0;

 (ii) f(x) factors over �q as a product of a linear factor and an irreducible quadratic 
factor if and only if −a is a nonsquare in �q;

 (iii) f(x) is irreducible if and only if −a is a square in �q , say −a = c2 , and 
Trn

1
(
b

c3
) ≠ 0.

Lemma 3 (Hilbert’s Theorem  90) The mapping Trn
1
∶ �pn → �p is surjective. For 

� ∈ �pn , Trn1(�) = 0 if and only if there exists an element � ∈ �pn such that � = � − �p.

Lemma 4 ([1, Lemma 1.2]) Let A, S and S be finite sets with #S = #S , and let 
f ∶ A → A , f ∶ S → S , � ∶ A → S , and � ∶ A → S be maps such that �◦f = f◦� . If 
both � and � are surjective, then the following statements are equivalent: 

 (i) f is a bijection (a permutation of A); and
 (ii) f  is a bijection from S to S and f is injective on �−1(s) for each s ∈ S.

Trn
m
(x) = x + xp

m

+ xp
2m

+⋯ + xp
(
n
m
−1)m

.

(2)x2
r

+ x + � = 0
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We next recall the quadratic character on �pn , which is used in Sect. 4. For more 
information of the quadratic character the reader may refer to [8, Chapter 5].

Let p be an odd prime and n be an integer. The mapping � ∶ x ↦ x
pn−1

2  from � ∗
pn

 
to {−1, 1} is called the quadratic character. It maps the squares in � ∗

pn
 to 1 and the 

nonsquares to −1 . It is a homomorphism from the multiplicative group � ∗
pn

 into the 
group with just two elements −1, 1 . Sometimes we extend � by setting �(0) = 0 to 
a mapping � ∗

pn
→ {−1, 0, 1} . In particular, −1 is a square element in � ∗

pn
 if and only if 

pn ≡ 1 (mod 4) , otherwise, pn ≡ 3 (mod 4).

3  Three classes of permutation polynomials with trace functions 
over �

2n

In this section, we first introduce two classes of permutation polynomials with trace 
functions over �2n for odd n. Then, a class of permutation polynomials with trace 
functions is proposed over �2n for 3 | n.

Theorem 2 Let n, k, i and j be integers with n = 2k − 1 and gcd(n, i) = 1 . Let u be a 
nonzero element of �2n with Trn

1
(u−1) = 1 . Then

is a permutation polynomial over �2n.

Proof We shall show that for every a ∈ �2n , the equation

has at most one solution in �2n.

Case (I) If Trn
1
(x2

j+1) = 0 , then we have 

Since gcd(n, i) = 1 , by Lemma  1, Eq.  (3) has two solutions x1 and x1 + 1 if 
Trn

1
(a) = 0 , or no solution if Trn

1
(a) = 1 . By Lemma 3, it can be verified that

for odd n. Thus Eq. (3) has one solution in Case (I) if and only if Trn
1
(a) = 0.

Case (II) If Trn
1
(x2

j+1) = 1 , then we obtain 

f (x) = x2
i

+ x + u−1Trn
1

(
x2

j+1
)

f (x) = x2
i

+ x + u−1Trn
1

(
x2

j+1
)
= a

(3)x2
i

+ x = a.

Trn
1

((
x1 + 1

)2j+1)
= Trn

1

(
x2

j+1
1

+ x2
j

1
+ x1 + 1

)
= Trn

1

(
x2

j+1
1

)
+ 1
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Since gcd(n, i) = 1 , by Lemma  1 again, Eq.  (4) has two solutions x2 
and x2 + 1 if Trn

1
(u−1 + a) = 0 , or no solution otherwise. Note that 

Trn
1
((x2 + 1)2

j+1) = Trn
1
(x2

j+1
2

) + 1 , it follows from the condition Trn
1
(u−1) = 1 that 

Eq. (4) has one solution if and only if Trn
1
(a) = Trn

1
(u−1) = 1.

Thus according to the discussion of Cases (I) and (II), f(x) is a permutation poly‑
nomial over �2n .   ◻

Corollary 1 Let n, k, i and j be integers satisfying n = 2k − 1 and gcd(n, i) = 1 . Let u 
be a nonzero element of �2n with Trn

1

(
u−1

)
= 1 . Then

is a permutation polynomial over �2n.

Proof The proof is easy. It can be checked that (2k + 1)(2k − 1) = 22k − 1

≡ 1 (mod 2n − 1) and g(x) = uf (x2
k−1) , where f(x) is defined as in Theorem 2. There‑

fore, g(x) is a permutation polynomial over �2n .   ◻

Theorem 3 Let n = 2k − 1 and k be an integer. Then

is a permutation polynomial over �2n.

Proof Since (3 ⋅ 2k−1 − 2)(2k + 1) = 3 ⋅ 22k−1 − 2 ⋅ 2k + 3 ⋅ 2k−1 − 2 ≡ 1 − 2k−1 (mod 2n − 1) , we obtain 
f (x2

k+1)2
k

= x2
k−1 + x2

k

+ Trn
1
(x2

k+1) . Let g(x) = f (x2
k+1)2

k . We need to show that 
g(x) = a has at most one solution for every a ∈ �2n.

Case (I) If Trn
1

(
x2

k+1
)
= 0 , then 

If a = 0 , then x = 0 or x = 1 . It is obvious that x = 0 is a solution of Eq. (5) since 
x = 1 does not satisfy Trn

1
(x2

k+1) = 0.
If a ≠ 0 , then from Eq.  (5) we have x2k (1 + x−1) = a , which implies x ≠ 1 , this 

yields

From Eq. (6) we deduce x2 = (x2
k

)2
k

=
a2

k
x2

k

x2
k
+1

=
a2

k+1x

(1+a)x+1
 , and then

If a = 1 , then x = 1 , a contradiction.

(4)x2
i

+ x + u−1 + a = 0.

g(x) = ux2
k+i−2i + ux2

k−1 + Trn
1

(
x2

k+j+2k−2j−1
)

f (x) = x3⋅2
k−1−2 + x2

k−1 + Trn
1
(x)

(5)x2
k−1 + x2

k

= a.

(6)x2
k

=
ax

x + 1
.

(7)(1 + a)x2 + x + a2
k+1 = 0.
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We next assume that a ≠ 0, 1 . Multiplying both sides of Eq.  (7) by 1 + a , we 
obtain

Let y = (1 + a)x . Then we have

Note that Eq. (8) has at most two solutions y1 and y1 + 1 . Multiplying by x on both 
sides of Eq. (5) yields x2k+1 = x2

k

+ ax . By Lemma 3, we have

It is easy to check that only one of y1 and y1 + 1 satisfies Eq. (9).

Case (II) If Trn
1

(
x2

k+1
)
= 1 , then 

If a = 1 , then x = 0 or x = 1 . It is obvious to see that x = 1 is the unique solution.
If a ≠ 1 , then x ≠ 0, 1 and from Eq.  (10) we have x2

k

=
(a+1)x

x+1
 , and so 

x2 = (x2
k

)2
k

=
(a+1)2

k+1x

ax+1
 , which is equivalent to

If a = 0 , then x = 1 . However, x = 1 is not a solution of Eq. (10). Thus, no solution.
Let z = ax . Then Eq. (11) can be written as

It can be checked that Eq. (12) has at most two solutions z1 and z1 + 1 . From Eq. (10) 
we have x2k+1 = x2

k

+ (a + 1)x . By Lemma 3, we obtain

It is obvious that only one of z1 and z1 + 1 satisfies Eq. (13).
Suppose that there exists one solution in Cases (I) and (II) respectively. Combin‑

ing Eqs. (8) and (12), we obtain

this yields y + z = a or y + z = a + 1.
For the case Trn

1
(a) = 0 , then y + z = a + 1 , i.e. z = y + a + 1 . Since y = (1 + a)x , 

it follows from Eq. (5) that

(1 + a)2x2 + (1 + a)x + (1 + a)a2
k+1 = 0.

(8)y2 + y + a2
k+2 + a2

k+1 = 0.

(9)Trn
1

(
x2

k+1
)
= Trn

1
(x2

k

+ ax) = Trn
1
(x + ax) = Trn

1
(y) = 0.

(10)x2
k−1 + x2

k

= a + 1.

(11)ax2 + x + (a + 1)2
k+1 = 0.

(12)z2 + z +
(
a2

k+2 + a2
k+1 + a2 + a

)
= 0.

(13)Trn
1

(
x2

k+1
)
= Trn

1

(
x2

k

+ (a + 1)x
)
= Trn

1
(ax) = Trn

1
(z) = 1.

(y + z)2 + y + z + a2 + a = 0,
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Which is equivalent to

By Eq. (10) we obtain

We further derive

Adding Eqs. (14) and (15) together gives

Substituting Eq. (16) into Eq. (14), we derive

which means

Substituting Eq. (17) into Eq. (16), we obtain

which leads to a = 0 or a = 1 , a contradiction.
For the case Trn

1
(a) = 1 , then y + z = a . So from Eq. (10) we deduce

Adding Eqs. (14) and (18) together, we derive

Combining Eqs. (19) and (14), we obtain

and then Eq. (19) becomes

( y

1 + a

)2k−1

+

( y

1 + a

)2k

= a,

(14)y2
k+1 + (1 + a)y2

k

+ (a2
k+1 + a)y = 0.

(
y + a + 1

a

)2k−1

+

(
y + a + 1

a

)2k

= a + 1.

(15)y2
k+1 + y2

k

+

(
a2

k+1 + 1
)
y + a2

k+2 + 1 = 0.

(16)y2
k

=
1 + a

a
y +

a2
k+2 + 1

a
.

(1 + a)y2 + (1 + a)
(
a2

k+2 + 1
)
= 0,

(17)y = 1 + a2
k−1+1.

a2
k−1+1(1 + a) = 0,

(18)y2
k+1 + a2

k+1y + a2
k+2 + a2

k+1 = 0.

(19)y2
k

=
a

1 + a
y + a2

k+1.

(20)y = a2
k−1

+ a2
k−1+1,
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which can be simplified as

Thus we obtain a = 0 or a = 1 , which is a contradiction. The proof is complete.   ◻

Theorem 4 Let n = 3k and k be an integer. Let u ∈ �
∗

2k
 . Then

is a permutation polynomial over �2n.

Proof Let f (x) = x . For any x ∈ �2n , we have

 

Therefore, the above diagram commutes. According to the AGW criterion 
in Lemma  4, f(x) is a permutation polynomial over �2n if and only if f (x) = x 
is a bijection from �2k to �2k and f(x) is an injection on (Tr3k

k
)−1(�) for each 

� ∈ �2k . Denote S� = {x ∈ �2n | Tr3kk (x) = �} . Thus we just need to prove that 
f (x) = ux2

2k+2k + ux2
2k+1 + � is an injection on S� . For any a ∈ S� , we show that 

f (x) = a has at most one solution. Thus we have

Note that Tr3k
k
(x) = � , we obtain

Substituting Eq. (22) into Eq. (21) leads to

(1 + a)
(
a2

k−1

+ a2
k−1+1

)2k

+ a
(
a2

k−1

+ a2
k−1+1

)
+ a2

k+2 + a2
k+1 = 0,

a(1 + a)2
k−1+1 = 0.

f (x) = ux2
2k+2k + ux2

2k+1 + Tr3k
k
(x)

Tr3k
k
(f (x)) =uTr3k

k

(
x2

2k+2k + x2
2k+1

)
+ Tr3k

k
(x)

=Tr3k
k
(x) = f

(
Tr3k

k
(x)

)
.

(21)x2
2k+2k + x2

2k+1 =
a + �

u
.

(22)x2
2k

= x2
k

+ x + �.

(23)x2
k
(
x2

k

+ x + �

)
+ x(x2

k

+ x + �) =
a + �

u
.



345

1 3

Several classes of permutation polynomials with trace functions…

Let y = x2
k

+ x . Then from Eq. (23) we give

Case (I) If � = 0 , then y2 = a

u
 , this yields x2k + x = (

a

u
)2

n−1 . Plugging it into 
Eq. (22) gives x22k = (

a

u
)2

n−1 , so we deduce x = (
a

u
)2

k−1.
Case (II) If � ≠ 0 , then Eq.  (24) has at most two solutions y1 
and y1 + � . Since y = x2

k

+ x , we have Tr3k
k
(y) = 0 . However, 

Tr3k
k
(y1 + �) = Tr3k

k
(y1) + � ≠ Tr3k

k
(y1) . Therefore one of y1 and y1 + � satisfies 

Eq. (24). Without loss of generality, suppose that y1 is a solution of Eq. (24), then 
from Eq. (22) we have x22k = y1 + � , we further obtain that x = y2

k

1
+ � satisfies 

f (x) = a . Thus we prove that f(x) is an injection on S� . Hence we finish the proof.  
 ◻

4  Two classes of permutation polynomials with trace functions 
over �

3n

In this section, two classes of permutation polynomials with trace functions are pre‑
sented over �3n.

Theorem 5 Let n = 2k and k be an integer. Let u, v ∈ �
∗

3k
 . Then

is a permutation polynomial over �3n if one of the following two conditions holds: 

 (i) k is odd and u−1v is a nonsquare in �3k;
 (ii) k is even and u−1v is a square in �3k.

Proof For every a ∈ �3n , we need to prove that the equation

has at most one solution in �3n.

Case (I) If a = 0 , then we have 

It can be checked that x = 0 is a solution to Eq. (26). Thus we need to prove

(24)y2 + �y +
a + �

u
= 0.

f (x) = ux3
2k−3k+1 + vx3

k+2 + uTr2k
k
(x)

(25)f (x) = ux3
2k−3k+1 + vx3

k+2 + uTr2k
k
(x) = a

(26)x
(
ux1−3

k

+ vx3
k+1 + ux3

k−1 + u
)
= 0.

(27)ux1−3
k

+ vx3
k+1 + ux3

k−1 + u = 0
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has no solution. Multiplying by x3k+1 on both sides of Eq. (27) gives

which can be written as

If x ∈ �3k , then from Eq. (28) we obtain x = 0 since v ≠ 0 . However, x = 0 is not a 
solution of Eq. (27).

If x ∉ �3k , then x3k − x ≠ 0 . Raising both sides of Eq. (28) to the 3
k−1

2
 power leads 

to

When k is odd, we get 3
k−1

2
 is odd. If u−1v is a nonsquare in �3k , then from Eq. (29) 

we derive (x3k − x)3
k−1 = 1.

When k is even, we obtain 3
k−1

2
 is even. If u−1v is a square in �3k , then from 

Eq. (29) we deduce (x3k − x)3
k−1 = 1.

However, (x3k − x)3
k−1 =

x−x3
k

x3
k
−x

= −1 , a contradiction. Therefore f (x) = a has only 
one solution x = 0 for a = 0.

Case (II) If a ≠ 0 , then we will verify that f (x) = a has at most one nonzero solu‑
tion. It follows from Eq. (25) that 

It is easy to see that the left side of Eq. (30) is in �3k , therefore we obtain a
x
∈ �3k , 

we further have x3k = a3
k−1x . Plugging it into Eq. (25), we obtain

If a ∈ �
∗

3k
 , then from Eq. (31) we derive x = (v−1a)3

n−1 . Thus Eq. (25) has one solu‑
tion x = (v−1a)3

n−1.
If a ∉ �

∗

3k
 , according to Conditions (i) and (ii) of the theorem, it can be easily 

check that −uv−1 is a square in �3k . By Lemma 2, Eq. (31) has three solutions and if 
x1 is a solution of Eq. (31), then the other two solutions are x1 + (a1−3

k

− 1)
√
−uv−1 

and x1 − (a1−3
k

− 1)
√
−uv−1 . Without loss of generality, assume that both x1 and 

x1 + (a1−3
k

− 1)
√
−uv−1 satisfy Eq. (25). Then we have

and

ux2 + vx2⋅3
k+2 + ux2⋅3

k

+ ux3
k+1 = 0,

(28)u
(
x3

k

− x
)2

= −vx2⋅3
k+2.

(29)
(
x3

k

− x
)3k−1

=
(
−u−1v

) 3k−1

2 .

(30)ux1−3
k

+ vx3
k+1 + ux3

k−1 + u =
a

x
.

(31)x3 + uv−1
(
a1−3

k

− 1
)2

x − v−1a2−3
k

= 0.

x3
k

1
= a3

k−1x1
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Combining the above two equations together gives

which is not possible since u ≠ 0, v ≠ 0 and a ∉ �
∗

3k
 . Similarly, we can prove that 

any two of these three solutions can not satisfy Eq. (31) simultaneously. Therefore 
Eq. (25) has at most one solution in �3n . The proof is complete.   ◻

Theorem 6 Let n = 2k and k be an integer. Let u, v ∈ �
∗

3k
 . Then

is a permutation polynomial over �3n if one of the following two conditions holds: 

 (i) k is odd and u−1v is a square in �3k;
 (ii) k is even and u−1v is a nonsquare in �3k.

Proof We will show that for every a ∈ �3n , the equation

has at most one solution in �3n.

Case (I) If a = 0 , then x = 0 is a solution. Suppose that x ≠ 0 is another solution. 
We need to prove that 

has no solution. Multiplying by x3k+1 on both sides of Eq. (33) gives

If x3k = −x , then from Eq. (34) we obtain x = 0 since v ≠ 0 , however, x = 0 does not 
satisfy Eq. (33).

If x3k ≠ −x , then raising both sides of Eq. (34) to the 3
k−1

2
 power derives

When k is odd, we obtain 3
k−1

2
 is odd. It follows from Eq. (35) that (x3k + x)3

k−1 = −1 
since u−1v is a square in �3k.

When k is even, we have 3
k−1

2
 is even. Similarly, we have (x3k − x)3

k−1 = −1 since 
u−1v is a nonsquare in �3k.

�
x1 +

�
a1−3

k

− 1
�√

−uv−1
�3k

= a3
k−1

�
x1 +

�
a1−3

k

− 1
�√

−uv−1
�
.

2
�
a3

k−1 − 1
�√

−uv−1 = 0,

f (x) = ux3
2k−3k+1 + vx3

k+2 + ux + uTr2k
k
(x)

(32)f (x) = ux3
2k−3k+1 + vx3

k+2 + ux3
k

− ux = a

(33)ux1−3
k

+ vx3
k+1 + ux3

k−1 − u = 0

(34)u
(
x3

k

+ x
)2

= −vx2⋅3
k+2.

(35)
(
x3

k

+ x
)3k−1

=
(
−u−1v

) 3k−1

2 .
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However, (x3k + x)3
k−1 =

x+x3
k

x3
k
+x

= 1 , a contradiction with the above two cases. 
Therefore f (x) = a has only one solution x = 0 for a = 0.

Case (II) If a ≠ 0 , then x ≠ 0 and it follows from Eq. (32) that 

It is easy to check that the left side of Eq. (36) is in �3k , therefore we have x3k = a3
k−1x . 

Substituting it into Eq. (32), we deduce

If a3k = −a , then Eq. (37) has one solution x = −(v−1a)3
n−1.

According to Conditions (i) and (ii), we obtain that −uv−1 ∈ �
∗

3k
 is a non‑

square in �3k , but −uv−1 is a square in �3n . Thus we have (−uv−1)3k−1 = 1 and 
(
√
−uv−1)3

k−1 = −1 , this gives (
√
−uv−1)3

k

= −
√
−uv−1.

If a3k ≠ −a , according to Lemma 2, then Eq. (37) has three solutions since −uv−1 
is a square in �3n . If x2 is a solution of Eq.  (37), then the other two solutions are 
x2 + (a1−3

k

+ 1)
√
−uv−1 and x2 − (a1−3

k

+ 1)
√
−uv−1 . Without loss of generality, 

assume that both x2 and x2 + (a1−3
k

+ 1)
√
−uv−1 are solutions of Eq. (32). Then we 

have

and

which is equivalent to

Combining the above two equations gives

which is impossible since u ≠ 0, v ≠ 0 and a3k ≠ −a . Similarly, we can show that 
any two of these three solutions can not satisfy Eq. (37) simultaneously. Therefore 
Eq. (32) has at most one solution in �3n . We complete the proof.   ◻

(36)ux1−3
k

+ vx3
k+1 + ux3

k−1 − u =
a

x
.

(37)x3 + uv−1
(
a1−3

k

+ 1
)2

x − v−1a2−3
k

= 0.

x3
k

2
= a3

k−1x2

�
x2 +

�
a1−3

k

+ 1
�√

−uv−1
�3k

= a3
k−1

�
x2 +

�
a1−3

k

+ 1
�√

−uv−1
�
,

x3
k

2
+

�
a3

k−1 + 1
��

−
√
−uv−1

�
= a3

k−1x2 +
�
1 + a3

k−1
�√

−uv−1.

2
�
a3

k−1 + 1
�√

−uv−1 = 0,
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5  Conclusion

In this paper, by determining the solutions of some special equations, three classes of 
permutation polynomials with trace functions were presented over �2n . Furthermore, 
two classes of permutation polynomials with trace functions were given over �3n.

Acknowledgements The authors wish to thank the anonymous referees for valuable comments which sig‑
nificantly improved both the quality and presentation of this paper. This work is supported in part by the 
National Natural Science Foundation of China under Grants 11971156, 61972303, 62072222 and 62172337, 
in part by Open Foundation of Hubei Key Laboratory of Applied Mathematics (Hubei University), Grant 
HBAM202005, and Project of Young Teachers Scientific Research Ability Improvement Plan of Northwest 
Normal University (Grant NWNU‑LKQN2021‑15).

References

 1. Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields. Finite Fields Appl. 17, 
51–67 (2011)

 2. Charpin, P., Kyureghyan, G.: When does G(x) + �Tr(H(x)) permute �pn ? Finite Fields Appl. 15, 615–632 
(2009)

 3. Charpin, P., Kyureghyan, G.M., Suder, V.: Sparse permutations with low differential uniformity. Finite 
Fields Appl. 28, 214–243 (2014)

 4. Hou, X.: Permutation polynomials over finite fields‑a survey of recent advances. Finite Fields Appl. 32, 
82–119 (2015)

 5. Kyureghyan, G.M., Zieve, M.: Permutation polynomials of the form x + �Trqn∕q(x
k) , In: Contemporary 

Developments in Finite Fields and Applications, World Scientific, pp. 178–194. (2016)
 6. Laigle‑Chapuy, Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 

58–70 (2007)
 7. Li, K., Qu, L., Chen, X., Li, C.: Permutation polynomials of the form cx + Trql∕q(x

a) and permutation tri‑
nomials over finite fields with even characteristic. Cryptogr. Commun. 10(3), 531–554 (2018)

 8. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics. Cambridge University Press, Cam‑
bridge, UK (1997)

 9. Ma, J., Ge, G.: A note on permutation polynomials over finite fields. Finite Fields Appl. 48, 261–270 (2017)
 10. Mullen, G.L.: Permutation polynomials over finite fields, In: Proc. Conf. Finite Fields Their Applica‑

tions, vol. 141, pp. 131–151. Marcel Dekker (1993)
 11. Mullen, G.L., Panario, D.: Handbook of Finite Fields. Taylor And Francis, Boca Raton (2013)
 12. Wang, Q.: Polynomials over finite fields: an index approach, In the Proceedings of Pseudo‑Randomness 

and Finite Fields, Multivariate Algorithms and their Foundations in Number Theory, Degruyter, pp. 
1–30. (2019)

 13. Kenneth, S.: Williams, Note on cubics over �� (2n) and �� (3n) . J. Number Theory 7, 361–365 (1975)
 14. Wu, D., Yuan, P.: Further results on permutation polynomials from trace functions. AAECC (2020). 

https:// doi. org/ 10. 1007/ s00200‑ 020‑ 00456‑6
 15. Yuan, P., Ding, C.: Permutation polynomials over finite fields from a powerful lemma. Finite Fields 

Appl. 17, 560–574 (2011)
 16. Zeng, X., Tian, S., Tu, Z.: Permutation polynomials from trace functions over finite fields. Finite Fields 

Appl. 35, 36–51 (2015)
 17. Zha, Z., Hu, L., Zhang, Z.: Permutation polynomials of the form x + �Trqn∕q(h(x)) . Finite Fields Appl. 

60, 1–16 (2019)
 18. Zheng, D.: A class of differentially 4‑uniform functions from Gold functions. Instumentation Meas. 

Circ. Syst. AISC 127, 467–476 (2012)
 19. Zheng, D., Yuan, M., Yu, L.: Two types of permutation polynomials with special forms. Finite Fields 

Appl. 56, 1–16 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1007/s00200-020-00456-6

	Several classes of permutation polynomials with trace functions over 
	Abstract
	1 Introduction
	2 Preliminaries
	3 Three classes of permutation polynomials with trace functions over 
	4 Two classes of permutation polynomials with trace functions over 
	5 Conclusion
	Acknowledgements 
	References




