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Abstract
In this paper we study a family of Legendre sequences and its pseudo-randomness in 
terms of their family complexity. We present an improved lower bound on the family 
complexity of a family based on the Legendre symbol of polynomials over a finite 
field. The new bound depends on the Lambert W function and the number of ele-
ments in a finite field belonging to its proper subfield. Moreover, we present another 
lower bound which is a simplified version and approximates the new bound. We 
show that both bounds are better than previously known ones.

Keywords  Pseudo-randomness · Family complexity · Family of Legendre 
sequences · Lambert W function · Polynomials over finite fields

Mathematics Subject Classification  11K45 · 94A55 · 94A60

1  Introduction

A pseudo-random sequence is a sequence of numbers which is generated by a deter-
ministic algorithm and looks truly random. By truly random we mean that each ele-
ment of the sequence can not be predicted from others, for instance a sequence gen-
erated by samples of atmospheric noise. A pseudo-random sequence in the interval 
[0, 1) is called a sequence of pseudo-random numbers. Pseudo-random sequences were 
widely studied in the literature (see [31, 32, 36]). Randomness measures of a sequence 
depend on its application area, for instance, it has to be unpredictable for cryptographic 
applications [26], uncorrelated for wireless communication applications [13] and uni-
formly distributed for quasi-Monte Carlo methods [28, 29]. In this paper we consider 
the Legendre sequence which is the binary sequence Ep(f ) = (e1,… , ep) defined by
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where p is a prime number, j = 1, 2,… , p and f is a polynomial over a finite field 
with p elements.

It is known that the Legendre sequence has several good randomness measures such 
as high linear complexity [4, 8, 33, 37] and small correlation measure up to rather high 
orders [23] for cryptography, and a small (aperiodic) auto-correlation [25, 30] for wire-
less communication, GPS, radar or sonar.

When a family of sequences is considered for an application, e.g.  as a key-space 
of a cryptosystem, then its randomness in terms of many directions is concerned. For 
instance, a family of sequences must have a large family size, large family complex-
ity, and low cross-correlation. Family complexity (f-complexity) was first introduced 
as a randomness measure by Ahlswede, Khachatrian, Mauduit and Sárközy [1]. Then 
they studied families of pseudo-random sequences on k-symbols and their f-complexity 
[2, 3]. Mauduit and Sárközy [24] studied the f-complexity of sequences of k-symbols 
and they also gave the connection between f-complexity and VC-dimension. Winterhof 
and the second author [40] gave a relation between f-complexity and cross-correlation 
measure. Moreover the complexity measures for different families have been studied 
in the literature [5, 11, 14, 17–19]. Sárközy [34] wrote a survey about definitions of 
various measures of family of binary sequences (e.g. f-complexity, collision, minimum 
distance, avalanche effect, and cross-correlation measure).

Gyarmati [16] presented a bound for the f-complexity of Legendre sequences con-
structed by some polynomials of degree k over a prime finite field �p . In this paper, we 
prove a new bound, which improves the bound given in [16] for any prime p and degree 
k (see Theorem 1). Moreover, we obtain a simplified lower bound and prove that our 
bound is better than the bound given in [16] (see Corollary 2). In particular, the new 
bound surpluses overwhelmingly the bound given in [16] for small k and it gets closer 
for large k (see Figs. 3, 4 and 5). We also see from these figures that our bound pro-
vides a better lower level. We also compare both bounds in terms of time complexity, 
for which we plot the difference between the elapsed times required to calculate both 
bounds (see Figs. 7 and 8).

The paper is organized as follows. The new bound we present in this paper depends 
on the Lambert W function, so we give its definition and some properties in Sect. 2. 
Then we present some auxiliary lemmas in Sect. 3 and previous results in Sect. 4. Next, 
we give our main contribution in Sect. 5. Finally we compare the new bound and Gyar-
mati’s one in Sect. 6.

2 � Lambert W function

In this section we introduce the definition of the Lambert W function and present 
some of its properties.

ej =

{(
f (j)

p

)
for gcd(f (j), p) = 1,

1 for p|f (j),
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Definition 1  [7] The Lambert W  function, also called the omega function or prod-
uct logarithm, is defined as the multivalued function W that satisfies

for any complex number z.

Equivalently, the Lambert W function is known as the inverse function of 
f (z) = zez . Note that the multivaluedness of the Lambert W function means that 
there are multiple solutions for some values since the function f is not injective. The 
equation y = zez is by definition solved by

and the equation y = z log z is solved by

So, equations containing exponential expressions can be solved by the Lambert W 
function. For instance, the equation xax = b is solved by x = W(b ln (a))

ln (a)
, the equation 

ax = x + b is solved by x = −b−W(−a−b ln (a))
ln (a)

, and the equation xxa = b is solved by 
exp

(
W(a log (b))

a

)
 , where “ ln ” stands for the natural logarithm. The Lambert W func-

tion stems from the equation proposed by Johann Heinrich Lambert in 1758

which is known as Lambert’s transcendental equation. Then in 1779 Euler wrote 
a paper [10] about this equation and introduced a special case which is nearly the 
definition of the W function. He referenced work by Lambert in his paper, and so 
this function is called Lambert W function. From now on we will use W as the Lam-
bert W function. The W function, which has applications in many fields from past 
to present, was applied to problems ranging from quantum physics to population 
dynamics, to the complexity of algorithms (see [7, 38]). The new bound we obtain 
for family complexity given in this paper is related to this function. Now we give a 
simple example in order to show how we use this function.

Example 1  Let us solve 4−t = 3t for t. We first multiply both sides by ln 4
3
4t to get:

Since the right hand side of the equation is of the form zez for z = t ln 4 , we can 
write the solution using the definition of the W function

z = W(z)eW(z)

z = W(y),

(1)z =
y

W(y)
.

x� − x� = (� − �)vx�+� ,

ln 4

3
= t ln 4 4t = t ln 4 et ln 4

t =
W
(

ln 4

3

)

ln 4
,
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which is approximately t ≈ 0.239243358717019.

The graph of the W function on the real plane is plotted in Fig. 1.
We note that the W function can be approximately evaluated by using some root-

finding methods as given in [7]. Futhermore, in [7] it is shown that

where L1 = ln x , L2 = ln ln x . Then keeping only the first two terms of the expansion 
(2) we have

In the following lemma, the bounds were given with error term o
(

ln ln x

ln x

)
 instead of 

o(1), with certain coefficients for error terms.

Lemma 1  [21] For every x ≥ e we have

with equality only when x = e.

3 � Preliminaries

In this section we present some definitions and results which we need for the proof 
of the main results introduced in this paper.

(2)W(x) = L1 − L2 +
L2

L1
+

L2
(
−2 + L2

)

2L2
1

+
L2
(
6 − 9L2 + 2L2

2

)

6L3
1

+⋯

(3)W(x) = ln x − ln ln x + o(1).

(4)ln x − ln ln x +
1

2

ln ln x

ln x
≤ W(x) ≤ ln x − ln ln x +

e

e − 1

ln ln x

ln x
,

Fig. 1   The graph of the W func-
tion obtained in Example 1
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Definition 2  Let q be a prime power and �qn denote the finite field of qn elements 
and define Gq,n as follows.

In other words, the set Gq,n consists of all elements belonging to the proper subfields 
of �qn.

One can calculate the number of elements in Gq,n for given q and n by counting 
the elements in the proper subfields of �qn . However, this method would be inef-
ficient. Thus, we need a formula for |Gq,n| and, in order to do that, we give some 
definitions and results below.

Definition 3  [27, Definition 2.1.22] The Möbius � function is defined on the set of 
positive integers as

Let Iq(n) denote the number of monic irreducible polynomials of degree n over �q 
for a prime power q.

Gauss discovered the formula presented in the following result and so it was 
called after him [12].

Proposition 1  For a positive integer n and a prime power q,

For more details about this formula see [9, Chapter 14.3], [27, Theorem 2.1.24] 
or [6].

Lemma 2  Let n ∈ ℕ and q be a prime power. Then

Proof  It is clear that any root of an irreducible polynomial of degree n over �q can 
not be an element of a proper subfield of �qn . Hence the proof follows. 	�  ◻

Example 2  Let q be a prime power. Consider �qn for n = 105 . Then, the possible divi-
sors of n are d = 1, 3, 5, 7, 15, 21, 35, 105 and by Lemma 2 we get

Now we define the norm and the trace of an element in a finite field. (see [22, 
Chapter 2] for more details).

Gq,n = {𝛼 ∈ �qn ∶ ∃t, t|n, 0 < t < n such that 𝛼 ∈ �qt ⊂ �qn}

�(m) =

⎧
⎪⎨⎪⎩

1 if m = 1,

(−1)k if m = m1m2 …mk where the mi are distinct primes,

0 if p2 divides m for some prime p.

Iq(n) =
1

n

∑
d|n

�(d)qn∕d.

|Gq,n| = qn − nIq(n).

|Gq,n| = q35 + q21 + q15 − q7 − q5 − q3 + q.
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Definition 4  For � ∈ �qn the norm N
�qn∕�q

(�) of � is defined by

and the trace Tr
�qn∕�q

(�) of � is defined by

In particular, N
�qn∕�q

(�) and Tr
�qn∕�q

(�) are elements of �q.

Definition 5  [22, Chapter 5] Let � be an additive and � be a multiplicative charac-
ter of �q . Then � and � can be lifted to �qn by setting � �(�) = �( Tr

�qn∕�q
(�)) for 

� ∈ �qn and � �(�) = �( N
�qn∕�q

(�)) for � ∈ �
∗
qn

 . Also from the additivity of the trace 
and multiplicativity of the norm, � ′ is an additive and � ′ is a multiplicative character 
of �qn.

We need the following lemma for the proof of Theorem 1.

Lemma 3  [16, Corollary 2.1.] Let p > 2 be a prime number and 
(

.

p

)
 be the Leg-

endre symbol. Let � be the quadratic character of �pn . Then for � ∈ �
∗
pn

,

Next, we define two new polynomials obtained from a given polynomial over a 
finite field.

Definition 6  Given f (x) = akx
k + ak−1x

k−1 +⋯ + a0 ∈ �qn [x] , we define

for 0 ≤ s ≤ n − 1 and

Next, we give a result which will be the basis of the proof of our main theorem.

Lemma 4  [22, Exercise 5.64] Let i1,… , ij be distinct elements of �pk , p odd prime, 
and �1,… , �j ∈ {−1,+1} . Let N(�1,… , �j) denote the number of � ∈ �pk with 
�(� + is) = �s for s = 1, 2,… , j where � is the quadratic character of �pk . Then,

Proof  By definition we have

N
�qn∕�q

(�) = � ⋅ �q
⋅ �q2

⋯ �qn−1 = �(qn−1)∕(q−1),

Tr
�qn∕�q

(�) = � + �q +⋯ + �qn−1 .

�(�) =

(
N

�pn∕�p
(�)

p

)
.

�s(f )(x) ∶= a
qs

k
xk + a

qs

k−1
xk−1 +⋯ + a

qs

0
∈ �qn [x]

N
�qn∕�q

(f ) ∶= �0(f ) ⋅ �1(f ) ⋅ �2(f )⋯ �n−1(f ) ∈ �qn [x].

|||||
N(�1,… , �j) −

pk

2j

|||||
≤

(
j − 2

2
+

1

2j

)
pk∕2 +

j

2
.
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where 0 ≤ A ≤ j∕2 . Note that �(� + ij) can be 0 for some � ∈ �pk which adds 2j−1 
to the summation, and this can occur at most j times. So, that is the reason why we 
have 0 ≤ A ≤ j∕2 . By expanding the inner multiplication we get that

Then by using the Weil theorem [39] (or [22, Theorem 5.41]),

Therefore, the result follows. 	�  ◻

4 � Previous results

In this section we will give a construction method for Legendre sequences, and 
the definition of family complexity. Then we will recall a result given in [16]. We 
begin with the definition of Legendre sequence [14, 23].

Definition 7  Let K ≥ 1 be an integer and p be a prime number. If f ∈ �p[x] is a 
polynomial with degree 1 ≤ k ≤ K and no multiple zeros in �p , then we define the 
binary sequence Ep(f ) = Ep = (e1,… , ep) by

for j = 1, 2,… , p . Let F(K, p) denote the set of all sequences obtained in this way.

N(�1,… , �j) =
1

2j

∑
�∈�pk

[1 + �1�(� + i1)]⋯ [1 + �j�(� + ij)] − A,

N(�1,… , �j) =
1

2j

∑
�∈�pk

[
1 +

∑
s1

�s1�(� + is1)

+
∑
s1,s2

�s1�(� + is1)�s2�(� + is2)

+⋯ + [�1�(� + i1)⋯ �j�(� + ij)]

]
− A.

|||||
N(�1,… , �j) −

pk

2j

|||||
≤
1

2j

j∑
i=1

(
j

i

)
(i − 1)pk∕2 +

j

2

=
1

2j

(
j∑

i=1

(
j

i

)
i −

j∑
i=1

(
j

i

))
pk∕2 +

j

2

=
1

2j
(j2j−1 − (2j − 1))pk∕2 +

j

2
.

ej =

{(
f (j)

p

)
for gcd(f (j), p) = 1,

1 for p|f (j),



180	 Y. Çakıroğlu, O. Yayla 

1 3

Hoffstein and Lieman [20] proposed using the polynomials f to construct the 
binary sequences given in Definition 7. Goubin, Mauduit and Sárközy [14] proved 
that the sequences obtained in this way have strong pseudo-random properties.

We now give the definition of f-complexity of a family F  , which was first intro-
duced by Ahlswede et al. [1].

Definition 8  The family complexity (in short f-complexity) of a family F  of binary 
sequences EN ∈ {−1,+1}N of length N is the greatest integer j ≥ 0 such that for 
any 1 ≤ i1 < i2 < ⋯ < ij ≤ N and any �1, �2,… , �j ∈ {−1,+1} there is a sequence 
EN = {e1, e2,… , eN} ∈ F  with

The f-complexity of a family F  is denoted by � (F).

We note that the trivial upper bound on the f-complexity � (F) in terms of the 
family size |F| is

Now we give an example for calculating the f-complexity of a family of binary 
sequences.

Example 3  Consider the family of binary sequences

It is clear that both −1 and 1 occur at the i-th location of the sequences for all 
i = 1, 2, 3, 4 . In other words, the set obtained from the first entries of the sequences 
has both −1 and 1, similarly the other entries have both −1 and 1. Hence, the f-com-
plexity of F  is at least 1. On the other hand, there is no sequence in F  consisting of 
the pair (1,−1) in the first two entries. So we say that the f-complexity of F  is equal 
to 1. Similarly, the family of binary sequences

has f-complexity 0 since −1 does not appear in the second entry of any sequences in 
G.

Let Firred(k, p) denote the family of Legendre sequences generated by irreducible 
polynomials of degree k over a prime field �p,

Different properties of this family have been studied in the literature [14, 15, 18]. A 
lower bound on the f-complexity of the family Firred(k, p) was proved in [16], which 
we present in the following theorem.

Theorem A  [16] Let p be an odd prime and k be a positive integer. Define

ei1 = �1, ei2 = �2,… , eij = �j.

(5)2� (F)
≤ |F|.

F = {(1, 1, 1, 1), (−1,−1, 1,−1), (−1,−1,−1,−1), (1, 1,−1,−1), (−1, 1, 1, 1)}.

G = {(1, 1, 1, 1), (−1, 1, 1,−1), (−1, 1,−1,−1), (1, 1,−1,−1), (−1, 1, 1, 1)}.

Firred(k, p) ∶= {Ep(f ) ∶ f ∈ �p[x] monic irreducible polynomial with degree k}.
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Then

Theorem A says that the f-complexity is at least of order p1∕4

20 ln 2
 . In the next sec-

tion, for the same family of sequences as in Theorem A, we give a new bound by 
using the formula |Gp,k| given in Lemma 2 and the W function given in Definition 
1.

5 � Main method

The main contribution of this paper is given in this section, which is a new bound 
on the f-complexity of Legendre sequences generated by irreducible polynomi-
als. This new bound improves the bound given in [16]. The comparison of both 
bounds is given in the next section.

Theorem  1  Let p be an odd prime and k be a positive integer. Let A and B be 
defined as

Then

We first give an example for calculating the f-complexity of Legendre 
sequences.

Example 4  Let p = 3 and k = 2 . Then by the definition of Legendre sequences, we 
get the following family of sequences.

As |Firred(2, 3)| = 3 , by using (5) we have 2� (Firred(2,3)) ≤ 3 . And by Theorem 1, we 
obtain

Therefore, we get � (Firred(2, 3)) = 1.

c =

{
1

2
if k ≤

p1∕4

10 ln p
,

5

2
otherwise.

� (Firred(k, p)) ≥ min
{
p,

k − c

2 ln 2
ln p

}
.

A =
2pk∕2 − 2

1 + p−k∕2
and B =

2|Gp,k|p−k∕2 − 2

1 + p−k∕2
.

� (Firred(k, p)) ≥ min

{
p, log2

(
A

W(2BA)

)}
.

Firred(2, 3) = {(1,−1,−1), (−1, 1,−1), (−1,−1, 1)}.

𝛤 (Firred(2, 3)) ≥ log2

(
3

W(3)

)
> 0.58167368954.
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Before proving the Theorem 1, we will give two auxiliary lemmas. In the first 
lemma, the solution of a logarithmic equation is obtained by the W function. In 
the second lemma, we give an upper bound on j such that |Gp,k| < N(𝜖1,… , 𝜖j).

Lemma 5  Let A,B ∈ ℝ . If Bx + x log2 x − A = 0 , then x = A

W(2BA)
.

Proof  We have

or equivalently,

Then we get

Thus by (1) we have

that is

	�  ◻

Lemma 6  Let p be an odd prime and k be a positive integer. Let |Gp,k| be defined as 
in Lemma 2. Let A and B be defined as

Let j be an integer such that j < log2

(
A

W(2BA)

)
 . Let �1,… , �j ∈ {−1,+1} and 

N(�1,… , �j) be defined as in Lemma 4. Then

Proof  Assume that |Gp,k| ≥ N(�1,… , �j). Then by Lemma 4

Divide both sides by pk∕2

x(B + log2 x) = A

2Bx(B + log2 x) = 2BA.

2Bx(log2 2
B + log2 x) = 2BA ⟹ 2Bx(log2(2

Bx)) = 2BA.

2Bx =
2BA

W(2BA)
,

x =
A

W(2BA)
.

A =
2pk∕2 − 2

1 + p−k∕2
and B =

2|Gp,k|p−k∕2 − 2

1 + p−k∕2
.

|Gp,k| < N(𝜖1,… , 𝜖j).

|Gp,k| ≥ pk

2j
− pk∕2

(
1

2j
+

(j − 2)

2

)
−

j

2
.



183

1 3

A new lower bound on the family complexity of Legendre sequences﻿	

Multiply both sides by 2(2j) , and so get the following inequality:

Divide both sides by (1 + p−k∕2),

According to the definition of A and B, we have,

Hence, by Lemma 5 and the fact that B2j + 2jj increases with respect to j, we obtain 
that

which is a contradiction. 	�  ◻

Proof of  Thoerem 1  For all integers j < log2

(
A

W(2BA)

)
 and for all tuples 

(�1, �2,… , �j) ∈ {−1,+1}j , we need to show the existence of an irreducible polyno-
mial g ∈ �p[x] of degree k such that

for some 1 ≤ i1 < i2 < ⋯ < ij ≤ p . Then the definition of f-complexity gives that 
� (Firred(k, p)) ≥ log2

(
A

W(2BA)

)
 . By Lemma 6 we know that

By the definition of N(�1,… , �j) we get that there exists � ∈ �pk�Gp,k such that

Let f (x) = x + � ∈ �pk [x] and we define g(x) ∶= N
�pk∕�p

(f (x)) ∈ �p[x] . We note that g 
is an irreducible polynomial by using [16, Lemma 2.4]. We know that if p is a prime 
number, 

(
.

p

)
 is the Legendre symbol and � is the quadratic character of �pk then for 

� ∈ �
∗
pk

 we have

|Gp,k|p−k∕2 ≥ pk∕2

2j
−

(
1

2j
+

(j − 2)

2

)
−

jp−k∕2

2
.

2(2j)|Gp,k|p−k∕2 ≥ 2pk∕2 − 2 − 2j(j − 2) − 2jjp−k∕2,

2(2j)|Gp,k|p−k∕2 − 2(2j) + 2jj + 2jjp−k∕2 ≥ (2pk∕2 − 2),

(2|Gp,k|p−k∕2 − 2)2j + 2jj(1 + p−k∕2) ≥ (2pk∕2 − 2).

(2|Gp,k|p−k∕2 − 2)

(1 + p−k∕2)
2j + 2jj ≥

(2pk∕2 − 2)

(1 + p−k∕2)
.

B2j + 2jj ≥ A.

2j ≥
A

W(2BA)
or equivalently j ≥ log2

(
A

W(2BA)

)
,

(6)
(
g(is)

p

)
= �s for s = 1, 2,… , j

|Gp,k| < N(𝜖1,… , 𝜖j).

(7)�(� + is) = �s for s = 1, 2,… , j.
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By [16, Lemma 2.3], we know that if f ∈ �pk [x] then for � ∈ �p we have

Finally, using (7) we get

as desired. 	�  ◻

Corollary 1  Let p be an odd prime and K be a positive integer. Let A and B be 
defined as in Theorem 1. Then

Proof  We know that Firred(K, p) ⊂ F(K, p) and � (Firred(k, p)) ≥ log2
A

W(2BA)
 by Theo-

rem 1. Thus we get the result. 	�  ◻

Now, we consider the upper bound for the W function given in Lemma 1 and 
we get an approximation for the bound given in Theorem 1. Before that, we give a 
lemma which we use in Corollary 2 for proving that Theorem 1 provides a better 
bound than Theorem A.

Lemma 7  Let p be an odd prime, k be a positive integer and c be defined as in 
Theorem A. Then,

Proof  For k ≤ p1∕4

10 ln p
 , we have c = 1∕2 and so

Hence, we need to show that

�(�) =

(
N
�pk∕�p

(�)

p

)
.

N
�pk∕�p

(f (�)) = N
�pk∕�p

(f )(�).

�s = �(� + is) = �(f (is)) =

(
N
�pk∕�p
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We have the following upper bound for the left hand side

which is obviously less than p1∕4 for all primes p and positive integers k.
For k > p1∕4

10 ln p
 , the proof follows by using the fact that the f-complexity can not 

exceed p, that is

	�  ◻

Corollary 2  Let p > 41 be a prime and k be a positive integer. Then,

Moreover, this lower bound is greater than the lower bound given in Theorem A.

Proof  We know that |Gp,k| ≤ 2pk∕2 by [16, Lemma 2.5]. Hence, B < 2 and 
A =

2pk∕2(1−p−k∕2)

1+p−k∕2
< 2p(k∕2) where A and B are defined as in Theorem 1. By these ine-

qualities and Lemma 1, we get
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where the last inequality follows from the definition of A and the properties of natu-
ral logarithm. Finally, let the error part E(p, k) be defined as

E(p, k) increases when k increases and E(p, 1) > 0 for p > 41 . Therefore, the first 
part of the corollary follows from Theorem  1. The second part is a direct conse-
quence of Lemma 7. 	�  ◻

Remark 1  We compare the ceiling values of the bounds given in Theorem 1, Cor-
ollary 2 and Eq. (8) for k = 10 and p < 8000 in Fig. 2, where we just plot the gap 
between the bounds. We see that the bound given in Theorem  1 differs from the 
bound (8) in at most 1, and at most 2 from the bound given in Corollary 2.

6 � Comparison

In this section, we compare the lower bounds given in Theorem 1 and Theorem A.
Firstly in Figs. 3, 4 and 5 we show that the bound given in Theorem 1 is better 

than the bound given in Theorem A. The red line shows the bound given in Theorem 
A and the blue line the bound given in Theorem 1. Both bounds are plotted with 
respect to primes p < 8000 for k = 1, 2,… , 10 , respectively. For k = 1 and k = 2 , 
the bound given in [16] is negative for the primes in the range, on the other hand, 
the bound given in Theorem 1 is always positive. We note that the bound given in 
[16] turns into positive for p ≥ 2128240847 and k = 1 . For 3 ≤ k ≤ 10 , we see that 
both bounds are positive and the bound given in Theorem 1 is better than the bound 
given in Theorem A for all p < 8000 . We conclude that our bound is better than the 
bound given in Theorem A for small values of k, but they are close to each other for 

E(p, k) ∶= log2

(
1 − p−k∕2

1 + p−k∕2

)
−

e

e − 1

ln ln 8pk∕2

ln 8pk∕2
+ 1.

Fig. 2   Gap between the bounds given in Theorem 1 and Eq. (8), Corollary 2 and Eq. (8), respectively
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large values of k. In Fig. 6, the lower bound on the f-complexity of the sequences 
given in Definition 7 is plotted in the range k ∈ [1, 50] for p = 10000019 and 
p = 2128240847 , respectively. Here, p = 10000019 is the first prime greater than 
107 and p = 2128240847 is the first prime for which the bound given in Theorem A 
turns into positive for k = 1 . In both cases, both lower bounds are close, but the one 
in Theorem 1 is better.

Secondly, we compare the two bounds in terms of time complexity. The bound 
given in Theorem 1 is based on the W function, so it can be argued that it would 
take more time. However, calculating the W function is not slow. In particular, 
Figs. 7 and 8 show the time difference between the bounds given in Theorem A 
and Theorem  1. We first measure the time (in seconds) it takes for calculating 
both bounds for all values of p and k that we have already examined in Figs. 3, 4 
and 5. Then we plot the difference in seconds between both bounds in Figs. 7 and 
8, which show that both bounds take time quite close to each other for all p and k. 

Fig. 3   Lower bound on the f-complexity of Legendre sequence with respect to p for k = 1, 2, 3, 4 , respec-
tively
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Fig. 4   Lower bound on the f-complexity of Legendre sequence with respect to p for k = 5, 6, 7, 8 , respec-
tively

Fig. 5   Lower bound on the f-complexity of Legendre sequence with respect to p for k = 9, 10 , respec-
tively
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For instance, in Fig. 7 for k = 1 , the bound given in Theorem 1 takes more time, 
the difference is at most 0.005 seconds. On the other hand, for k = 10 the bound 
given in Theorem A takes more time and the difference is at most 0.01 s. Simi-
larly, Fig. 8 shows that the time difference between both bounds is at most 0.06 s 
for primes p = 10000019 , p = 2128240847 and k ∈ {1, 2,… , 2000} . We conclude 
that the bound given in Theorem 1 can be calculated very fast for arbitrarily large 
prime powers and it only differs in a few milliseconds from calculation time of 
the bound depending only on p and k. We note that all figures in this paper were 
plotted using SageMath [35], and SageMath uses Eq. (2) for a numerical approxi-
mation on the W function.

Fig. 6   Lower bound on the f-complexity of Legendre sequence with respect to k for p = 10000019 and 
p = 2128240847 , respectively

Fig. 7   Time difference between the bounds given in Theorem  A and Theorem 1 with respect to p for 
k = 1 and k = 10 , respectively
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7 � Conclusion

In this paper we study the family of Legendre sequences generated by irreducible 
polynomials over a prime finite field and its f-complexity. The main aim of this work 
is to give a better bound on the f-complexity of this family. We present a new lower 
bound on the f-complexity depending on the Lambert W function. Then we approxi-
mate the W function so that we get another bound depending only on logarithmic 
functions. Also we prove that this bound strictly improves the previously known 
bounds. It would be a good future work to construct Legendre sequences by using 
the irreducibles of degree k > k0 for some positive integer k0 for getting a better fam-
ily complexity bound, and to apply the bounds obtained in this paper to improve the 
bounds for other randomness measures.
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