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Abstract

For any odd positive integer n, we express cyclic codes over Z, of length 4n in a new
way. Based on the expression of each cyclic code C, we provide an efficient encoder
and determine the type of C. In particular, we give an explicit representation and
enumeration for all distinct self-dual cyclic codes over Z, of length 4n and correct a
mistake in the paper “Concatenated structure of cyclic codes over Z, of length 4n”
(Cao et al. in Appl Algebra Eng Commun Comput 10:279-302, 2016). In addition,
we obtain 50 new self-dual cyclic codes over Z, of length 28.
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1 Introduction

In [13], it was shown that many interesting binary linear and nonlinear codes are
in fact the images under a Gray map of special linear codes over the ring Z,. This
important discovery caused an enormous amount of activity led to the study of
codes in this ambient space and linear codes over Z, has become one of the most
widely studied areas of algebraic coding theory.

The class of self-dual codes is an interesting topic in coding theory due to their
connections with other fields of mathematics such as lattices, cryptography, invari-
ant theory, block designs, etc. In particular, self-dual codes over Z, relate to combi-
natorial designs and unimodular lattices (cf. [4, 12, 14—-17]). A common theme for
the construction of self-dual codes is the use of computational tools and computer
search. To make this search feasible, adding an algebraic structure to the codes con-
sidered is an effective way.

We begin with the necessary definitions for codes over rings. Let A be a commu-
tative finite ring with identity 1 # 0, and A* be the multiplicative group of invertible
elements of A. For any f,g € A, the ideal of A generated by f and g is denoted by
(f.g),ie.(f,g) =Af +Ag={af + bg | a,b € A}.

A code over A of length N is a nonempty subset C of A, The code C is said to be
linear if C is an A-submodule of AY. Especially, C is called a Z,-linear code when
A =Z,. All codes in this paper are assumed to be linear. The ambient space AY
is equipped with the usual Euclidean inner product, i.e. [a,b] = f;l a;b;, where
a=(ayay,....ay_;),b=(by,by,...,by_,) € AN, and the (Euclidean) dual code is
defined by C* = {a € AV | [a,b] = 0,Vb € C}. If C* = C, C is called a (Euclidean)
self-dual code over A.

The linear code C is said to be cyclic if (cy_;,cy,cys...,cy_p) €C for all
(cp»Cys---scy_1) € C. We use the natural connection of cyclic codes to polynomial
rings, where (cg, ¢y, ..., Cy_1) is viewed as c(x) = Z;VZBI ¢;¥’ and the cyclic code C is
an ideal in the polynomial residue ring A[x]/{(x" — I).

Let C be a nonzero Z,-linear code of length N. Then C has a generator matrix of
I, A B
0 25, 2C
I;, and I, denotes the kj X ky and k; X k; identity matrices, respectively, A and C are
Z,-matrices, and B is a Z,-matrix. Then C is an abelian group of type 4%2k and con-
tains 2%0*%2 codewords (cf. Wan [23, Proposition 1.1]).

Cyclic codes over Z, of odd length n followed from results in [3] and also
appeared in more detail in [20] and [21]. Abualrub and Oehmk in [1] determined the
generators for cyclic codes over Z, for lengths of the form 2¥, and Blackford in [2]
presented the generators for cyclic codes over Z, of length 2n.

Let £ and n be any integers such that k > 1 and »n is odd. In 2006, Dough-
erty and Ling [11] gave a representation for cyclic codes over Z, of length 2*n,
described the number and dual codes of all these cyclic codes and obtained a
rough description of cyclic codes that are self-dual. In 2012, Kiah et al. [18]
determined the number of Euclidean self-dual codes over the Galois ring GR(4, s)
of length 2%, for any positive integers s and k. In 2016, Jitman et al. [19] pointed
out that the determination of the Euclidean dual of a cyclic code in [2, Lemma 9]

the form: G, = < U, where U is a suitable N X N permutation matrix,
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and [11, Proposition 5.8] is not correct. Further, Jitman et al. found an incorrect
statement about the number of Euclidean self-dual cyclic codes ([11, Corollaries
5.7, 5.9 and Proposition 5.8]), and gave the correct statement by [19, Corollary
4.8].

In 2016, Cao et al. [5] gave a concatenated structure for every cyclic code over
Z, of length 4n from a way different that was used in [2, 11, 18, 19]. However,
there was a mistake in [5, Corollary 4.6]. In fact, it gives only a part of self-dual
cyclic codes over Z, of length 4n, not all these self-dual codes.

There are two problems that need to be improved or addressed in [11, 19]:

1. For arbitrary positive integer k, by [11, Theorem 5.3], Dougherty and Ling divided
29 cases to express cyclic codes over GR(4, s) of length 2% and their annihilators.
This would lead to a lengthy description for the results of self-dual codes with
length 2¥n, if use [19, Proposition 4.5].

2. It is not convenient to express the result for (self-dual) cyclic codes over Z, of
length 2¥n, if use Discrete Fourier Transform. In fact, it is not easy to apply [19,
Proposition 4.5] for constructing and designing self-dual cyclic codes over Z, of
length 2¥n, for any given concrete integers k and n.

There are similar problems in [5], it is some inconvenient to construct cyclic
codes over Z, of length 4n as well. First, all these cyclic codes were divided
into 20 cases to express by [5, Theorem 4.5], which is still a bit lengthy. Second,
the expressions for these cyclic codes need to be computed to get them (see [5,
Example 3.4 and Theorem 4.5]).

Therefore, it is necessary and meaningful to find a more direct and simple
method to express cyclic codes over Z, of length 2%n and to determine the self-
dual cyclic codes accurately.

Recently, Cao et al. [6] gave an explicit representation for cyclic codes over
Z, of length 2n from a new way different from that was used in [2, 5, 11, 18, 19].
Using this representation, we provided an efficient encoder and the type for every
code, and determined the (Euclidean) self-dual codes in this class of cyclic codes
precisely. However, the methods used in [6] can not be directly used to the case
of length 4n, there are many key computational problems that require to develop
new methods.

The present paper is organized as follows. In Sect. 2, we introduce necessary
notations and provide necessary conclusions. In Sect. 3, we give the main results
of this paper by four theorems: give an explicit representation for all distinct
cyclic codes over Z, of length 4n (Theorem 3.1); provide an efficient encoder
for each of these cyclic code (Theorem 3.2); determine the dual code for every
cyclic code (Theorem 3.3); give an explicit representation and enumeration for
all distinct self-dual cyclic codes over Z, of length 4n (Theorem 3.4). In addition,
we correct a mistake in [5, Corollary 4.6]. In Sect. 4, we describe how to con-
struct self-dual cyclic codes over Z, of length 4n by two examples: when n =3
and when n = 7. In particular, we obtain 50 new good self-dual cyclic Z,-codes
C with basic parameters (28, |C| = 2%,d,, = 4,d, = 8,d, = 8), where dy,d, and
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dp are the minimum Hamming distance, Lee distance and Euclidean distance of
the codes respectively. In Sect. 5, we give detail proofs for Theorems 3.1-3.4 in
Sect. 3. Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce necessary notations and provide necessary conclusions
for the following sections.

LetF, = {0, 1} in which the arithmetic is done modulo 2, and let Z, = {0, 1,2, 3}
in which the arithmetic is done modulo 4. Denote Z: ={1,3} ={1,-1}. Let
x, y be indeterminate over Z, and [,. In this paper, we regard F, as a subset of the
ring Z,, though F, is not a subfield of Z,. By this view, every element a € Z, has
a unique 2-adic expansion: a = a, + 2a,, ay,a; € F,. Denote a = a; = a (mod 2).
Then ~ : aw a (Va € Z,) is a surjective ring homomorphism from Z, onto [F,,
and ~ can be extended to a surjective rmg homomorphlsm from Z4[y] onto [, [y] by:
fO)=f@) = Z, L by, forany f() = YL by’ € Z,[y).

Let f(y) = Zz " I)/ € Z,[y] of degree d > 1. Then f(y) is said to be a monic
basic irreducible polynomial if f(y) is an irreducible polynomial in F,[y] and
cq € Z (cf. [24, Sect. 13.4]). The reciprocal polynomial of f(y) is defined as

7 (6)) =J’;Gd) = yif (i) = Z]io cjyd_j . Then f(y) is said to be self-reciprocal if
fO) = &f(y) for some & € ZX. It is known that f(y)=f(y) if f(0)# 0, and
fneg) =f(y)§(y) for any monic polynomials f(y),g(y) € Z,[y] with positive
degrees satisfying f(0), g(0) € Z7.

Throughout this paper, we assume the following factorization of y* — 1:

y' = 1=fWAG) ... £, (1

where fi(y) =y —1,£(),....f.(y) are pairwise coprime monic basic irreducible
polynomials in Z,[y] with degree deg(f;(y)) = m, for all i = 1, ..., r. Then we have
y' = 1(mod f(y)). B B

This implies that x™' = x"~! (mod f,(x)) and x~' = x""~! (mod (f,(x))") in F,[x]
for any integer [ > 2.

Additionally, we will adopt the following notation.

1. The ring B= éi[_)q) {z4n : by | b€ Z,, j=0,1,...,4n — 1} where the

arithmetic is done modulo x4” - 1
Then cyclic codes over Z41 of length 4n are viewed as ideals of the ring B.

A _
2. Thering R; = ) {Z bjx | b€ 2,,j=0,1,...,4m; — 1} where the

arithmetic is done modulo fl(x“).
We regard R, as a subset of the ring 3 in this paper.

@ Springer



25

Self-dual cyclic codes over Z, of length 4n

3.

m.—1 . . m.
The set 7, = {Zj:'() tw |1, €F ={0,1}, j=0,...,m; — 1}. Then |T;| = 2"
We regard 7; as a subset of the ring R..
Hereafter, the set 7; will appear frequently in the succeeding contents.
Denote by F;(y) = yfT:)l € Z,[yl. Then there are polynomials u;(y), v;(y) € Z4[y]
such that (cf. [6, Sect. 2])

wNF,) +v0fi(y) = 1. @)

Then we define €,(x) € B by the following equation:

£,(0) = u;0HF,(x*) = 1 — v, (mod x* — 1). 3)

Let w,(x) € 7; satisfying f,(x)* = 2f,(x)?w;(x)? (mod f,(x*)) in Z,[x]. Further, let
(w; (x), w; 1 (x)) be the unique ordered pair of elements in 7; satisfying

wi(0)? = w;(x) + w1 (O (x) (mod (F:(x))?) and w;o(x) # 0 in Fy[x].

The elements w;(x), w; o(x), w;;(x) of 7; play key roles in this paper, and they
will be determined later by Theorem 2.5.

After a rearrangement of f,(y), ..., f,.(y), there are integers A, € such that

A>1l,e>0andA+2e=r.
fi(y) is self-reciprocal,i = 1, ..., 4.
Then m; = deg(f;(y)) is even, when 2 < i < 4 (cf. [8, Lemma 3.2]).

FaejO) = Coyifasesr;(v) forsome e, € 73, j=1,... e

For any integer i, 2 < i < A, we define the following subsets of 7;:

V, = {h(x) €T, | h(x) + x*"h(x"1) =0 (mod]_‘i(x)) in F,[x] }
W = {hy(x) € T; | ho@) + 22" (w,(x™") + hy(x™")) = 0 (mod f,(x)) in Fy[x]}.
For any hy(x) € MO), define

W o =t () € T o) + Iy (i) = 5,00 + &, (00 ()
(mod (f,(x))*) in F,[x]},

where (/S\i,o(x) = x"i(w,(x"1)? + hy(x~1)) and (/S\,-’l (x) = x"Mihy (x7).

v The subsets V,, MO), WD of 7; play key roles in this paper, and they will be

i’ho(x)
determined later by Theorem 2.7.

Then we provide necessary conclusions for the following sections.
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26 Y.Caoetal.

First, by substituting x* for y in Egs. (1) and (2), we obtain
=1 =[N0 L L6N  and  w,HFY) + v, =1

in Z,[x] respectively, where F;(x*) = )} (x:)l € Z,[x]. From this, by Eq. (3) and Chi-

nese remainder theorem for commutative rings with identity, one can easily verify
the following conclusions. Here we omit the proofs.

Lemma 2.1

() £, + - +&,(x)=1,¢(x)?* =¢,x)and g;(x)g;(x) = 0foralll <i#j<rin
the ring B.

(i) B=B,®... D B,, where B; = (€,(x)) = Be,(x) is the ideal of B generated
by €;(x), and B; is a commutative ring with €,(x) as its multiplicative identity
foralli=1,...,r. Moreover, B is a direct sum of rings By, ..., B, in that

= {0} foralli #j.

(iii) Define the map y; : a(x) — €,(x)a(x) (mod x*" — 1) (Va(x) € R,). Then y;is a
ring isomorphism from R; onto B;, fori =1,...,r

(iv) Define a map y by: for any a;(x) € R;,,1 <i<r,let

r

w(a,(x),...,a,(x) = Z wi(a;(x) = Z £,(0a;(x) (mod x*" — 1).
i=1

i=1

Then y is a ring isomorphism from R, X -+ X R, onto B.

To determine all cyclic codes over Z, of length 4n (as ideals of the ring B), by
Lemma 2.1, we need to give all ideals of the ring R; for all i.

Now, let i be an integer, 1 <i < r. Since f;(x) is a minic basic irreducible poly-
nomial in Z,[x] of degree m;, f;(x) is an irreducible polynomial in [F,[x] of degree
m;. By Z, = F,, we have f;(x*) =fl-(x)4 as polynomials in [, [x]. Then, we investi-
gate the structure and properties of the ring R;. To do this, we introduce the fol-
lowing notation:

S ﬁ;(}(“;j) —[I:Z[x]/(f(x)4)—{24m 'ax |a;€Fy, j=0,1,.., 4m;—1} in

which the arithmetic is done modulo f (0)*in [, [x].
o Fi=F0 =Rl/Fw) = (X ap | a;€F, j=0,....m~ 1} in which

the arithmetic is done modulo f (x) in F,[x]. Then F;is a ﬁmte field of 2™ ele-
ments. As a set, we see 7; and F; as the same in this paper.

Lemma 2.2 (cf. [7, Lemma 3.7])

1) ﬁi is a finite chain ring with the maximal ideal {t () = ]_‘i(x)ﬁi, the nilpotency
index of f;(x)in R;is equal to 4 and that R, /{f ;(x)) = F;. Then all distinct ideals
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Self-dual cyclic codes over Z, of length 4n 2z

of Ryare givenby:{0} = (f,x)*) C (f,(x)*) C (F,x)?) C (f,(0) C (F,0)°) =R,
(i) Every element § of ﬁi has a unique ]_‘i(x)-adic expansion:
B = t(x) + 1, (f (%) + LEF ()7 + LEF, W), H(x) € F j=0,1,2,3.

Then B is an invertible element ofﬁi, ie. pe ﬁlx, if and only if t,(x) # 0.
(i) |f;(0)'R;| = |F|* =2mG-D forl1=0,1,2,3,4.

As we regard [, as a subset of Z,, we will regard ﬁi as a subset of R; hereaf-
ter, though R, is not a subring of R,. If needed, the reader is referred back to this
identification of R; with a subset of R,. Then we have 2R, = R,.

Paralleling to the proof of [6, Lemma 4], one can easily verify the following con-
clusion. Here, we omit the proof.

Lemma 2.3 Every element a(x) of R; has a unique 2-adic expansion:
a(x) = ay(x) + 2a,(x), ay(x),a,(x) € ﬁi.

Then a(x) € R if and only if ay(x) € ﬁlx

Let 7 be the surjective ring homomorphism from R; onto ﬁi induced by
- : Z, — F, in the natural way:

T 1 a(x) = ay(x) + 2a,(x) = 7(a(x)) = @ = ay(x),
for all ay(x), a;(x) € ﬁi. Let C be an ideal of R;. We define
C=1(C)={a) |ax) €C} and (C:2)={blx) €R,|2bx) € C}.

Then C is an ideal of ﬁi and (C: 2) is an ideal of R; satisfying C C (C : 2).

Lemma 2.4 Let I, s be integers satisfying 0 < s <1 <4 and v(x) € ﬁi. Denote the
ideal of R, generated by f.(x)! + 2v(x) and 2f (x)° as follows

Clrsoey =0+ 20(x), 2 ,(1)°)
={a(x) - (fl-(x)] + 2v(x)) + b(x) - Zfi(x)x | a(x), b(x) € R;}.

Then we have the following conclusions:

(i) We have C ) = (fi(®)") and (Cy 0 © 2) = (fi(x)*) in R,
(i) The number of elements in C; . 18 |C gy = 27,
(iii) If's =1, wehave C ), = )" + 2v(x)).
(iv) For any u(x), v(x) € R;, we have that
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28 Y.Caoetal.

Crsutey = Clismy < () = v(x) (mod £,(x)") in Fy[x]. 4)

Proof (i) Denote C = C; ., in the following. Then by the definition of C and
[+ 2v(x) = f(x)!, it follows that C = {fi(x)') immediately. _

By 2fix)) € C, we have that f,(x)’ €(C :2). This implies f;(x)°=
7(f;(x)) € 7(C : 2) = (C : 2). Hence(f(x) ) C(C:2).

Conversely, let e(x) € (C : 2). Then e(x) € R; and e(x) + 2c¢(x) € (C : 2) for
some c(x) € R;. This implies 2e(x) = 2(e(x) + 2c(x)) € C._ Hence there exist
a(x), b(x) € R, such that 2e(x) = a(x) - (f:(x)! + 2v(x)) + b(x) - 2f;(x)*. Since fi(x)'is a
monic polynomial in Z4[x], by comparing the coefficients on both sides of the equa-
tion, we know that a(x) = 2a, (x) for some a,(x) € R, Therefore, by 2f,(x)! = 2f,(x)’,
2b(x) = 2b(x), 4 = 0 and s < [, it follows that

2e(x) =2a,(x) - (f,(x)| 4+ 2v(x)) + 2b(O)f ;(x)* = 2a,(x)f;(x) + 2b(x)f ;(x)*
=2(a;(X)f ()™ + b(x)) - f,(x)".

This implies e(x) € (f,(x)*). Hence (C : 2) = (f,(x)*).

(i) Let 7| be the restriction of 7 on the ideal C = C; .- Then 7| is a surjec-
tive ring homomorphism from C onto 7(C) = C = {7(c(x)) | c(x) € C}. This implies
7(C) = C/ker(r| ), where ker(z|.-) = {c(x) € C | 7(c(x)) = c(x) = 0} is the kernel
of 7|.. Therefore, |C| = |7(C)||ker(z|)|. By the definition of 7 and 2-2 =0, we
have

ker(z|o) ={2¢,(x) € C | ¢;,(x) € R;}
={2(c;(x) +2b(x)) € C | ¢;(x) + 2b(x) € R;, ¢,(x),b(x) € ﬁi}
=2(C : 2) =27¢(C : 2).

This implies |ker(z|-)| = |z(C : 2)|. Then by (i) and Lemma 2.2 (iii), we obtain
IC| = [2(O)||7(C : 2)| = |C||(C : 2)] = 2m4=D . 2mild=s) = pmE=(+s),

(i) Let s = L. Then 2f,(x)* = 2£:(x)' = 2(f.(x)! + 2v(x)) C {f;(x)" + 2v(x)). There-
fore, C gy = ()" + 2v(x), 261(0)%) = {f:(x)! + 2v(x)).

(iv) The part “<=" can be easily verified. Here, we only prove the part “=".
Now, let C;;.) = Cusniy = C- Then we see that 2(u(x) — v(x)) = (fi(x_)l + 2u(x))
—(f;(x)' + 2v(x)) € C. This implies u(x) —v(x) € (C : 2). As u(x), v(x) € R;, by (i) it
follows that u(x) — v(x) € (C : 2) = (f;(x)*). Hence u(x) = v(x) (mod f;(x)*) in F,[x].

O

Now, we illustrate how to determine elements w;(x), w; o(x), w; o (x) € 7;.

Theorem 2.5 Let1 <i <r.Then 2f(x) is a divisor off(x)2 f(xz) in Z,[x] (cf. [6,

Lemma 5 (i)]). Denote g,(x) = % € Z,[x] and set w,(x) = g,(x) (mod 2). Then
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Self-dual cyclic codes over Z, of length 4n 29

() (cf. [6, Lemma 5 (i)]) We have fi(x)* =f.(x*) +2f()w,(x) in Z,[x] and
0#wx)eT.
(i) We have f.(x)* = 2f (x)*w,(x)*. Moreover, let

) - w; ()% = w; o(x) -
Wi () = w;(x)” (mod f;(x)) and w; | (x) = f(—) (mod f;(x))
(x

inF,[x]. Then w; o(x), w; 1 (x) € 7; satisfying

W% = w,; () + w0 i(x) (mod (f,(x))*) and w,o(x) # 0 in Fy[x].

Proof (ii) By 4 = 0 and f,(x)* = f:(x?) + 2f,(x)g;(x) in Z,[x], it follows that

[0 =(f) + 2We®)’ = £ = D) +2(D)g, ()
=f,(x*) + 2(f,(0)* = 2f(0)g;(x)) g:(x%)
=, + 2607 g,(¥%).

From this and by w;(x) = g;(x) (mod 2), we deduce that

F00% 22£,0%g,(%) = 2f (0)%8,(x) = 2f,(0)*w;(x?)
=2f,(0)*w;(0)? (mod (f,(x*), 4)),

ie. f(0)* =2f,(0)*w,(x)?* in _the ring R;. By 0# w;(x) € F;, we see that w;(x)
is an 1nvert1ble element of ’R ie. w; (x) S R by Lemma 2.2 (ii). This implies
w,(x)* € R Since  deg(w, (x)z) = 2deg(wi(x)) <2m;—2, by Lemma 22
(i1), there ex1sts a unique ordered pair (w;((x),w;(x)) of elements in F; such
that wlo(x) #0 and w, )?* = Wi o0) + w; 1 (0f (x) in R The latter implies
w; (x) = w; o) +w; l(x)f (x) (mod f; (x)%), and hence w; (x)2 = w;o(x) + w; () (x)
(mod f; )?) in F,[x]. O

In order to determine the subsets V), VV(O) and VV(lh) ® of F,, for any hy(x) € VVEO)

and 2 < i < A, we need the following lemma.

Lemma 2.6 (cf. [6, Lemma 5.1 (i)—(iv)]) Let 2 < i < A and set

m;

= () € F; = BI/F,0) [a>® = alx) (mod Fi(x)).

Then we have the following conclusions:

(1) In the finite field F;, we have = x2 7
(1) 'H,;is a subfield of]: with 2% elements.
(iii) Let Trg /3 be the trace function from F; onto 'H; defined by:
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30 Y.Caoetal.

m;

Trp (&)= E+E7, VEEF,
Then for any a € 'H,;, the number of elements & € F; such that Try 5, (§) = a
is27 7, Le. |Trf/H (a)| =27 (cf. [24, Corollary 7.17]).

(iv) Letw;(x)be determmed by Lemma 2.5. Then x"iw;(x™') = w;(x) (mod f x)) in
F, [x] and x> w, (" e H,

Finally, the subsets V,, WO) and VV(lh) @ of F; can be calculated by the following

theorem.
Theorem 2.7 Using the notations in Lemma 2.6, we have the following:

H V= {ng(x) <mod]_”i(x)) | é(x) € Trf/H (O)}. Therefore, we have

|V| |TI']_-/H O] =2~.
(i) We have that x"w,(x~")* € H,; and
W = e (mod 7,0 ) 1 €00 € Tryy, (vw ) .

Hencell/\/‘< )| = |Trf/H (xmw;(x1)?)| = 2%,
(iii) Lethy(x) € W, Then hy(x) + x> (w,(x™)? + ho(x™")) = 0(mod f(x)) in[F,[x].
Let ¢;(x) € F, be defined by

ho(x) + X2 (w;(x~1)? + hy(x71))
[0

Then we have that x_r%gi(x) € H,; and

Gi(x) =

( df(x))ln[F2 A,

Wi = {Hew (modf,(x)) e €Ty, (o) )
Hence|1/\/( ) | = |Tr F M, (x 2 gl(x))| = 2 >

Proof (i) Let h(x) € 7; = F,. Then h(x) € V, if and only if A(x) satisfies the follow-
ing congruence relation:

h(x) + x"ih(x~") = 0 (mod f,(x)) in F,[x]. 5)

By Lemma 2.6 (i), we have ;27 _ ~1in F,. This implies that (h(x))ﬁ = h(xN).
Hence Eq. (5) is equivalent to
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Try 1 (6 2 (X)) =X 3 h(x) + (T h@)2"
:x_zr% h(x) + x% h(xh)

3m;

=2 (h(x) + x3’”fh(x_1))
=0in F,.

Now, denote é_,’(x) = x_Th(x) Then &(x) € Trf /H (0) and h(x) = x? &(x). Hence

V=x7 T, 0)= { e e F | Em e T, (0)}

(i) By Lemma 2.6 (IV)”? we have x7 w, (x~1) € H,. Since H, is a subfield of F,, we

obtain x"iw,(x"1)? = (x2 w,(x" 1)) € H,.

Let hy(x) € F;. Then hy(x) € l/Vf ) if and only if h,(x) satisfies the following congru-
ence relation:

Ro(x) + X" (w,(x 1% + hy(x™1)) = 0 (mod £,(x)) in F, [x]. 6)

m;.

By 27 —,-! and (ho(x))zil =hy(x~'), Eq. (6) is equivalent to that
Tr gy, (X"iho(x)) = X"iho(x) + x Miho(x~1) = xMiw,(x 12 Now, we set
E(x) =xMhy(x). Then &(x) € Try' i, (x™w;(x"1?) and  hy(x) = x"EX).  So
WY = (xmE(x) € F; | €(x) € Try (i, ().

(111) Let ho(x)GWO). Then hy(x) satisfies Eq. (6). This implies that
ho(x) + X2 (w;(x ™12 + hy(x~1)) is a multiple of the polynomial f,(x) in F,[x]. Hence
the polynomial ¢;(x) € F;is well-defined.

As 2<i< 4, fi(x) is self-reciprocalin Z,[x]. This implies that )_‘l-(x)_ is a self-
reciprocal polynomial in K[x], i.e., f;(x) = f;(x). From this and by deg(f;(x)) = m
we deduce x"if; @ H= fi(x) =f;(x). Further, by Lemma 2.6 (iv), it follows that
w;(x)? = (Miw,(x71)) = x*Miw,(x~2). Hence

i

27 i hy@x) + 2w, (x D + hy(x) o
(v zg(x)) =x7< 0 - 0 >
Si(x)

Bo(x™!) + X7 (wy(x)? + hy(x))
fieh
o ho(x71) + x72Mi(w;(x)? + ho(x))
XMf(x)
_m XPMhy () + wi(0)? + hy(x)
o)

Zi
=X2 -

=x B ¢ (x).
This implies X ¢i(x) eH,

Now, let 2, (x) € F,. Then h,(x) € W)

o) if and only if &, (x) satisfies the follow-

ing congruence relation:
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ho(0) + 1y (X 1) = 8,0(x) + 8,1 (X)f 1(x) (mod £,(x)?) in F,[x], @)
where gi’o(x) = x¥i(w,(x"1)? + hy(x~1)) and ({5:-’1 (x) = x™ih;(x~1). Since
ho(x) + 8,600 + 8, (X))
= () + X" (w, (1 4+ hg () + X"y (F ()
= ¢,(0)f () + X"k, (x")f (%) (mod £,(x)?),

Equation (7) is equlvalent to ¢;(x) + hy(x) + X"k, gx‘l) = 0 (mod f (x)) in F, [x], i.e.,

Trf/H (x~ 12 2h(x) =x" 2 2h(x)+x2 > h (™ H=x"2 g,(x) . Therefore,
h(x)=x2¢&x) € F, where Ex) € Trf I, (x 2 ¢;(x)). Hence
Wi = {Fewerlcwetns), (vFaw) )

Finally, the conclusions |V;| = |V\/f0) V\/flh)( )| =27 follow from Lemma 2.6
(iii) immediately. O

3 Main results

In this section, we list the main results of this paper by four theorems. Every result
here is a significant simplification of the original in that it requires only 10 cases,
compared to the 20 cases that the paper [5] requires. In particular, the expression
here is much more direct and explicit. Moreover, they are interesting development
and a non-trivial extension of the theory in [6].

First, we list all distinct ideals of B by the following theorem.

Theorem 3.1 All distinct cyclic codes over Z,, of length 4n are given by:
c=@Pc=YC={6@++&0 & EC. i=1....r),
i=1 i=1
where

C; = €,(x)C; = {g;(x)b(x) | b(x) € C;} (mod =1,

which is a subcode of C for all i,1 <i <r, and C; is an ideal of the ring R, listed by
the following table:

Case C; Type of C; |Gl L
. (0) 4020 1 1
2. <1) 44m;20 28m; 1
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Case (@ Type of C; IC;| L

3. (2f (@)Y (s = 0,1,2,3) 4090=sm 20=sm

4. (i), 2) (1 =1,2,3) 4=Dm,olm; 2 B=Dm, 3

5. {f.(x) + 2h(x)) 43min0 6m, o

6. (@) + 2h(x), 2f 1(x)) 42mm 25m, om

7. (F? + 2Ry () + by (Of 1(x)) 42m20 2dm Q@my
8. (@) + 2h(x), 2f 1(x)) 4mig2m 24m om

9. () + 2f(0h(), 2f 1)) 4mom, 23m, o
10. (0P + 2, - (w00 + hOOF (6 4m20 22 o

where h(x), hy(x), h,(x) € T, arbitrary, and L is the number of ideals C; in the same
row.

Further, let 402k be the type of the subcode C, listed in the table above for all
integers i:1 <i < r. Then the cyclic code C is of type

42::1 ko,;zZ;:l kl.[_

Hence the number of codewords in C is [[ |, |C;| = 22 Zi=1 kot Ziei ks, Moreover, the
minimum Hamming distance (Lee distance and Euclidean distance) of C satisfies
din(©) < min{d,;, (,0)C) | i=1,...,7}.

Therefore, the number of all cyclic codes C over Z, of length 4n is equal to
IT_,(9+5-2m +4m).

Using the notation of Theorem 3.1, C = @;:1 €;(x)C; is called the canonical form
decomposition of the cyclic code C over Z,.
Similar to [8, Eq. (9)], in the rest of this paper we identify each polynomial

_ z .
a(x) = ay+ ayx + -+ ay,_ X' e B= w‘:[_xh with (ay,a,,...,a4,_;) € Zj". Fur-
ther, for any integer 1 < p < 4(n — 1), define:
a(x) a a . Ayp_n Ay
xa(x) Ay, a Qg3 Ay
la@lpan = =7 1= P )
-1
x? a(x) a4n—p+1 a4n—p+2 a4n—p—1 a4n—p

which is a matrix over Z, of size p X 4n. Then we provide an efficient encoder for
each cyclic code C over Z, of length 4n by the following theorem.

Theorem 3.2 Let C be a cyclic code over Z, of length 4n with canonical form
decomposition C = @),_, C;, where C; = £,(x)C; and C; is an ideal of R; given by the
table in Theorem 3.1. Then a generator matrix G; for each subcode C;,1 <i <, is
given by the following table:
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Case Generator matrix G; Subcode C;

1 0 {0}

2 [€:00) 4, 4n {uG; |ue ij"}

3. [Zfi(x)“'e,-(x)](4_s>m,_,4n {vG; |ve [F2(4_")'""}

4 U0 €4 0ty (@G luez ™™ veR")
[zei(x)]lm,,ém

5. (i) + 2h(0)E; ()3, 4 {uG; luez]"™}

6. ( [(;(0? + 2h(0))E; (X)), 40 ) (WG luezy" ver")

[2f i ()€, 40

7. [(00? + 2((x) + Iy O D), (G, | u € Z;™)

8. ( (5 + 2h(0))e; ()], an > (WG luezveE")
[Zf[(x)gz(x)]zmnzm

9. [((0)* + 2, )A))e, ()], 4n (WG lueZ) veR")

[2f (%€, 0
10. [(F00* + 2,9 (0) + A (CNEX)],, 40 {uG; |ue z}")

where h(x), hy(x), h,(x) € T, arbitrary.

Now, we determine the dual code of each cyclic code.

Theorem 3.3 Let C be a cyclic code over Z, of length 4n with canonical form
decomposition C = @;1 £;(x)C,, where C; is an ideal of the ring R;. Then the dual
code of C is given by C* = @/_, £,,()D ;) = EB;=1 €,(x)D;, where D, is an ideal
of R, determined by the following table:

u@

C; (mod f,(x*) D, (mod £, (x*)

2 {0) (1)

o (1) *{0)

o (2 (X)) (s = 0,1,2,3) (i ®0*,2)

S (f(x),2)(1=1,2,3) * (2f yiy )

o (fi(x) + 2h(x)) * (Fui @ +2F @) - 0270w, o) + 8,(0)f ) ()
where 9,(x) = ™ (w;, (™) + h(x™"))

o (i) + 2h(x), 2f ,(x)) * 0 + 2 (), 2 ) (02
where 7,(x) = x2" (w;o(x™1) + h(x™1))

o (i) + 20ho(x) + hy (X)f 1)) * iy @7 + 205;0(x) + 5, () ()

where ‘/S\i,o(x) = 32 (w,(x71)? + hy(x7)
and &, (x) = X"y (x71)

o (f)* + 2h(x), 2f,() * (@ + 200G, 2 ()

o (fi(x)* + 2 (h(x), 2f ,(x)?) * (@) + Z0,(x), 2f ()
where 7,(x) = x¥" (w;(x™1) + h(x™1)
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C; (mod f,(x*) D, (mod £, (x*)

o (f,(x)° + 2F (X)W, o (x) + hOOF(x))) o (@) +28,(0)
where ﬁi(x) = x"i(w; (71 + h(x71)

in which u is a permutation on the set {1, ..., r} defined by

u@ =i, if1<i<AuA+j)=A+j+eand uy(A+j+e)=1+j,Vi=1,...,¢,

and h(x), hy(x), h,(x) € T; arbitrary.
Finally, we list all distinct self-dual cyclic codes by the following theorem.

Theorem 3.4 Using the notation of Sect. 2, all distinct self-dual cyclic codes over
Z, of length 4n are given by:
=@ e,

1<i<r

where for each integer i,1 < i < r, C; is an ideal of R; given by the following three
cases:

(1) C,is one of the following 3 ideals:
Ci=(2) € ={(x=D%2x-1), € = ((x =1 +2,2(x - D),

(i) If2 <i< A, C,is one of the following 1 + 2% + 2™ ideals:
(ii-1) C; = (2).
(ii-2) C; = ({0 + 2(hy(x) + hy (X)f (%)), where ho(x) € W and hy(x) € V\{QO(X).
(ii-3) C; = (f;(x)® + 2h(x),2f,(x)), where h(x) € V..
(iii) Ifi= A+j, wherel <j<e, (C;,Cy,) is one of 4"+ +5 - 2" + 9 pairs of
ideals given by the following table:

C; (mod f,(x*) Ciyo (mod £, (x*))

2 {0) (1)

o (1) *(0)

o (2f (") (s = 0,1,2,3) * (fiae*,2)

o (fi(0).2)(I=1,2,3) * (2 e ™)

o {fi(x) + 2h(x)) (e + 2 1y () - w5 (7)) + 8,0 11 (1))
where 9,(x) = x™ (w;; (™) + h(x™"))

o (f(x)? + 2h(x), 2f /() * (e + 2f 1 (OT,(0), 2f 11 (0)

where 7,(x) = x2" (w;o(x™) + h(x™"))
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C; (mod f,(x*)) Ciye (mod fi, (x*)

o (fi(0)? + 2(ho(x) + by (OF 1(x))) * (fre @) + 25,9 (0) + 57, (O 1, ()
where 31-0 (x) = 22" (w;(x~")? + hy(x~1))

and 3,'_1()0 = x"ih;(x7")

o (f,(0)® + 2h(x), 2f,(x) * (e () + 20", 2 1, ()
o (i) + 2F (0h(x), 2F (0?) * (e + 2000, 2f 1y (00)

where 7(x) = x2" (w;o(x™1) + h(x71))
o (f,0) + 2, (00w, (%) + h()F (1)) * (frre) +29,()

where 8,(x) = ¥ (w;, (™) + h(x™"))

in which h(x), hy(x), h,(x) € T, arbitrary.
Therefore, the number of self-dual cyclic codes over Z , of length 4n is

3- [Ta+2% +2m) - [JO+5- 2 4 4m),

2<i<h j=1

Remark

(1) In[5, Corollary 4.6], the number of self-dual cyclic codes over Z, of length
4n was proposed as:

3'1 . H O+5- 2Mitj 4mx+j).

1<5j<e

The mistake in this formula occurs in the cases (ii-2) and (ii-3). Obviously,
the conclusion of [5, Corollary 4.6] holds when A = 1.

(ii) By the table in p. 302 of [5], the number N of self-dual cyclic codes over
Z, of length 4n was proposed by the following table, where # is odd and

12 < 4n < 100:
4n N 4n N 4n N
12, 20, 44, 52,76 9 28 339 84 4500225
36, 68, 100 27 60 9315 92 12613659

There are mistakes in this table. Now, we correct them as follows:

4n N corrected
12 21=3-(1+2+2% v

20 63=3-(1+22+2% v

28 339=3.(9+5-2°+4%

36 1533=3-(1+2+2%-(1+2%+2%) v
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dn N corrected
44 3171 =3 - (1 + 25 +219) ;

52 12483 =3 - (1 +2° +212) v

60 152145 =3 - (14242 - (1 +22 +24) . (9 45 . 24 4 4%) v

68 223587 =3 - (1 +24 +28)? v

76 787971 =3 - (1 +2° +2'9) v

84 10500525 =3 - (1 +2+22) - (9+5-2% +43) - (9+5 - 26 + 49 Y

92 12613659 =3-(9+5-2'1 441

100 66124863 = 3 - (1 +22 +2%) - (1 + 210 4 220) v

4 Examples

In this section, we show how to use Theorem 3.4 to construct self-dual codes over
Z, of length 4n.

Example 4.1 We construct all 21 self-dual cyclic codes over Z, of length 12.

First, we have y* — 1 =, ML), where fi(y)=y—1 and f,(y) = V+y+1
In this case, A=r=2,e¢=0. fi(0) = /i), /LO) =c2fi(¥), c; =—-1land ¢, = 1.
Obviously, 3 - /,(y) + (v + 2)f; () = 1in Z4[y].

Using the notation in Sect. 2, we obtain

£,0 =360 =3 +3x" +3 and &,(x) = * +2)f,x*) =% +x* + 2.

Further, by Theorems 2.5, 2.7 and Lemma 2.6 we have the following:

7 F) F [x]
3 f2(x)=x2+x+1,R2=m and 7, = {a+bx|a,b eF,}.
2 2 252 2
o gyx) = GO wedl) _ o Z4[x], wo(x) = g,(x) =x (mod 2), and

2(x2+x+1)
W) =x2=1+x+1-02+x+1).
Hence w;(x) =1+ xand w;;(x) = L

o Fy=—1_ —(atbx|abeF}andH,={E€F, | =¢}=

27 (24atl)
° Tr;l/H(0)={éeleé+§2=0}={07l} ;
Tr;l/H D={e€eF |+ =1}={x1+x).

o VY, = {x2§|§ETrf/H 0} =x- Tr}l/H (0) = {0, 1} (mod x*> + x + 1).

o W= {xzf|<§ETrf/H(l)}:{l,x},smcexmzwz(x‘l) =xx2=1

o W;) {x—zg|§eTr Ay (0)} = {0,x}. This conclusion is due to

T4t (x~ 2+1) 142424
¥) = —
g2( )= x2+x+1 X24x+1

o 1/\)(21) {x~ 25 | € € Trf M, (1)} ={1,14+x}. This conclusion is due to

(247l X241
X) = =
2 ) X2x+1 X4x+1

=x +x+1=0€.7—'2andx_%g2(x)=0€7'[2.

=xeFandx o) =1¢€ H,
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Then by Theorem 3.4 (i) and (ii), all distinct 21 self-dual cyclic codes over Z, of
length 12 are given by C = el(x)C[1 @ £,(x)C,, where C, is given by Theorem 3.4 (i)
and C, is an ideals of the ring <x8+;+]> given by:

G = () _ )

Cy = (H0O? + 20h() + I @ ,), by () € WA,

C, = {f(x)? + 2h(x), 2f,(x)), h(x) € V,.

Specifically, all these 21 self-dual cyclic codes over Z, are the following:

and hy(x) € WY

Cj,k =&,(0)C; ® e (0NCyy, j=1,2,3andk =1,2,...,7,

where C, ; is an ideals of the ring <i4£x1]> given by:

C1,1 = <2>, Cl,z = <(x_ 1)3’2(-x - 1»’ C1,3 = ((x - 1)3 +2,2(x — 1));
and C, ; is an ideals of the ring ——*—— given by:

(xB+x4+1)
C1=(2), C= (& +x+ 1)* +2),
Cos=(+x+ 12 +2(1 +x- (2 +x+ 1)),
Cog = (P +x+ 12 +2(x+ (& +x+ 1)),
C2’5 = ((x2 +x+ D2 +26c0+ A+ +x+ 1)),
Cr = (2 +x+ 13,202 + x4+ 1)),
Cop = (@ +x+ 1% +2,2(% +x + 1)).

Now, let
338832883238 113311331133
G, = ,G,=|220022002200]},
© (0020002000208 o0 502200220
000200020002
000020002000
000002000200
313331333133 000000200020
000000020002
G3=|220022002200[G=[500000002000F
022002200220
020000000200
002000000020
000200000002
302012320232 302010100010
G 230201232023/ 030201010001
2271323020123202727(103020101000F
232302012320 010302010100
302012120212 302010300030
G 230201212021 030201030003
2471123020121202)°7257(303020103000
212302012120 030302010300
011211033233 011231031233
301121103323 301123103123
G _|000022202220] . 000022202220
2651000002220222727T (000002220222
200000222022 200000222022
220000022202 220000022202
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Then by Theorem 3.2, the self-dual cyclic code C;; over Z, of length 12 is gen-
erated by the matrix < g” >, and the type of C;; is given by:
2k
C,.; = 2(Z}?) is the trivial self-dual cyclic code of type 4°2'2;
C, is of type 42 for k = 2,3,4,5; C, ; is of type 4728 for k = 6,7;
C;y is of type 422 for j=2,3and k = 2,3,4,5;

j
Cj is of type 432%for j=2,3and k = 6,7.

Example 4.2 We construct self-dual cyclic codes over Z, of length 28.

In this case, 7 — 1 = f;(A0)(0), where f,(3) =y — L 4() =37 + 252 + y +3
and £ =y + 3y_2 +2y+3 =3f0). These imply i) =x+1,
fr() =x* +x+ land f3(x) = x* + x> + 1in F,[x].

Using the notations in Sect. 2, we have r=3, A=1, e=1, m; =1 and
m, = ms; = 3. Hence there are H?:1(9 +5-2M 4 4™) =293687 distinct cyclic
codes over Z, of length 28.

Foreachi=1,2,3,1et F;(y) = ’;7&)1 and find polynomials u;(y), v;(y) € Z,[y] satis-

fying u;(y)F;(y) + v;(y)f;(y) = 1. Then set ¢;(x) = ui(x4)F,~(x4) (mod x*® —1). Pre-
cisely, we have

£x) = 3x2 4 3x%0 4 3x16 4 3x12 4 3x8 + 3x* 4 3,

&,(x) = 2024 4+ 2x20 4 3x16 4 2x12 £ 348 4 3x* + 1,

£(x) = 3x2 4+ 3x%0 42416 4 3x12  2x8 + 24 4+ 1.

Z,lx Z4lx T
o Ry =i = and F = BL/Fm) = {0.1) = T,

_ Z4l0 _ Bk _ 2 _
o R;= <f;<4x4>> and F; = ({(m ={tg+t,;x+1,x° | 1y,1;,t, €{0,1}} =7;, for
i=23.

o gx) =

(34222 +x+3)2 = (10 +2x* +x2+3)

— 9,2
P =2x"+2x+ 1 € Z,[x],

w,(x) =1 = g,(x) (mod 2), wy 4(x) = 1and w, ;(x) = 0 which satisfy
Wy = 1= wyo(x) + wy, (Wf5,(6) in Ry = Fylxl/(Fo(0°%).
By Theorem 3.4, all 339 self-dual codes over Z, of length 28 are given by:
C=¢€,(x)C, ® &,(x)C, & &5(x)C5,

where C; is an ideal of R;,1 < i < 3, given by the following:
¢ C, is one of the following 3 ideals in R

(2), ((x=1>%2x=1), ((x—1>+2,2(x-1)).

¢ (G,, C5) is one of the following 113 pairs of ideals, where C, is an ideal of R, and
C;is an ideal of R;:
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1. C,=(0)andC; =(1);

2. Cy=(l)and C; = (0);

3. C, = (2f,(®)and C; = (f;(x)*,2), where s = 0,1,2,3;

4. Cy,=(f,(x),2)and C; = (2f3(x)4 ", where [ = 1,2, 3

5. Cy = {f,(x) + 2h(x)) and C; = (f;(x)* + 2f3(x)(x + 192(x)f3(x)))

6. Gy = (00 + 2000, 2F5(1)) and €, = (0° + I3 (0. 2502

7. Cy= (o) +2(hy(x) + h (x)fz(x)))andC3 (f,(x)? + 2(52 o) + 52 1(x)f3(x)))

8. C2 = (£, (x)* + 2h(x), Zfz(x))andC3 (f5(x)> + 2(ax? + bx + ¢), 2f 5(x))in which
ax* +bx+c= x3 3hixh (mod (2, f3(x)));

9. C, = (H() +2£,(Wh(), 2f,(X)?) and Cy = (f,(x)? + Z5(x), 2f3(0)):

10. C, = {(,(x)® + 2f,(@)(1 + h(x)f,(x))) and C; = {f(x) + 2192(x))
where

@\(x) =hy(x) =a+bx+ ¢x? and h(x)=g+ux+ vx2 with a, b, c, g u,v €y
9,(0) = (a+b)x? + ex+ a = x> (wy,, (x7H) + h(x™1) = Ph(x*")

= x3(a + bx?" + cx?%) (mod f5(x) = x> + x> + 1) in F, [x];

/_}(x) (@+c+Dx*+@+b+c+Dx+b+c = x2'3(w2,0(x‘1) +h(x"") (mod
f3(x)) in [ [x];

62,0(x) b +(a+c+ Dx*+1+a =x23w,(x™H)? + hy(x~!)) (mod f3(x)2) in
F,lx} _

6,1(0) = (g +wx* +vx + g =x*h (x ") (mod f3(x)) in F,[x].

Shi et al. obtained some good cyclic codes over Z, from (1 4+ 2u)-constacyclic codes
over the ring Z,[u]/{u* — 1) by [22, Tables 1-3]. From self-dual negacyclic codes
over the ring (vZ: ;]V> of length 14, 36 new and good self-dual 2-quasi-twisted Z,-
codes with parameters (28,2%8,d, = 8,d; = 12) and of type 4’2!* and parameters
(28,2%8,d, = 6,d; = 12) and of type 4°2'® were given in [9]; From self-dual cyclic
codes over o 2]> of length 15, 70 new and good self-dual 2-quasi-cyclic Z,-codes
with parameters (30,2°, d, = 12) and 92 new and good self-dual 2-quasi-cyclic Z,-
codes with parameters (30, 23°,dL = 10) were obtained in [10], where d};, d; and dj
be the minimum Hamming distance, Lee distance and Euclidean distance of a Z,-
code respectively (cf. [25]).

Now, among the 339 self-dual codes over Z, of length 28 listed above, we have
the following 50 new and good self-dual cyclic Z,-codes with basic parameters
(28,|C| =28,d,, = 4,d, = 8,d, = 8):

e 3 self dual cyclic Z,-codes of type 4'22* determined by:
= (2), C, = {f,(x) + 2(a + bx + cx?)),
= (£ + 2f3(0C + ((a + b)x> + ex + a)f3(x)))
Wherea b,celF,={0,1}.
e 8 self-dual cyclic Z,-codes of type 4!22* determined by:
Ci = (2), G, = (L) + 2f,(0)(1 + (a + bx + cx*)f,(x)),
C; = {f3(x) + 2((a + b)x* + cx + a) ), where a, b, c € I,
e 4 self-dual cyclic Z,-codes of type 4!°28 determined by:
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C,=((x= 1)3,2(x - 1)), G = <2f2(x)3) and C; = (f3(x), 2), or C; = (,(x),2)
and Cs = (2f5(x)); _
Cr=(x-1P+22x—1), C,=Q2f,&?) and C;=({x),2), or
C, = (f,(x),2) and C; = (2f;(0)°).
e 2 self-dual cyclic Z,-codes of type 472!* determined by:
Ci = ((x=1,2(x = 1)), G, = (L,(x)*,2) and C5 = (2f3(x)*);
C,=(x—-1*+2,2x- 1)), C, = (fL,(x)*,2)and C; = (2f3(x)2>
e 6 self-dual cyclic Z,-codes of type 4!32? determined by:
Cy = ((x = 1)°,2(x = 1)), C, = (Hx)* + 2h(x), 2f,(x)),
C3 = (f3(0)° + 2f3 (05, (x), 2f3(x)?),
where (h(x),/t\z(x)) e {3 D, 02+, +x0),02+1,x2+x+1), x+1,
x+ 1,02 +x+1,x3)).
e 6 self-dual cyclic Z,-codes of type 4!32? determined by:
C1 = ((x=1)’,2(x = 1)), C; = {(H()? + 2f,)(1 + h(x)f ,(x))),
= (f3(x) + 2192(x))
Where(h(x) 82(x)) e {2 x), 062, P 4+x6,x2+x),@+ L2 +x+ 1), x+1,1),
@ +x+1,x+ D)
e 8 self-dual cyclic Z,-codes of type 4!322 determined by: ~
C,={x-1)7 +2,2x-1)),C, = (H,(x)* + 2(a + bx + cx?), 2f,(x)),
= {0 +2f30(@+c+ Dx> + (@+ b +c + Dx+ b+ ¢), 2f3(x)?),
where a, b, c € F,.
e 8 self-dual cyclic Z,-codes of type 4!32? determined by:
Cl =(x—13+2,2x— 1)), C, = (bL(x)* + 2f2(x)(1 + (a+bx+ cxz)fz(x)))
= (f3(x) + 2((a@ + b)x* + cx + a)), where a, b, c € F,.

5 Proofs of Theorems 3.1-3.4

In this section, we give the detail proofs for Theorems 3.1-3.4. First, we prove that
ideals of the ring B3 are determined by ideals of rings R, i = 1,...,r

e _ _Zilx
Proposition 5.1 LetCC B = e

and only if for each integer i,1 < i < r, there is a unique ideal C; of the ring 'R, such
thatC=@,_,C; = Y._, C;, where

Then C is a cyclic code over Z, of length 4n if

C; =€,x)C; = {g;,(x)c;(x) | ¢;(x) € C;} (mod M —1).

Moreover, the number of codewords in C is equal to |C| = H;l |C;|.
Proof Let C be a cyclic code over Z, of length 4n. By Lemma 2.1 and properties of
isomorphic rings, there is a unique ideal C of the direct product ring R; X --- X R,

such that C = w(C). Hence for each integer i, 1 <i < r, there is a unique ideal C; of
R; such that C = C; X --- X C,. This implies
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C={yc;®),....,c,) |c;x)eC,i=1,...,r}

= Z{fi(x)ci(x) | c;(x) € C,} (mod x*" — 1).
i=1

Then the conclusion follows from Lemma 2.1(i), C; = €,(x)C; C B; for all i and
Cl = ICl=1C, x % C,| =TI, IC|. 0

Z,y[x]

Then we investigate properties of ideals in the ring R; = Ty

Proposition 5.2 For any integer i,1 <i<r, let C; = @)+ 2v(x), 2fi(x)“) be an
ideal of R;, where v(x) € R; and 0 < s <1< 4, and set C; = €,(x)C; C B. Then we
have the following conclusions:

(i) The set C;is a cyclic code of type 44=Dmi2=": over 7, with length 4n.

(i) Using the notation in Eq. (8), let G = gi’(l) , where
i)

Gy = [(h@ +2)ei0] oy 0 Gy = [202,09)]

(I=s)m;,4n

Then C; = {(2’ bG laez, " be ™™ }

Proof (i) For an )vectors a=(ay,ay,...,au_py 1) € Zf_l)m" and b = (by, b,
S bg_gm-1) €F, Y™ define a map ¢ by

o(a,b) = Z a; Y (f '+ 2v(x)) Z 2blxt]7i(x)‘Y

0<j<(4-Dm;—1 0<t<(l-s)m;—1

(mod f,(x*)). Now, we claim that ¢ is a bijection from 2(4 Dmi o [F(l 9™ onto C;. In
fact, since C; is an ideal of R, generated by f(x)' + 2v(x) and 2f (x)‘ we see that

o(a,b) € C;. By Lemma 2.4, it follows that

|C1| — 2m[(8—(l+s)) — 22(4—Z)m[+(1—s)m[ — |ZZ4—l)mi x ﬂ:z(l_S)mi|.

Hence we only need to prove that the map o is injective.
4-1
In faCt, let g = (C(), Cl’ C2, ceey C(4—l)m,-—1) S Zi i al‘ld é = (do, dl’ ceey d(l—s)mi—l) S

[Fz(l_s)m’ satisfying  o(a,b) = o(c,d) (mod f(x*)). For each integer j,

0<j<@-Dm;—1, we write: a;=ay;+2a,; and c¢;=cy;+2c,;, Wwhere
agj @y jCojcy; €F,. Then by o(a,b) =o(c,d) (mod f(x*), we have that
o(a,b) (mod (f;(x)*,2)) = o(c.,d) (mod (f,(x)*,2)). This implies

( Z ao,jxj>/_i(x)l = < Z co ¥ >7i(x)1 (mod f,(x)*).
0<j<(4—ym~1 0<j<(—Dym;-1

Since both Yo /<4 pm 1 % A and ¥ <j<@—tm,—1 €0 ¥ are polynomials in F,[x] of

degree < (4 —Dm; —1 < (4 - l)deg(]_‘ ;(x)), From the equation above, we can deduce
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205;<(4 D 1aO‘,x = 205;<(4 D 1c()J)cf in F,[x], by Lemma 2.2 (ii). This implies
ap; = co s Vj=0,1,.. (4—l)m—1
Moreover, by o(c_z Q) o(c,d) (mod f;(x*) and 2(f,(x)' + 2v(x)) = 2f,(x)!, we

obtain
2(( Z al,jxj> (J?i(x))l + < Z b[xr> (J?i(x)y)
0<j<(@—Dm—1 0<r<(I-s)m;—1

=2<<0Sjs(;)mi_l C]ij> <];i(x)>l + <OSZS(§)%_1 d,x’) (f,(x))y>

Since Yo icia—pm -1 @1¥ and Yooy, 1 €1 are polynomials in F,[x] of degree
< (@4 -=Dm;— 1< (4 - Ddeg(f,(x)), ZO<[<([ sy _bx' and Z_Q<t<([ S _,dx" are
polynomials in [Fz[x] of degree < (l—s)m —1 < (I = s)deg(f;(x)), we see that

205/<(4 Dm;— S a ¥ Zog,<(4 Dm;— _y¢ ¢ and 20<t<(l s)m;— b = Zo<z<(1 $)m;— _d!
in [, [x]. This implies

ajj=c¢; 0<j<@-Dm;—1; and b,=d,, 0<t < (I —s)m; — 1.

Summing up the results above, we get the following: a = ¢ and b = d. Therefore, ¢
is injective and hence a bijection. Moreover, it is clear that

o((a,b) + (¢, d)) = o((a+c, b+ d) = o(a, b) + o(c, d).

Hence o is additive group isomorphism from (Zf_l)m", +) X (Uzz(l_s)m", +) onto (C;, +).
So C; is an abelian group of type 44-0mi2(=9m;

By Lemma 5.1, C; = €;(x)C; is a cyclic code over Z, of length 4n. Using Lemma
2.1 (iii), the map y; induces an additive group isomorphism from (C;, +) onto (C;, +).
Hence, C; is an abelian group of type 4¢4=0m:2(=9m;

(ii) For any positive integer k, denote X, = (1, x, ..., x*"1)* where M" represents
the transpose of a matrix M. Using the notation of Eq. (8), by the proof of (i), each
codeword in C; can be uniquely expessed as

£00(a. b) =(aX(q_pn, ) (i) +2000)) + (BX,1_ ()

=a(X iy fi0)' +20(0) + By f12)")
=aG; ) + éGi,(Z)’

ie., g;(x)o(a,b) = (a,b)G,, where a € Z( “Miand b e [F(l Sm;.
Therefore, C; = {(a,b)G; | a € Z( be [F(’ iy, -

A. Proof for Theorem 3.1.

By Proposition 5.2, the ideal C; of R, listed in the table of Theorem 3.1 is of
the type as given by the table, for all Cases 1-10. Further, as ideals in distinct
cases are of different types, any two ideals are distinct in different cases. Obvi-
ously, the 7 ideals in Cases 3 and 4 are distinct, as they are of different types.
Then we need to consider ideals C; of R; in Cases 5-10.
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Case 5. Let h(x),q(x) € T, = {Zj tx/ 5, €{0,1},j=0,1,....m;— 1} be
such that (f;(x) + 2h(x)) = (fi(x) + 2q(x)) as 1deals of the ring R;. Then by Lemma
2.4 (iii) and Equation (4), we have A(x) = g(x) (mod f;(x)) in F,[x]. This implies
h(x) = g(x). Therefore, the ideals C; in Case 5 are distinct.

Case 6. Let h(x), g(x) € 7; be such that {f;(x)* + 2h(x), 2f (X)) = (f.(x)* + 2g(x),
2f (x)). Then by Eq. (4) in Lemma 2.4, we have that A(x) = g(x) (mod f (x)) in
[, [x]. This implies A(x) = g(x).

Similarly, one can easily verify that the ideals C; in Case 8 are distinct.

Case 7. Let hy(x), hy(x), go(x), g, (x) € 7; be such that (f; ()% + 2(ho(x) + hy (X)f (%))
= (f.(x)* + 2(gy(x) + q,(x)f;(x))) as ideals of R, By Lemma 2.4 (iii) and Eq. (4),
we have hy(x) + b (X)f;(x) = go(x) +q1(x)f (x) (mod f (x)?) in F,[x]. This implies
ho(x) = go(x) and h (x) = g, (x). Therefore, the ideals C; in Case 7 are distinct. B

Case 9. Let h(x),q(x) €7, be such that (F:(x)? + 2h(x)f (%), 2f 1(x)?)
= (fi(x) +_2q(x)fl-(x),_2fi(x)2) as ideals of R;. By Lemma 2.4 (iii) and Eq. (4), we
have A(x)f;(x) = q(x)f;(x) (mod f,(x)?) in F,[x]. This implies that h(x) = g(x). There-
fore, the ideals C; in Case 9 are distinct. B B

Case 10. Let h(x),g(x) € 7; be such that (Fx)? + 2f,(x) - (W, 0(x) + h(0)f;(x)))
= (Fx)? + 2f () - (W 0(x) + g(x)f;(x))). By Lemma 2.4 (iii) and Eq. (4), we have
Fi00) - (w;0(0) + hF () = £(x) - (w;0(0) + g (1) (mod F,(0)) in Fy[x]. This
implies w; ((x) + A(X)f ;(x)) = w; ((x) + g(x)f ;(x) (mod f:(x)?), and hence h(x) = g(x).
So, the ideals C; in Case 10 are distinct.

As stated above, we conclude that all ideals of R; in Cases 1-10 are distinct.
Now, let £, be the number of all ideals in R,. Then we have

L;>9+45- 2"+ Q"2 i=12..r

Further, by Proposition 5.1 the number of cyclic ideals over Z, of length 4n is
equal to []_, £; > []_,(9+5-2" +(2™)*. On the other hand, by [11, Cor-
ollary 3.4], we know that the number of cyclic ideals over Z, of length 4n equals
H;:l (9 + 5 - 2™ + (2™)2). From these, we deduce that

L,=9+5-2" 4+ Q™2 i=1,2,...r

Therefore, all distinct ideals of R, have been listed by the table in Theorem 3.1. The
other conclusions follow from Proposition 5.1 immediately.

B. Proof for Theorem 3.2.
The result follows directly from Theorem 3.1 and Proposition 5.2.

C. Proof for Theorem 3.3

As usual, for any a=(ayqa,...,d4,) € ZY", we identify a with
alx) = Z;Zolaxf eB= Z4[x] /{x* — 1) in the following. In the ring B, we have
that x* = 1, and hence x~' = x*~!. Moreover, we have =1 (Inod f.(x*)), since
f.(x* is a divisor of x* — 1in Z,[x]. This implies x** = 1 and x~' = x*"~! in the ring

R, = Z,[x]/{f,(x*)) for all i. Define
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ula(x)) = a(x™) = ap + Z ajx4”_j, Va(x) € B.

1<j<4n—1
It is clear that y is a ring automorphism of B and satisfies y~! = . Then, by a direct
calculation, we get the following lemma.
Lemma 5.3 Let a,be Zi” where b= (by,b,,...,b,,_). Then [a,b]=0 if
a(x)u(b(x)) = 0 in the ring B where b(x) = Zj:(; ! b

In Theorem 3.4, we define by yu the permutation on the set {1, ...,r}:
u@) =i, if1<i<Au(A+j))=A+j+eandu(A+j+e)=41+j, Vji=1,...,¢

Whether u denotes the automorphism of B or this map on the set {1, ..., r} is deter-
mined by the context. By a method paralleling to that above [6, Lemma 7] and its
proof, we can prove the following lemma. Here we omit its proof.

Lemma 5.4 Using the notations in Sect. 2, we have the following:

() Foreach integeri,1 < i < r, there is a unique element c; € ZX = {1,—1}such
that T, = cif ().
(i) For any integer i, 1 <i < r, we have that u(e;(x)) = €,(x™!) = €,:)(X) in the
ring B and u(B;) = B ;.
(i) Let pulg : B; = B, be the restriction of p on B5;, and define

pi(c(x) = ey = c(* ") (mod f,,;, (1)), Ve(x) € R,

Using the notation in Lemma 2.1 (iii), we have the following commutative
diagram of ring isomorphisms:

Wi s v
Ri=Zxl/ (D) T — Ry = Zylxl/ (&)
7 ! L470)
Hulg;
B; = €,(x)R,; — Bu(i) = £”(i)(x)Ri
Let p; = (1)(/4|B)u/, Then W is a ring isomorphism from R; onto R .

Moreover, we have - Y=y u) Where p, P R, = R; is defined by

Hy (@) = a(x™h) = a(x4” 1)(modf()c“))for all a(x) € ICH(l)

For any ideal C; of the ring R; = Z,[x]/{f;(x*)), recall that the annihilator of C,
is defined as the ideal Ann(C;) = {a@ € R; | af = 0,Vf € C;} of R,. The annihila-
tor of each ideal in R, is given by the following proposition.
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Proposition 5.5 Using the notation in Sect. 2 and Theorem 3.1, for any integer i,
1 <i < r, the annihilator Ann(C;) of each ideal C; in R; is given by the following
table:

C; in Theorem 3.1 Ann(C;)

Case 1 (1)

Case 2 (0)

Case 3 (fi)*,2)

Case 4 (2f 0%

Case 5 <fl,(x)3 +2f,(x) - (ww(x) + (w0 + h(x))j_‘i(x))>
Case 6 () + 21) - (wip(x) + h(0)), 2 (1))
Case 7 <f,.(x)2 + 2(w,.(x)2 +ho@) + Iy (x)f,.oc)))
Case 8 (0 + 2h(), 2f ()

Case 9 )2 + 2(w; o(x) + h(x)), Zfi(x))

Case 10 (i) + 20w, (x) + h(x)))

where 0 < s < 3,1 <[ <3, and I(x), hy(x), h,(x) € T,.

Proof Let S; be the set of all ideals in R; listed in the table of Theorem 3.1, and
assume C; € S;. It is clear that Ann(C;) = D, where D € S, satisfying the following
conditions:

C;-D = {0} and |[D| =Max{|J| | C;-J = {0}, J € S,}. )

By the table in Theorem 3.1, there are 10 cases for all distinct ideals of R;. Hence
we have the following four situations:

(i) Let C; be given by Case 7 in the table of Theorem 3.1. Then|C;| = 2*™. We set
D = {f:(x)* + 2(w;(x)* + hy(x) + 7, (x)f ;(x))). By Theorem 3.1, we see that D is an
ideal of R, and |D| = 2™ Now, denote

@ = [i(0? +20hg(0) + by F (), _

B = (0% + 2(w,(x)% + hy(x) + hy (X)f ;(x)).

Then C;={éa|é€R;} and D= {np|neR;}. By Theorem 2.5 (ii),
we have f(0)* =2f,(0)?w;(x)* = 2f;,(x)*w;,(x)*> in R, This implies that
af = f:00)* + 2f.(x)% - (ho(x) + by (0)f ;(x) + w;(x)% + ho(x) + h (X)f ,(x)) = 0, and
hence C;-D = {éa-nf | {,n € R;} = {0}. Then by Condition (9), we conclude
that D = Ann(C)). _ _

(i) Let C; = (f:(x)* + 2f,;(x)h(x), 2f (x)*) be given by Case 9 in the table of The-
orem 3.1. Then |C;| = 23 We set D = (fi(x)? + 2(w; o(x) + h(x)), 2f(x)). Then
by Theorem 3.1, D is an ideal of R, and [D| = 2°™. As f,(x)* =0 in R;, we have
2f ()2 - f:(x)? = £i(x) - 2f;(x) = 2f,(x)* = 0. This implies

2107 - ()% + 20w;0(x) + h(x)) = (f(x) + 2f,()h()) - 2f 1(x) = 0.
Since fi(x)* = 2f:(x)*wi(x)* = 2f :(x)*(W; o(x) + w; , (X)f;(x)) by Theorem 2.5 (ii), it

follows that
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(£ + @) - (@ + 200,50 + h)

= £, + 2£1(0)° (w; () + 2h(x))

= 27,00 (w0 (x) + Wy QO () + 2f () w; (%)
=0.
This implies C; - D = {0}. Then by Condition (9), we have D = Ann(C;).

(iii) Let C; = {f:(x)* + 2f ()W, o(x) + A(x)f(x))) be given by Case 10 in the table
of Theorem 3.1. Then |C;| = 2*™. Set D = (f(x) +2(w; 1 (x) + h(x))). By Theo-
rem 3.1, we see that D is an ideal of R, and |D| = 26",

By Theorem 2.5 (ii), it follows that

(607 + 27, @000,0) + T ) - () + 200,400 + hx)

= [Q)" + 27,007 Wy, () + 700) + 27,007 (W, 0(x) + hOOS ()
= 2f (02 (W; o (%) + i (OF 1)) + 270w, 1 () + 210w, o(x)
=0.
This implies C; - D = {0}. Then by Condition (9), we have D = Ann(C,).
(iv) If C; is an ideal of R; given by Cases 1-6 and Case 8 in the table of Theo-

rem 3.1, the conclusions for each Ann(C;) follow from Theorem 2.5 and direct cal-
culations. Here, we omit these elementary calculations. O

Lemma 5.6 Let a(x) = Z;zl £;(X)&;, b(x) = Z;zl g,(xX)n; € B, where &.n, €R,.
Then a(x)u(b(x)) = Y;_, £;(x)(; - Ili_l(ﬂ,,(i)))~

Proof By Lemma 5.4 (ii), we have M,-_I('Iﬂ(i)) S yi‘l(’RM(i)) =R,. This implies
g - /41.‘1(;1”(1-)) € R, for all i. If j # u(i), then i # u(j) and so gi(x)sﬂ(i)(x) =0 in the
ring B, by Lemma 2.1 (i). Therefore, by Lemma 5.4 (iii) it follows that

r r

a@pb() = Y £(0E; - ule;m) = Y. £, - u(g;())p;(n,)
ij=1 ij=1

r

= Z 5,‘()6)5,‘ : fﬂ(/)(x)ﬂj(”l_,‘) = Z Ei(x)éi : gi(x)ﬂ,,(i)(”lﬂ(,‘))-

ij=1 i=1
Hence a(x)u(b(x)) = Z;:l g,(0)(¢; - yi‘l(r]”(i))) by Lemma 2.1 (i). O

Now, we prove Theorem 3.3 as follows:
Let C = @),_, £;(x)C; be a cyclic code over Z, of length 4n, where C; is an ideal
of the ring R; given by Theorem 3.1. For each integer 1 <j < r, define

H; = p,(Ann(C, ) = p7 (Ann(C,y ),

where Ann(C,;) is the annihilator of C,; determine by Proposition 5.5, for all
j=1,...,r. Then by Lemma 5.4 (iii), we have ”;(lj)(H./‘) = uj(Hj) = Ann(Cﬂ(i)).

@ Springer



48 Y.Caoetal.

Assume i = u(j). Then we have u(i)=j and u- YH ui) = Ann(C;). Now, let
H =D, £upWH, 5 = Xy £/0H; (mod x*" — .

By Proposition 5.1, we know that H is a cyclic code over Z, of length 4n. As
C; - Ann(C;) = {0}, by Lemma 5.6 it follows that

C-u(H)y= Y e()(C; - p7 ' Hy)) = ). £x)(C; - Ann(C)) = {0}.
i=1 i=1
From this and by Lemma 5.3, we deduce that { C C*. Further, by Theorem 3.1 and
Proposition 5.5, we have |C;||Ann(C;)| = 28" for all i. This implies

ICIIH| = (H [e |><H| oD =[] (IC1AmC)]) = 28T = |z, |,

i=1

by Proposition 5.1 and Y}'_ m; = n. Then from the theory of linear codes over Z,
(cf. [23]), we deduce that C* = H.

To prove Theorem 3.3, it is sufficient to prove H,; = D, where D, is an
ideal of the ring Rﬂ(l) listed in the table of Theorem 3.3,1 <i <r.

Since x~! = x*~!in R,, we have x € R, for all i. By Lemma 5.4 (i), we know
that f(x) = c‘fu(l)(x) where c;e{l,-1} ThlS implies 2¢; = 2 in Z,. Then by the def-
inition of y; in Lemma 5.4 (111) for k = 1,2, 3, we have

(0" =(M,~(f(x)))" = fiE = xR (e )
OO = o (0
and 50 41,2 (") = 2 0F) = 2ckamf,  (OF = 27k o (o).

(i) Let Ann(C;) = (f:(x)*~*,2) be given in Case 3 of Proposition 5.5. By x € R*
it follows that

u(@?’

H,ip =(u (500", 1, (2)) = (x4 mp 0 (077, 2)
=y ,2) = D,y
The equations H,,;) = D,,; for Cases 1, 2, 4 can be proved similarly as Case 3.

(i) Let Ann(C,) = {f;(x)* + 2f ()(w; o(x) + 9;,(x)f (x))) be given in Case 5 of
Proposition 5.5, where 9;(x) = w; ;(x) + h(x). Then we have

H, ={ (0 + 2,000,000 + 9,07, ) )
3m; y(i)(x)3
+ 267" (@) (007 + 8,07 (0))

=0 + 2,00 (2,007 + 3,070 ) ).

— (3
=(c;x

where 9,(x) = x"(w;;(x™!) + h(x™")) € R ;- Hence H,;, = D ;-
The equation H,,;) = D,,; for Case 10 can be proved similarly as Case 5.
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(iii) Let Ann(C;) = (f,(x)? + 2f,(0)1,(x), 2f (x)%) be given in case 6 of Proposition
5.5, where £;(x) = w; ;(x) + h(x). Then we have
H :<c§x-3mf oo @ +20MF o (D), 2x-2’"zfﬂ(,.)(x)2>
=@ + 2 4y Iy (),

where 7,(x) = x2"(w;o(x™1) + h(x"1)) € ﬁﬂ(l) Hence H,;, = D,
The equation H,;) = D, for Case 9 can be proved similarly as Case 6.

(iv) Let Ann(C;) = (f; (x)2 + 2(w;(x)? + hy(x) + hy(x)f (x))) be given in Case 7 of
Proposition 5.5, where 6, ;(x) = w; ;(x) + h;(x) for j = 0, 1. Then

) =2, (0 + 20w, 4 (7Y + Ay (DT ()

=(00@* +2(8,000+ 5,0 ) ) = Dy

M(l

where §;,(x) = 2" (w,(x") + hy(x™")) and §; , (x) = X"k (") in R

(v) Let Ann(C;) = (f,(x)* + 2h(x),2f,(x)) be given in Case 8 of _Propo-
sition 5.5. Then we have H”(l) = (X7 0 @P + 2h(x ), 27 (0)
- M(l)(x)3 + 200 th(x™ I) Zfﬂ(t)(x)> - /4(1)

On the basis of the above discussion, we get C* = @:: 1 €D i), where D ;)
is an ideal of R”(l) given in the table of Theorem 3.3 for all i = 1, ..., r. This proves
the theorem 3.3.

D. Proof for Theorem 3.4

Using the notation of Theorem 3.3, by Proposition 5.1, we see that C is self-dual
if and only if the ideal C; of R; satisfies C; = D, for all i = 1, ..., r, where the pair
(C;, D)) of ideals is listed in the table of Theorem 3.3. Then the latter condition is
equivalent to that C; satisfies the following conditions:

¢ Leti = 1. There are 3 ideals of R, satisfies C; = D| = D,y

C,=(2),C,={x—-112x-1)and C; = ((x— 1)> +2,2(x — 1)).

O Let2 < i < A. In this case, u(i) = i. Then by Theorems 3.1 and 3.3, we see that
C; is one of the following three subcases:

=(2).

> C (f.(x)* + 2h(x), Zf (%)), where h(x) € 7; satistying Eq. (5) in the proof of
Theorem 2.7, i.e., h(x) € V, by Theorem 2.7 (i).

>C; = (f.(x)> + 2(hy(x) + h (x)f (x))), where hy(x), h(x) € 7; satlsfymg Equation
(7) in the proof of Theorem 2.7, i.e., hy(x) € VV?O) and h,(x) € wh by Theo-
rem 2.7 (ii) and (iii).

By Theorem 2.7, there are | + 2 > + (2 2 )2 ideals C; of R; satisfiesC; = D; = D
foralli=2,..., A

OLleti=A+4+jwherel <j<e. Then u(i) =i+ € and u(i + €¢) = i. In this case,
C,=D,forallt=A4+1,...,A4+ 2¢if and only if: C; is any ideal of R, listed in the
table of Theorem 3.1 and C, +e =D, where D, = D, is given by the table in
Theorem 3.3, foralli=A+4+jand1 <j <e.

ixho (x)

u(y
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As stated above, we see that the number of self-dual cyclic codes over Z, of
length 4nis 3 - [],o;c,(1 +27% +2") - [T, (9 +5 - 2™ + 4™,

6 Conclusions

We give an explicit representation and enumeration for all distinct cyclic codes over
Z, of length 4n where n is odd. Using this representation, we provide an efficient
encoder for each code and determine its type explicitly. Then we give a precise
description for the dual codes and listed explicitly all distinct self-dual cyclic codes
over Z, of length 4n. Compared with the results in the literature, the results in this
paper are more simple and practical for constructing self-dual cyclic codes over Z,
of length 4n, for a given odd positive integer n.

Obtaining some bounds for the minimal distance such as BCH-like of a self-dual
cyclic code over Z, of length 4n by just looking at the representation of such codes
are future topics of interest.
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