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Abstract

It is well known that any finite commutative ring is isomorphic to a direct product of
local rings via the Chinese remainder theorem. Hence, there is a great significance
to the study of character sums over local rings. Character sums over finite rings
have applications that are analogous to the applications of character sums over finite
fields. In particular, character sums over local rings have many applications in alge-
braic coding theory. In this paper, we firstly present an explicit description on addi-
tive characters and multiplicative characters over a certain local ring. Then we study
Gaussian sums, hyper Eisenstein sums and Jacobi sums over a certain local ring and
explore their properties. It is worth mentioning that we are the first to define Eisen-
stein sums and Jacobi sums over this local ring. Moreover, we present a connection
between hyper Eisenstein sums over this local ring and Gaussian sums over finite
fields, which allows us to give the absolute value of hyper Eisenstein sums over this
local ring. As an application, several classes of codebooks with new parameters are
presented.
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1 Introduction

Exponential sums are important tools in number theory and arithmetic geometry for
solving problems involving integers and real numbers. It has been well known for a
long time that Gaussian sums, Jacobi sums and Eisenstein sums over finite fields,
as special cases of general exponential sums, have many remarkable applications in
combinatorics, coding theory and cryptography. Whereafter, exponential sums over
Galois rings have become very important tools to construct good error-correcting
codes, sequences and combinatorial designs (see, for example, [10, 17]). In [30], Oh
et al. investigated Gaussian sums over the Galois ring GR(p', r) with ¢ = 2. For the
general case ¢ > 2, Gaussian sums were studied by Kwon and Yoo [18] and used to
construct difference sets in [43]. In 2013, the reference [28] presented more explicit
computations on Gaussian sums and Jacobi sums over the Galois ring GR(p?, r) and
showed that they can simply be reduced to Gaussian sums and Jacobi sums over
the finite field F,.. A recent book [33] by Shi et al. is entirely dedicated to character
sums over rings. Afterwards, in [22], Luo and Cao proposed a construction of com-
plex codebooks from Gaussian sums over the Galois ring GR(p?, r). In addition, they
were the first to define the Eisenstein sums over this Galois ring and were able to
produce some asymptotically optimal codebooks.

Let C = {¢y, ¢y, ..., Cy_; } be a set of N unit-norm complex vectors ¢, € CX over
an alphabet A, where / =0, 1, ..., N — 1. The size of A is called the alphabet size of
C. Such a set C is called an (N, K) codebook (also called a signal set), where N is the
number of elements of the codebook C and K is the length of the codebook C. The
maximum cross-correlation amplitude, which is a performance measure of a code-
book in practical applications, of the (N, K) codebook C is defined as

C max - |c;c;
[ (©) = 0<i<j<N— 1| il

where c denotes the conjugate transpose of the complex vector ¢;. For a certain

length K it is desirable to design a codebook such that the number N of codewords
is as large as possible and the maximum cross-correlation amplitude 7, (C) is as
small as possible. To evaluate a codebook C with parameters (N, K), it is important

to find the minimum achievable I,,,,(C). The following result, which is known as the

Welch bound, gives a lower bound for 7, (C).

Lemma 1 [41] For any (N, K) codebook C with N > K,

N-K
Lo (C) 21, = 4| N-DK' ey

Furthermore, the equality in (1) is achieved if and only if

|cicH| = N-K
J (N-DK

for all pairs (i, j) with i # j.
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A codebook is referred to as a maximum-Welch-bound-equality (MWBE) code-
book [37] or an equiangular tight frame [16] if it meets the Welch bound equality in
(1). Codebooks meeting the Welch bound are used to distinguish among the signals
of different users in code-division multiple-access (CDMA) systems [29]. Further-
more, MWBE codebooks have been used in a wide range of applications, such as
multiple description coding over erasure channels [38], communications [37], com-
pressed sensing [3], space-time codes [39], coding theory [8] and quantum comput-
ing [32] etc. In general, it is very difficult to construct optimal codebooks achieving
the Welch bound (i.e. to construct MWBE codebooks). There are many results on
optimal or almost optimal codebooks with respect to the Welch bound: interested
readers may refer to [2-4, 6, 7, 11-14, 20-22, 25, 27, 44-46]. It is worth mention-
ing that character sums over finite fields are extremely useful tools for constructing
codebooks [1, 26]. In [13, 14, 20, 21, 44], the authors constructed codebooks using
character sums over finite fields.

In fact, we know that many scholars have studied character sums over local rings
and their applications in coding theory [9, 23, 34-36] etc. Luo and Cao established
Eisenstein sums over the Galois ring GR(p?, r) in [22]. Recently, we have studied the
character sums over a finite non-chain ring and their applications to the constructions
of codebooks in [31]. One purpose of this paper is to investigate Gaussian sums,
hyper Eisenstein sums and Jacobi sums over the local ring R = F, + ulF, w? =0)
and present some properties of these character sums. Furthermore, we establish a
connection between these character sums and character sums over finite fields.
Another purpose of this paper is to present constructions of codebooks via Gaussian
sums, Eisenstein sums and Jacobi sums over the local ring R and show that these
codebooks asymptotically meet the Welch bound.

The rest of this paper is arranged as follows. Section 2 presents some notation
and basic results. In Sect. 3, we give an explicit description of additive characters
and multiplicative characters over the finite local ring R. In Sect. 4, we define Gauss-
ian sums, hyper Eisenstein sums and Jacobi sums over the finite local ring R and
present some computational results about these character sums. Moreover, we estab-
lish a relationship between character sums over R and character sums over [,. Four
generic constructions of asymptotically optimal codebooks and a specific construc-
tion of optimal codebooks associated with these character sums over R are presented
in Sect. 5. In Sect. 6, we present our concluding remarks.

2 Preliminaries

Let g be a prime power, and F, denote the finite field with g elements. We consider
the chainring R=F, +ulF, ={a+fu : a,f € [Fq}(u2 = 0) having the unique max-
imal ideal M = (u). In fact, R=TF, @ uF, ~ [Fq2 is a two-dimensional vector space
overF, and |R| = g*. The invertible elements of R are

R*=R\M=Fj+u[Fq={a+ﬂu:ae[F;,ﬁe[Fq}.
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It is easy to know that |R*|=¢g(g—1). R* can also be represented as
[Fq* X (1 + M) (direct product).

We next begin to introduce some basic results on characters and character sums
over finite fields, which will be useful for our subsequent discussion. We first give
some notation valid for the whole paper.

2.1 Some notation fixed throughout this paper

e Letr=p'and g =r", where [(> 1) and m(> 1) are positive integers. F,.F andF,
denote finite fields, andF, CF, C F,.

Let R, = F. + uF, (u*> = 0).

T ( ) is the trace function from F, to [F .

Trq( -) is the trace function from F, to [F.

Trq( -) is the trace function from [F to [F .

Tlﬁ ( ) is the trace function from R to R

2.2 Characters over finite fields

In this subsection, we will recall the definitions of the additive and multiplicative
characters of [Fq (see, for example, [26]).

e The additive character y, of F, is defined by

Tr?(ax)

X)) =¢,"

for each a € F,, where §, = eT and x € F,. If a =1, then y,(x) = y(x) denotes
the canonical additive character of F,. If @ =0, then y,(x) denotes the trivial
additive character of |, and y,(x) = 1 for all x € [,; all other additive characters
of F, are called nontrivial. Moreover, the group that consists of all additive char-
acters of I, is denoted by F,. The group of characters is isomorphic to (F,, +).
With each additive character y (x) of F,, there is an associated conjugate charac-
ter y,(x) defined by y,(x) = x,(x) = x,(—x) for all x € F,. In addition, y,(0) =1
foralla € F,.
¢ The multiplicative character y; of I, is defined by

wi(eh = ¢

27i

foreach j=0,1,...,g — 2, where Cq_l =e+,k=0,1,...,g—2and g is a fixed
primitive element of F,. If j = 0, then y denotes the trivial multiplicative char-
acter of F,. Moreover, the group that consists of all multiplicative characters of

q 18 denoted by [F* The group of characters is isomorphic to ([F* x). With each
multlphcatlve character w of F,, there is an associated conjugate character ¥
defined by w = w~L. If y is trivial, then w(0) = 1; if y is nontrivial, then we
define yw(0) =
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2.3 Character sums over finite fields
Firstly, we recall the definition of Gaussian sums over finite fields.
o Gaussian sums

Definition 1 Let y be a multiplicative and y, an additive character of [, where
a € F,. Then the Gaussian sum G(y, y,,) over [, is defined by

Gy, 2) = ), W) 1,00,

*
XE [Fq

The absolute value of G(y, y,) is at most ¢ — 1, but is in general much smaller,
as the following lemma shows.

Lemma 2 [26, Theorem 5.11] Let w be a multiplicative and y, an additive charac-
ter of |,. Then the Gaussian sum G(y, y) satisfies

g-1,if yw=y, and yx,= yp;
Gy, y)=4 -1, if w=y, and y, # xo;
0, it w#y, and y,= y.

11—

Ifw #wyand y, # yo, then|G(y, x,)| = q2

Now, we let y;, denote an additive character of [, and ¢ a multiplicative character
of F,. In particular, 4 = p, denotes the canonical additive character of .. We can
define the Gaussian sum G(¢, u,,) on F, similarly. For convenience, we usually
write G(y, y;) and G(¢, y,) simply as G(y) and G(¢), respectively.

Next, we introduce hyper Fisenstein sums over finite fields.

e Hyper Eisenstein sums
Let w, >, ..., ¥, be multiplicative characters of [Fq. For1 < i < n, the restric-
tion of y; to I, will be denoted by . In particular, if y; is a trivial character
on [, then y" is a trivial character on F,. Now, we give the definition of hyper
Eisenstein sums over the finite field F, as follows.

Definition 2 [21] The hyper Eisenstein sum E[Fq Wy, ..., ;1) is defined by

Ex W) i= B WD = 0 wnx) - w,(x,),
xl,...,x,,e[Fq*,

T (rp +oeebg)=1

where y, y,, ..., y, are multiplicative characters of F,. Moreover, we define
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Ep (w155 ,38) = D Wi (xp) - wy(x,)

Xpoen o X, €F Tl () 44, ) =5

foralls € F.
It is easy to see that

E[Fq(lllp c Wss) =y e Wn)(S)EFq(Wp ey l) 2)
for each s € F*. Ify,...,y, are all trivial, then

— 1" —1)yn+!
E[Fq(ll/l""’wn;l)=(q ) -:( ) (3)

by [21, Lemma 5]. If some, but not all, of the y; are trivial, without loss of gener-
ality, we assume that v, ..., y;, are nontrivial and y,,, ..., y, are trivial, where
1 <h<n-1.Then (see [21, Theorem 1])

Ee Wy, ooyt D) =(=1)""Eg vy D). “

In the following, we describe a relationship between hyper Eisenstein sums and
Gaussian sums over [,.

Lemma 3 [21, Theorem 3] Let y,,y,, ..., y, be nontrivial multiplicative charac-
ters onF,. Let (y, -+ y,,)* be the restriction of w, -y, to F,. Then

GIFq (v, )"'qu (w,)

. — GFI_((Wl"'Wn)*)
E[Fq(Wl v Wi 1) G[Fq(V’l)"'GFq(an)

— e T (g ey, s trivial,

, if (W -+ w,,)* is nontrivial;

From Lemma 3 and Eq. (2), we can determine the absolute value of the sum
E[Fq(l//h ..., y,;s) foreach s € [Fr*.

Lemma 4 [21, Corollary 1] Let yy, 5, ..., y, be nontrivial multiplicative charac-
ters onF,. Let (y, -+ y,,)* be the restriction of w, -y, 1o F,. Then

mn—1
r2 ,if (yq -+ y,)* is nontrivial;
L O A T S O
‘ rz ,if (y, -+~ y,)" is trivial,

foreachs € F*.
The following result relates the sum E[Fq(llll, ..., y,;0) to the hyper Eisenstein

sum E[Fq(llll, vy .

Lemma 5 [21, Theorem 2] Lety, y,, ..., w, be multiplicative characters on [Fq. Let
(y, -+ y,)" be the restriction of w, -+ y, to F,. Then E[Fq(t,ul, ey, 0)
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w, if yy,...,y, are all trivial;

_J0, if (y; ---y,)* is nontrivial;
—(r— l)E[Fq(y/l, oy, if yy, Ly, are not all trivial
and (y -+ y,)* is trivial.

3 CharactersoverR = IFq + u[Fq

In this section, we will describe the additive and multiplicative characters of the
local ring R = F, + uF,.

A Additive characters of R

The group of additive characters of (R, +) is

R:= {A:R— C*|Ma+ p) = Ma)A(P),a, B € R}.
For any additive character A of R,
A:R— C".

Since A(ay + ua,) = Aay)A(ua,) for any a,,a, € F,, we define the two mappings
A" and 1" as follows. The mapping A’ : F, — C*is defined as

A(e) 1= Ac)
for ¢ € F,. And the mapping A" : F, — C*is defined by
A'(e) 1= Muc)

for celF,. It is easy to check that A'(c;+cy)=A(c;)A(c;) and
A'(cy + ) = A"(¢))A"(cy) for ¢y, ¢, € F,. We know that A’ and A" are both additive
characters of ([Fq, +). Hence, there exist b, c € [Fq such that

Trd (bx) Trz (cx)
A =¢ " = xpkand 2'(x) = ¢, = x.(x)

2zi

for all x € F,, where {, = e’» is a primitive pth root of unity over [, Therefore, we
can express an additive character of R as follows.

Magy + uay) =4 (ag)A" (a))
=xp(ag) x(a,).
Thus, there is an one-to-one correspondence:
7 R,A) — () x F b,
A= (b Xe)-

It is easy to prove that the mapping 7 is an isomorphism.
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218 L. Qian, X. Cao

A Multiplicative characters of R
Now, we have

R*={ay+ua, : ay€ ﬂ:q*,al eF,}
={by(1 +ub)) : b, € [F;,bl eF,}
The group of multiplicative characters of (R*, %) is

R = (¢ : R — Clp(ap) = p(@@(p). . p € R).
For any multiplicative character ¢ of R,
@ RF— C".

Since @(by(1 + ub,)) = @(by)@(1 + ub,) for any b, € [F;, b, € F,, we define the
two mappings ¢’ and ¢’ as follows. The mapping ¢’ : F; — Cis defined as

@' () 1= @(c)
for ¢ € F,. And the mapping " : F, — C"is defined by
@"(¢) := o(1 + uc)
for c € F,. Forany ¢, ¢, € [F;, we have ¢'(c,¢,) = ¢'(¢;)@'(c,) and

@"(c; +¢3) = (1 + ulc; + ¢,))
= @((1 + uc))(A + uc,))
= @(1 + uc))p(l + uc,)
= §0N(C1)(P”(Cz)-

It follows that ¢’ is a multiplicative character of F, and ¢" is an additive character of
F,- Hence, we can represent a multiplicative character of R as a product

@(bo(1 + uby)) = @' (by)g" (b)),

where ¢’ € ﬂf; and ¢" € ﬁlfq. Since ¢" is an additive character of [, there exists
a € [, such that 9" = y,. Moreover, we have

o —W, 1)

where y = ¢’ is a multiplicative character of [F,. One can show that the mapping o is
an isomorphism.
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4 Gaussian sums, hyper Eisenstein sums and Jacobi sums
overR =, + uf,

In this section, we introduce Gaussian sums, hyper Eisenstein sums and Jacobi
sums over R and present some fundamental properties of these character sums.

Let R =F, +uF, and R, = F, + uF,, where u> = 0 and g = r". Then R/R, is a
Galois extension of rings and the Galois group Gal(R/R,) = (o,), where o, is the
R,.-automorphism of R defined by

o.la+upf)=a"+up” (a,p € F,).
Then, we can define the trace mapping:
Ty © R—R,

Tr;_(a + up) =Tri(a) + uTri(p)

m—1

= Z o'(a + up).
=0

Moreover, it is easy to show that Trﬁ (81) = §Tr§ (t) for each 3 € R, and t € R.
For convenience, Trg is abbreviated as Trr. '

From Sect. 3, for c;, b,c €Fy X Xps X € ﬁq andy € [!A:;, we denote @ 1=y x y,
and A := y, % y..Then, forany s = 1,(1 + ut)) € R,p(t) = (v * x, )@ = w(ty) x.(t;)
and A(1) = (x, * x)(@® = ¥, () x.(tot))-

4.1 Gaussian sums over R

Let A and ¢ be an additive character and a multiplicative character of R, respectively.
The Gaussian sum for A and @ over R = qu + uU:q (u? = 0) is defined by

Grl@, 1) = ) p(A®D),

teR*

Theorem 1 Let ¢ be a multiplicative character and 4 be an additive character of R,
where p =y x y,, A=y, % v,y € [F(;k and a,b,c € [Fq. Then the Gaussian sum
Gr(@, A) satisfies

CIG[F[/(W, Xp)s ifa=0 and ¢ =0;
0, ifa=0 and ¢ # 0;
Grle, ) =1 o, ifa#0 and ¢ =0;

qw(—z>)((—%>, ifa#0 and ¢ #0,

c

where Gg (v, x,,) denotes the Gaussian sum over [,
q
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Proof Assume thatt = #,(1 + ut;), where ¢, € [Fq* andr, € F,

Grlp, ) = Y @(H)A(0)

teER*

Y @l + ur D Alty(1 + uty)

1yeF .1 €F,

> vt at)x )

tyeFr .1 €F,

Z w(to) x(aty + btg + ctoty)

1,€F; 1, €F,

D wlg)x(bty) Y, x((a+cto)ty)

.
1€F; 1,€F,

qG[Fq(q/, ) if a=0 and ¢ =0;
if a=0 and c # 0;
R if a#0 and ¢ =0;
qu(=Dx(=2). if a#0 and c#0,

(=]

qa Y witg)xby) =

tOEFq* La+cty=0

where G[Fq(y/, Xp) 18 a Gaussian sum over F,. O
Remark 1

1. Although Gaussian sums over finite commutative rings have been studied in [24,
40] and the ring R in this paper is a special finite commutative ring, our results are
not completely covered. In [24, 40], the authors give additive and multiplicative
characters over finite commutative rings and define the Gaussian sum related to
these characters. Our contributions are as follows. We present an explicit descrip-
tion on the additive and multiplicative characters over the special finite commuta-
tive ring R in Sect. 3. In addition, we establish a relationship between Gaussian
sums over the finite ring R and Gaussian sums over the finite field F, in one case
of Theorem 1, which helps one to calculate the exact value of certain Gaussian
sums over the ring R (by making use of known formulae for Gaussian sums over
F,)

2. Comparing with [28, Theorem 3.3], it is easy to see that a similar result was
proven by Li, Zhu and Feng for Gaussian sums over GR(p?, r) using similar tech-
niques. Both results show that Gaussian sums over certain finite local rings can
be expressed in terms of Gaussian sums over finite fields.

Next, we introduce the definition of quadratic characters over R.
Definition 3 Let ¢ be a multiplicative character of R. If (¢(2))> = 1 for any ¢ € R*,

then ¢ is called the quadratic character of R, denoted by p. Moreover, Gg(p, 1)
denotes the quadratic Gaussian sum over R, where A is an additive character of R.
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In the following, we determine the form of the quadratic character p of R. Let
n,y, and y, denote the quadratic character, the trivial multiplicative charac-
ter and the trivial additive character of the finite field F,, respectively. We use the
convention that y(0) = 0 for a nontrivial multiplicative character y of F,. For any
t =t,(1 + ut;) € R*, if the multiplicative character ¢ of R is a quadratic character,
then we need (¢(2))> = (w(#y) x,(t,))* = 1. However,

(@) = (W (1) x,(1))

= (w (1) x2at,)

Tr?(2at,)
2 p 1
=W "
2ri

where {, = e’» is a primitive pth root of unity over F,

Tr(2at,
e If p =2, there is no quadratic character 7 of [, since 2 + (g — 1) and ¢, PR 1.

Hence, when y is a trivial character and a # 0, we obtain that ¢ is a quadratic
character p of R, denoted by p 1=y x 1.
e If p # 2, then @ is a quadratic character p of R when y = n and a = 0, denoted by

pi=n%*x
Based on Theorem 1, we have the following corollary.

Corollary 1 Let p be a quadratic character and A be an additive character of R. Let
Xa> Xps Xe € By, denote the quadratic character of F, and y, denote the trivial addi-
tive character of .

1. If p =2, then Gg(p, A) = q)((—@) if ¢ #0 and Gg(p, ) =0 if ¢ =0, where
pi=Yy Kk x, A=y *)(Canldcie Fr.b,c €F,

2. If p#2, then |Gg(p,A)| =¢q2 if b# 0 and Gg(p, A) =0 otherwise, where
pi=nxxy, A=y, * y.andb,c €F,

Proof The proof is obvious by Theorem 1, so we omit it here. O

4.2 Hyper Eisenstein sums over R
Now, we give the definition of hyper Eisenstein sums over R = [, + ulF, (u? =0).

Definition 4 Let n be a positive integer and ¢4, @,, ..., @, multiplicative characters
of R. Then the hyper Eisenstein sum for ¢, @,, ..., @, over R is defined by

Ex(@1 @0 @)= D 01(t)@a(1) - 9,(8,).
1.y, 1, ERY, (5)

Tr(t] +1p+--+iy)=1

Moreover, we can define Ex(@,, @,, ..., @,;8) as follows: for each$ € R,,
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Ep(@1: @2, - 038) = Z 01ty (1) -+ @,(1,).

ty sty ot ER*Tr(t +1y 4o +1,)=8

In this section, we calculate the value of hyper Eisenstein sums over R.
If3 e Rf, then

Ex(@y, @y, ..., 9,38)

1,81
= > PP @, (1) =Y @ (81)9y(80) - @, (81,)

tyoly s oty ERY T(t 1y 441, )=8 81),81,...,81,ER*,
Tr(8t] +8tp+++81,)=%

=@ 9,(8) Z Q1)@ (1) -+ @, (1) = @y - 0, (3)ER(@1, @, .., @3 1).

.ty 1, ERY,
Tr(t) +p+++)=1

If 8 = ub € uF* (b € F* C R*), then

Eg(@1, @3, ..., #,38)
t;—bt;
- ) ?1(1)@y(1) - @, (1) = Y, i@y bn) - 9,(bt,)

1Ly ey ER* Tt  +y+ -+, )=8 bty bt,,....bt,ER*,
Tr(biy +biy +-+biy)=ub

=g Y et)eat) - 9,() = 91 9, (DER@1, @, ., 9it0).

sty st ER?,
Tr(ty g+ )=u

Thus, it is sufficient to compute

Eg(@1, @3, 0,:0) = > @1(1)@ (1) + @,(1,),

t1ty,.. 1, €R* Tr(t +1+++-+1,)=0
Er(@1, 025 -5 0,) = Eg(@1, @3, -+, 0,51)
= Z 01 ()@y(1y) -+ @, (1), and Eg(@y, @5, ..., @,31)

t,ly,.. 01, ER*,
Tr(r] +ip+--+iy)=1

> P1(1)P2A1) = @, (t,).

1)ty oty ER* TH(t Hy oot =0t

Before calculating the sums Ep(@,@,,...,9,0), Ex(®, @5, ...,9,;1) and
Ex(®, @3, ..., @,:u), we need to establish some preliminary results.

Lemmaé6 Lera€l,,y€F, and e [F;. Then

q, ifa=0,Vt/€U:; andy = 0;
0, ifa=0,Vt'€U:q*andy;é0;

Z x(@a+yH'"y=34q, ifa#0,/ €aF*andy= —t”—,;
1€k, 0, ifa#0,/ €aFandy# —15,;

0, ifa#0,7 gaF*andVyeF,.
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Proof The proof of the result is easy, so we omit it here.

Lemma?7

V)
Let I,

et € [F;andal,az,...,a

. €F,

1. IfA :=Aay,...,a,5,....1) = Z,;,’“_,,;,GFW )(a](t;’) )(an(t;’), then

n

Q

’

< e |

)

07

2. If B :=B(a,, ..

then

]

S

Mz),

<

e

ifa,=a,=+-=a,=0;
if a; ---an;éOandf—,‘z---z—” ey
1

otherwise.

o4l N — 1"
,an,tl,...,l‘n)—z t;/,...,t,';Eﬂ:q, Z)(a](l‘l)
q(4 !y —
Tl + - +1)=1

ifa,=a,=+-=aqa,=0;

. a

]fal...an;é()and(:—/l:...:t—/”:zeﬂ:r*;
1 n

otherwise.

Proof Since t’l, t;, N S [F;, we have

Ko, (@) - 2, @)

T ety 1])=0

11

"

LA

I
1, €F,

1
> @+t a,))— D HOTEE ] + -+ 120

yeF,

1 1 " ! I ! I
- Z Z x(at) + - +at +y@i + - +11)

yeE- 1.

i €F,

LYY rta+yiy - Y xa, + ¥

/" /"
vk, 1/ ek, 1/ €k,

%( Y x@dy Y xath+ Y Y xa ¥y Y x((a,

’"
Il E[Fq

I ! * I I
1, €F, yek” fer, 1y €F,

It is obvious that

"
tl Eﬂ:q

otherwise.

" _Jq, ifa=a,=--=a,=0;
2 )((Clll‘l)... Z ){(Clnl;, _{ A

1"
L EE’

"
e 0 (),

+ye)e").

Let T = Z}E[Ff Zt;’e[Fq x((ay +yt)t]) - Zl,’,’EIE, x((a, +yt))t)). We divide the
rest of the proof into two cases according to Lemma 6.
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e Assume thata,; ---a, =0. ThenT = 0.
e Assume thata, ---a, # 0,so thata; #0,...,a, #0.

e If there exists tlf such that t; ¢ aF* thenT = 0.
o Iff €qF*and - and? € a,F* sothat<, ..., % € F*, then
f f r

a

n 4 n .
q S lf—/ = e = 2
T = h n

0, otherwise.

To sum up, we can get the desired result.

2
. _ " "
B= X A,
) €Fy,
T e tl))=1
" " 1 ! !
= Z x(agt] + - +antn); z HO(Ted (] + -+ 1)) — 1))
x’]’ ..... ! €f, yeF,

1 1 " Y Y
- Z u(=y) z x(@t] + -+ ad! +yG ]+ e+ 11

yeF, ... €Fy
1
=~ 2 U Y aay +yi e ¥ p((ay + v
yeF, 1/ €eF, 1)/ €k,

= %( Y xaty Y xat)+ Y =) Y xay +yEe) Y x((a, + ).

r;’ eF, 1/ eF, yeF* t’l’ eF, 1/ eF,
It is easy to check that

" N A ifa,=a, =+ =a,=0;
Z x(ayt)) - 2 ;((antn)_{ 0.

otherwise.
1/ ek, ek,

Let T = Z_\,E[F: u(=y) Zt’l’e[Fq x((ay +yt)t]) - Zl;,e[a x(a, +yt)t)). We will

calculate 7 in the following two cases according to Lemma 6.

e Assume thata, ---a, =0.ThenT = 0.
e Assume thata, ---a, # 0,so thata,; #0, ...,a, #0.

e If there exists tl’. such that tl’. ¢ aF* thenT = 0.
e Iftj €aF and-and? € a,F*, so that %, e, ’:—/ € F*, then

1
n U — =% .
p_ [ u@. it n=z
0, otherwise.

This completes the proof.

Our next result relates the sums Ex(@;, @5, , @,50), Ex(@;, @,, .
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Theorem 2 Let @, ¢,,...,0, be multiplicative characters of R and
@; 1=y; * y, (1 <i<n), where y; and x, are multiplicative and additive charac-
ters of F,, respectively. Then

1. Ex(@, @, ..., 9,0)

qTE[Fq(q/],yfz, v y30), ifa = =a, =0;

0, if a; -+~ a, = 0 but not all of them are zero;

0, ifa; -~ a, #0and Tr!(a, + - +a,) # 0;
= < q"(r=1)

@) - w,(a,), ifa--a,#0,Trl(a; + - +a,) =0and
(yq - w,)" is trivial;

0, ifa, --a, #0,Tr!(a; + - +a,) = 0 and
(y -+ w,)* is nontrivial,

L

where (y, -+ y,,)" is the restriction of y --- y, to F..
2. Eg(@1, @355 @,51)
LE; (W1, w5. - wsD),s ifa, = =a,=0;
0, if a; -+ a, = 0 but not all of
them are zero;

" a

=1L al n i q
= Vi may) T Ve ey 1@ a4y # 0 and Tr(a, +
o ta,) #0;
0, ifa, --a, # 0and Tri(a; +
o +a,)=0.

L

where Ep (yy, ¥, ..., y,;1) denotes the hyper Eisenstein sum of .
q
3. Ex(@, @50 @,51)

LEe W1 W25 - > ¥,30), ifa; = =a,=0;
0, if a; -+~ a, = 0 but not all of
them are zero;
=40, ifa, ---a, # 0 and Tr(a; +
o ta,) #0;
Ly (a)) -+ w,(a,)Gg (@ = w,)"), if @, -+ a, # 0 and Tr(a, +
o ta,)=0,
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where (y, -y, )" is the restriction of y; -y, to I..

Proof Lett,,t,,...,t, € R*, wheret;, = tlf(l + utlf’) forl <i < n.Then

1. Ex(@, @55, 9,:0)

= > @)@ (1) -+ 9, (1,)

1ty et €R T(t +1y -+ 41,)=0
> W () 2, ) -+ W, () 2, (2]
! / s /"
st € [Fq,tl,l..,tn eF,
/ /Yy — (4 !y —
Ted@t + -+ 1) =0, Ted(#\ 1) + - +2/2') =0

= Y Wi () = w0 (1)) -, (8) 2 Ko (1) 2,5
tj,...,t;e[F;, tj’,...,t;’e[Fq,
Ted(d) + - +1)=0 Ted(A ) + -+ 0,t)) =0
= > Wi (@) - w,(f) A (By Lemma 7 (1)).

t’l,.‘.,t;e[F;,
Ted(d) + - +1)=0

e Ifa; =--=a,=0,then

n

o= 4 _
Ex(@r: @2, 9,30) = — Z v (@), () =

J /
e tn €FF,

q )
TE[Fq(‘/’l’ Wy, ..., y,0).
T @)+ 41])=0

e Ifa, ---a, =0butnot all of them are zero, then Ex(y, 3., ..., y,;0) = 0.
e Ifa,--a, #0,then

7

q
Ex(@1. @2 - 0,:0) = — > ¥ (@) -y, ()
r;,...,t;,e[F;,Trﬁ(z;+---+t,’x)=0,
4 o

’ ’

q" 1 t
= — Z wl(alz) eoe Wn(anz) <LCtZ - 2 —.. ="

r a a

z€Fy, 1 n

2T (@ +--ay)=0

q" .
= Zyi@) i) Y W w)@
r z€Fy,
:Trf’.(a]+--«+a,,):0
0, if Tr!(a; + - +a,) #0;
Ty (@) -+ w,(a,), if Trd(a, + - +a,) = 0 and
= (wy = y,)* is trivial;
0, if Tri(a; +--- +a,) = 0 and
(w, -+ y,)* is nontrivial.
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@1t)P(1) -+ @,(1,)

1ty eeosly ER* TH(t) iy o+, )=1

W (D e, (1) = v (8) 2, (@)

2. Ep(@, @y, ..., 0,:1)

s ’ 1" 1"
1, t”el}f[;‘,zl sl €F

Trf(y; +---+’;)=1.Trf(”l r’1’+---+/{,x,’/)=n

> AR A CA D SN (0 R N ()

[ UAS Bl t,...1efF,
T et =1 T ] =1 T ety if])=0
_ ’ ’
= Yy w,(f)A By Lemma 7 (1)).
t;,.“,II’IEIF;,

Trf(r; +et)=1

e Ifa,=--=a,=0,then

n

q

qn
Er(o1, 05,503 = - Z V’l(t;)"'%(l:,)= TE[Fq(Wl’WZ""’Wn;l)'

/ *
4 ,...,t,le[Fq s

Tr?(t/l +eth)=1

e Ifa,---a, =0 butnot all of them are zero, then Ex(y,y,, ..., y,;1) = 0.
e Ifa,--a,#0,then Ex(p,,,,...,0,:1)

qn
= > Y g (1)
1ol €F XTI 4o 4] )=1,
7 1
’ ’
q” tl t
= — Z ll/l(alz) Wn(anz) (Letz - 0 = .. =
r z€Fr, ay a,
T (ay +ookap)=1
qn
= yia) @) Y W w)E)
r z€Fy,
2T (ay ++-4ap)=1
0, if Trf(a; + - +a,) =0;

a

q I — 4 ) q
r 4 (Tr‘r’(a1+---+an) ) Wn < Trd(a;+--+a,) )’ if Trr(a1 + + an) 7 0.
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3. Ex(@1, @ps - @p1t)

= D 0Py -+ (1)
talyse b €R Tr(t) +y +-+- 41, )=u
= Z W, ([; VX, (t;’) Wn(t;))(an(t;')

t,..., t’e[F* t” e,
Tr"(z Heeetth)= 0Tr"</ z”+ =1

DR CA RERA A B S N (10 RN ()

tj,...,t;e[Fq*, 7,...teF,,
Trf(z’]+---+tz)=0 Trq(z’z”+ =1

_ ’ ’

= Z ¥, () -+ y,(/))B (By Lemma 7 (2)).
tq,...,t,’le[F;,

T @] +ttf)=1

e Ifa; =--=a,=0,then

n

q
Eg(®1, @5 - i) = — Z wi (1) - t//n(t)——E[F(t//l,wz,...,wn,o)-
7, A

ot (t’+ +r’) =0

e Ifa, - a, = 0butnot all of them are zero, then Ep(y|, >, ..., y,;u) =0
o Ifa,--a, #0,then Ex(@,, @y, ***, @,;1t)

q
=L D Wi (@) - w, (1) AR)
r LA S Tr‘/(z;+~-~+t,’1)=0,
= (L‘ = 4n g
e
qn al n
— 1 — ... — Az
r Z W1<Z> Wn<z>()

z€Fr,
1 _
el (ay+ortay)=0

-Ty@ve Y G @i
z€Fr,

L1 @y a0
/0 if Tri(a; + -+ +a,) #0;
B "7%(01) “w,(a,)Gg (y; - w,)"), if Trl(a; + -+ +4a,) =0

This completes the proof of this theorem. O
From the above theorem, we combine Egs. (3), (4) with Lemma 3. Then we

can calculate the exact value of the hyper Eisenstein sum Egx(@,, @5, ---, @,;1) over
R. It is worth mentioning that we obtain a connection between hyper Eisenstein
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sums of R and Gaussian sums of F, when y,y,, ..., y, are not all trivial by [21,
Theorem 3]. Therefore, we obtain the following corollary.

Corollary 2 Let @, ¢,,...,p, be multiplicative characters of R and
@; 1=y * y, (1 <i<n), where y; is a multiplicative character of F, and y,
is an additive character of |, with a; € F,. We obtain the following three direct
consequences.

1. Ity w,,...,y,areall trivial, then

¢"((g=D"+=D"

= ,ifa,=+=a,=0;
il ifa - q
Ep@yp @) =4 7 ifa, ---a, # 0 and Trl(a; +
+a,) #0;
0, otherwise.

2. Ify,,...,y,are all nontrivial and y,,, ... ,y, are all trivial forl <h <n-—1,
then Ex(@y, ..., @,;1)

( (—1)"7hqnG|Fq (Wl)"'G[Fq W)

, ifa, =--=a, =0and
G, (W +5,)°) 1 n

(w -+ y;,)" is nontrivial;
(_l)nthqnG[Fq (v, )"'GIFq (wy)

b
= < r

ifa, =+ =a,=0and

(wy -+ yy,)" 18 trivial;

Loy (—— Y oy (— %y

. Wl(Tt"j(tll+~-~+a,,)) wh(Trﬁ(al+-~-+an))’ ifa, -+ a, #0and
Trf(a; + -+ +a,) # 0;

0, otherwise.

\

3. Wy, vy, ...y, are all nontrivial, then Ex(@,, ..., @,;1)

( qnG[Fq(Wl)"'GFq(Wn) A
—t 7 ifa, =+ =a, =0and
1G, (0 ++y,)*) ! n

(y -+ y,)* is nontrivial;
qleFq(Wl)'"GFq(Wn)

= , ifa; =+-=a,=0and
= (w, - w,)* is trivial;
Loy (— Y y... R
r lI/l(Tr‘r’(a]+---+a,,)) ll/”(TrZ(al+---+a“))’ lfa] ay ?é 0and
Tri(a; + -+ + a,) # 0;
0, otherwise.

Remark 2 Similarly, we can also calculate the exact value of the sums Eg(¢,,
@y, ..., @,;0)and Ex(@,, @,, ..., @,;u) over R using Lemma 5.

In view of the fact that Ex(@,, ..., 9,:8) = @, -+ @,(3)Ex(®,, -, @,;1) and Cor-
ollary 2(3), we can determine the absolute value of Ex(@, ..., ,;8) for all 8 € R”.
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Corollary 3 Let @, ¢,,...,p, be multiplicative characters of R and
@; i=y; * y, (1 <i<n), where y; is a nontrivial multiplicative character of F,
and y, is an additive character of F, with a; € F,. Assume that (y, --- )" is the
restriction of y, -+ y, to [F,. Then

-

3

P2 if ) = - = a, = 0 and (y, - y,)* is

nontrivial;
|Eg(@ys s pd) =17 2 - ifay=--=a,=0and (y; y,)" is

trivial;

et ifay eea, # 0and Trd(ay + -+ + a,) # 0;

0, otherwise.

In fact, we can get the value of the sum Ep(¢,, @;. ..., 9,;3) when n = 1in Theo-

rem 2. If $ = 1 and n = 1, then the sum E,(@;1) is usually called the Eisenstein sum
over R, where ¢ is a multiplicative character of R. Hence, we have the following
corollary as a special case of Theorem 2.

Corollary 4 Let ¢ be a multiplicative character of R and ¢ : =y * y,, where yis a
multiplicative character of F, and y, is an additive character of F, with a € . Then

. %E[Fq(llﬁ 0), ifa=0;
Eo(:0) = 0, if a # 0 and Tr?(a) # 0;
R @qj(a), if a # 0, Tr!(a) = 0 and y* is trivial;
0, ifa#0, Tr‘r](a) = (0 and w* is nontrivial,

where E[Fq(y/;O) denotes the sum E[Fq(q/;s) overF, with s = 0.

> 1E; (w3 1), ifa=0;
Ex(p;) = Tw(gic),  ifa#0and Tri(@) #0;

0, if a # 0 and Tr'(a) = 0,

where E¢ (y;1) denotes the Eisenstein sum over F,.
q

3 LEg (3 0), ifa=0;

Ep(gp;u) =40, if a # 0 and Tr(a) # 0;
%W(Q)G[FV(F), if a # 0 and Tr(a) = 0,

where E[F](I[I;O) is the sum E[Fq(q/;s) overF, withs =0 and Gg. (y*) is a Gaussian
sum over [F.
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Remark 3 In view of the definition of Jacobi sums over F, in [44], we have the Jacobi
sum J[Fq((l’p @y, ..., @,;1) defined by

Je (01, 02. .. 01)) = > @100)P2 (%) -+ 9, (x,).

XXX, EFF X 2y 4, =1

Similarly, we can define Jacobi sums over the ring R as follows:

Jr(@1: @, 0,31 = > @1(1)P (1) -+ @, ().

ttyse ol ERY 1+l 041, =1

Let g = 7" and r = p!. If m = 1 in (5) of Definition 4, Jacobi sums over R are spe-
cial types of the hyper Eisenstein sums. Therefore, we have the following corollary,
which relates the Jacobi sum Jg(@,, @,, ..., @,;1) over the ring R.

Corollary 5 Let @, ¢,,...,p, be multiplicative characters of R and
@; 1=y x x, (1 <i<n), where y; and y, are multiplicative and additive charac-
ters of b, respectively. Then Jp(@y, @, ..., @,31)

q"_IJ[Fq(ull,wz, oy, ifa, =+ =a,=0;
0, if a; ---a, = 0 but not all of them
= are zero;
q”‘lyfl(al;"ﬂn) u/n(ﬁ), ifa;--a,#0anda; + - +a, #0;
0, ifa; --a,#0anda, + - +a, =0.

Here, the Jacobi sum J[Fq(llll, VNS 1783 §)

e 1\ 1+l . L
(g=1)"+(=1) i ifyy,...,y, are trivial;

q
1V (—1)\h+] . ..
(—1)"‘h%, if yy, ...,y are nontrivial and v, {, ..., y, are

= trivial;
Gr, )G, (W) , .
N ify,,...,w, and y, .-y, are nontrivial;
G, 1w, Vi oo W A0CWL 2 W
Gy, (w1)--Gg, (v,) . .. ..
—%, if y, ..., y, are nontrivial and y, --- y, are trivial.

5 Applications

In this section, we mainly study the applications of character sums over the local
ring R =F, + uF, (u? = 0) to the construction of codebooks.

5.1 The generic constructions of asymptotically optimal codebooks

This subsection presents several families of asymptotically optimal codebooks con-
structed using Gaussian sums, hyper Eisenstein sums and Jacobi sums over R.
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5.1.1 The constructions of codebooks via Gaussian sums over R

Note that |R*| —q(q— 1). Let P =Wk, and A :=y, %y, where
a,b,c €V, Yo Xps X € [F and y € £, Assume that 7 = 7,(1 + ut), where 1, € [F*
andt; € [F Then we can deﬁne a set Cy(R¥, R* x R) as

% P D 1 D 5
Co(R*, R* x R) ={ ﬁ((p(t)/l(t))tek*, peR. e R}

1 ~, ~
={ _(l//(t()))(a(tl))(h(to))(c(totl))106[5;,:[5[5’ v e Xop 2 €F, } )

VK
where K = |R*| = q(q — 1).
Next, we will give two constructions of codebooks over the ring R.
A. The first construction of codebooks
The codebook C; := C, (R*,ﬁ* X I/é) of length K, = |R*| = g(q — 1) over R is con-
structed as

W) xa(t) 25 (t0) Xe (o1 )y ek i ek, »

c1={\/1K_1

w is a fixed multiplicative character over F, x,, 1}, X. € ﬁF\q }

Based on this construction of the codebook C;, we have the following theorem.

Theorem 3 Let C, be a codebook defined as above. Then C, is a (4%, 9(g = 1)) code-
book having maximum cross-correlation amplitude I, (C,) = ﬁ Moreover, the

codebook C, asymptotically meets the Welch bound.

Proof By the definition of Cl, itis obvious that C; has N; = ¢ codewords of length
Ky =q(g—-1). Let \/—(W(to))(al(tﬂ)(b (o) xe, (lot1));oerp 1 €F, and
¢, = \/_(u/(to) Xa, (1) Xp, (o) ;(Cz(totl)),oep 1eF, be any two distinct codewords in C,.

Denote the trivial multiplicative character of F, by y. Leta =a, —a,,b=b, - b,
andc=c, —c,.Setp =y, x y,and A 1= y, * X.- Then the correlation of ¢; and
¢, is as follows.
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chlcf = Z W(to))(al (11))(1;1 (to)lcl(totl)W(to))(az(tl))(bz(to))(cz(tofl)

1,€Fy 1, €F,

= X wltx(a —a)t + by = bty + (¢ — )ity

1yeFr.1 €F,

= O woli)x((by = byty) Y x(ay — at; + (¢, = e)ighy)

1,€Fy 1 €F,
= Y woltx(by) Y x((a+ci)ty)
1EFy 1, €F,

= 2 wo(to) X, (%)

tUE[Fq* La+cty=0
=Gg(@, A).

Since ¢; # ¢,, a, b and c are not all equal to 0. In view of Theorem 1, we have

—q, if a=0, ¢c=0 and b #0;
Ke el = qx(—“‘—{’), if a#0 and ¢ #0;
0, otherwise.

Consequently, we infer that |c1c§I | € {O, q%l} for any two distinct codewords
¢;,¢,in C;. Hence, I, (C)) = q%l

Next, we show that the codebook C, asymptotically meets the Welch bound. The
corresponding Welch bound of the codebook C is

P A Bk ST ek (C Al VN N el e
N (N = DK, (¢> = Dalg — 1) ' -¢-q+1

Imax(cl) — q4_q3_q+1 1 Imax(cl) —_— 3 1 1
From = ‘/—(qz_qu D we have q1£>noo - = 1, which implies that C;
asymptotically meets the Welch bound. O

B. The second construction o coo/i\ebooks
The codebook C, := C,(R*,R* X R) of length K, = |R*| = g(q — 1) over R is
defined by

1
G = { \/fz (w(10) x.(t) 2 (t0) x (to1 ))t()E[F;vl] eF,»

/S [?;, X 1s a fixed additive character over F,, x,, 1. € ﬁ]}.

With this construction, we can derive the following theorem.
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Theorem 4 Let C, be a codebook defined as above. Then C, is a(q*(q — 1), q(qg — 1))

codebook having maximum cross-correlation amplitude 1,,,(C,) = —. Moreover,
P

the codebook C, asymptotically meets the Welch bound.

Proof According to the definition of C,, it is easy to see that C, has N, = ¢*(qg — 1)
codewords of length K, = g(qg —1). Let ¢, = \/;K*Z(WI (t0) Xy (1) 20 Xe, (gt Dy e,
and ¢, = \/;K_Z(y/z(to) Xa, (1) 1 (to) )(cz(totl))toe[!:;,tleﬂ:q be any two distinct codewords in

C,. Sety = y,y,,a = a, —a, and ¢ = ¢; — ¢,. Then the correlation of ¢, and ¢, is
as follows.

chlcg' = 2 W1 (10) Xa, (1) 26 (10) Xe, (ot D)W () X o, (81) X () X, (1)

t€F7 1 €F,

= 2 vy, (i) x((a; — ap)ty + (¢; — ex)igty)

10€F; 1, €F,

= Y wlty) Y, 2@+ ctpy)

1€F} 1 €F,

=g ), .

* —
to€Fy.a+cty=0

e Ifa=c=0,since c; # c,, it follows that y is nontrivial. Then we have

Kyeef =q Z w(ty) =0;
1,€F>

o Ifa=0,c#0o0ra#0,c=0,then K,c,ci =0;
e Ifa#0andc#0, then Kyc,c)f = qu/(—g).

Ly(=2), ifa+#0andc+0;
e\l = { V(=2 # #

R otherwise.

Hence, we infer that |c1c§’ | € {O, q%l} for any two distinct codewords ¢, ¢, in C,.
Therefore, I,,,,(C,) = qul.

Finally, we show that the codebook C, asymptotically meets the Welch bound.
The proof is similar to the proof of Theorem 3, and by calculating, we have

oMK -1 -glg-D _ g-1
" (N, = DK, (¢*—q*—Dglg—1) P-¢-1
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Apparently, we get lim 2% = Jim 1/";’21 = 1. This completes the proof.
g—>00 1, g—>00 (g—D(g-1)?
O

5.1.2 The constructions of codebooks via Eisenstein sums over R

Next, we present the asymptotically optimal codebooks which are constructed by
Eisenstein sums over R. Based on this, we first give the following lemma.

Lemma8 LetG :={¢; | (r— D|j} C [F’ where ¢; = ¢’ and ¢, is a generator of[F*
with ) <j<gq—2. Then Gisa subgroup of [F* and |G| = =L Moreover, for every

v E [F* w* is trivial if and only if v € G, where 174 * denotes the restriction of y to
F..
Proof Assume that IF* = (0), i.e, let 0 be a primitive element of [, Then F* = <0 = ).
We can further assume that $1(0) =, Then y* is tr1v1a1 = q/(er =1
(:»y/(a)r—l _1<=>(C’ 1)» 1=1,0<j<qg- 2<=>(q—1)|1" ! = (r—1DJ.

a

C. The third construction of codebooks
Let

D ={teR*|Ti(r) =1} and K5 := |D|.

Here, we consider the case that m = 2 and ¢ = r2. Hence, it is easy to check that
K; = r?. Assume that H is a subgroup of G := ={¢; | r=D|j} C [F" and k = |H|.
Then k | (r + 1) since |G| = il r+l

The codebook C; := C3(D HxF, ) of length K5 = r? over R is built as

1 ~

C3 = _((W * xa)(t))[eDs "4 € Hs xa € [Fq .
VK3

Based on this construction of the codebook C;, we get the following theorem.

Theorem 5 Let C; be the codebook defined as above. Then Cy is a (kr*,r?) code-

book having maximum cross-correlation amplitude I, (C3) = % Moreover, the
codebook C; asymptotically meets the Welch bound.

Proof According to the definition of C, it is obvious that C; has Ny = kr? codewords
of length Ky =r% Let ¢, and ¢, be any two dlstlnct codewords in C;, where

\/E((Wl * Xal)(t))[eD and \/E((WZ * )(az)(t))tED Let
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@) 1=y kg, and @, 1=y, x gy, Set @ = @@, and ¢ 1=y * x,. Then the cor-
relation of ¢, and ¢, is as follows.

D W * 1) * 2,)(0)

teD

H
K3c1c2

Y eies

1€R* Tr(H)=1
=Ep(@;1)
LE; (pi1).  ifa=0;
= f—,w(Tr;(a)), if a # 0 and Tr(a) # 0; (By Corollary 4 (2))
0, if a # 0 and Tr(a) = 0.

Since ¢; # ¢,, it follows that y and y, are not all trivial. In view of Corollary
3(n=1,m=2), we have
r%, if a = 0,y and y* are nontrivial;
r, if a = 0,y is nontrivial and y* is trivial,
r, ifa # 0, Tr!(a) # 0 and y is an arbitrary multiplicative
character of [Fq;
0, ifa#0, Tr’rl(a) = 0 and y is an arbitrary multiplicative
character of F,.

Ksley el =1

L

Since H < G, which implies that yw* is trivial (by Lemma 8), we infer that
le,cll| e {0, % } for any ¢, ¢, € C;. Hence, 1,,,,(C;) = %

Next, we prove that the codebook C; asymptotically meets the Welch bound. An
argument analogous to the one given in the proof of Theorem 3 establishes that

I - N;—K; kr2—r2 k—1
IV -Dk;, V&2 Viee—1

Obviously, we have lim b = Jim ,/qlzz_i) = 1, which implies that C; asymp-
q—)OO -

—>00 Iw

totically meets the Welch bound. a

5.1.3 The constructions of codebooks via Jacobi sums over R

In the following, we present the asymptotically optimal codebooks which are con-
structed using Jacobi sums over R.

D. The fourth construction of codebooks

Now, we consider the case that n =2 and m = 1. Let t; = #{(1 + ut]) € R* and
t = t5(1 +ut)) € R*. We define
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D' ={t,t, ER*|t; +1, = 1}

={1,1, € [F;,t’l’,t;’ €F |t +1, =10t/ +1,t) =0} and K, := |D'|.

The codebook C, := C,(D',R* x R*) of length K, over R is assembled as

1
G, ={ ((Pl(tl)wz(tz))zl,zzepu PL=Y1L K Yo P2 =W X Koy

VK

w is a fixed multiplicative character over F, y, € [IA:;, Xa,» Xa, € ﬁq }

With this construction, we can derive the following theorem.

Theorem 6 Let C, be the codebook defined as above. Then C, is a
(q*(g—1),q(g—2)) codebook having maximum cross-correlation amplitude
I,.(Cy) = #. Moreover, the codebook C, asymptotically meets the Welch bound.

Proof By the definition of C,, it is obvious that C, has N, = g*(qg — 1) codewords of
length K, = g(q —2). Let ¢, and ¢, be any two distinct codewords in C,, where

1 1
¢ = \/_K—4(Wl(t,l))(a| a0 10,0y v i ek, a0d €, = \/—K—4(W1(t§))(b,(l;')ll/3(l;)
X, () Dy neksq ek, Denote the trivial multiplicative character of F, by . Let
2 i g1
a=a, —bjandb = a, — b,. Set ¢, =y, x y,and ¢, = y,y3 * y,. Then the correla-
tion of ¢, and ¢, is as follows.

H / " ! "
K,ec; = > Wi (1) s, EOW () 20, & () 2, (W3 (8) 11, (8)
11, EF 1 1 EF,,
1; +/Z=1./] 1’1/ -H/Zlél =01/1 +1£=1.1; /]’+I£/2’=0

> wolD (e = b)) x(ay — byt)
.1 S5 RAR S

Pt =14 1t =
II“Z_I"]’] +oty =0

Z @ (1)@, (ty)

t,HER*,
t 4+ =11+ =1

Jr(@1, @).

According to Corollary 5 (n = 2), we have

—q, if a=0b=0; (since ¢; #¢,, y,y; is nontrivial)
u 0, if a=0 and b # 0;
Kyeie) = q%@(;ﬁ), if a#0, b#0 and a# —b
0, if a#0, b#0 and a = —-b.

Consequently, we infer that |c1c§| € {0, ﬁ} for any two distinct codewords

. 1
¢;,¢,in C,. Hence, I, (C,) = s
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Finally, we prove that the codebook C, asymptotically meets the Welch bound.
The corresponding Welch bound of the codebook C, is

o MoK e -D-alg-2) _ q*—2q+2
v (N, — DK, (@*—q*—qlg-2) @ - -1(g-2)

o Tnax(Gy) : [__@-g-1 :
It follows that lim =2 = ]im —— —— = 1. This completes the proof.
g—oo I, g— (g-2)(q*—2q+2) P P
O

5.2 The specific constructions of optimal codebooks

In this subsection, we study a class of codebooks achieving the Welch bound
that can be constructed using quadratic character sums over the local ring
R =F, +uF, (4> = 0), where g = 2.

E. The fifth construction of codebooks

Note that |R*| = g(g — 1) and the quadratic character p =y, x y, (a € F;) for
p=2. Assume that 1 := y, * y and t = t,(1 + ut,), where b,c,t; € F and 1, € F .
Let

D" ={t € R*|p(t) = -1} and K5 = |D"|,

where p 1=y % y, is the quadratic multiplicative character of R with a € [Fq* and
n(0) is defined as 0 for convenience. .
Then the codebook Cs := C5(D"”, R) of length K5 over R is defined by

1 ~
C= Atte//,leR .
5 {\/FS(())D }

Based on this construction of the codebook Cs, we have the following result.

Theorem 7 Let Cs be a codebook defined as above. Then Cs is a (q°, q(qT_l)) code-
book having maximum cross-correlation amplitude I, (Cs) = ﬁ. Moreover, the

codebook Cs meets the Welch bound.

Proof 1In the light of the definition of Cs, it is easy to see that Cs has N5 = ¢* code-
words of length Ky = |[D"'| = @ Let ¢, and ¢, be any two distinct codewords in
Cs, where ¢, = VLK_S(Al(z))teD,, and ¢, = \/;K_S(Az(t))tem. Denote the trivial multipli-

cative character of [, by y. Let b =50, — b, and ¢ = ¢| —¢,. Set p 1=y * y, and
A =y, * x.. Then the correlation of ¢; and ¢, is as follows.
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Kseyel = ' 4,00

teD"”

- Z Ibl(t())ﬂ(cl (totl))(bz(to))(cz(lotl)M

toe[Fq*,tI e[Fq
1 — () x,(t))

= X 2 = b x((e; = &gt ———

toe[F;,tI e[Fq

1- ll’o(to)){a(ﬁ)

= Z Xp(to) x:(tot)) >

1,€F; 1, €F,

:% Z /Yb(t()) 2 ){C(toll) - %GR(/), }.)

1,€F} 1 €F,

Since ¢; # ¢,, b and c are not both equal to 0. Then we have

—q, if b#0and c = 0;
PIFAOPIPACHE { ST

1heF; 1,€F,

In view of Corollary 1, we have

by .
gx(==), ifc #0;
G ,A = c .
r(P-4) {0, if ¢ = 0.
Hence,
1 .
—--q, ifc=0;
Kse, el = ; ,
T {—qu(—;%, ifc #0.

Therefore, we get |c1c§1 | = qu for any two distinct codewords ¢;, ¢, in Cs. Hence,
Imax(CS) = q+1

Next, we prove that the codebook Cs asymptotically meets the Welch bound. The
corresponding Welch bound of the codebook Cs is

L[ Ns-Ks ¢ - 3q(g—1) i
T s = DK (@ - D3qq-1) 9~
It follows that w = 1. Obviously, Cs meets the Welch bound. O

w

Remark 4 In fact, the set D" = {r € R*|p(t) = —1} is a difference set in (R, +) with
parameters (g°, 44 q(q_—Z))’ where g = 2. We can easily prove this result by the
definition of difference sets. In addition, we will show another way to prove this
result by defining the bent function over the ring R as follows.

Firstly, we define the function
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fiR=F +uFy — F,

0, if ry=0,
f) =f(r()+”r1)= sz(r’) if ro?éo

for any € R, then D" as defined above is actually the support of the function f (sim-
ply, suppt(f)), namely, D" = {r € R|f(r) = 1} = suppt(f).

It is easy to prove that the function f is bent by the definition of bent func-
tions. Moreover, since [5, Theorem 6.3] says that a function f from F,. to
F, is bent if and only if the support of f is a difference set in (Fn,+) with
(m,2m= L4255 o240 ) Hence, D" is a difference set in (R,+) with
parameters

2 0 4 ©)

< P (CAR)) q(q—2)>
q, .
Difference sets with parameters given in (6) are examples of Hadamard difference
sets (see [5, Section 6.2.1]).

It is worth noting that Ding and Feng [6, Section A] obtained optimal codebooks
from the difference set with parameters (2”,2"~! +272 ,2""2 + 275 ). The optimal
codebook we constructed by using quadratic Gaussian sums of R corresponds to a
difference set.

Remark 5

1. Let the set &, be the standard basis of the n-dimensional Hilbert space which is
given by the rows of the identity matrix /,,. Let C G V&g, wherei=1,2,3,4.
Then the codebooks C are also asymptotically optimal and their parameters are
as follows.

(1) Nl = Nl + Kl = q(qZ tq+ 1)77{1 = Kl = q(l] - l) and Imax(cl) - Imax(cl) - L
(i) Ny=N,+K =q(g®— D.K, =K, = glg— D) and I, (C;) = I, (C,) = Ll
(i) Ny=N;+K; =k?+2K, = &-rm%ﬁ@%%d@—%
(iv) Ny=N,+K, =q(¢ -2).K, =K, = q(g—2) and I, (C,) = I,,,,(C;) = =
The parameters of the codebooks E‘l, 53, 54 are new. The proof of this result is
similar to the proof of [27, Theorem 4.1], so we omit the detail here.
2. InTable 1, we list the parameters of some known classes of asymptotically opti-
mal codebooks with respect to the Welch bound. By a comparison, we find that
the parameters of codebooks obtained in Theorems 3, 5 and 6 are new.
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Table 1 The parameters of codebooks asymptotically meeting the Welch bound

(N, K) Lax References
(NN, 22=0), where N, = 3 (mod 4) fori = 1,2 VDD [11]
NiN,—
(N, =N, %) where N; = 3 (mod 4) for any [ > 1 VN +D- Nt D [11]
Ny N1
@", ’;;;(p" +p2)+ 1), where p is an odd prime tip? [12]
2pK
(g = 1} + g1, g~ Dforany k >2and g > 4 Ve [13]
(= DFH=D
((g = D* + K, K) for any k > 2, where K = M _Vi_' [13]
(2K + 1,K), where K = an 1,51,8, > 1 P [20]
2K
QK + (=1)". K), where K = SV 2CUV > s s > 1 2 [20]
foranyl <i <! 2K
(¢ = )"+ K,K) for any s > 1and n > 1, where K = W e V)‘I(Hl)l [21]
q\‘i 1 4(— 11+
(g = )"+ g1, ¢V forany s > land n > 1 Vatl [21]
q-1
@+ -0 -9 L [22]
o
(kp® + p?,p?), where k|(p + 1) 1 [22]
P
(qlq +4), &) V! 25]
q-1
(g —(q+3)2(q+])) L [25]
q+1
(@, ¢») and (¢ + ¢*. ¢7) 1 [27]
q
((g—1)g*.(g— Dg)and (¢* — 1,(g — 1)) q_Ll [27]
(g=Dg* (g = DHand (g’ =2g +1.(g = 1)) = [27]
((g—1D%q.(g—DHand (¢* —¢* =g+ 1.(g— 1)?) e [27]
((g—1)*q.(g— (g —2)and (¢’ — ¢* —2q +2,(g — 1)(g —2)) m [27]
((g—1).(g—2»and (¢* - 2¢* — g +3.(g - 2)) ([I_Lz)z [27]
" -1, ”"T_l), where p is an odd prime kil [43]
-1
g+l [44]

(¢, @), where g = p* and p is an odd prime
@ +4¢ ' =1, Hforanyl>2 1 [46]

(@ q(q - 1)) q%l Theorem 3
(¢*(a—1).q(g - 1)) q%] Theorem 4
(kr?, r?), where g = 2, k|(r + 1) 1 Theorem 5
(@a - 1.4g - 2) o Theorem 6

&
I
)

6 Conclusions

In this paper, we describe the additive and multiplicative characters over the finite
chainring R = F, + uF, (u*> = 0). We present Gaussian sums, hyper Eisenstein sums
and Jacobi sums of R and their applications to the problem of constructing code-
books. The main contributions of this paper are the following:
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1. An explicit description on additive characters and multiplicative characters over
R =F, +uF, (u* = 0) is given in Sect.. 3.

2. Gaussian sums (including quadratic Gaussian sums), hyper Eisenstein sums and
Jacobi sums over R are defined in Sect. 4 and some good properties with respect
to these character sums are investigated.

3. We firstly establish a relationship between Gaussian sums (resp. Eisenstein sums
and Jacobi sums) over R and Gaussian sums (resp. Eisenstein sums and Jac-
obi sums) over [, (see Theorems 1, Theorem 2 and Corollary 5). Moreover, we
explore a connection between hyper Eisenstein sums over R and Gaussian sums
over [, under certain conditions (see Corollary 2).

4. We propose five constructions of codebooks and obtain four families of asymp-
totically optimal codebooks (see Constructions A, B, C and D) and a family of
MWBE codebooks (see Construction E). The parameters of codebooks obtained
from Constructions A, C and D are new.

The codebooks constructed in this paper always have the parameter N less than K2,
so the codebooks we constructed can nearly achieve the Welch bound. When N is
large, there is no codebook can meet the Welch bound. A new bound, called the
Levenshtein bound, is better than the Welch bound when N is large (see, for exam-
ple, [15, 19, 42]). In [13], Heng et al. obtained asymptotically optimal codebooks
with respect to the Levenshtein bound, which are constructed by Jacobi sums over
finite fields. In further research, it would be interesting to investigate the applica-
tions of new families of asymptotically optimal codebooks meeting the Levenshtein
bound by using character sums over finite commutative rings.

Acknowledgements The authors deeply thank Prof. Teo Mora and the anonymous reviewers for their
valuable comments which have highly improved the quality of the paper.
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