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Abstract
Cyclic codes are among the most important families of codes in coding theory 
for both theoretical and practical reasons. Despite their prominence and intensive 
research on cyclic codes for over a half century, there are still open problems related 
to cyclic codes. In this work, we use recent results on the equivalence of cyclic codes 
to create a more efficient algorithm to partition cyclic codes by equivalence based 
on cyclotomic cosets. This algorithm is then implemented to carry out computer 
searches for both cyclic codes and quasi-cyclic (QC) codes with good parameters. 
We also generalize these results to repeated-root cases. We have found several new 
linear codes that are cyclic or QC as an application of the new approach, as well as 
more desirable constructions for linear codes with best known parameters. With the 
additional new codes obtained through standard constructions, we have found a total 
of 14 new linear codes.

Keywords Best known linear codes · Cyclic codes · Cyclotomic cosets · 
Equivalence of codes · Search algorithms for linear codes

Mathematics Subject Classification 94B15 · 94B60

1 Introduction

We study the problem of determining equivalence between cyclic codes in this work. 
There are several reasons that motivate this study. The class of cyclic codes is one of 
the oldest families in coding theory that have been studied for over 6 years [17, 18]. 
They are important for both theoretical and practical purposes and they establish 
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a fundamental link between coding theory and algebra. There has been intensive 
research on codes over rings in the past few decades. Whenever a new type of ring 
is introduced to coding theory, one of the very first things researchers do is to study 
cyclic codes over that ring. In addition to the fact that both cyclic codes and code 
equivalence are fundamental topics in coding theory, there are additional benefits 
that may be obtained from new results on this question as explained below.

A linear code C over a finite field �q is a vector subspace of � n
q
 . Each code has a 

length (n), dimension (k), and minimum Hamming distance (d). Constructing codes 
with optimal parameters is one of the most important and challenging problems 
in coding theory. This optimization problem can be formulated in a few different 
ways. For example, given the length n and the dimension k over a certain finite field 
�q , we look for the largest possible value dq(n, k) of the minimum distance. Theo-
retical upper bounds are available for dq(n, k) , and codes whose parameters attain 
an upper bound are called optimal codes, sometimes d-optimal codes. The online 
database [12] gives information about best known linear codes (BKLC) over small 
finite fields �q , q ≤ 9 , including lower and upper bounds on dq(n, k) . Lower bounds 
are usually obtained by explicit constructions. We observe from the database that in 
most cases there are gaps between lower and upper bounds on dq(n, k) . In general, 
optimal codes are known only when either k or n − k is small.

Computer searches are often used to find linear codes with best known parame-
ters, however there are inherent limitations to the computational approach. First, 
determining the minimum distance of a linear code is computationally intractable 
[23] so it takes significant time to find the minimum distance of a single code when 
the dimension is large. Second, for a given length and dimension, the number 
(qn − 1)(qn − q)⋯ (qn − qk−1)

(qk − 1)(qk − q)⋯ (qk − qk−1)
 of linear codes is very large and grows quickly. 

Hence, exhaustive computer searches on linear codes is not feasible. Therefore, we 
focus on specific classes of codes with rich mathematical structures that are known 
to contain many codes with good parameters. One such family of codes is the class 
of quasi-twisted (QT) codes that contains cyclic, constacyclic and quasi-cyclic (QC) 
codes as special cases. Hundreds of record breaking codes have been obtained in the 
last few decades by computer searches within these classes (see [4–6, 10, 22] for a 
few examples) all of which are generalizations of cyclic codes. Our work in this 
paper shows that new results on equivalence of cyclic codes can be useful for com-
putational purposes.

Another area of research that has been receiving much attention recently is code-
based cryptography due to its promise for the age of quantum computers. One spe-
cific problem of great interest in the field is to reduce the key size in the McEliece 
cryptosystem [15], one of the earliest examples of public key cryptosystem—as old 
as the widely used RSA cryptosystem—that did not become widely used due to its 
large key size. However, given the promise of the McEliece system for post-quan-
tum cryptography there has been a renewed interest on the subject. Cyclic codes and 
their various generalizations, such as QC codes, are being considered in an effort 
to reduce the key size in the McEliece cryptosystem (see [7] for a recent example). 
Code equivalence is of fundamental importance in code-based cryptography which 
provides another motivation for this work.
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2  Basic definitions

A linear code C is called cyclic if whenever c = (c0, c1, ..., cn−1) is a codeword, 
then so is its cyclic shift �(c) = (cn−1, c0, c1, ..., cn−2) . If we represent a vector 
c = (c0, c1, ..., cn−1) by the polynomial c(x) = c0 + c1x +⋯ + cn−1x

n−1 , then we 
obtain a vector space isomorphism between � n

q
 and the set of all polynomials over 

�q of degree less than n. In this representation, the cyclic shift of c in � n
q
 cor-

responds to the multiplication of c(x) by x in the quotient ring �q[x]∕⟨xn − 1⟩ . It 
is well known that cyclic codes of length n over �q are precisely the ideals of the 
ring �q[x]∕⟨xn − 1⟩ which is a principal ideal ring (a ring in which every ideal is 
generated by a single element) and there is a one-to-one correspondence between 
cyclic codes of length n over �q and divisors of xn − 1 over �q . In general, a cyclic 
code C has many generators. Among all generators of C, there is a generator pol-
ynomial g(x) that is uniquely determined by the following two conditions (i) g(x) 
is monic (ii) g(x) is a non-zero polynomial of smallest degree in C. We write 
C = ⟨g(x)⟩ . This unique generator must divide xn − 1 , and it is called the (stand-
ard) generator of C. Hence, we can write xn − 1 = g(x)h(x) and call h(x) the check 
polynomial of C. Moreover, any other generator of C is of the form g(x)f(x) where 
gcd(f (x), h(x)) = 1 [3]. A cyclic code may be defined either by its generator poly-
nomial or its check polynomial.

Given the generator polynomial g(x) = g0 + g1x +⋯ + gtx
t of a cyclic code C, 

we obtain a generator matrix for C as a circulant matrix of the form

where each row is the cyclic shift of the row above it. The dimension of C is 
n − deg(g(x)).

A fundamental notion in the study of cyclic codes is that of cyclotomic coset, a 
subset of ℤn.

Definition 1 Let gcd(n, q) = 1 . For any s ∈ ℤn , the q-cyclotomic coset of n contain-
ing s is the set Ss = {sqj mod n ∶ j = 0, 1, 2...}

Assuming gcd(n, q) = 1 , there is a one-to-one correspondence between the irre-
ducible factors of xn − 1 and cyclotomic cosets mod n. Therefore there is a corre-
spondence between cyclic codes and unions of cyclotomic cosets when gcd(n, q) = 1 . 
This correspondence is obtained via the nth roots of unity. Let � ∈ �qt be a primitive 
n t h root of unity over �q . Then, 

xn − 1 =
∏n−1

i=0
(x − �

i)
 in �qt [x] . Each cyclotomic 

coset Ss = {s, sq, sq2, ..., sqr−1} mod n corresponds to an irreducible divisor p(x) of 
xn − 1 over �q by 

p(x) =
∏

i∈Ss
(x − �

i)
 . We denote the cyclotomic coset correspond-

ing with a given polynomial g by Sg.

⎡

⎢

⎢

⎢

⎣

g0 g1 ⋯ gt 0 ⋯ 0

0 g0 g1 ⋯ gt 0⋯ 0

…

0 … 0 g0 g1 ⋯ gt

⎤

⎥

⎥

⎥

⎦

.
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Equivalence of codes is a central concept for this work. Two linear codes are 
called equivalent if one can be obtained from the other by any combination of the 
following transformations 

1. A permutation of the coordinates.
2. Multiplication of elements in a fixed position by a non-zero scalar in �q.
3. Applying a field automorphism of �q to each component of the vectors.

If only (1) is used, then the codes are called permutation equivalent. This is a very 
important special case. We can summarize all of these conditions in the following 
way.

Definition 2 Two linear codes C1,C2 ⊆ �
n
q
 are equivalent if there exists a monomial 

matrix M and an automorphism � over �q such that C1 = C2M�.

It is well known that equivalent codes have the same parameters. This has impor-
tant implications for computer searches because a search algorithm need not exam-
ine any code that is equivalent to codes which have been already searched. This 
work generalizes our previous results in [2] on the equivalence of cyclic codes and 
their generalization to constacyclic codes. Further, it includes a new algorithm for 
partitioning cyclic codes by equivalence and a search algorithm that only checks 
the minimum distance of codes that are not equivalent to any of the codes already 
examined.

3  Extending results on equivalence of cyclic codes to repeated root 
case

Under the assumption of gcd(n, q) = 1 , the following theorems are proven in [2].

Theorem  1 [2] Let g1(x) and g2(x) be the standard generators of cyclic codes of 
length n over �q and assume gcd(e, n) = 1 . Then the isometry

given by

has the property g2(x) = �(g1(x))) if and only if the map � ∶ Sg1 ↦ Sg2 given 
by �(z) = e−1z mod n , where e−1 is the multiplicative inverse of e mod n , is a 
bijection.

Theorem  2 [2] Let g1(x) be the standard generator of a cyclic code of length n 
over �q where gcd(n, q) = 1 , and let � = �

−b where � is a primitive nth root of 
unity, such that n divides b ⋅ deg(g1(x)) ⋅ (q − 1) . Let K be an extension field of �q 
that contains � . Then the isometry Φ ∶ K[x]∕⟨xn − 1⟩ ↦ K[x]∕⟨xn − 1⟩ defined by 

Φ ∶ �q[x]∕⟨x
n − 1⟩ ⟶ �q[x]∕⟨x

n − 1⟩

x ↦ xe mod xn − 1
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Φ(f (x)) = f (�x) mod (xn − 1) has the property that Φ(g1(x)) ∈ �q[x] and generates 
a cyclic code of length n over �q if and only if the map � ∶ ℤn ↦ ℤn defined by 
�(z) = z + b mod n is a bijection such that �(Sg1) = SΦ(g1)

.

These theorems in their current form require that xn − 1 does not have repeated 
roots. This was assumed largely because there was not a construction for cycloto-
mic cosets in repeated-root cases. We now propose such a construction. First write 
the code length n over a field with characteristic q as n = nqq

i where gcd(q, nq) = 1 . 
Next we find the cyclotomic cosets mod nq.

Define a function P which takes cyclotomic cosets to polynomials. Let � be an nth
q

 
root of unity, and S be a cyclotomic coset mod n . We define 

P(S) =
∏

i∈S
(x − �

i)
 . 

Then we use a multiset to describe unions where if an irreducible factor of xn − 1 
appears multiple times in a divisor, then the roots of that factor appear multiple 
times in the multiset. This means a multiset MS is a union of not necessarily distinct 
cyclotomic cosets S1, S2, ..., Sk and it corresponds to the polynomial 
P(MS) = P(S1) ⋅ P(S2)⋯P(Sk).

For example, let us consider binary cyclic codes of length 14. Then nq = 7 . So 
the cyclotomic cosets are S0 = {0} , S1 = {1, 2, 4} and S3 = {3, 5, 6} . Now the fol-
lowing are two possible multisets describing a union that corresponds to a divi-
sor of x14 − 1 ∶ MS1 = {1, 2, 4, 1, 2, 4} and MS2 = {3, 5, 6, 3, 5, 6} . The cor-
responding codes to these multisets are equivalent via a map between the sets of 
the form given in Theorem  1 with e−1 = 5 . These correspond to the polynomials 
P(MS1) = P(S1)P(S1) = x6 + x4 + 1 and P(MS2) = P(S3)P(S3) = x6 + x2 + 1 which 
indeed generate equivalent codes.

Because the proofs of the Theorems 1 and 2 given in [2] do not rely on the fact 
that the cyclotomic cosets have distinct elements, and use the same function to take 
cyclotomic cosets to polynomials, both theorems also apply to this repeated-root 
construction as well. In generalizing the results in Theorems 1 and 2 to the repeated 
root case, one needs to replace the condition gcd(e, n) = 1 by gcd(e, nq) = 1.

Moreover, this method can be generalized to apply to constacyclic codes too. This 
is because xn − a|xrn − 1 , where r is the order of a in the multiplicative group of � ∗

q
 . 

The irreducible factors of xn − a over �q correspond to a subset of cyclotomic cosets 
mod nr . See [3] for more on this.

4  A new equivalence testing algorithm for cyclic codes

The theorems in the previous section are the basis of an algorithm that we developed 
and implemented for testing cyclic code equivalence. This algorithm takes as input 
the alphabet of the codes, the length of the codes, and two cyclotomic cosets (or 
unions of cyclotomic cosets) that define each cyclic code. The output of the algo-
rithm is a Boolean variable (called map in the pseudocode below) which indicates 
whether the two cyclic codes are equivalent.
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A few important remarks about this algorithm are in order. First, a cyclotomic 
coset does not uniquely determine an irreducible factor of xn − 1 . It depends on the 
choice of the primitive nth root of unity. Nevertheless, different choices for the prim-
itive nth root of unity will lead to equivalent codes. Secondly, since this algorithm is 
based on theorems that give sufficient conditions for two cyclic codes to be equiva-
lent, when the algorithm returns that the two cyclic codes are equivalent, the output 
is definitely correct, and in this case the map between cyclotomic cosets is deter-
mined by the variables i and b. However, when the output is false, it does not guar-
antee that the codes are not equivalent (except for the binary case. See section 7). 
In that sense, it is similar to probabilistic primality testing algorithms that are true-
biased. Despite this limitation, this algorithm is still very useful for our purposes as 
explained in the next section.

5  Computational complexity of cyclic equivalence test algorithm

We consider the complexity of checking if there is a bijective map of the form ex + b 
between the cyclotomic cosets corresponding with cyclic codes of length n. It is 
easy to see that the complexity is O(n3) since all possible combinations of e, b < n 
can be tested (a total of ≤ n2 choices) to see if for each element of one cyclotomic 
coset is in the other cyclotomic coset at cost proportional to n. This shows for cyclic 
codes testing equivalence using their cyclotomic cosets is a polynomial time algo-
rithm in the length of the codes.

Determining whether two arbitrary linear codes are equivalent is much more 
challenging ([19–21]). It has been shown that testing code equivalence gener-
ally is equivalent to the graph isomorphism problem [16]. For cyclic codes, using 
cyclotomic cosets is a much more efficient test. It is particularly superior at large 
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dimensions. This is because for a cyclic code of dimension k, the size of the cyclo-
tomic coset is n − k , so it runs faster at higher dimensions, unlike other algorithms 
such as Magma [14] implementation (available using either IsEquivalent or IsIso-
morphic command), which run slower. In comparing our algorithm with Magma’s, 
it should be noted that (a) our algorithm is specifically for cyclic codes whereas 
Magma’s algorithm is for general linear codes (b) given two cyclic codes, if our 
algorithm concludes that they are equivalent, then the result is certainly correct. 
However, when it does not make that conclusion, the codes may still be equivalent.

Given these restrictions, it is not entirely fair to compare our algorithm with Mag-
ma’s in general. However, for our purposes the comparison is justifiable because 
Magma does not offer any algorithm specifically for cyclic codes (which is an easier 
case than general linear codes) and there are many cases where Magma’s algorithm 
get stuck or takes so much time or memory that it is not useful. In fact, it was these 
shortcomings of Magma’s algorithm that prompted us to come up with a more effi-
cient algorithm for cyclic codes in the first place. Therefore, there are clear ben-
efits and advantages of the new algorithm over existing algorithms of Magma, and a 
comparison is still relevant.

The following table shows a comparison of Magma’s IsEquivalent command and 
our algorithm on different generator polynomials in terms of CPU time and memory 
usage. In each case the generators were for codes of the same length and dimension, 
which were not necessarily equivalent. All of the test cases were executed on the 
online Magma calculator1 for consistency. 

q n k equiv CycCoset IsEquivalent

Time Memory Time Memory

2 135 111 True .04s 32MB 6.04s 32MB
3 80 61 True .01s 32MB > 30s *
3 80 19 True .01s 32MB .1s 32MB
5 72 14 False .14s 32MB .2s 32MB
5 72 18 False .12s 32MB > 83s *
7 18 12 True .01s 32MB .34s 32MB
7 36 28 False .02s 32MB 3.490s 96.16MB
7 72 62 False .03s 32MB ** Unfinished
7 72 10 False .14s 32MB .2s 32MB

* On these runs the Magma calculator’s memory limit of 353MB was exceeded, 
and the time at which it was exceeded is given.

** On this run the 120s time limit was exceeded.

1 http:// magma. maths. usyd. edu. au/ calc/

http://magma.maths.usyd.edu.au/calc/
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6  Application to a search algorithm

Our new algorithm that partitions cyclic codes of a given length and dimension 
into equivalence classes is purely based on combinations of cyclotomic cosets. It 
generates all possible cyclic codes using the unions of cyclotomic cosets. Each 
new set is compared against all sets that have been found up to that point. If it is 
equivalent to a previous one then it will be discarded. Each cyclotomic coset that 
is not found to be equivalent to any other is saved and the corresponding genera-
tor polynomial is obtained. Computational evidence from testing many different 
cases shows that this new algorithm is both faster and less likely to get stuck than 
the Magma’s algorithm.

This partitioning algorithm has applications to both constacyclic searches and 
quasi-twisted (QT) searches. Earlier versions of the constacyclic search algorithm 
(all versions before [2], such as [4]) found the (standard) generators of all cons-
tacyclic codes of a given length one by one and computed the minimum distance 
for each code. Now, by first partitioning the constacyclic codes into equivalence 
classes, we only need to compute the minimum distance of one code from each 
equivalence class. Since computing the minimum distance of a linear code is 
computationally expensive [23], the new approach makes the search faster. More-
over, the new method of checking code equivalence based on cyclotomic cosets is 
much faster than Magma’s algorithm. This further speeds up the search over the 
previous algorithm [2]. Taking advantage of these optimizations, our search pro-
duced 3 new cyclic codes with better parameters than previously best known liner 
codes [12]. It is highly desirable but not very common (in fact, it is often impos-
sible) that a best known code for a given parameter set has the cyclic structure. 
Our search also produced many cyclic codes that have the same parameters as 
currently BKLCs in [12]. The constructions of currently BKLCs in [12] are fre-
quently indirect, involving a long chain of steps. It would therefore be desirable to 
obtain them as cyclic codes whenever possible.

One of our main motivations for this work was to speed up the search algorithm 
ASR. First introduced in [3], ASR is a search algorithm for a particular type of 
1-generator QT codes. It is based on Theorem 3.2 in [3]. It was then used in many 
subsequent works (e.g. [1, 5, 6, 9, 10]) and produced dozens of new linear codes. 
We recently introduced a generalization of the ASR algorithm for searching QT 
codes [2] which made made the original version of the ASR algorithm [3] more 
general by making use of the concept of code equivalence. In [2], we implemented 
the generalized algorithm using Magma software and found a number of new lin-
ear codes. We used Magma’s IsEquivalent command to test equivalence of cyclic 
codes, which did not always work. For example, it experienced a bug in GF(3). This 
bug was recently fixed, but still this command is often very slow and uses much 
more memory than the algorithm proposed here. Magma’s algorithm is for check-
ing equivalence between any two linear codes. We are not aware of another version 
that is specifically for cyclic codes. The algorithm we propose here is specifically for 
cyclic codes and it uses our partitioning algorithm as a much faster way of obtaining 
the generators to be fed into the generalized ASR algorithm.
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We now present our partition algorithm which uses Algorithm 1 above. It takes as 
input the code length n, and the size qm of the finite field (code alphabet) which need 
not be relatively prime. As the output, it creates a list whose elements are coset repre-
sentatives for each equivalence class of cyclic codes of length n over GF(qm).

Through an implementation of this algorithm we have been able to search for QC 
codes over GF(3) which yielded 4 new record breaking codes. We were originally 
not able to carry out this search in [2] due to a bug in Magma. We point out that this 
algorithm can be modified for constacyclic codes and QT codes using the constacyclic 
cyclotomic coset construction given in [3].

7  A limitation to the partition

We conjectured in [2] (Conjecture 3) that all cyclic codes that are equivalent are 
equivalent through an affine map of the form �(x) = ex + b on cyclotomic cosets. 
We have found a few counterexamples to the conjecture for lengths which are multi-
ples of 8 over GF(3) and GF(5). Consider the length 8 over GF(3). The cyclotomic 
cosets are {0}, {1, 3}, {2, 6}, {4} , and {5, 7} . Two possible unions of cyclotomic cosets 
are {0, 1, 3, 4} and {1, 2, 3, 6} . These turn out to correspond to equivalent codes even 
though no map of the form ex + b exists between these cyclotomic cosets (verified by 
exhaustive testing).

The following matrix, obtained by Magma command, maps one code (its generator 
matrix) to the other.
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We observed that the structure of this matrix is similar to the counterexamples we 
have found for larger lengths and we are still looking for a pattern between the cor-
responding cyclotomic cosets.

The implication of this limitation for our search is that in some cases the parti-
tions may have too many equivalence classes. These searches will still be exhaus-
tive, but because of these counterexamples they may also have some redundancy in 
certain cases. Still, since the counterexamples seem to be rare, the method proposed 
is a more efficient partitioning algorithm.

In the important special case of binary codes, the only notion of equivalence is 
permutation equivalence. More generally, it is shown in [11] that for cyclic codes of 
length n over �q , the notions of permutation equivalence and monomial equivalence 
coincide if and only if gcd(n, q − 1) = 1 . Over the binary field all equivalent codes 
we have observed have a map of the form x → xe between their generator polynomi-
als. It turns out that this is a consequence of a result given in [8] (Theorem 5.81, 
page 142). Therefore, for binary codes the output of Algorithm 1 is certain (i.e., it is 
a full test) and it is a faster alternative to Magma’s algorithm.

8  New linear codes

As a result of an implementation of this algorithm, we have found 3 new (“record 
breaking”, i.e., codes with better parameters than currently BKLCs reported in [12]) 
linear codes that are cyclic. We like to point out that it is rare for a record breaking 
code to be cyclic. Of the hundreds of new linear codes that have been discovered by 
computer searches over the last few decades, very few of them are cyclic. Since cyclic 
codes have a special structure that makes their implementation easier, it is desirable to 
have BKLCs as cyclic codes. This work presents one of the rare occasions where newly 
discovered linear codes are cyclic. Their parameters and generators are as follows:

– [146, 122, 9]3 cyclic code with generator

  
x24 + 2x23 + x22 + 2x21 + 2x20 + x19 + x16 + 2x14 + x13

+ x11 + 2x10 + x8 + x5 + 2x4 + 2x3 + x2 + 2x + 1

– [146, 121, 9]3 cyclic code with generator

  
x25 + x24 + 2x23 + x22 + 2x20 + 2x19 + x17 + 2x16 + 2x15 + 2x14

+ 2x13 + x12 + x11 + x10 + x9 + 2x8 + x6 + x5 + 2x3 + x2 + 2x + 2

– [78, 63, 8]5 cyclic code with generator

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
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  x15 + 3x14 + x13 + x11 + 3x9 + x8 + 3x7 + 4x6 + 2x5 + 2x3 + x2 + 4x + 4

We have also found 4 new ternary QC codes that are record breaking among linear 
codes. Their parameters and generators are listed below. They are all 1-generator 
QC codes of index 3 ( � = 3 ) with a generator of the form (g(x), g(x)f2(x), g(x)f3(x)) . 
To represent a polynomial in a compact way, we just list the coefficients in ascend-
ing order of the terms. For example, the sequence [2021] represents the polynomial 
2 + 2x2 + x3 . 

[n, k, d]q Generator Polynomials

[60, 19, 22]3  g =[21]
f2 =[2200021200110200111]
f3 =[0012002212221102101]

[72, 22, 26]3  g =[101]
f2 =[1122220222021210022212]
f3 =[1220021122022111]

[72, 21, 27]3 g =[1221]
f2 =[002100021111200121202]
f3 =[200112121120102020202]

[72, 18, 29]3 g =[1120221]
f2 =[010110000212001001]
f3 =[1210221200221001]

New QC Codes

Moreover, additional new codes are obtained from these codes using the standard 
constructions of shortening, extending, or puncturing a given linear code. The addi-
tional new codes we obtained have the following parameters: [59,18,22], [70,19,27], 
[71,20,27], [71,21,26], [73,21,27], [73,22,27], [74,22,27]. With these, the total num-
ber of new linear codes we have obtained in this work is 14.

8.1  Cyclic codes with the same parameters as BKLCs

As noted above, in many cases the constructions of currently best known lin-
ear codes in [12] are indirect that may involve multiple steps and manipulations. 
For example, the construction of the binary [171, 134, 10]2 code in [12] involves 4 
steps starting with a BCH code of length 257, then puncturing it, then extending 
the resulting code, then shortening the resulting code at many positions and finally 
taking a subcode. The construction of the [71, 55, 8]5 code in [12] requires 7 similar 
steps. It would therefore be desirable to obtain BKLCs as cyclic codes whenever 
possible. Our search produced many cyclic codes that have the same parameters as 
currently BKLCs where the constructions of BKLCs in [12] are indirect with many 
steps. We present a subset of such codes here.

– [171, 134, 10]2 cyclic code with generator
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  [10010000001000110111101100010000001001]
– [129, 30, 38]2 cyclic code with generator
  [1000100011101001001011100010001]
– [126, 100, 8]2 cyclic code with generator
  [111101111101111111011011011]
– [56, 42, 6]3 cyclic code with generator
  [101201221201011]
– [80, 46, 14]3 cyclic code with generator
  [12022102001111011100122212122201111]
– [80, 60, 8]3 cyclic code with generator
  [201120202000121220211]
– [60, 53, 4]3 cyclic code with generator
  [21001011]
– [51, 26, 14]4cyclic code with generator
  [1aa2a2aaa211a21a1101aaa0aa211a21]

– [170, 154, 6]4 cyclic code with generator
  [1a21a11aa10a211]

– [71, 55, 8]5 cyclic code with generator
  [12420401032243421]
– [120, 114, 4]5 cyclic code with generator
  [4424141]
– [48, 24, 17]7 cyclic code with generator
  [5025253510542120656461511]
– [42, 32, 6]7 cyclic code with generator
  [66541233451]
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