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Abstract
The existence of a quasi-symmetric 2-(41, 9, 9) design with intersection numbers 
x = 1, y = 3 is a long-standing open question. Using linear codes and properties 
of subdesigns, we prove that a cyclic quasi-symmetric 2-(41, 9, 9) design does not 
exist, and if p < 41 is a prime number being the order of an automorphism of a 
quasi-symmetric 2-(41, 9, 9) design, then p ≤ 5 . The derived design with respect to 
a point of a quasi-symmetric 2-(41, 9, 9) design with block intersection numbers 1 
and 3 is a quasi-symmetric 1-(40, 8, 9) design with block intersection numbers 0 and 
2. The incidence matrix of the latter generates a binary doubly even code of length 
40. Using the database of binary doubly even self-dual codes of length 40 classified 
by Betsumiya et al. (Electron J Combin 19(P18):12, 2012), we prove that there is no 
quasi-symmetric 2-(41, 9, 9) design with an automorphism � of order 5 with exactly 
one fixed point such that the binary code of the derived design is contained in a 
doubly-even self-dual [40, 20] code invariant under �.

Keywords Quasi-symmetric design · Subdesign · Cyclic code · Self-dual code · 
Automorphism group
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1  Preliminaries

We assume some basic familiarity with combinatorial designs and algebraic coding 
theory (cf. e.g. [1, 7, 12]).
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Given integers v ≥ k ≥ 2 , 𝜆 > 0 , a 2-(v, k, �) design is a pair D = (X,B) of a set 
X = {xi}

v
i=1

 of v points, and a collection B = {Bj}
b
j=1

 of k-subsets Bj ⊆ X , called 
blocks such that every two points appear together in exactly � blocks.

The points by blocks incidence matrix A = (ai,j) of a design D with v points and 
b blocks is a v × b (0, 1)-matrix with ai,j = 1 if the ith point belongs to the jth block, 
and ai,j = 0 otherwise. The transposed matrix AT is called the blocks by points inci-
dence matrix of D . The dual design D∗ of D is the design with incidence matrix AT.

The derived design Dx of a 2-(v, k, �) design D = (X,B) with respect to a point 
x ∈ X is a 1-(v − 1, k − 1, �) design with point set X⧵{x} , and blocks B⧵{x} , 
B ∈ B, x ∈ B . If a given 1-(v − 1, k − 1, �) design D′ is a derived design of a 
2-(v, k, �) design, we call D′ extendable. The residual design Dx with respect to 
x ∈ X is a 1-(v − 1, k, r − �) design with point set X⧵{x} , and blocks B ∈ B, x ∉ B , 
where r = �(v − 1)∕(k − 1) is the number of blocks that contain x.

If D is a 2-(v, k, �) design with v > k > 0 , the number of blocks 
b = v(v − 1)�∕(k(k − 1)) satisfies the Fisher inequality

and the equality b = v holds if and only if every two blocks share exactly � points. A 
2-(v, k, �) design D with b = v is called symmetric.

A 2-(v, k, �) design D with b > v is quasi-symmetric with intersection numbers 
x,  y ( 0 ≤ x < y ) if every two blocks share either x or y points. Quasi-symmetric 
designs were introduced by Shrikhande and Bhagwandas [11].

A strongly regular graph with parameters n̄, k̄, �̄�, �̄� is an undirected graph with 
n̄ vertices, having no multiple edges or loops, such that: every vertex has exactly 
k̄ neighbors, every two adjacent vertices have exactly �̄� common neighbors, and 
every two non-adjacent vertices have exactly �̄� common neighbors. Strongly regular 
graphs were introduced by Bose [3]. It was proved by Shrikhande and Bhagwandas 
[11] that if D is a quasi-symmetric 2-(v, k, �) design with intersection numbers x, y, 
( 0 ≤ x < y ), then the graph Γ having as vertices the blocks of D , where two blocks 
are adjacent in Γ if they share exactly x points, is strongly regular.

A 2-(v, k, �) design is called strongly resolvable with intersection numbers x,  y 
( 0 ≤ x < y) if its set of blocks can be partitioned into disjoint subsets in such a way 
that every two blocks which belong to the same subset intersect each other in exactly 
x points, while every two blocks that belong to different subsets intersect each other 
in y points. An example of a strongly resolvable design with x = 0, y = qn−2 is the 
design AGn−1(n, q) with parameters 2-(qn, qn−1, (qn−1 − 1)∕(q − 1)) having as points 
and blocks the points and hyperplanes in the n-dimensional finite affine geometry 
AG(n,  q) over a finite field of order q. The block graph of a strongly resolvable 
design is a union of disjoint complete graphs.

Some instant examples of quasi-symmetric designs are the following: 

1. the union of several identical copies of a symmetric 2-(v, k, �) design ( x = � , y = k);
2. any non-symmetric 2-(v, k, 1) design ( x = 0 , y = 1);
3. any strongly resolvable design;
4. any 2-((k + 1)k∕2, k, 2) design ( x = 1 , y = 2).

(1)b ≥ v,
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A quasi-symmetric 2-(v, k, �) design with k ≤ v∕2 is called exceptional if it does 
not belong to any of the above four categories [9]. A table of admissible param-
eters for exceptional quasi-symmetric designs with number of points v ≤ 70 is 
given in [10]. There are 73 feasible parameter sets for exceptional quasi-symmetric 
designs with v ≤ 70 points [10, Table 48.25]. Currently, the existence (or nonexist-
ence) question has been resolved for 40 out of the 73 feasible parameter sets, while 
the existence of a quasi-symmetric design in each of the remaining 33 cases is an 
open question. In 26 of the 40 resolved cases, linear codes, and self-dual codes in 
particular, have played a crucial role in establishing the existence, nonexistence or 
the classification up to isomorphism of the quasi-symmetric designs with the given 
parameters.

The existence of a quasi-symmetric 2-(41, 9, 9), ( x = 1 , y = 3 ) is an open ques-
tion. This is one of the 33 remaining open cases for plausible exceptional quasi-
symmetric designs with v ≤ 70 points. In this paper, we prove that a cyclic quasi-
symmetric 2-(41, 9, 9) design does not exist, and if p < 41 is a prime number being 
the order of an automorphism of a quasi-symmetric 2-(41, 9, 9) design, then p ≤ 5 . 
We also prove the nonexistence of a quasi-symmetric 2-(41,  9,  9) design with an 
automorphism � of order 5 with exactly one fixed point such that the binary code 
of the derived design is contained in a doubly-even self-dual [40, 20] code invari-
ant under � . This may be considered as a first step to prove the nonexistence of a 
quasi-symmetric 2-(41, 9, 9) design with block intersection numbers 1 and 3, and an 
analogue of the previous work [4, 5] for quasi-symmetric 2-(37, 9, 8) designs with 
block intersection numbers 1 and 3.

The organization of this paper is as follows. In Sect.  2, we investigate auto-
morphisms of 2-designs in general. It is shown that (not necessarily quasi-sym-
metric) 2-(41,  9,  9) design can admit an automorphism of prime order p only if 
p = 41 or p ≤ 7 . In Sect.  3, we show that p = 41 and p = 7 cannot occur as the 
order of an automorphism of a quasi-symmetric 2-(41, 9, 9) design. In Sect. 4, we 
show that p = 5 cannot occur as the order of an automorphism of a quasi-sym-
metric 2-(41,  9,  9) design, under mild conditions (see Theorem  4.5 for the exact 
assumption).

2  Automorphisms of 2‑(41, 9, 9) designs

In this section we investigate the spectrum of prime numbers that could be the order 
of an automorphism of a 2-(41, 9, 9) design.

Definition 2.1 A 2-(v0, k, �) design D0 = (X0,B0) is a subdesign of a 2-(v, k, �) 
design D = (X,B) if X0 ⊆ X and B0 ⊆ B.

The following statement is given without a proof in [8, II.1.4, page 25].
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Lemma 2.2 If a 2-(v, k, �) design D with k ≥ 2 contains a 2-(v0, k, �) subdesign D0 
then either v0 = v or

Proof Every point of D0 is contained in r − r0 blocks of D that are not blocks of D0 . 
If x, y are two distinct points of D0 then the set Sx of r − r0 blocks of D that are not 
blocks of D0 and contain x, and the set Sy of r − r0 blocks of D that are not blocks of 
D0 and contain y, are disjoint: Sx ∩ Sy = � . Thus, we have

After the substitutions r = �(v − 1)∕(k − 1) , r0 = �(v0 − 1)∕(k − 1) , 
b = �v(v − 1)∕(k(k − 1)) , b0 = �v0(v0 − 1)∕(k(k − 1)) , the inequality (3) simplifies 
to

The roots of the quadratic polynomial f (v0) = (k − 1)v2
0
+ (1 − vk)v0 + v2 − v are 

v0 = v and v0 = (v − 1)∕(k − 1) , and the statement of the lemma follows.   ◻

A trivial lower bound on the number of points of a 2-(v0, k, �) subdesign is 
v0 ≥ k , which, combined with (2) gives

The inequalities (4) imply the following.

Corollary 2.3 A necessary condition for a 2-(v, k, �) design to have a subdesign with 
v0 < v points is that k(k − 1) + 1 ≤ v.

Lemma 2.4 Let D = (X,B) be a 2-(v, k, �) design with an automorphism � of prime 
order p, such that p does not divide v and p > 𝜆.

(i) If a block B contains two distinct points x, y which are fixed by �, then B is 
fixed by �.

(ii) Let X0 = {x ∈ X | x� = x}. Assume that v0 = |X0| ≥ 2 and p > k. Then X0 is 
the point set of a 2-(v0, k, �) subdesign of D with v0 < v.

Proof 

 (i)  If we assume that B is not fixed by � , then x and y must appear together in 
every of the p distinct blocks from the orbit of B under the cyclic group < 𝜙 > , 
which is impossible because p > 𝜆.

(2)v0 ≤
v − 1

k − 1
.

(3)v0(r − r0) ≤ b − b0.

(k − 1)v2
0
+ (1 − vk)v0 + v2 − v ≥ 0.

(4)k ≤ v0 ≤
v − 1

k − 1
.
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 (ii) Since p > k , every block that is fixed by � must consist entirely of fixed points. 
Now by part (i), if a block B contains two points from X0 then B ⊆ X0 , hence 
the set of all blocks of D that are fixed by � form a 2-(v0, k, �) subdesign.   ◻

Theorem 2.5 

 (i) If D is a 2-(41, 9, 9) design that admits an automorphism of prime order p 
then either p = 41 or p ≤ 7.

 (ii) There exists a 2-(41, 9, 9) design with automorphism of order 41.

Proof (i) Assume that D is a 2-(41, 9, 9) design with an automorphism � of a prime 
order p < 41 . Since the number of blocks of D is 205 = 5 ⋅ 41 , if p is in the range 
7 < p < 41 then � must fix at least one block and at least two points. By Lemma 2.4, 
part (ii) the set X0 of all points that are fixed by � is the point set of a 2-(v0, 9, 9) 
subdesign with v0 < 41 . On the other hand, since 9 ⋅ 8 + 1 = 73 > 41 , a 2-(41, 9, 9) 
design D cannot have any subdesign with v0 < 41 by Corollary 2.3, a contradiction.

(ii) Let G = AGL(1, 41) be the group of order 41 ⋅ 40 = 1640 , being the semidi-
rect product of the additive and the multiplicative groups of the finite field of order 
41, Z41 = {0, 1, 2,… , 40} . The group G acts as a 2-transitive permutation group on 
Z41 as the set of transformations

Since G is 2-transitive, the orbit BG of any k-subset B ⊂ Z41 with k ≥ 2 is a 2-(41, k, �) 
design with b = |G|∕|GB| blocks, where GB is the setwise stabilizer of B in G, and 
� = bk(k − 1)∕(v(v − 1)) . If we choose B to be a 9-subset which is fixed by the sub-
group H =< (3, 0) > of order 8, for example, B = {0, 1, 3, 9, 27, 40, 38, 32, 14} , then 
|GB| = |H| = 8 and the orbit of B under G is a cyclic 2-(41, 9, 9) design.   ◻

3  Automorphisms of quasi‑symmetric 2‑(41, 9, 9) designs

In this section we investigate the spectrum of prime numbers that can be the order of 
an automorphism of a putative quasi-symmetric 2-(41, 9, 9) design with intersection 
numbers x = 1, y = 3.

Theorem 3.1 A quasi-symmetric 2-(41, 9, 9) design with an automorphism of order 
41 does not exist.

Proof Let A be the 205 × 41 blocks by points incidence matrix of a quasi-symmetric 
2-(41, 9, 9) design D = (X,B) , and let A+ be the 205 × 42 matrix obtained by add-
ing to A one all-one column. The matrix A+ has constant row sum 10, and the inner 
product of every two rows of A+ is an even number (2 or 4). Thus, the rows of A+ 

{g = (a, b) ∶ g(x) = ax + b (mod 41), x ∈ Z41, a, b ∈ Z41, a ≠ 0}.
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span a binary self-orthogonal code of length 42, hence the rank of A over the binary 
field, rank2A , satisfies the inequality

On the other hand, since A has 205 > 27 rows, we have

Assume now that D is invariant under the cyclic group of order 41 acting regularly 
on the point set X, hence the binary linear code L spanned by the rows of A is a 
cyclic code (for the fundamentals of cyclic codes, see, e.g. [7, Chapter 4]). There 
are exactly three cyclotomic cosets of 2 modulo 41, namely {0} , the set Q of the 
20 quadratic residues modulo 41, and the set N of the 20 quadratic non-residues 
modulo 41. Since

it follows that L is equivalent to the quadratic residue code QR41 (see [7, Sec. 6.6]) of 
length 41 and dimension 21, having a generator polynomial

The minimum weight of QR41 is 9, and the set of all 410 codewords of weight 9 
spans the code, hence the full automorphism group of the code coincides with the 
automorphism group G of the 1-(41, 9, 90) design D having as blocks the supports 
of the codewords of weight 9. It turns out that D is also a 2-(41, 9, 18) design. The 
collection of blocks of the 2-(41, 9, 9) design D gives rise to a bipartition of 410 
codewords of weight 9 into two equal parts, where in each part, the supports inter-
sect pairwise in either one or three positions. We define a graph Γ having as vertices 
the 410 codewords of QR41 of minimum weight, where two codewords are adjacent 
in Γ if their supports share either one or three positions. A quick check by computer 
shows that the complement of Γ has a 3-cycle, hence is not bipartite. Therefore, a 
cyclic quasi-symmetric 2-(41, 9, 9) design with intersection numbers x = 1 , y = 3 
does not exist.    

Note 1 The automorphism group G of QR41 is of order 820, and acts as a transitive 
permutation group of rank 3 on the set of 41 code coordinates. The group G can be 
viewed also as the automorphism group of the Paley graph P(41) with vertex set 
X = {0, 1,… 40} , with vertices corresponding to the code coordinates, where two 
vertices i, j are adjacent in P(41) if i − j is a quadratic residue modulo 41. The graph 
P(41) is a strongly regular graph with parameters n̄ = 41 , k̄ = 20 , �̄� = 9 , �̄� = 10 . 
The group G partitions the collection of all unordered 2-subsets of vertices in two 
orbits: one orbit consists of the edges of P(41), and the second orbit consists of all 
on-edges. The stabilizer of a minimum weight codeword in G is of order 2, hence all 
410 codewords of weight 9 are in one orbit under the action of G. Thus, all blocks of 
the 1-(41, 9, 90) design D having as blocks the supports of the codewords of weight 
9 in the code QR41 are in one orbit under the action of G. It is easy to show that D 

rank2A ≤ 21.

rank2A > 7.

7 < rank2A ≤ 21,

g(x) = x20 + x18 + x17 + x16 + x15 + x14 + x11 + x10 + x9 + x6 + x5 + x4 + x3 + x2 + 1.
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is actually a 2-(41, 9, 18) design. Indeed, any block of D can be considered as sub-
graph of the Paley graph P(41). For example, B = {1, 3, 9, 15, 17, 18, 21, 38, 41} is 
a block corresponding to a codeword of QR41 with nonzero positions 1, 3, 9,… , 41 . 
Considered as a subgraph of P(41), B contains exactly 18 edges, that is, there are 18 
pairs i, j ∈ B , i < j such that j − i is a quadratic residue modulo 41. Now applying 
Theorem 3.5.1 from [12, p. 166], it follows that D is a 2-(41, 9, �) design with

Theorem 3.2 A quasi-symmetric 2-(41, 9, 9) design with intersection numbers x = 1 , 
y = 3 and an automorphism of order 7 does not exist.

Proof Assume the contrary, and let � be an automorphism of order 7 of a quasi-sym-
metric 2-(41, 9, 9) design with intersection numbers x = 1 , y = 3 . Since the number 
of points is 41 ≡ 6 (mod 7) , � fixes at least 6 points. Pick two points p, p′ fixed by 
� . Since there are 9 blocks containing both p and p′ , � fixes at least two blocks B,B′ 
containing the points p, p′ . Since x = 1 and y = 3 , there is another point in B ∩ B� 
which must be fixed by � . Then the remaining six points of B are also fixed by �.

Now let B′′ be an arbitrary block sharing three points q, q′, q′′ with B. If � does 
not fix B′′ , then the orbit of B′′ under � consists of 7 blocks all of which contain 
q, q′, q′′ . These blocks are disjoint outside q, q′, q′′ , so we need 7 ⋅ (9 − 3) = 42 
points outside B. Since this is impossible, we conclude that � fixes B′′ , and hence 
also all the points of B′′.

We have shown that, every block sharing three points with a block fixed by � 
pointwise is also fixed by � pointwise. Since the block graph is a connected strongly 
regular graph, this implies that � fixes every block pointwise. Thus, � fixes every 
point, which contradicts the fact that � has order 7.

Theorems 2.5, 3.1 and  3.2 imply the following.   ◻

Theorem 3.3 If p is a prime number being the order of an automorphism of a quasi-
symmetric 2-(41, 9, 9) design, then p ≤ 5.

4  Quasi‑symmetric 2‑(41, 9, 9) designs and doubly‑even self‑dual 
codes of length 40

Suppose that D = (X,B) is a quasi-symmetric 2-(41, 9, 9) design with intersection 
numbers x = 1, y = 3 . If z ∈ X , the derived 1-(40, 8, 9) design Dz is a quasi-symmet-
ric design with block intersection numbers x� = 0, y� = 2 , and the 40 × 45 points by 
blocks incidence matrix M of Dz has the following properties: 

1. M has constant row sum 9.
2. M has constant column sum 8.
3. The inner product of any two columns of M is either 0 or 2.

� =
410 ⋅ 9 ⋅ 8

41 ⋅ 40
= 18.
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Properties 2 and 3 imply that the binary linear code spanned by the columns of M is 
a self-orthogonal code L of length 40 with all weights divisible by 4, hence L is con-
tained in some binary doubly-even self-dual code C of length 40. Thus, the column 
set of M is a set of 45 codewords of C of weight 8, such that properties 1 and 3 hold. 
Motivated by Theorem 3.3 and to reduce the search, we will assume that the column 
set of M is a union of orbits of codewords of weight 8 under an automorphism group 
of C of order 5.

All binary doubly-even self-dual codes of length 40 were classified up to equiva-
lence by Betsumiya et  al. [2]. Among the 16,470 doubly even [40, 20, 8] codes, 
there are 45 codes with an automorphism of order 5 [2]: 44 codes have a full auto-
morphism group of order not divisible by 25 that contains one conjugacy class of 
fixed-point-free automorphisms of order 5, and there is a unique code with a full 
automorphism group of order divisible by 25. The automorphism group of the latter 
code contains fixed-point-free automorphisms of order 5, as well as automorphisms 
of order 5 with 20 fixed points. With respect to this automorphism � of order 5 with 
20 fixed points, the codewords of weight 8 are classified into three types: 

1. codewords whose support is contained in the set of 20 fixed points (hence these 
codewords are fixed by �);

2. codewords whose support is disjoint from the set of 20 fixed points;
3. codewords whose support consists of 4 fixed points and 4 points that are not fixed 

by �.

If there is a 1-(40, 8, 9) design with intersection numbers x� = 0 and y� = 2 invariant 
under � , then its set of blocks contains no blocks of type 3, hence every block is of 
type 1 or 2. Since the points covered by 1 and 2 are disjoint, this would result in a 
1-(20, 8, 9) design. However, such a design does not exist because 20 ⋅ 9∕8 is not an 
integer.

Any doubly-even self-dual [40, 20, 8] code C contains exactly 285 codewords of 
weight 8 (see, e.g. [6, Subsec. 2.3]), and if the code is invariant under an automor-
phism � of order 5 without fixed points, the set of 285 codewords of weight 8 is par-
titioned into 57 orbits of length 5 under the action of < 𝜙 > . Any quasi-symmetric 
1-(40, 8, 9) design which is invariant under < 𝜙 > and whose blocks are supports of 
codewords of C, has a 40 × 45 incidence matrix with column set comprising of nine 
orbits of codewords of weight 8 under the action of < 𝜙 >.

Example 4.1 The following nine 8-sets
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are the base blocks (that is, block orbit representatives) of a quasi-symmetric 
1-(40, 8, 9) design D′ with point set X� = {1, 2,… , 40} and an automorphism � of 
order 5,

obtained from a doubly-even [40, 20, 8] self-dual code invariant under �.
The 8 × 9 orbit matrix M = (mi,j) of D′ under the action of < 𝜙 > , where mi,j is 

the number of blocks from the jth block orbit that contain a single point from the ith 
point orbit, is given in (5).

In order to extend the quasi-symmetric 1-(40, 8, 9) design D′ from Example 4.1 
to a quasi-symmetric 2-(41, 9, 9) design with intersection numbers 1 and 3, we need 
to find a matching residual 1-(40,  9,  36) design such that each of its 160 blocks 
meets every block of D′ in either 1 or 3 points. Surprisingly, an exhaustive computer 
search shows that there is no 9-subset of X that meets every block of D′ in either 1 or 
3 points. This phenomenon can be explained by the following theorem.

Theorem  4.2 Suppose that D = (X,B) is a quasi-symmetric 2-(v, k, �) design with 
odd intersection numbers x,  y. Let Dz be a derived 1-(v − 1, k − 1, �) design of D 
with respect to a point z ∈ X . Let M be the points by blocks incidence matrix of Dz, 
and let M̄ be the matrix obtained by adding one all-one row to M:

 Let C̄ be the binary linear code spanned by the columns of M̄. If c ∈ C̄ is a code-
word with nonzero last position, then

8 11 12 15 21 26 36 38

1 3 15 19 21 24 30 34

7 12 13 20 24 26 30 31

6 14 19 20 21 25 31 38

1 5 7 10 21 25 26 28

2 8 14 17 24 30 35 38

1 4 6 10 34 35 36 38

7 17 19 20 28 34 35 40

4 5 14 17 26 31 36 40

� = (1, 2,… , 5)(5,… , 10)⋯ (36,… 40),

(5)

020021202

101121210

312101001

011201031

121221000

112021011

011101221

200101212

M̄ =

(
M

1 ⋯ 1

)
.
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where b = |B| and r = bk∕v.

Proof Let Dz be the residual 1-(v − 1, k, r − �) design of D with respect to z, and 
let N be the (v − 1) × (b − r) points by blocks incidence matrix of Dz . Let N̄ be the 
matrix obtained by adding one all-one row to N:

Since the scalar product of every column of M with every column of N is either x 
or y and both x and y are odd, the scalar product of every column of M̄ with every 
column of N̄ is an even number ( x + 1 or y + 1 ). This implies that every column of N̄ 
is orthogonal to C̄ over the binary field. In particular, c⊤N̄ ≡ 0 (mod 2) , and hence 
wt(c) ≠ 1.

Let c′ be the vector indexed by X obtained from c by deleting the last coordinate. 
Then c′⊤N is the all-one vector modulo 2. In particular, every block of Dz meets the 
support of c′ . Since every point of Dz is contained in exactly r − � blocks of Dz , the 
number of blocks of Dz is at most wt(c�)(r − �) . This implies b − r ≤ wt(c�)(r − �) , 
proving the desired inequality.   ◻

Theorem 4.2 implies the following.

Theorem  4.3 A necessary condition for an 1-(v − 1, k − 1, �) design D′ with even 
block intersection numbers x′, y′ to be extendable to a quasi-symmetric 2-(v, k, �) 
design with odd intersection numbers x = x� + 1 , y = y� + 1 is that the binary linear 
code spanned by the rows of its points by blocks incidence matrix contains the all-
one vector.

Proof Assuming that D� = D
z for some quasi-symmetric 2-(v, k, �) design D , we use 

the same notation as Theorem 4.2. Let C be the binary code of length r spanned 
by the rows of M. The condition that C contains the all-one vector 1̄ = (1,… , 1) is 
equivalent to the condition that all codewords in its dual code C⟂ have even weights. 
Thus, 1̄ ∉ C if and only if there is a set S of an odd number of columns of M whose 
sum over the binary field is the zero column. If S is such a set, then the modulo 2 
sum of the corresponding columns of M̄ is a vector of weight 1 with nonzero last 
position. This violates the inequality in Theorem 4.2.   ◻

Note 2 The modulo 2 sum of the first three columns of the orbit matrix (5) is the 
zero column. Hence, the dual code C⟂ of binary code C of length 45 spanned by the 
incidence matrix of the 1-(40, 8, 9) design D′ from Example 4.1 contains a code-
word of odd weight 15. It follows that C does not contain the all-one vector, thus, by 
Theorem 4.3, D′ is not extendable to a quasi-symmetric 2-(41, 9, 9) design.

wt(c) ≥ 1 +
b − r

r − �
,

N̄ =

(
N

1 ⋯ 1

)
.
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Example 4.4 The following matrix

where I20 is the identity matrix of order 20, B is the square circulant (0, 1)-matrix of 
order 19 with nine nonzero entries in its first row indexed by the quadratic residues 
modulo 19, and J is the 19 × 19 all-one matrix, is the generator matrix of a doubly 
even self-dual [40,  20,  8] code C, known as the double circulant code with these 
parameters. The full automorphism group of C is of order 6840 = 23 ⋅ 32 ⋅ 5 ⋅ 19 , 
and contains an automorphism � of order 5 without fixed points that partitions the 
285 codewords of weight 8 in 57 orbits. A short computer search shows that there 
are exactly 1787 distinct 1-(40, 8, 9) designs with block intersection numbers 0 and 
2, whose 40 × 45 incidence matrices comprise of 9 orbits of codewords of weight 8 
under the action of � . None of the 1787 binary codes of length 45 spanned by these 
incidence matrices contains the all-one vector, hence, according to Theorem  4.3, 
all 1-(40, 8, 9) designs that arise from C and admit � as an automorphism, are not 
extendable to a quasi-symmetric 2-(41, 9, 9) design.

Theorem 4.5 There is no quasi-symmetric 2-(41, 9, 9) design with an automorphism 
� of order 5 with exactly one fixed point such that the incidence matrix of a derived 
design with respect to the point fixed by � is obtainable as a collection of codewords 
in a doubly-even self-dual [40, 20] code invariant under �.

The proof of Theorem 4.5 is computational. Table 1 gives a summary of the com-
putational results. From the database of doubly even self-dual [40,  20] codes, we 
first extract those with automorphism � of order 5 without fixed points. There are 45 
(resp. 32) doubly even self-dual [40, 20, 8] (resp. [40, 20, 4]) codes. For each such 
[40, 20] code C, we decompose the set of codewords of weight 8 into orbits under 
< 𝜙 > , and enumerate all possible union of nine orbits which can form the set of 
blocks of a quasi-symmetric 1-(40, 8, 9) design with intersection numbers x� = 0 , 
y� = 2 . The designs are then tested to see if the necessary condition given in Theo-
rem 4.3 is satisfied. In this way, we obtain two designs from [40, 20, 8] codes, and 
130 designs from [40, 20, 4] codes. It turns out that none of the latter 130 designs 
is extendable by Theorem 4.2. This is because the code C̄ contains a codeword of 
weight 5 < 1 + (b − r)∕(r − 𝜆) = 49∕9.

⎛
⎜⎜⎜⎝

1

I20 J − B ⋮

1

1… 1 0

⎞⎟⎟⎟⎠
,

Table 1  Designs from doubly 
even self-dual [40, 20] codes

[40, 20, 4] [40, 20, 8]

No. of codes 16,470 77,873
No. of codes with � 45 32
No. of designs (Theorem 4.3) 2 130
No. of designs (Theorem 4.2) 2 0
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For each of the remaining two 1-(40,  8,  9) designs coming from [40,  20,  8] 
codes, we construct the points by blocks incidence matrix M. Using the notation 
of the proof of Theorem 4.2, we see that the extendability implies the existence of 
a 40 × 160 matrix N which is the points by blocks incidence matrix of the corre-
sponding residual 1-(40, 9, 36) design. The matrix N has row sum 36, so for each 
i ∈ {1,… , 40} , there are at least 36 codewords of weight 10 whose support contains 
{i, 41} in C̄⟂ . Let Γi = (Xi,Ei) denote the graph, where the vertex set Xi is the set of 
codewords of weight 10 whose support contains {i, 41} in C̄⟂ . The edge set Ei con-
sists of pairs of codewords whose support intersect at 1 or 3 positions. Since N is the 
points by blocks incidence matrix of the residual design, the maximum clique size 
�(Γi) of the graph Γi must be at least 36. We have verified by computer that for each 
of the two designs,

This shows that none of the 1-(40, 8, 9) designs we found is extendable.
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