ORIGINAL PAPER

Quasi‑symmetric 2‑(41, 9, 9) designs and doubly even self‑dual codes of length 40

Akihiro Munemasa1 · Vladimir D. Tonchev2

Received: 30 November 2021 / Accepted: 27 January 2022 / Published online: 10 February 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

The existence of a quasi-symmetric 2-(41, 9, 9) design with intersection numbers $x = 1$, $y = 3$ is a long-standing open question. Using linear codes and properties of subdesigns, we prove that a cyclic quasi-symmetric 2-(41, 9, 9) design does not exist, and if $p < 41$ is a prime number being the order of an automorphism of a quasi-symmetric 2-(41, 9, 9) design, then $p \le 5$. The derived design with respect to a point of a quasi-symmetric 2-(41, 9, 9) design with block intersection numbers 1 and 3 is a quasi-symmetric 1-(40, 8, 9) design with block intersection numbers 0 and 2. The incidence matrix of the latter generates a binary doubly even code of length 40. Using the database of binary doubly even self-dual codes of length 40 classifed by Betsumiya et al. (Electron J Combin 19(P18):12, 2012), we prove that there is no quasi-symmetric 2-(41, 9, 9) design with an automorphism ϕ of order 5 with exactly one fxed point such that the binary code of the derived design is contained in a doubly-even self-dual $[40, 20]$ code invariant under ϕ .

Keywords Quasi-symmetric design · Subdesign · Cyclic code · Self-dual code · Automorphism group

Mathematics Subject Classifcation 05B05 · 05B20 · 94B05

1 Preliminaries

We assume some basic familiarity with combinatorial designs and algebraic coding theory (cf. e.g. $[1, 7, 12]$ $[1, 7, 12]$ $[1, 7, 12]$ $[1, 7, 12]$ $[1, 7, 12]$ $[1, 7, 12]$).

 \boxtimes Vladimir D. Tonchev tonchev@mtu.edu

¹ Graduate School of Information Sciences, Tohoku University, Sendai, Japan

² Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA

Given integers $v \ge k \ge 2$, $\lambda > 0$, a 2-(*v*, *k*, λ) *design* is a pair $\mathcal{D} = (X, \mathcal{B})$ of a set $X = \{x_i\}_{i=1}^v$ of *v points*, and a collection $B = \{B_j\}_{j=1}^b$ of *k*-subsets $B_j \subseteq X$, called *blocks* such that every two points appear together in exactly λ blocks.

The *points by blocks* incidence matrix $A = (a_{i,j})$ of a design D with ν points and *b* blocks is a $v \times b$ (0, 1)-matrix with $a_{i,j} = 1$ if the *i*th point belongs to the *j*th block, and $a_{ij} = 0$ otherwise. The transposed matrix A^T is called the *blocks by points* incidence matrix of D. The dual design \mathcal{D}^* of D is the design with incidence matrix A^T .

The *derived design* D^x of a 2-(*v*, *k*, λ) design $D = (X, \mathcal{B})$ with respect to a point $x \in X$ is a 1- $(v-1, k-1, \lambda)$ design with point set $X \setminus \{x\}$, and blocks $B \setminus \{x\}$, *B* ∈ *B*, *x* ∈ *B*. If a given 1-(*v* − 1, *k* − 1, *λ*) design D' is a derived design of a 2- (v, k, λ) design, we call \mathcal{D}' *extendable*. The *residual design* \mathcal{D}_x with respect to *x* ∈ *X* is a 1-(*v* − 1, *k*, *r* − *λ*) design with point set *X* $\{x\}$, and blocks *B* ∈ *B*, *x* ∉ *B*, where $r = \lambda(v - 1)/(k - 1)$ is the number of blocks that contain *x*.

If D is a $2-(v, k, \lambda)$ design with $v > k > 0$, the number of blocks $b = v(v - 1)\lambda/(k(k - 1))$ satisfies the Fisher inequality

$$
b \geq v,\tag{1}
$$

and the equality $b = v$ holds if and only if every two blocks share exactly λ points. A $2-(v, k, \lambda)$ design *D* with $b = v$ is called *symmetric*.

A 2- (v, k, λ) design *D* with $b > v$ is *quasi-symmetric* with intersection numbers *x*, *y* ($0 \le x < y$) if every two blocks share either *x* or *y* points. Quasi-symmetric designs were introduced by Shrikhande and Bhagwandas [[11\]](#page-11-3).

A *strongly regular graph* with parameters \bar{n} , \bar{k} , $\bar{\lambda}$, $\bar{\mu}$ is an undirected graph with \bar{n} vertices, having no multiple edges or loops, such that: every vertex has exactly \bar{k} neighbors, every two adjacent vertices have exactly $\bar{\lambda}$ common neighbors, and every two non-adjacent vertices have exactly $\bar{\mu}$ common neighbors. Strongly regular graphs were introduced by Bose [[3\]](#page-11-4). It was proved by Shrikhande and Bhagwandas [\[11](#page-11-3)] that if D is a quasi-symmetric 2- (v, k, λ) design with intersection numbers x, y, $(0 \le x < y)$, then the graph Γ having as vertices the blocks of D , where two blocks are adjacent in Γ if they share exactly *x* points, is strongly regular.

A 2- (v, k, λ) design is called *strongly resolvable* with intersection numbers *x*, *y* $(0 \le x < y)$ if its set of blocks can be partitioned into disjoint subsets in such a way that every two blocks which belong to the same subset intersect each other in exactly *x* points, while every two blocks that belong to diferent subsets intersect each other in *y* points. An example of a strongly resolvable design with $x = 0$, $y = q^{n-2}$ is the design $AG_{n-1}(n,q)$ with parameters $2-(q^n, q^{n-1}, (q^{n-1}-1)/(q-1))$ having as points and blocks the points and hyperplanes in the *n*-dimensional finite affine geometry *AG*(*n*, *q*) over a fnite feld of order *q*. The block graph of a strongly resolvable design is a union of disjoint complete graphs.

Some instant examples of quasi-symmetric designs are the following:

- 1. the union of several identical copies of a symmetric $2-(v, k, \lambda)$ design $(x = \lambda, y = k)$;
- 2. any non-symmetric 2- $(v, k, 1)$ design $(x = 0, y = 1)$;
- 3. any strongly resolvable design;
- 4. any 2- $((k + 1)k/2, k, 2)$ design $(x = 1, y = 2)$.

A quasi-symmetric 2-(*v*, *k*, λ) design with $k \le v/2$ is called *exceptional* if it does not belong to any of the above four categories [\[9](#page-11-5)]. A table of admissible parameters for exceptional quasi-symmetric designs with number of points $v \le 70$ is given in [\[10](#page-11-6)]. There are 73 feasible parameter sets for exceptional quasi-symmetric designs with $v \le 70$ points [\[10](#page-11-6), Table 48.25]. Currently, the existence (or nonexistence) question has been resolved for 40 out of the 73 feasible parameter sets, while the existence of a quasi-symmetric design in each of the remaining 33 cases is an open question. In 26 of the 40 resolved cases, linear codes, and self-dual codes in particular, have played a crucial role in establishing the existence, nonexistence or the classifcation up to isomorphism of the quasi-symmetric designs with the given parameters.

The existence of a quasi-symmetric 2-(41, 9, 9), $(x = 1, y = 3)$ is an open question. This is one of the 33 remaining open cases for plausible exceptional quasisymmetric designs with $v \le 70$ points. In this paper, we prove that a cyclic quasisymmetric 2-(41, 9, 9) design does not exist, and if $p < 41$ is a prime number being the order of an automorphism of a quasi-symmetric 2-(41, 9, 9) design, then $p \le 5$. We also prove the nonexistence of a quasi-symmetric $2-(41, 9, 9)$ design with an automorphism ϕ of order 5 with exactly one fixed point such that the binary code of the derived design is contained in a doubly-even self-dual [40, 20] code invariant under ϕ . This may be considered as a first step to prove the nonexistence of a quasi-symmetric 2-(41, 9, 9) design with block intersection numbers 1 and 3, and an analogue of the previous work $[4, 5]$ $[4, 5]$ $[4, 5]$ $[4, 5]$ for quasi-symmetric 2- $(37, 9, 8)$ designs with block intersection numbers 1 and 3.

The organization of this paper is as follows. In Sect. [2,](#page-2-0) we investigate automorphisms of 2-designs in general. It is shown that (not necessarily quasi-symmetric) 2-(41, 9, 9) design can admit an automorphism of prime order p only if $p = 41$ or $p \le 7$. In Sect. [3](#page-4-0), we show that $p = 41$ and $p = 7$ cannot occur as the order of an automorphism of a quasi-symmetric 2-(41, 9, 9) design. In Sect. [4](#page-6-0), we show that $p = 5$ cannot occur as the order of an automorphism of a quasi-symmetric 2- $(41, 9, 9)$ design, under mild conditions (see Theorem [4.5](#page-10-0) for the exact assumption).

2 Automorphisms of 2‑(41, 9, 9) designs

In this section we investigate the spectrum of prime numbers that could be the order of an automorphism of a 2-(41, 9, 9) design.

Definition 2.1 A 2-(v_0, k, λ) design $\mathcal{D}_0 = (X_0, \mathcal{B}_0)$ is a *subdesign* of a 2-(v, k, λ) design $\mathcal{D} = (X, \mathcal{B})$ if $X_0 \subseteq X$ and $\mathcal{B}_0 \subseteq \mathcal{B}$.

The following statement is given without a proof in [[8,](#page-11-9) II.1.4, page 25].

Lemma 2.2 *If a* 2-(*v*, *k*, λ) design D with $k \geq 2$ contains a 2-(v_0, k, λ) subdesign \mathcal{D}_0 *then either* $v_0 = v$ *or*

$$
v_0 \le \frac{v-1}{k-1}.\tag{2}
$$

Proof Every point of \mathcal{D}_0 is contained in $r - r_0$ blocks of \mathcal{D} that are not blocks of \mathcal{D}_0 . If *x*, *y* are two distinct points of \mathcal{D}_0 then the set *S_x* of *r* − *r*₀ blocks of \mathcal{D} that are not blocks of \mathcal{D}_0 and contain *x*, and the set S_y of $r - r_0$ blocks of $\mathcal D$ that are not blocks of \mathcal{D}_0 and contain *y*, are disjoint: $S_x \cap S_y = \emptyset$. Thus, we have

$$
v_0(r - r_0) \le b - b_0. \tag{3}
$$

After the substitutions $r = \lambda(v-1)/(k-1)$, $r_0 = \lambda(v_0-1)/(k-1)$, *b* = $\lambda v(v-1)/(k(k-1))$, *b*₀ = $\lambda v_0(v_0-1)/(k(k-1))$, the inequality ([3\)](#page-3-0) simplifies to

$$
(k-1)v_0^2 + (1 - vk)v_0 + v^2 - v \ge 0.
$$

The roots of the quadratic polynomial $f(v_0) = (k - 1)v_0^2 + (1 - vk)v_0 + v^2 - v$ are $v_0 = v$ and $v_0 = (v - 1)/(k - 1)$, and the statement of the lemma follows. \Box

A trivial lower bound on the number of points of a $2-(v_0, k, \lambda)$ subdesign is $v_0 \geq k$, which, combined with [\(2](#page-3-1)) gives

$$
k \le v_0 \le \frac{v-1}{k-1}.\tag{4}
$$

The inequalities ([4\)](#page-3-2) imply the following.

Corollary 2.3 A necessary condition for a 2- (v, k, λ) design to have a subdesign with $v_0 < v$ *points is that* $k(k-1) + 1 \leq v$.

Lemma 2.4 *Let* $\mathcal{D} = (X, \mathcal{B})$ *be a* 2-(*v*, *k*, λ) *design with an automorphism* ϕ *of prime order p, such that p does not divide v and* $p > \lambda$ *.*

(*i*) If a block B contains two distinct points x, y which are fixed by ϕ , then B is $fixed by ϕ .$

(*ii*) Let $X_0 = \{x \in X \mid x^{\phi} = x\}$. Assume that $v_0 = |X_0| \ge 2$ and $p > k$. Then X_0 is *the point set of a* 2- (v_0, k, λ) *subdesign of* D *with* $v_0 < v$.

Proof

(i) If we assume that *B* is not fixed by ϕ , then *x* and *y* must appear together in every of the *p* distinct blocks from the orbit of *B* under the cyclic group $\lt \phi$. which is impossible because $p > \lambda$.

(ii) Since $p > k$, every block that is fixed by ϕ must consist entirely of fixed points. Now by part (i), if a block *B* contains two points from X_0 then $B \subseteq X_0$, hence the set of all blocks of D that are fixed by ϕ form a 2-(v_0, k, λ) subdesign. \Box

Theorem 2.5

- (i) *If* D *is a* 2-(41, 9, 9) *design that admits an automorphism of prime order p then either* $p = 41$ *or* $p \le 7$ *.*
- (ii) *There exists a* 2-(41, 9, 9) *design with automorphism of order* 41.

Proof (i) Assume that D is a 2-(41, 9, 9) design with an automorphism ϕ of a prime order $p < 41$. Since the number of blocks of D is $205 = 5 \cdot 41$, if p is in the range $7 < p < 41$ then ϕ must fix at least one block and at least two points. By Lemma [2.4,](#page-3-3) part (ii) the set X_0 of all points that are fixed by ϕ is the point set of a 2-(v_0 , 9, 9) subdesign with $v_0 < 41$. On the other hand, since $9 \cdot 8 + 1 = 73 > 41$, a 2-(41, 9, 9) design D cannot have any subdesign with $v_0 < 41$ by Corollary [2.3,](#page-3-4) a contradiction.

(ii) Let $G = AGL(1, 41)$ be the group of order $41 \cdot 40 = 1640$, being the semidirect product of the additive and the multiplicative groups of the fnite feld of order 41, $Z_{41} = \{0, 1, 2, \ldots, 40\}$. The group *G* acts as a 2-transitive permutation group on *Z*41 as the set of transformations

$$
\{g = (a, b) : g(x) = ax + b \pmod{41}, x \in Z_{41}, a, b \in Z_{41}, a \neq 0\}.
$$

Since *G* is 2-transitive, the orbit *B^G* of any *k*-subset $B \subset Z_{41}$ with $k \ge 2$ is a 2-(41, *k*, λ) design with $b = |G|/|G_B|$ blocks, where G_B is the setwise stabilizer of *B* in *G*, and $\lambda = bk(k-1)/(v(v-1))$. If we choose *B* to be a 9-subset which is fixed by the subgroup $H = \langle 3, 0 \rangle > 0$ order 8, for example, $B = \{0, 1, 3, 9, 27, 40, 38, 32, 14\}$, then $|G_B| = |H| = 8$ and the orbit of *B* under *G* is a cyclic 2-(41, 9, 9) design.

3 Automorphisms of quasi‑symmetric 2‑(41, 9, 9) designs

In this section we investigate the spectrum of prime numbers that can be the order of an automorphism of a putative quasi-symmetric 2-(41, 9, 9) design with intersection numbers $x = 1$, $y = 3$.

Theorem 3.1 *A quasi-symmetric* 2-(41, 9, 9) *design with an automorphism of order* 41 *does not exist.*

Proof Let *A* be the 205 \times 41 blocks by points incidence matrix of a quasi-symmetric 2-(41, 9, 9) design $\mathcal{D} = (X, \mathcal{B})$, and let A^+ be the 205 \times 42 matrix obtained by adding to *A* one all-one column. The matrix $A⁺$ has constant row sum 10, and the inner product of every two rows of A^+ is an even number (2 or 4). Thus, the rows of A^+ span a binary self-orthogonal code of length 42, hence the rank of *A* over the binary field, $rank_2A$, satisfies the inequality

$$
rank_2 A \le 21.
$$

On the other hand, since *A* has $205 > 2^7$ rows, we have

$$
rank_2 A > 7.
$$

Assume now that D is invariant under the cyclic group of order 41 acting regularly on the point set *X*, hence the binary linear code *L* spanned by the rows of *A* is a cyclic code (for the fundamentals of cyclic codes, see, e.g. [[7,](#page-11-1) Chapter 4]). There are exactly three cyclotomic cosets of 2 modulo 41, namely {0}, the set *Q* of the 20 quadratic residues modulo 41, and the set *N* of the 20 quadratic non-residues modulo 41. Since

$$
7 < rank_2 A \le 21,
$$

it follows that *L* is equivalent to the quadratic residue code QR_{41} (see [\[7](#page-11-1), Sec. 6.6]) of length 41 and dimension 21, having a generator polynomial

$$
g(x) = x^{20} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{11} + x^{10} + x^9 + x^6 + x^5 + x^4 + x^3 + x^2 + 1.
$$

The minimum weight of QR_{41} is 9, and the set of all 410 codewords of weight 9 spans the code, hence the full automorphism group of the code coincides with the automorphism group *G* of the 1-(41, 9, 90) design *D* having as blocks the supports of the codewords of weight 9. It turns out that *D* is also a 2-(41, 9, 18) design. The collection of blocks of the 2-(41, 9, 9) design D gives rise to a bipartition of 410 codewords of weight 9 into two equal parts, where in each part, the supports intersect pairwise in either one or three positions. We defne a graph Γ having as vertices the 410 codewords of QR_{41} of minimum weight, where two codewords are adjacent in Γ if their supports share either one or three positions. A quick check by computer shows that the complement of Γ has a 3-cycle, hence is not bipartite. Therefore, a cyclic quasi-symmetric 2-(41, 9, 9) design with intersection numbers $x = 1$, $y = 3$ does not exist.

Note 1 The automorphism group *G* of QR_{41} is of order 820, and acts as a transitive permutation group of rank 3 on the set of 41 code coordinates. The group *G* can be viewed also as the automorphism group of the Paley graph *P*(41) with vertex set $X = \{0, 1, \ldots, 40\}$, with vertices corresponding to the code coordinates, where two vertices *i*, *j* are adjacent in *P*(41) if *i* − *j* is a quadratic residue modulo 41. The graph *P*(41) is a strongly regular graph with parameters $\bar{n} = 41$, $\bar{k} = 20$, $\bar{\lambda} = 9$, $\bar{\mu} = 10$. The group *G* partitions the collection of all unordered 2-subsets of vertices in two orbits: one orbit consists of the edges of *P*(41), and the second orbit consists of all on-edges. The stabilizer of a minimum weight codeword in *G* is of order 2, hence all 410 codewords of weight 9 are in one orbit under the action of *G*. Thus, all blocks of the 1-(41, 9, 90) design *D* having as blocks the supports of the codewords of weight 9 in the code *QR*41 are in one orbit under the action of *G*. It is easy to show that *D*

is actually a 2-(41, 9, 18) design. Indeed, any block of *D* can be considered as subgraph of the Paley graph $P(41)$. For example, $B = \{1, 3, 9, 15, 17, 18, 21, 38, 41\}$ is a block corresponding to a codeword of QR_{41} with nonzero positions 1, 3, 9, ..., 41. Considered as a subgraph of *P*(41), *B* contains exactly 18 edges, that is, there are 18 pairs $i, j ∈ B$, $i < j$ such that $j - i$ is a quadratic residue modulo 41. Now applying Theorem 3.5.1 from $[12, p. 166]$ $[12, p. 166]$, it follows that *D* is a 2-(41, 9, λ) design with

$$
\lambda = \frac{410 \cdot 9 \cdot 8}{41 \cdot 40} = 18.
$$

Theorem 3.2 *A quasi-symmetric* 2-(41, 9, 9) *design with intersection numbers* $x = 1$, *y* = 3 *and an automorphism of order 7 does not exist*.

Proof Assume the contrary, and let ϕ be an automorphism of order 7 of a quasi-symmetric 2-(41, 9, 9) design with intersection numbers $x = 1$, $y = 3$. Since the number of points is 41 ≡ 6 (mod 7), *𝜙* fxes at least 6 points. Pick two points *p*, *p*′ fxed by ϕ . Since there are 9 blocks containing both *p* and *p'*, ϕ fixes at least two blocks *B*, *B'* containing the points *p*, *p'*. Since $x = 1$ and $y = 3$, there is another point in $B \cap B'$ which must be fixed by ϕ . Then the remaining six points of *B* are also fixed by ϕ .

Now let *B''* be an arbitrary block sharing three points q, q', q'' with *B*. If ϕ does not fix B'' , then the orbit of B'' under ϕ consists of 7 blocks all of which contain *q*, *q'*, *q''*. These blocks are disjoint outside *q*, *q'*, *q''*, so we need $7 \cdot (9-3) = 42$ points outside *B*. Since this is impossible, we conclude that ϕ fixes *B''*, and hence also all the points of *B*′′.

We have shown that, every block sharing three points with a block fixed by ϕ pointwise is also fixed by ϕ pointwise. Since the block graph is a connected strongly regular graph, this implies that ϕ fixes every block pointwise. Thus, ϕ fixes every point, which contradicts the fact that ϕ has order 7.

Theorems [2.5](#page-4-1), [3.1](#page-4-2) and [3.2](#page-6-1) imply the following. \square

Theorem 3.3 *If p is a prime number being the order of an automorphism of a quasisymmetric* 2-(41, 9, 9) *design, then* $p \leq 5$.

4 Quasi‑symmetric 2‑(41, 9, 9) designs and doubly‑even self‑dual codes of length 40

Suppose that $\mathcal{D} = (X, \mathcal{B})$ is a quasi-symmetric 2-(41, 9, 9) design with intersection numbers $x = 1$, $y = 3$. If $z \in X$, the derived 1-(40, 8, 9) design \mathcal{D}^z is a quasi-symmetric design with block intersection numbers $x' = 0$, $y' = 2$, and the 40 \times 45 points by blocks incidence matrix M of \mathcal{D}^z has the following properties:

- 1. *M* has constant row sum 9.
- 2. *M* has constant column sum 8.
- 3. The inner product of any two columns of *M* is either 0 or 2.

Properties 2 and 3 imply that the binary linear code spanned by the columns of *M* is a self-orthogonal code *L* of length 40 with all weights divisible by 4, hence *L* is contained in some binary doubly-even self-dual code *C* of length 40. Thus, the column set of *M* is a set of 45 codewords of *C* of weight 8, such that properties 1 and 3 hold. Motivated by Theorem [3.3](#page-6-2) and to reduce the search, we will assume that the column set of *M* is a union of orbits of codewords of weight 8 under an automorphism group of *C* of order 5.

All binary doubly-even self-dual codes of length 40 were classifed up to equivalence by Betsumiya et al. $[2]$ $[2]$. Among the $16,470$ doubly even $[40, 20, 8]$ codes, there are 45 codes with an automorphism of order 5 [\[2](#page-11-10)]: 44 codes have a full automorphism group of order not divisible by 25 that contains one conjugacy class of fxed-point-free automorphisms of order 5, and there is a unique code with a full automorphism group of order divisible by 25. The automorphism group of the latter code contains fxed-point-free automorphisms of order 5, as well as automorphisms of order 5 with 20 fixed points. With respect to this automorphism ϕ of order 5 with 20 fxed points, the codewords of weight 8 are classifed into three types:

- 1. codewords whose support is contained in the set of 20 fxed points (hence these codewords are fixed by ϕ):
- 2. codewords whose support is disjoint from the set of 20 fxed points;
- 3. codewords whose support consists of 4 fxed points and 4 points that are not fxed by ϕ .

If there is a 1-(40, 8, 9) design with intersection numbers $x' = 0$ and $y' = 2$ invariant under ϕ , then its set of blocks contains no blocks of type 3, hence every block is of type 1 or 2. Since the points covered by 1 and 2 are disjoint, this would result in a 1-(20, 8, 9) design. However, such a design does not exist because 20 ⋅ 9∕8 is not an integer.

Any doubly-even self-dual [40, 20, 8] code *C* contains exactly 285 codewords of weight 8 (see, e.g. $[6, Subsec, 2.3]$ $[6, Subsec, 2.3]$ $[6, Subsec, 2.3]$), and if the code is invariant under an automorphism ϕ of order 5 without fixed points, the set of 285 codewords of weight 8 is partitioned into 57 orbits of length 5 under the action of $\langle \phi \rangle$. Any quasi-symmetric 1-(40, 8, 9) design which is invariant under $\lt \phi$ > and whose blocks are supports of codewords of *C*, has a 40×45 incidence matrix with column set comprising of nine orbits of codewords of weight 8 under the action of $\langle \phi \rangle$.

Example 4.1 The following nine 8-sets

are the base blocks (that is, block orbit representatives) of a quasi-symmetric 1-(40, 8, 9) design \mathcal{D}' with point set $X' = \{1, 2, ..., 40\}$ and an automorphism ϕ of order 5,

$$
\phi = (1, 2, \dots, 5)(5, \dots, 10) \cdots (36, \dots 40),
$$

obtained from a doubly-even $[40, 20, 8]$ self-dual code invariant under ϕ .

 θ

 1 θ

The 8 \times 9 orbit matrix $M = (m_{i,j})$ of \mathcal{D}' under the action of $<\phi$ >, where $m_{i,j}$ is the number of blocks from the *j*th block orbit that contain a single point from the *i*th point orbit, is given in (5) (5) .

$$
020021202\n101121210\n312101001\n011201031\n121221000\n112021011\n011101221\n200101212
$$
\n(5)

In order to extend the quasi-symmetric 1-(40, 8, 9) design \mathcal{D}' from Example [4.1](#page-7-0) to a quasi-symmetric 2-(41, 9, 9) design with intersection numbers 1 and 3, we need to find a matching residual $1-(40, 9, 36)$ design such that each of its 160 blocks meets every block of \mathcal{D}' in either 1 or 3 points. Surprisingly, an exhaustive computer search shows that there is no 9-subset of *X* that meets every block of \mathcal{D}' in either 1 or 3 points. This phenomenon can be explained by the following theorem.

Theorem 4.2 *Suppose that* $\mathcal{D} = (X, \mathcal{B})$ *is a quasi-symmetric* 2- (v, k, λ) *design with odd intersection numbers x, y. Let* \mathcal{D}^z *be a derived* $1-(v-1,k-1,\lambda)$ *design of* \mathcal{D} *with respect to a point* $z \in X$. Let M be the points by blocks incidence matrix of \mathcal{D}^z , *and let M̄ be the matrix obtained by adding one all-one row to M:*

$$
\bar{M} = \left(\begin{array}{cc} M \\ 1 & \cdots & 1 \end{array}\right).
$$

Let \overline{C} *be the binary linear code spanned by the columns of* \overline{M} *. If* $c \in \overline{C}$ *is a codeword with nonzero last position, then*

$$
wt(c) \ge 1 + \frac{b-r}{r - \lambda},
$$

where $b = |\mathcal{B}|$ *and* $r = bk/v$ *.*

Proof Let D_z be the residual 1-($v - 1$, k , $r - \lambda$) design of D with respect to z, and let *N* be the $(\nu - 1) \times (b - r)$ points by blocks incidence matrix of \mathcal{D}_r . Let \bar{N} be the matrix obtained by adding one all-one row to *N*:

$$
\bar{N} = \left(\begin{array}{rr} N \\ 1 & \cdots & 1 \end{array}\right).
$$

Since the scalar product of every column of *M* with every column of *N* is either *x* or *y* and both *x* and *y* are odd, the scalar product of every column of \overline{M} with every column of \overline{N} is an even number $(x + 1$ or $y + 1)$. This implies that every column of \overline{N} is orthogonal to \overline{C} over the binary field. In particular, $c^{\top} \overline{N} \equiv 0 \pmod{2}$, and hence $wt(c) \neq 1$.

Let c' be the vector indexed by X obtained from c by deleting the last coordinate. Then c^{t} ^{*T}N* is the all-one vector modulo 2. In particular, every block of D_z meets the</sup> support of *c'*. Since every point of \mathcal{D}_z is contained in exactly $r - \lambda$ blocks of \mathcal{D}_z , the number of blocks of \mathcal{D}_z is at most $wt(c')(r - \lambda)$. This implies $b - r \le wt(c')(r - \lambda)$, proving the desired inequality. \Box

Theorem [4.2](#page-8-1) implies the following.

Theorem 4.3 *A necessary condition for an* $1-(v-1, k-1, \lambda)$ *design* \mathcal{D}' *with even block intersection numbers* x' , y' to be extendable to a quasi-symmetric 2- (v, k, λ) *design with odd intersection numbers* $x = x' + 1$, $y = y' + 1$ *is that the binary linear code spanned by the rows of its points by blocks incidence matrix contains the allone vector.*

Proof Assuming that $\mathcal{D}' = \mathcal{D}^z$ for some quasi-symmetric 2-(*v*, *k*, λ) design \mathcal{D} , we use the same notation as Theorem [4.2](#page-8-1). Let *C* be the binary code of length *r* spanned by the rows of *M*. The condition that *C* contains the all-one vector $\overline{1} = (1, \ldots, 1)$ is equivalent to the condition that all codewords in its dual code C^{\perp} have even weights. Thus, $\overline{1} \notin C$ if and only if there is a set *S* of an odd number of columns of *M* whose sum over the binary feld is the zero column. If *S* is such a set, then the modulo 2 sum of the corresponding columns of \overline{M} is a vector of weight 1 with nonzero last position. This violates the inequality in Theorem [4.2.](#page-8-1) \Box

Note 2 The modulo 2 sum of the frst three columns of the orbit matrix [\(5](#page-8-0)) is the zero column. Hence, the dual code C^{\perp} of binary code C of length 45 spanned by the incidence matrix of the 1-(40, 8, 9) design \mathcal{D}' from Example [4.1](#page-7-0) contains a codeword of odd weight 15. It follows that *C* does not contain the all-one vector, thus, by Theorem [4.3](#page-9-0), \mathcal{D}' is not extendable to a quasi-symmetric 2-(41, 9, 9) design.

Example 4.4 The following matrix

Table 1 Designs from doubly even self-dual [40, 20] codes

$$
\begin{pmatrix} 1 \\ I_{20} & J-B & \vdots \\ 1 & \dots & 1 \\ 1 & \dots & 1 \end{pmatrix},
$$

where I_{20} is the identity matrix of order 20, *B* is the square circulant (0, 1)-matrix of order 19 with nine nonzero entries in its frst row indexed by the quadratic residues modulo 19, and *J* is the 19 \times 19 all-one matrix, is the generator matrix of a doubly even self-dual [40, 20, 8] code *C*, known as the double circulant code with these parameters. The full automorphism group of *C* is of order $6840 = 2^3 \cdot 3^2 \cdot 5 \cdot 19$, and contains an automorphism ϕ of order 5 without fixed points that partitions the 285 codewords of weight 8 in 57 orbits. A short computer search shows that there are exactly 1787 distinct 1-(40, 8, 9) designs with block intersection numbers 0 and 2, whose 40×45 incidence matrices comprise of 9 orbits of codewords of weight 8 under the action of ϕ . None of the 1787 binary codes of length 45 spanned by these incidence matrices contains the all-one vector, hence, according to Theorem [4.3,](#page-9-0) all 1-(40, 8, 9) designs that arise from *C* and admit ϕ as an automorphism, are not extendable to a quasi-symmetric 2-(41, 9, 9) design.

Theorem 4.5 *There is no quasi-symmetric* 2-(41, 9, 9) *design with an automorphism 𝜙 of order 5 with exactly one fxed point such that the incidence matrix of a derived design with respect to the point fixed by φ is obtainable as a collection of codewords in a doubly-even self-dual* [40, 20] *code invariant under 𝜙*.

The proof of Theorem [4.5](#page-10-0) is computational. Table [1](#page-10-1) gives a summary of the computational results. From the database of doubly even self-dual [40, 20] codes, we first extract those with automorphism ϕ of order 5 without fixed points. There are 45 (resp. 32) doubly even self-dual [40, 20, 8] (resp. [40, 20, 4]) codes. For each such [40, 20] code *C*, we decompose the set of codewords of weight 8 into orbits under $\langle \phi \rangle$, and enumerate all possible union of nine orbits which can form the set of blocks of a quasi-symmetric 1-(40, 8, 9) design with intersection numbers $x' = 0$, $y' = 2$. The designs are then tested to see if the necessary condition given in Theorem [4.3](#page-9-0) is satisfed. In this way, we obtain two designs from [40, 20, 8] codes, and 130 designs from [40, 20, 4] codes. It turns out that none of the latter 130 designs is extendable by Theorem [4.2.](#page-8-1) This is because the code \bar{C} contains a codeword of weight $5 < 1 + (b - r)/(r - \lambda) = 49/9$.

For each of the remaining two $1-(40, 8, 9)$ designs coming from $[40, 20, 8]$ codes, we construct the points by blocks incidence matrix *M*. Using the notation of the proof of Theorem [4.2](#page-8-1), we see that the extendability implies the existence of a 40×160 matrix *N* which is the points by blocks incidence matrix of the corresponding residual 1-(40, 9, 36) design. The matrix *N* has row sum 36, so for each $i \in \{1, ..., 40\}$, there are at least 36 codewords of weight 10 whose support contains ${i, 41}$ in \overline{C}^{\perp} . Let $\Gamma_i = (X_i, E_i)$ denote the graph, where the vertex set X_i is the set of codewords of weight 10 whose support contains $\{i, 41\}$ in \overline{C}^{\perp} . The edge set E_i consists of pairs of codewords whose support intersect at 1 or 3 positions. Since *N* is the points by blocks incidence matrix of the residual design, the maximum clique size $\omega(\Gamma_i)$ of the graph Γ_i must be at least 36. We have verified by computer that for each of the two designs,

$$
\min\left\{\omega(\Gamma_i)\,:\,1\leq i\leq 40\right\}<36.
$$

This shows that none of the 1-(40, 8, 9) designs we found is extendable.

References

- 1. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999)
- 2. Betsumiya, K., Harada, M., Munemasa, A.: A complete classifcation of doubly even self-dual codes of length 40. Electron. J. Combin. **19**(P18), 12 (2012)
- 3. Bose, R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pac. J. Math. **13**(2), 389–419 (1963)
- 4. Bouyuklieva, S., Varbanov, Z.: Quasi-symmetric 2-(37, 9, 8) designs and self-orthogonal codes with automorphisms of order 5. Math. Balkanica (N.S.) **19**, 33–38 (2005)
- 5. Harada, M., Munemasa, A., Tonchev, V.D.: Self-dual codes and the non-existence of a quasi-symmetric 2-(37, 9, 8) design with intersection numbers 1 and 3. J. Combin. Des. **25**, 469–476 (2017)
- 6. Cary Hufman, W.: On the classifcation and enumeration of self-dual codes. Finite Fields Appl. **11**(3), 451–490 (2005)
- 7. CaryHufman, W., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
- 8. Mathon, R., Rosa, A.: $2-(v, k, \lambda)$ designs of small order. In: Colbourn, C.J., Dintz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn. Chapmanand Hall/CRC, London, pp. 25–58 (2007)
- 9. Neumaier, A.: Regular sets and quasi-symmetric 2-designs. In: Jungnickel, D., Vedder, K. (eds.) Combinatorial Theory, pp. 258–275. Springer, Berlin (1982)
- 10. Shrikhande, M. S.: Quasi-Symmetric Designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn, Chapman and Hall/CRC, Boca Raton, pp. 578–582 (2007)
- 11. Shrikhande, S.S., Bhagwandas: Duals of incomplete block designs. J. Indian Statist. Assoc. **3**, 30–37 (1965)
- 12. Tonchev, V.D.: Combinatorial Confgurations. Wiley, New York (1988)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.