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Abstract
In this paper, we give the exact number of ℤ2ℤ4-additive cyclic codes of length 

n = r + s, for any positive integer r and any positive odd integer s. We will provide a 

formula for the the number of separable ℤ2ℤ4-additive cyclic codes of length n and 

then a formula for the number of non-separable ℤ2ℤ4-additive cyclic codes of length 

n. Then, we have generalized our approach to give the exact number of ℤ
p
ℤ

p2-addi-

tive cyclic codes of length n = r + s, for any prime p,  any positive integer r and any 

positive integer s where gcd (p, s) = 1. Moreover, we will provide examples of the 

number of these codes with different lengths n = r + s.

Keywords ℤ2ℤ4-additive cyclic codes · ℤpℤp2-additive cyclic codes · counting · 

separable · non-separable codes

Mathematics Subject Classification 94B05 · 94B60

1 Introduction

In coding theory, the class of linear codes is one of the most studied codes 

because of their rich algebraic structure and their well-defined mathematical 

properties. A linear code of length n over a finite field 𝔽q is a subspace of 𝔽 n
q

. In 

the early history of coding theory, researchers mainly studied linear codes over 

finite fields, especially over ℤ2. Later, codes over rings have been considered by 

many researchers since the early seventies. However, they became a very popular 
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research area with the work of Hammons et al. [9]. In [9], Hammons and coau-
thors showed that some well-known non-linear codes such as the Kerdock and 
Preparata codes, are actually Gray images of linear codes over ℤ4. This work has 
led researchers to study codes over different rings, such as ℤ2k , ℤpk and �q + u�q. 
The reader may find some of such studies in [6, 8, 10].

In 2010, Borges et. al. introduced a new class of codes over rings, called ℤ2ℤ4

-additive codes [3]. They defined ℤ2ℤ4-additive codes as subgroups of ℤr
2
× ℤ

s
4
. 

In fact, ℤ2ℤ4-additive codes are generalization of binary linear codes and qua-
ternary linear codes. If we take s = 0, then we have the binary linear codes of 
length r and if r = 0, then ℤ2ℤ4-additive codes are quaternary linear codes over 
ℤ4 of length s. Although the class of ℤ2ℤ4-additive codes is a very new family of 
codes, they have some applications in the field of Steganography [11]. In [1], a 
number of optimal binary linear codes were constructed as images of ℤ2ℤ4-addi-
tive cyclic codes using the Gray map. In [5], Borges et. al. generalized the study 
of ℤ2ℤ4-additive cyclic codes to ℤprℤps-additive cyclic codes where p is a prime 
number and, r and s are coprimes with p.

The class of ℤ2ℤ4-additive codes is a very huge class. This implies that the 
number of distinct ℤ2ℤ4-additive codes is huge compared to the number of linear 
codes over ℤ2 or the number of linear codes over ℤ4. In [7], Steven Dougherty 
et. al. studied the number of ℤ2ℤ4-additive codes. Moreover, Siap and Aydogdu 
studied counting the number of generator matrices of ℤ2ℤ8-additive codes in [12].

In this paper, we are interested in finding the exact number of distinct ℤ2ℤ4

-additive cyclic codes of length n = r + s, for any positive integer r and any posi-
tive odd integer s. If s is any positive odd integer, then the ring ℤ4[x]∕⟨xs − 1⟩ 
is a principal ideal ring and hence cyclic codes of length s over ℤ4 are princi-
pal ideals. We will provide a formula for the number of separable ℤ2ℤ4-additive 
cyclic codes of length n and another formula for the number of non-separable 
ℤ2ℤ4-additive cyclic codes of length n. Then, we have generalized our approach 
to provide the exact number of ℤpℤp2-additive cyclic codes of length n = r + s, for 
any prime p,  any positive integer r and any positive integer s where gcd (p, s) = 1. 
The condition that gcd (p, s) = 1 will guarantee that the ring ℤp2[x]∕⟨xs − 1⟩ is a 
principal ideal ring and hence cyclic codes of length s over ℤp2 are principal ide-
als. As an application of our study, we will provide examples of the exact number 
of ℤ2ℤ4-additive cyclic codes and ℤ3ℤ9-additive cyclic codes of different lengths.

2 � ℤ
2
ℤ

4
‑additive and ℤ

2
ℤ

4
‑cyclic codes

In this section, we give the definitions of ℤ2ℤ4-additive and ℤ2ℤ4-additive cyclic 
codes, and we also give some properties of these codes. A comprehensive study 
of these codes can be found in [1] and in [3].

Definition 1  A non-empty subset C of ℤr
2
× ℤ

s
4
 is called a ℤ2ℤ4-additive code if C 

is a subgroup of ℤr
2
× ℤ

s
4
.
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If C is a ℤ2ℤ4-additive code, then it is isomorphic to an abelian group ℤ�
2
× ℤ

�
4
 

with the order of C given by |C| = 2�4� . Also, the number of order two codewords 
in C is 2�+� . Let � be the dimension of the binary linear code obtained by taking the 
subcode of C containing all order-two codewords. In this case, the code C will be 
referred to as of type (r, s;� , �;�).

Let � ∶ ℤ4 → ℤ
2
2
 be the usual Gray map defined by �(0) = 00 , �(1) = 01 , 

�(2) = 11 and �(3) = 10. � can be extended to a map Φ defined by

where n = r + 2s , 
(
u0, u1,… ur−1|v0, v1,… vs−1

)
∈ ℤ

r
2
× ℤ

s
4
. The Gray image Φ(C) is 

a binary code (not necessary linear since Φ is not linear).

Example 2  Let C be a ℤ2ℤ4-additive code generated by

Hence, C = {00|0000, 10|0022, 11|1102, 01|1120, 00|2200, 10|2222, 11|3302, 01|3320}.

•	 The order of C is 2141 , so � = 1 and � = 1.

•	 r = 2, s = 4 and � = 1.
•	 Therefore, C is of type (2, 4; 1, 1; 1).

Definition 3  Let C be a ℤ2ℤ4-additive code of length n = r + s. C is called a ℤ2ℤ4

-additive cyclic code if c =
(
u0, u1,… ur−1|v0, v1,… vs−1

)
 is a codeword in C, then

is also in C.

Let Rr,s = ℤ2[x]∕⟨xr − 1⟩ × ℤ4[x]∕⟨xs − 1⟩. Then any element 
c =

(
u0, u1,… ur−1|v0, v1,… vs−1

)
 ∈ ℤ

r
2
× ℤ

s
4
 can be identified with an element in 

Rr,s as follows:

This is one-one correspondence between the elements of ℤr
2
× ℤ

s
4
 and the elements 

of Rr,s. Therefore, we can identify ℤ2ℤ4-additive cyclic codes with polynomials 
of Rr,s . The following theorem gives the generator polynomials of ℤ2ℤ4-additive 
cyclic codes when s is an odd integer. Throughout this paper, we will use the nota-
tion f instead of the polynomial f (x).

Φ ∶ ℤ
r
2
× ℤ

s
4
→ℤ

n
2(

u0, u1,… ur−1|v0, v1,… vs−1
)
→

(
u0, u1,… ur−1|�(v0),�(v1),…�(vs−1)

)

(
1 0 0 0 2 2

1 1 1 1 0 2

)
.

�(c) =
(
ur−1, u0,… ur−2|vs−1, v0,… vs−2

)

c(x) =
(
u0 + u1x +⋯ + ur−1x

r−1, v0 + v1x +⋯ + vs−1x
s−1

)

=(u(x), v(x))
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Theorem 4  ([1]) Let C be a ℤ2ℤ4 -additive cyclic code in Rr,s with odd integer s. 
Then C can be identified as

where f |(xr − 1)mod 2 , a|g|(xs − 1)mod 4, l is a binary polynomial satisfying 
deg(l) < deg(f ), and f |xs − 1

a
l.

Lemma 5  Let C = ⟨(f , 0), (l, g + 2a)⟩ be a ℤ2ℤ4-additive cyclic code in Rr,s with 
odd integer s,   where the generators satisfy the conditions in Theorem 4. Then the 
generators f , l, g and a are unique.

Proof  The proof is similar to the proof of Theorem 3 in [2]. 	�  ◻

Example 6  Let C be a ℤ2ℤ4-additive cyclic code in ℤ2[x]∕⟨x7 − 1⟩ × ℤ4[x]∕⟨x7 − 1⟩ 
generated by ⟨(f , 0), (l, g + 2a)⟩, where

The code C has the following generator matrix

Furthermore, the binary image of C under the Gray map that we defined above is an 
optimal binary linear code with parameters [21, 5, 10].

Definition 7  Let C be a ℤ2ℤ4-additive code. C is called separable if C = CX × CY , 
where

Corollary 8  ([4]) Let C = ⟨(f , 0), (l, g + 2a)⟩ be a ℤ2ℤ4-additive cyclic code. Then, 
C is separable if and only if l = 0.

3 � The number of ℤ
2
ℤ

4
‑additive cyclic codes

Let C be a ℤ2ℤ4-additive cyclic code in Rr,s, where s is an odd integer. Then C can be 
uniquely identified as

where f |(xr − 1)mod 2 , a|g|(xs − 1)mod 4, l is a binary polynomial satisfying 

deg(l) < deg(f ) and f | (x
s − 1)

a
l. In this section, we are interested to determine a for-

C = ⟨(f , 0), (l, g + 2a)⟩,

f =x7 − 1, l = 1 + x2 + x3,

a =3 + 2x + 3x2 + x3, g = 1 + x + x2 + x3 + x4 + x5 + x6.

G =

⎛⎜⎜⎜⎝

1 0 1 1 0 0 0 3 1 3 3 1 1 1

1 1 1 0 1 0 0 2 2 2 0 2 0 0

0 1 1 1 0 1 0 0 2 2 2 0 2 0

0 0 1 1 1 0 1 0 0 2 2 2 0 2

⎞⎟⎟⎟⎠
.

CX × CY = {(a, b) | there are codewords (a, c2), (c1, b) ∈ C}.

(1)C = ⟨(f , 0), (l, g + 2a)⟩,
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mula for the number of distinct ℤ2ℤ4-additive cyclic codes of length n = r + s. 
Before starting our main work, we will give a few remarks which are related to our 
work.

Remark 

1.	 The generator polynomials in Eq. 1 are unique.
2.	 The only restrictions on the polynomial l are deg(l) < deg(f ) and f | (x

s − 1)

a
l. This 

makes the number of ℤ2ℤ4-additive cyclic code in Rr,s to be huge compared to 
the number of cyclic codes over ℤ2 or over ℤ4. Moreover, the existence of the 
polynomial l as a part of the generators will make the problem of finding a general 
formula for the number of ℤ2ℤ4-additive cyclic code a challenging problem.

3.	 If r is odd then, (xr − 1) = f̃1 f̃2 … f̃t mod 2, is factored as a product of the irreduc-
ible factors f̃1,f̃2,… , f̃t  . Any factor (not equal 1) of (xr − 1) will be labeled as fi 
where i ∈ {1, 2,… , 2t − 1}. The same is applied for (xs − 1) mod 4.

The number of ℤ2ℤ4-additive cyclic codes of length n = r + s, where r is any 
integer and s is an odd integer will be given in Corollary 14. But first we will find 
the number of these codes when r and s are odd positive integers. For the results 
from Lemma 9 until Theorem 13, we will always assume that r and s are any odd 
positive integers.

Lemma 9  Let C = ⟨(f , 0), (l, g + 2a)⟩ be a cyclic code in 
ℤ2[x]∕⟨xr − 1⟩ × ℤ4[x]∕⟨xs − 1⟩ , where f |(xr − 1)mod 2 , a|g|(xs − 1)mod 4, l is a 
binary polynomial satisfying deg(l) < deg(f ) and f | (x

s − 1)

a
l. If 

gcd

(
f ,
(xs − 1)

a

)
= 1, then C is a separable code.

Proof  By Corollary 12 in [1], the polynomial l = 0. Hence, C is separable. 	�  ◻

Lemma 10  The number of separable ℤ2ℤ4-additive cyclic codes in Rr,s is 2w13w2 
where w1 is the number of irreducible factors of (xr − 1) mod 2 and w2 is the number 
of irreducible factors of (xs − 1)mod 4.

Proof  Since C is separable then C = ⟨(f , 0), (0, g + 2a)⟩ = C1 × C2, where C1 = ⟨f ⟩ is 
a binary cyclic code of length r and C2 = ⟨g + 2a⟩ is a quaternary cyclic code over 
ℤ4 of length s. The result follows from the fact that there are 2w1 binary cyclic codes 
of length r and 3w2 quaternary cyclic codes over ℤ4 of length s. 	�  ◻

In order to count the number of non-separable cyclic codes in ℤ2[x]∕⟨xr − 1⟩ × ℤ4[x]∕

⟨xs − 1⟩ , by Lemma 9 we must always have gcd
(
f ,
(xs − 1)

a

)
> 1. Hence, when we 

consider non-separable ℤ2ℤ4-additive cyclic codes, we will always assume that 

gcd

(
f ,
(xs − 1)

a

)
> 1.
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Lemma 11  Suppose that C = ⟨(f , 0), (l, g + 2a)⟩ is a non-separable ℤ2ℤ4-additive 
cyclic code in ℤ2[x]∕⟨xr − 1⟩ × ℤ4[x]∕⟨xs − 1⟩ with gcd (r, s) = 1. Then

where Q1|(xr − 1)mod 2, a|g|(xs − 1)mod 4 and (x − 1) is not a factor of a.

Proof  Let C = ⟨(f , 0), (l, g + 2a)⟩ be a non-separable cyclic code in 
ℤ2[x]∕⟨xr − 1⟩ × ℤ4[x]∕⟨xs − 1⟩, with gcd(r, s) = 1. Since gcd (r, s) = 1, then the 
only common factors of (xr − 1) and (xs − 1) mod 2 are 1 and (x − 1). Suppose that 
a = (x − 1)J for some binary polynomial J. Since f | (x

s − 1)

a
l and 

gcd

(
f ,
(xs − 1)

a

)
= 1 , we get f |l, which is a contradiction unless l = 0 , and hence 

the code is separable. Now, suppose that (x − 1) is not a factor of f. Then, 
gcd

(
f ,

xs−1

a

)
= 1 and again l must be zero giving that C is a separable code. Hence, 

in order for C to be a non-separable code, we must have gcd
(
f ,

xs−1

a

)
= x − 1. This 

implies that f = (x − 1)Q1 and x
s − 1

a
= (x − 1)Q2, with gcd

(
Q1,Q2

)
= 1. Since 

f | (x
s − 1)

a
l, then Q1|Q2l which implies that Q1|l and l = Q1V . Since deg l < deg f  

and f = (x − 1)Q1 , then l = Q1. Thus, C = ⟨�(x − 1)Q1, 0
�
,
�
Q1, g + 2a

�⟩, where 
(x − 1) is not a factor of a. 	� ◻

Theorem  12  Let C = ⟨(f , 0), (l, g + 2a)⟩ be a non-separable cyclic code 
in ℤ2[x]∕⟨xr − 1⟩ × ℤ4[x]∕⟨xs − 1⟩ and let xr − 1 = f̃1 f̃2 … f̃t mod 2 and 
xs − 1 = g̃1g̃2 … g̃w mod 4 be the factorizations of xr − 1 and xs − 1 into irreduc-
ible polynomials in ℤ2[x] and ℤ4[x] , respectively, with gcd(r, s) = 1. Then, the num-
ber of non-separable ℤ2ℤ4-additive cyclic codes is given by

Proof  By Lemma 11, we know that C = ⟨�(x − 1)Q1, 0
�
,
�
Q1, g + 2a

�⟩, where 
Q1|(xr − 1)mod 2, a|g|(xs − 1)mod 4 and (x − 1) is not a factor of a. Since 
xr − 1 = f̃1 f̃2 … f̃t mod 2, then (xr − 1) has 2t different factors and Q1 has 2t−1 
choices (because (x − 1) cannot be a factor of Q1 ). For the polynomials a and g , 
we must have a | g |(xs − 1) and (x − 1) is not a factor of a. Hence, the number of 
choices for a and g is

C = ⟨�(x − 1)Q1, 0
�
,
�
Q1, g + 2a

�⟩,

2t3w−1.
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Therefore, if gcd(r, s) = 1, then the number of non-separable cyclic codes is 
2t−1 × 2 × 3w−1 = 2t3w−1. 	�  ◻

Our next theorem gives the number of non-separable cyclic codes for any odd 
integers r and s.

Theorem  13  Let C = ⟨(f , 0), (l, g + 2a)⟩ be a non-separable cyclic code 
in ℤ2[x]∕⟨xr − 1⟩ × ℤ4[x]∕⟨xs − 1⟩ . Assume that xr − 1 = f̃1 f̃2 … f̃t  and 
xs − 1 = g̃1g̃2 … g̃w are the factorizations of xr − 1 and xs − 1 into irreducible poly-
nomials in ℤ2[x] and ℤ4[x], respectively. The number of non-separable ℤ2ℤ4-addi-
tive cyclic codes is given by

where mijk = gcd
(
fi,

xs−1

aijk

)
> 1 and a = aijk is the collection of all polynomials that 

satisfy the following conditions:

1.	 fi|
(

xs−1

aijk
l
)
mod 2.

2.	 fi is not a factor of aijk mod 2.
3.	 aijk has exactly j factors of xs − 1.

4.	 The sum k runs over all the choices for a satisfying the above conditions.

Proof  Suppose that C is a non-separable ℤ2ℤ4-additive cyclic code in Rr,s of the 
form C = ⟨(f , 0), (l, g + 2a)⟩ where

We use the following diagram in order to give a clear picture of the proof. In the 
above theorem, we get the first sum by considering the condition f |xr − 1 for a ℤ2ℤ4

-additive cyclic code C and we have the other sums in a similar approach.

�
w

0

�
2w +

�
w − 1

1

�
2w−1 +

�
w − 2

2

�
2w−2 +…+

�
w − 1

w − 1

�
21

= 2w + 2

��
w − 1

1

�
2w−2 +

�
w − 2

2

�
2w−3 +…+

�
w − 1

w − 2

�
21 +

�
w − 1

w − 1

�
20
�

= 2w + 2

⎡
⎢⎢⎢⎣

�
w − 1

0

�
2w−1 +

�
w − 1

1

�
2w−2 +

�
w − 2

2

�
2w−3 +…+

�
w − 1

w − 2

�
21

+

�
w − 1

w − 1

�
20 −

�
w − 1

0

�
2w−1

⎤
⎥⎥⎥⎦

2w + 2
�
3w−1 − 2w−1

�

= 2 × 3w−1.

(2)

[
2t−1∑
i=1

(
w−1∑
j=0

2w−j
∑
k

(
2deg(mijk) − 1

))]
,

l ≠ 0, f | (xr − 1)mod 2, a | g | (xs − 1)mod 4 and f |
(
xs − 1

a
l
)
mod 2with deg(l) < deg(f ).
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If f = 1, then l must be 0 and hence the code is separable. Thus f is a polynomial of 
degree at least 1 satisfying the condition f | (xr − 1). This will give (
t

1

)
+

(
t

2

)
+⋯ +

(
t

t − 1

)
+

(
t

t

)
= 2t − 1 different choices for f. So f runs 

over all the factors of xr − 1 except for 1. That is, f = fi, i ∈ {1, 2,… , 2t − 1} . This 
explains the first sum in Eq. 2. Now we will consider the polynomials g and a. We 
choose these polynomials among the ones that satisfy a| g|(xs − 1)mod 4.

Case 1	� a = 1 . Since fi |
(

xs−1

a
l
)
, then fi |(xs − 1)l. This will produce (

w

0

)
+

(
w

1

)
+

(
w

2

)
+⋯ +

(
w

w

)
= 2w different choices for g with 

a | g | xs − 1.
Case 2	� a = g̃i1 , i ∈ {1, 2, ...,w} , i.e., a has only one factor of xs − 1 . Again, since 

we know that a | g | xs − 1, then, we have 
(
w − 1

0

)
+

(
w − 1

1

)
+

+

(
w − 1

2

)
+⋯ +

(
w − 1

w − 1

)
= 2w−1 different choices for g.

Case 3	� a = g̃i1 g̃i2 … g̃ij , i.e., a has exactly j irreducible factors of xs − 1 , 
2 ≤ j ≤ w − 1 . Similar to the above cases we have 2w−j different choices for 
g. It is important to emphasize that a cannot be equal to xs − 1 since we 
must have fi | xs−1

a
l with deg(l) < deg(fi). So, we take j < w.

Note that the polynomial l satisfies the condition (1) in the theorem above. Sup-
pose that fi is a factor of aijk mod 2. Then aijk = fiT mod 2. If fi |

(
xs−1

fiT
l
)
 mod 2 and 

since s is odd, then fi| l which contradicts the fact that deg l < deg fi. Thus, fi is not a 
factor of aijk mod 2. This implies that the polynomial a must satisfy the conditions in 
the theorem to be one of the generators.

Finally, we will consider the polynomial l. Let mijk = gcd

(
fi,

xs − 1

aijk

)
. Then, 

fi = q1mijk and x
s − 1

aijk
= q2mijk with gcd

(
q1, q2

)
= 1. Since fi |

(
xs − 1

aijk
l

)
,

xs − 1

aijk
l =fiM

q2mijkl =q1mijkM

q2l =q1M.
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Hence, q1| q2l. Since gcd
(
q1, q2

)
= 1, q1| l, and l = q1q3 =

fi

mijk

q3. Since 

deg l < deg fi , q3 may be any polynomial of degree less than the degree of mijk. 
Hence, there are 2deg (mijk) different choices for l. However, if l = 0 then we get a sep-
arable code. Thus, there are 2deg (mijk) − 1 choices for l which produces non-separable 
codes. Consequently, the number of non-separable ℤ2ℤ4-additive cyclic codes is

	�  ◻

Our next result gives the number of ℤ2ℤ4-additive cyclic codes for any integer r 
and any odd integer s. Let r = 2vN where N is an odd integer. Then, we know that 
(xr − 1) =

(
xN − 1

)2v
= f̃1

2v

f̃2
2v

… f̃t
2v

 is the factorization of (xr − 1) into powers of 
irreducible polynomials. The number of binary cyclic codes of length r is (2v + 1)t. 
Based on this fact, our previous results can be applied for any integer r.

Corollary 14  Suppose that (xr − 1) =
(
xN − 1

)2v
= f̃1

2v

f̃2
2v

… f̃t
2v

 is the factorization 
of (xr − 1) into powers of irreducible polynomials in ℤ2[x] and xs − 1 = g̃1g̃2...g̃w be 
the factorization xs − 1 into irreducible polynomials in ℤ4[x].

1.	 The number of separable ℤ2ℤ4-additive cyclic codes is (2v + 1)t3w.

2.	 If (r, s) = 1 , then the number of non-separable ℤ2ℤ4-additive cyclic codes is 
(2v + 1)t3w−1.

3.	 If (r, s) ≠ 1 , then the number of non-separable ℤ2ℤ4-additive cyclic codes is

Proof  The proof follows from Lemma 10, Theorems 12 and 13 	�  ◻

4 � Examples

Example 15  Let r = 9 and s = 7 . Then,

The number of separable ℤ2ℤ4-additive cyclic codes is 2333 = 216 . Since 
gcd (r, s) = 1 , the number of non-separable ℤ2ℤ4-additive cyclic codes is 2332 = 72 
by Theorem  12. Hence, the total number of ℤ2ℤ4-additive cyclic codes of length 
n = r + s = 16 is 216 + 72 = 288.

[
2t−1∑
i=1

(
w−1∑
j=0

2w−j
∑
k

(
2deg(mijk(x)) − 1

))]
.

[
(2v+1)t−1∑

i=1

(
w−1∑
j=0

2w−j
∑
k

(
2deg(mijk(x)) − 1

))]
.

x9 − 1 =x9 − 1 = (1 + x)(1 + x + x2)(1 + x3 + x6) inℤ2[x] and

x7 − 1 =(x + 3)(x3 + 2x2 + x + 3)(x3 + 3x2 + 2x + 3) inℤ4[x].

89



E. Yildiz et al.

1 3

Example 16  Let r = 7 = s . Then

Label the factors of 
(
x7 − 1

)
mod 2 as: f1 = (1 + x), f2 = (1 + x + x

3), f3 = (1 + x
2 + x

3),

f4 = (1 + x)(1 + x + x
3), f5 = (1 + x)(1 + x

2 + x
3), f6 = (1 + x + x

3)(1 + x
2 + x

3), f7 = x
7 − 1. Label 

the factors of 
(
x7 − 1

)
 in ℤ4[x] as

First, let C be a separable ℤ2ℤ4-additive cyclic code with C = ⟨(f , 0), (0, g + 2a)⟩ . By 
Lemma 10, there are 2333 = 216 separable ℤ2ℤ4-additive cyclic codes.

Now, we will find the number of non-separable ℤ2 ℤ4-additive cyclic codes. 
According to Theorem 13, the number of non-separable ℤ2ℤ4-additive cyclic codes 
with r = s = 7 is

where the number of choices for the polynomial f is 7. Let f = (1 + x) = f1 . Based 
on Theorem 13, we have the number of codes for this choice of f to be

If j = 0, then a1,0,k is the collection of all polynomials that do not contain f1 mod 2 
and have 0 factors of x7 − 1. Hence, there is only one choice for a = 1 and in this 
case k = 1 with

If j = 1, then a1,1,k is the collection of all polynomials that do not contain f1 mod 2 
and have 1 factor of 

(
x7 − 1

)
mod 2. Hence, there are two choices as g2, g3 and in 

this case k = 1, 2 with

If j = 2, then a1,2,k is the collection of all polynomials that do not contain f1 mod 2 
and have 2 factors of x7 − 1. Hence there is only 1 choice as g6 and in this case k = 1 
with

x7 − 1 = (x − 1)(x3 + x + 1)(x3 + x2 + 1) inℤ2[x] and

x7 − 1 = (x + 3)(x3 + 2x2 + x + 3)(x3 + 3x2 + 2x + 3) inℤ4[x].

g1 =(3 + x), g2 = (3 + x + 2x2 + x3), g3 = (3 + 2x + 3x2 + x3),

g4 =(3 + x)(3 + x + 2x2 + x3), g5 = (3 + x)(3 + 2x + 3x2 + x3),

g6 =(3 + x + 2x2 + x3)(3 + 2x + 3x2 + x3), g7 = x7 − 1.

7∑
i=1

(
2∑
j=0

23−j
∑
k

(
2deg(mijk) − 1

))
,

2∑
j=0

23−j
∑
k

(
2deg(m1jk) − 1

)
.

m1,0,1(x) = gcd
(
1 + x, x7 − 1

)
= (1 + x) = f1(x).

m1,1,1 = gcd

(
1 + x,

x7 − 1

g2

)
= (1 + x) = f1, and

m1,1,2 = gcd

(
1 + x,

x7 − 1

g3

)
= (1 + x) = f1.
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Thus the number of codes when f = f1 is

If f = f2 = (1 + x + x3), then a similar approach as above will give

If f = f3 = (1 + x2 + x3), then a similar approach as above will give

If f = (1 + x)(1 + x + x3) = f4 then a similar approach as above will give

If f = (1 + x)(1 + x2 + x3) = f5 then we get the same number of codes as in the case 
f = f4 above. Hence, there are 228 codes with f = f5.

If f = f6 = f = (1 + x + x3)(1 + x2 + x3), then we have
j = 0 . In this case there is only one choice for a = 1 and k = 1 with

If j = 1 , then there are 3 choices for a and k = 1, 2, 3 with

If j = 2, then there are 2 choices for a and k = 1, 2 with

Hence in this case, the number of codes is

m1,2,1 = gcd

(
1 + x,

x7 − 1

g6

)
= (1 + x) = f1.

8
(
21 − 1

)
+ 4

[(
21 − 1

)
+
(
21 − 1

)]
+ 2

(
21 − 1

)
= 18.

8
(
23 − 1

)
+ 4

[(
23 − 1

)
+
(
23 − 1

)]
+ 2

(
23 − 1

)
= 126 codes.

8
(
23 − 1

)
+ 4

[(
23 − 1

)
+
(
23 − 1

)]
+ 2

(
23 − 1

)
= 126 codes.

8
[
24 − 1

]
+ 4

[
(23 − 1) + (21 − 1) + (24 − 1)

]
+ 2

[
(23 − 1) + (21 − 1)

]
= 228 codes.

m6,0,1 = gcd
(
f6, x

7 − 1
)
= f6.

m6,1,1 = gcd

(
f6,

x7 − 1

g1

)
= f6

m6,1,2 = gcd

(
f6,

x7 − 1

g2

)
=
(
1 + x2 + x3

)

m6,1,3 = gcd

(
f6,

x7 − 1

g3

)
=
(
1 + x + x3

)
.

m6,2,1 = gcd

(
f6,

x7 − 1

g4

)
=
(
1 + x2 + x3

)

m6,2,2 = gcd

(
f6,

x7 − 1

g5

)
=
(
1 + x + x3

)
.
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If f = f7 = x7 − 1, then we get

Therefore, the total number of non-separable ℤ2ℤ4-additive cyclic codes when 
r = s = 7 is

Example 17  Let r = 9 and s = 15 . Then,

Hence, by Lemma 10, the number of separable ℤ2ℤ4-additive cyclic codes for r = 9 
and s = 7 is 2335 = 1944 . By Theorem 13, the number of non-separable ℤ2ℤ4-addi-
tive cyclic codes is

Let us label the factors of x9 − 1 as

and label the factors of x15 − 1 as

2∑
j=0

23−j
∑
k

(
2deg(mi,j,k) − 1

)
=8

[
26 − 1

]
+ 4

[
(26 − 1) + (23 − 1) + (23 − 1)

]

+ 2
[
(23 − 1) + (23 − 1)

]

=504 + 308 + 28 = 840.

2∑
j=0

23−j
∑
k

(
2deg(mi,j,k) − 1

)
=23

[
27 − 1

]
+ 22

[(
26 − 1

)
+
(
24 − 1

)
+
(
24 − 1

)]

+ 2
[(
23 − 1

)
+
(
23 − 1

)
+
(
21 − 1

)]

=1016 + 372 + 30 = 1418 codes.

18 + 126 + 126 + 228 + 228 + 840 + 1418 = 2984.

x9 − 1 =(1 + x)(1 + x + x2)(1 + x3 + x6) inℤ2[x] and

x15 − 1 =(3 + x)(1 + x + x2)(1 + 3x + 2x2 + x4)(1 + 2x2 + 3x3 + x4)

(1 + x + x2 + x3 + x4) inℤ4[x].

23−1∑
i=1

(
4∑
j=0

25−j
∑
k

(
2deg(mi,j,k) − 1

))
.

f1 =(1 + x), f2 = (1 + x + x2), f3 = (1 + x3 + x6),

f4 =(1 + x)(1 + x + x2), f5 = (1 + x)(1 + x3 + x6),

f6 =(1 + x + x2)(1 + x3 + x6), f7 = x9 − 1,

g1 = (3 + x), g2 = (1 + x + x2), g3 = (1 + 3x + 2x2 + x4),

g4 = (1 + 2x2 + 3x3 + x4), g5 = (1 + x + x2 + x3 + x4),

g6 = (3 + x)(1 + x + x2), g7 = (3 + x)(1 + 3x + 2x2 + x4),

⋮ ⋮ ⋮

g30 = (3 + x)(1 + x + x2)(1 + 3x + 2x2 + x4)(1 + 2x2 + 3x3 + x4),

g31 = x15 − 1.
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Note that since gcd
(
f3, x

15 − 1
)
= 1 , f cannot be chosen as to be f3. We start calcu-

lating the cyclic codes which correspond to f = f1 = 1 + x.

If j = 0, then k = 1, a = 1, and

If j = 1, then, k ∈ {1, 2, 3, 4} and

If j = 2, then, k ∈ {1, 2, 3, 4, 5, 6} and

For j = 3, then, k ∈ {1, 2, 3, 4} and

Finally, for j = 4,

Consequently, we have

ℤ2ℤ4-additive cyclic codes for f = f1 = 1 + x. If we take f = f2 , then we have

For f = f4, by applying Theorem 13, we get

m1,0,1 = gcd
(
1 + x, x15 − 1

)
= 1 + x.

m1,1,1 = m1,1,2 = m1,1,3 = m1,1,4 = 1 + x

m1,2,1 = m1,2,2 = ⋯ = m1,2,6 = 1 + x

m1,3,1 = m1,3,2 = m1,3,3 = m1,3,4 = 1 + x

m1,4,1 = gcd

(
f1,

x15 − 1

a1,4,1(x)

)
= 1 + x, where

a1,4,1 =(1 + x + x2)(1 + 3x + 2x2 + x4)(1 + 2x2 + 3x3 + x4)(1 + x + x2 + x3 + x4).

32 ⋅ (21 − 1) + 16 ⋅ [(21 − 1) +⋯ + (21 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

4 times

] + 8 ⋅ [(21 − 1) +⋯ + (21 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

6 times

]

+ 4 ⋅ [(21 − 1) +⋯ + (21 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

4 times

] + 2 ⋅ (21 − 1) = 32 + 64 + 48 + 16 + 2 = 162

32 ⋅ (22 − 1) + 16 ⋅ [(22 − 1) +⋯ + (22 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

4 times

] + 8 ⋅ [(22 − 1) +⋯ + (22 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

6 times

]

+ 4 ⋅ [(22 − 1) +⋯ + (22 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

4 times

] + 2 ⋅ (22 − 1) = 96 + 192 + 144 + 48 + 6 = 486 codes.
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ℤ2ℤ4-additive cyclic codes. Furthermore, we calculate the number of ℤ2ℤ4-additive 
cyclic codes as

Finally the total number of non-separable additive cyclic code 
C ⊆ ℤ2[x]∕⟨x9 − 1⟩ × ℤ4[x]∕⟨x15 − 1⟩ is

and the total number of ℤ2ℤ4-additive cyclic codes is 1944 + 3240 = 5184.

5 � The number of ℤpℤp2‑additive cyclic codes

Let p be any prime number, r is any positive integer and s is any positive integer 
relatively prime with p. In this case, the ring ℤp2[x]∕⟨xs − 1⟩ will be a principal ideal 
ring. In this section, we are interested to generalize our previous results and find for-
mulas for the number of separable and non-separable ℤpℤp2-additive cyclic codes of 
length n = r + s. In [5], Borges et. al. studied the structure of ℤprℤps-additive cyclic 
codes. Hence, based on this work if C is an additive cyclic code over ℤpℤp2 of length 
n = r + s , then C is generated by

where f |(xr − 1)mod p , a|g|(xs − 1)mod p2, l is a polynomial over ℤp[x] satisfying 
deg(l) < deg(f ), and f |xs − 1

a
l. As in the case of ℤ2ℤ4-additive cyclic codes, the 

above generators are unique. Moreover, the code C is separable if and only if the 
polynomial l = 0.

Lemma 18  The number of separable ℤpℤp2-additive cyclic codes of length n = r + s 

is (pv + 1)w13w2 where (xr − 1) =
(
xN − 1

)pv
, w1 is the number of irreducible factors 

of (xr − 1) mod p and w2 is the number of irreducible factors of (xs − 1)mod p2.

Proof  The proof is similar to the proof of Lemma 10. 	� ◻

32 ⋅ (23 − 1) + 16 ⋅ [(22 − 1) + (21 − 1) + (23 − 1) +⋯ + (23 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3 times

]

+ 8 ⋅ [(22 − 1) +⋯ + (22 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3 times

+ (21 − 1) +⋯ + (21 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3 times

+ (23 − 1) +⋯ + (23 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3 times

]

+ 4 ⋅ [(22 − 1) +⋯ + (22 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3 times

+ (21 − 1) +⋯ + (21 − 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3 times

+(23 − 1)]

+ 2 ⋅ [(22 − 1) + (21 − 1)] = 32 ⋅ 7 + 16 ⋅ 25 + 8 ⋅ 33 + 4 ⋅ 19 + 2 ⋅ 4 = 972

for f5 ⟶162,

for f6 ⟶486,

for f7 ⟶972.

162 + 486 + 972 + 162 + 486 + 972 = 3240,

C = ⟨(f , 0), (l, g + pa)⟩
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In fact, as we have showed in the proof of Theorem 13, the number of ℤ2ℤ4

-additive cyclic codes are determined only by the generator polynomials of the 
code C . Hence, the same proof can easily be applied to give the exact number of 
ℤpℤp2-additive cyclic codes of length n = r + s.

Corollary 19  Let C = ⟨(f , 0), (l, g + pa)⟩ be a non-separable cyclic code in 
ℤp[x]∕⟨xr − 1⟩ × ℤp2 [x]∕⟨xs − 1⟩ with (r, s) ≠ 1 . Assume that xr − 1 = (f̃1 f̃2 … f̃t)

pv 
and xs − 1 = g̃1g̃2 … g̃w are the factorizations of xr − 1 and xs − 1 into irreducible 
polynomials in ℤp[x] and ℤp2[x] , respectively. The number of ℤpℤp2-additive cyclic 
codes is given by

where mijk = gcd
(
fi,

xs−1

aijk

)
> 1 and a = aijk is the collection of all polynomials that 

satisfy the following conditions:

1.	 fi|
(

xs−1

aijk
l
)
mod p.

2.	 fi is not a factor of aijk mod p.
3.	 aijk has exactly j factors of xs − 1.

4.	 The sum k runs over all the choices for a satisfying the above conditions.

Proof  The proof of this corollary is very similar to the proof of Theorem 13. So we 
skip it. 	�  ◻

Example 20  Let C be a ℤ3ℤ9-additive cyclic code in ℤ3[x]∕⟨x7 − 1⟩ × ℤ9[x]∕⟨x7 − 1⟩ . 
Hence, p = 3, r = 7 = s. Therefore,

Label the factors of 
(
x7 − 1

)
mod 3 as: f1 = (2 + x), f2 = (1 + x + x

2 + x
3 + x

4

+x5 + x
6), and f3 =

(
x7 − 1

)
. Label the factors of 

(
x7 − 1

)
 in ℤ9[x] as: 

g1 = (8 + x), g2 = (1 + x + x2 + x3 + x4 + x5 + x6), and g3 =
(
x7 − 1

)
.

First, let C be a separable ℤ3ℤ9-additive cyclic code with C = ⟨(f , 0), (0, g + 3a)⟩ . 
By Lemma 18, there are 2333 = 216 separable ℤ3ℤ9-additive cyclic codes.

Based on Corollary 19, the number of non-separable ℤ3ℤ9-additive cyclic codes 
with r = s = 7 is

[
(pv+1)t−1∑

i=1

(
w−1∑
j=0

2w−j
∑
k

(
pdeg(mijk) − 1

))]
,

x7 − 1 =(2 + x)(1 + x + x2 + x3 + x4 + x5 + x6) inℤ3[x] and

x7 − 1 =(8 + x)(1 + x + x2 + x3 + x4 + x5 + x6) inℤ9[x].

3∑
i=1

(
1∑
j=0

22−j
∑
k

(
3deg(mijk) − 1

))
,
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where the number of choices for the polynomial f is 3. First, take f = (2 + x) = f1 . 
Hence, the number of codes for this choice of f is

If j = 0, then a1,0,k is the collection of all polynomials that do not contain f1 mod 3 
and have 0 factors of x7 − 1. Hence, there is only one choice for a = 1 and in this 
case k = 1 with

If j = 1, then a1,1,k is the collection of all polynomials that do not contain f1 mod 3 
and have 1 factor of 

(
x7 − 1

)
mod 3. Hence, there is only one choice which is g2 

and in this case k = 1 with

Thus the number of codes when f = f1 is

Now, if f = f2 = (1 + x + x2 + x3 + x4 + x5 + x6) then similarly we have

If f = f3 = x7 − 1, then we get

Therefore, the total number of non-separable ℤ3ℤ9-additive cyclic codes when 
r = s = 7 is

Note that the number of non-separable ℤ2ℤ4-additive cyclic codes for r = s = 7 is 
2984.

6 � Conclusion

ℤ2ℤ4-additive cyclic codes were studied recently by many researchers [1, 3, 4]. 
In this paper, we focused on counting the exact number of ℤ2ℤ4-additive cyclic 
codes of length n = r + s, for any positive integer r and any positive odd integer 

1∑
j=0

22−j
∑
k

(
3deg(m1jk) − 1

)
.

m1,0,1(x) = gcd
(
2 + x, x7 − 1

)
= (2 + x) = f1(x).

m1,1,1 = gcd

(
2 + x,

x7 − 1

g2

)
= (2 + x) = f1.

4
(
31 − 1

)
+ 2

(
31 − 1

)
= 12.

4
(
36 − 1

)
+ 2

(
36 − 1

)
= 4368 codes.

1∑
j=0

22−j
∑
k

(
3deg(mi,j,k) − 1

)
=22

[
37 − 1

]
+ 2

[(
36 − 1

)
+
(
31 − 1

)]

=8744 + 1460 = 10204 codes.

12 + 4368 + 10204 = 14584.
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s. Moreover, we provided formulas which give the exact number of separable and 
non-separable ℤ2ℤ4-additive cyclic codes. We then generalized our results to find 
the number of separable and non-separable ℤpℤp2-additive cyclic codes of length 
n = r + s, for any prime p,   any positive integer r and any positive integer s where 
gcd (p, s) = 1.
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