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Abstract
For any odd positive integer n, we express cyclic codes over ℤ

4
 of length 4n in a new 

way. Based on the expression of each cyclic code C , we provide an efficient encoder 
and determine the type of C . In particular, we give an explicit representation and 
enumeration for all distinct self-dual cyclic codes over ℤ

4
 of length 4n and correct a 

mistake in the paper “Concatenated structure of cyclic codes over ℤ
4
 of length 4n” 

(Cao et al. in Appl Algebra Eng Commun Comput 10:279–302, 2016). In addition, 
we obtain 50 new self-dual cyclic codes over ℤ

4
 of length 28.
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1 Introduction

In [13], it was shown that many interesting binary linear and nonlinear codes are 
in fact the images under a Gray map of special linear codes over the ring ℤ4 . This 
important discovery caused an enormous amount of activity led to the study of 
codes in this ambient space and linear codes over ℤ4 has become one of the most 
widely studied areas of algebraic coding theory.

The class of self-dual codes is an interesting topic in coding theory due to their 
connections with other fields of mathematics such as lattices, cryptography, invari-
ant theory, block designs, etc. In particular, self-dual codes over ℤ4 relate to combi-
natorial designs and unimodular lattices (cf. [4, 12, 14–17]). A common theme for 
the construction of self-dual codes is the use of computational tools and computer 
search. To make this search feasible, adding an algebraic structure to the codes con-
sidered is an effective way.

We begin with the necessary definitions for codes over rings. Let A be a commu-
tative finite ring with identity 1 ≠ 0 , and A× be the multiplicative group of invertible 
elements of A. For any f , g ∈ A , the ideal of A generated by f and g is denoted by 
⟨f , g⟩ , i.e., ⟨f , g⟩ = Af + Ag = {af + bg ∣ a, b ∈ A}.

A code over A of length N is a nonempty subset C of AN . The code C is said to be 
linear if C is an A-submodule of AN . Especially, C is called a ℤ4-linear code when 
A = ℤ4 . All codes in this paper are assumed to be linear. The ambient space AN 
is equipped with the usual Euclidean inner product, i.e. [a, b] =

∑N−1

j=0
ajbj , where 

a = (a0, a1,… , aN−1), b = (b0, b1,… , bN−1) ∈ AN , and the (Euclidean) dual code is 
defined by C⊥ = {a ∈ AN ∣ [a, b] = 0,∀b ∈ C} . If C⊥ = C , C is called a (Euclidean) 
self-dual code over A.

The linear code C is said to be cyclic if (cN−1, c0, c1,… , cN−2) ∈ C for all 
(c0, c1,… , cN−1) ∈ C . We use the natural connection of cyclic codes to polynomial 
rings, where (c0, c1,… , cN−1) is viewed as c(x) =

∑N−1

j=0
cjx

j and the cyclic code C is 
an ideal in the polynomial residue ring A[x]∕⟨xN − 1⟩.

Let C be a nonzero ℤ4-linear code of length N. Then C has a generator matrix of 

the form: GC =

(
Ik0 A B

0 2Ik1 2C

)
U, where U is a suitable N × N permutation matrix, 

Ik0 and Ik1 denotes the k0 × k0 and k1 × k1 identity matrices, respectively, A and C are 
ℤ2-matrices, and B is a ℤ4-matrix. Then C is an abelian group of type 4k02k1 and con-
tains 22k0+k2 codewords (cf. Wan [23, Proposition 1.1]).

Cyclic codes over ℤ4 of odd length n followed from results in [3] and also 
appeared in more detail in [20] and [21]. Abualrub and Oehmk in [1] determined the 
generators for cyclic codes over ℤ4 for lengths of the form 2k , and Blackford in [2] 
presented the generators for cyclic codes over ℤ4 of length 2n.

Let k and n be any integers such that k ≥ 1 and n is odd. In 2006, Dough-
erty and Ling [11] gave a representation for cyclic codes over ℤ4 of length 2kn , 
described the number and dual codes of all these cyclic codes and obtained a 
rough description of cyclic codes that are self-dual. In 2012, Kiah et  al. [18] 
determined the number of Euclidean self-dual codes over the Galois ring GR(4, s) 
of length 2k , for any positive integers s and k. In 2016, Jitman et al. [19] pointed 
out that the determination of the Euclidean dual of a cyclic code in [2, Lemma 9] 
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and [11, Proposition 5.8] is not correct. Further, Jitman et al. found an incorrect 
statement about the number of Euclidean self-dual cyclic codes ([11, Corollaries 
5.7, 5.9 and Proposition 5.8]), and gave the correct statement by [19, Corollary 
4.8].

In 2016, Cao et al. [5] gave a concatenated structure for every cyclic code over 
ℤ4 of length 4n from a way different that was used in [2, 11, 18, 19]. However, 
there was a mistake in [5, Corollary 4.6]. In fact, it gives only a part of self-dual 
cyclic codes over ℤ4 of length 4n, not all these self-dual codes.

There are two problems that need to be improved or addressed in [11, 19]: 

1. For arbitrary positive integer k, by [11, Theorem 5.3], Dougherty and Ling divided 
29 cases to express cyclic codes over GR(4, s) of length 2k and their annihilators. 
This would lead to a lengthy description for the results of self-dual codes with 
length 2kn , if use [19, Proposition 4.5].

2. It is not convenient to express the result for (self-dual) cyclic codes over ℤ4 of 
length 2kn , if use Discrete Fourier Transform. In fact, it is not easy to apply [19, 
Proposition 4.5] for constructing and designing self-dual cyclic codes over ℤ4 of 
length 2kn , for any given concrete integers k and n.

There are similar problems in [5], it is some inconvenient to construct cyclic 
codes over ℤ4 of length 4n as well. First, all these cyclic codes were divided 
into 20 cases to express by [5, Theorem 4.5], which is still a bit lengthy. Second, 
the expressions for these cyclic codes need to be computed to get them (see [5, 
Example 3.4 and Theorem 4.5]).

Therefore, it is necessary and meaningful to find a more direct and simple 
method to express cyclic codes over ℤ4 of length 2kn and to determine the self-
dual cyclic codes accurately.

Recently, Cao et  al. [6] gave an explicit representation for cyclic codes over 
ℤ4 of length 2n from a new way different from that was used in [2, 5, 11, 18, 19]. 
Using this representation, we provided an efficient encoder and the type for every 
code, and determined the (Euclidean) self-dual codes in this class of cyclic codes 
precisely. However, the methods used in [6] can not be directly used to the case 
of length 4n, there are many key computational problems that require to develop 
new methods.

The present paper is organized as follows. In Sect. 2, we introduce necessary 
notations and provide necessary conclusions. In Sect. 3, we give the main results 
of this paper by four theorems: give an explicit representation for all distinct 
cyclic codes over ℤ4 of length 4n (Theorem  3.1); provide an efficient encoder 
for each of these cyclic code (Theorem 3.2); determine the dual code for every 
cyclic code (Theorem  3.3); give an explicit representation and enumeration for 
all distinct self-dual cyclic codes over ℤ4 of length 4n (Theorem 3.4). In addition, 
we correct a mistake in [5, Corollary 4.6]. In Sect.  4, we describe how to con-
struct self-dual cyclic codes over ℤ4 of length 4n by two examples: when n = 3 
and when n = 7 . In particular, we obtain 50 new good self-dual cyclic ℤ4-codes 
C with basic parameters (28, |C| = 228, dH = 4, dL = 8, dE = 8) , where dH , dL and 
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dE are the minimum Hamming distance, Lee distance and Euclidean distance of 
the codes respectively. In Sect. 5, we give detail proofs for Theorems 3.1–3.4 in 
Sect. 3. Section 6 concludes the paper.

2  Preliminaries

In this section, we introduce necessary notations and provide necessary conclusions 
for the following sections.

Let �2 = {0, 1} in which the arithmetic is done modulo 2, and let ℤ4 = {0, 1, 2, 3} 
in which the arithmetic is done modulo 4. Denote ℤ×

4
= {1, 3} = {1,−1} . Let 

x, y be indeterminate over ℤ4 and �2 . In this paper, we regard �2 as a subset of the 
ring ℤ4 , though �2 is not a subfield of ℤ4 . By this view, every element a ∈ ℤ4 has 
a unique 2-adic expansion: a = a0 + 2a1, a0, a1 ∈ �2. Denote a = a0 = a (mod 2). 
Then − ∶ a ↦ a ( ∀a ∈ ℤ4 ) is a surjective ring homomorphism from ℤ4 onto �2 , 
and − can be extended to a surjective ring homomorphism from ℤ4[y] onto �2[y] by: 
f (y) = f (y) =

∑d

i=0
biy

i , for any f (y) =
∑d

i=0
biy

i ∈ ℤ4[y].
Let f (y) =

∑d

j=0
cjy

j ∈ ℤ4[y] of degree d ≥ 1 . Then f(y) is said to be a monic 
basic irreducible polynomial if f (y) is an irreducible polynomial in �2[y] and 
cd ∈ ℤ

×
4
 (cf. [24, Sect.  13.4]). The reciprocal polynomial of f(y) is defined as 

f̃ (y) = f̃ (y) = ydf (
1

y
) =

∑d

j=0
cjy

d−j . Then f(y) is said to be self-reciprocal if 

f̃ (y) = �f (y) for some � ∈ ℤ
×
4
 . It is known that ̃̃

f (y) = f (y) if f (0) ≠ 0 , and 
̃f (y)g(y) = f̃ (y)g̃(y) for any monic polynomials f (y), g(y) ∈ ℤ4[y] with positive 

degrees satisfying f (0), g(0) ∈ ℤ
×
4
.

Throughout this paper, we assume the following factorization of yn − 1:

where f1(y) = y − 1, f2(y),… , fr(y) are pairwise coprime monic basic irreducible 
polynomials in ℤ4[y] with degree deg(fi(y)) = mi for all i = 1,… , r . Then we have 
yn ≡ 1 (mod fi(y) ). 

This implies that x−1 ≡ xn−1 (mod f i(x)) and x−1 ≡ xln−1 (mod (f i(x))
l) in �2[x] 

for any integer l ≥ 2.
Additionally, we will adopt the following notation. 

1.  The ring B =
ℤ4[x]

⟨x4n−1⟩ = {
∑4n−1

j=0
bjx

j ∣ bj ∈ ℤ4, j = 0, 1,… , 4n − 1} where the 
arithmetic is done modulo x4n − 1.

  Then cyclic codes over ℤ4 of length 4n are viewed as ideals of the ring B.
2.  The ring Ri =

ℤ4[x]

⟨fi(x4)⟩ = {
∑4mi−1

j=0
bjx

j ∣ bj ∈ ℤ4, j = 0, 1,… , 4mi − 1} where the 
arithmetic is done modulo fi(x4).

  We regard Ri as a subset of the ring B in this paper.

(1)yn − 1 = f1(y)f2(y)… fr(y),
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3.  The set Ti = {
∑mi−1

j=0
tjx

j ∣ tj ∈ �2 = {0, 1}, j = 0,… ,mi − 1} . Then |Ti| = 2mi . 
We regard Ti as a subset of the ring Ri.

  Hereafter, the set Ti will appear frequently in the succeeding contents.
4.  Denote by Fi(y) =

yn−1

fi(y)
∈ ℤ4[y] . Then there are polynomials ui(y), vi(y) ∈ ℤ4[y] 

such that (cf. [6, Sect. 2]) 

 Then we define �i(x) ∈ B by the following equation: 

5.  Let wi(x) ∈ Ti satisfying fi(x)4 ≡ 2f i(x)
2wi(x)

2 (mod fi(x4) ) in ℤ4[x] . Further, let 
(wi,0(x),wi,1(x)) be the unique ordered pair of elements in Ti satisfying 

 

✓  The elements wi(x),wi,0(x),wi,1(x) of Ti play key roles in this paper, and they 
will be determined later by Theorem 2.5.

6.  After a rearrangement of f2(y),… , fr(y) , there are integers �, � such that

⋄  � ≥ 1 , � ≥ 0 and � + 2� = r.
⋄  fi(y) is self-reciprocal, i = 1,… , �.
  Then mi = deg(fi(y)) is even, when 2 ≤ i ≤ � (cf. [8, Lemma 3.2]).
⋄  ̃f�+j(y) = c�+jf�+�+j(y) for some c�+j ∈ ℤ

×
4
 , j = 1,… , �.

7.  For any integer i, 2 ≤ i ≤ � , we define the following subsets of Ti:

• Vi =
{
h(x) ∈ Ti ∣ h(x) + x3mih(x−1) ≡ 0 (mod f i(x)) in �2[x]

}
.

• W
(0)

i
= {h0(x) ∈ Ti ∣ h0(x) + x2mi (wi(x

−1)2 + h0(x
−1)) ≡ 0 (mod f i(x)) in �2[x]}.

• For any h0(x) ∈ W
(0)

i
 , define 

 where �̂i,0(x) = x2mi (wi(x
−1)2 + h0(x

−1)) and �̂i,1(x) = xmih1(x
−1).

✓  The subsets Vi,W
(0)

i
,W

(1)

i,h0(x)
 of Ti play key roles in this paper, and they will be 

determined later by Theorem 2.7.

Then we provide necessary conclusions for the following sections.

(2)ui(y)Fi(y) + vi(y)fi(y) = 1.

(3)�i(x) ≡ ui(x
4)Fi(x

4) = 1 − vi(x
4)fi(x

4) (mod x4n − 1).

wi(x)
2 = wi,0(x) + wi,1(x)f i(x) ( mod (f i(x))

2) and wi,0(x) ≠ 0 in �2[x].

W
(1)

i,h0(x)
={h1(x) ∈ Ti ∣ h0(x) + h1(x)f i(x) ≡ �̂i,0(x) + �̂i,1(x)f i(x)

( mod (f i(x))
2) in �2[x]},
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First, by substituting x4 for y in Eqs. (1) and (2), we obtain

in ℤ4[x] respectively, where Fi(x
4) =

x4n−1

fi(x
4)

∈ ℤ4[x] . From this, by Eq. (3) and Chi-
nese remainder theorem for commutative rings with identity, one can easily verify 
the following conclusions. Here we omit the proofs.

Lemma 2.1 

 (i) �1(x) +⋯ + �r(x) = 1 , �i(x)2 = �i(x) and �i(x)�j(x) = 0 for all 1 ≤ i ≠ j ≤ r in 
the ring B.

 (ii) B = B1 ⊕…⊕ Br , where Bi = ⟨�i(x)⟩ = B�i(x) is the ideal of B generated 
by �i(x) , and Bi is a commutative ring with �i(x) as its multiplicative identity 
for all i = 1,… , r . Moreover, B is a direct sum of rings B1,… ,Br in that 
BiBj = {0} for all i ≠ j.

 (iii) Define the map �i ∶ a(x) ↦ �i(x)a(x) (mod x4n − 1) (∀a(x) ∈ Ri) . Then �i is a 
ring isomorphism from Ri onto Bi , for i = 1,… , r.

 (iv) Define a map � by: for any ai(x) ∈ Ri , 1 ≤ i ≤ r , let

Then � is a ring isomorphism from R1 ×⋯ ×Rr onto B.

To determine all cyclic codes over ℤ4 of length 4n (as ideals of the ring B ), by 
Lemma 2.1, we need to give all ideals of the ring Ri for all i.

Now, let i be an integer, 1 ≤ i ≤ r . Since fi(x) is a minic basic irreducible poly-
nomial in ℤ4[x] of degree mi , f i(x) is an irreducible polynomial in �2[x] of degree 
mi . By ℤ4 = 𝔽2 , we have fi(x4) = f i(x)

4 as polynomials in �2[x] . Then, we investi-
gate the structure and properties of the ring Ri . To do this, we introduce the fol-
lowing notation: 

⋄  Ri =
�2[x]

⟨f i(x)4⟩
= �2[x]∕⟨f i(x)4⟩ = {

∑4mi−1

j=0
ajx

j ∣ aj ∈ �2, j = 0, 1,… , 4mi − 1} in 
which the arithmetic is done modulo f i(x)4 in �2[x].

⋄  Fi =
�2[x]

⟨f i(x)⟩
= �2[x]∕⟨f i(x)⟩ = {

∑mi−1

j=0
ajx

j ∣ aj ∈ �2, j = 0,… ,mi − 1} in which 
the arithmetic is done modulo f i(x) in �2[x] . Then Fi is a finite field of 2mi ele-
ments. As a set, we see Ti and Fi as the same in this paper.

Lemma 2.2 (cf. [7, Lemma 3.7]) 

 (i) Ri is a finite chain ring with the maximal ideal ⟨f i(x)⟩ = f i(x)Ri , the nilpotency 
index of f i(x) in Ri is equal to 4 and that Ri∕⟨f i(x)⟩ ≅ Fi . Then all distinct ideals 

x4n − 1 = f1(x
4)f2(x

4)… fr(x
4) and ui(x

4)Fi(x
4) + vi(x

4)fi(x
4) = 1

�(a1(x),… , ar(x)) =

r∑
i=1

�i(ai(x)) =

r∑
i=1

�i(x)ai(x) (mod x4n − 1).
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of Ri are given by: {0} = ⟨f i(x)4⟩ ⊂ ⟨f i(x)3⟩ ⊂ ⟨f i(x)2⟩ ⊂ ⟨f i(x)⟩ ⊂ ⟨f i(x)0⟩ = Ri

.
 (ii) Every element � of Ri has a unique f i(x)-adic expansion:

Then � is an invertible element of Ri , i.e. � ∈ R
×

i
 , if and only if t0(x) ≠ 0.

 (iii) |f i(x)lRi| = |Fi|4−l = 2mi(4−l) , for l = 0, 1, 2, 3, 4.

As we regard �2 as a subset of ℤ4 , we will regard Ri as a subset of Ri hereaf-
ter, though Ri is not a subring of Ri . If needed, the reader is referred back to this 
identification of Ri with a subset of Ri . Then we have 2Ri = Ri.

Paralleling to the proof of [6, Lemma 4], one can easily verify the following con-
clusion. Here, we omit the proof.

Lemma 2.3 Every element a(x) of Ri has a unique 2-adic expansion:

Then a(x) ∈ R
×
i
 if and only if a0(x) ∈ R

×

i
.

Let � be the surjective ring homomorphism from Ri onto Ri induced by 
− ∶ ℤ4 → 𝔽2 in the natural way:

for all a0(x), a1(x) ∈ Ri . Let C be an ideal of Ri . We define

Then C is an ideal of Ri and (C : 2) is an ideal of Ri satisfying C ⊆ (C ∶ 2).

Lemma 2.4 Let l, s be integers satisfying 0 ≤ s ≤ l ≤ 4 and v(x) ∈ Ri . Denote the 
ideal of Ri generated by fi(x)l + 2v(x) and 2f i(x)s as follows

Then we have the following conclusions: 

 (i) We have C(l,s;v(x)) = ⟨f i(x)l⟩ and (C(l,s;v(x)) ∶ 2) = ⟨f i(x)s⟩ in Ri.
 (ii) The number of elements in C(l,s;v(x)) is |C(l,s;v(x))| = 2mi(8−(l+s)).
 (iii) If s = l , we have C(l,s;v(x)) = ⟨fi(x)l + 2v(x)⟩.
 (iv) For any u(x), v(x) ∈ Ri , we have that

� = t0(x) + t1(x)f i(x) + t2(x)f i(x)
2 + t3(x)f i(x)

3, tj(x) ∈ Fi, j = 0, 1, 2, 3.

a(x) = a0(x) + 2a1(x), a0(x), a1(x) ∈ Ri.

� ∶ a(x) = a0(x) + 2a1(x) ↦ �(a(x)) = a(x) = a0(x),

C = �(C) = {a(x) ∣ a(x) ∈ C} and (C ∶ 2) = {b(x) ∈ Ri ∣ 2b(x) ∈ C}.

C(l,s;v(x)) ∶=⟨fi(x)l + 2v(x), 2f i(x)
s⟩

={a(x) ⋅ (fi(x)
l + 2v(x)) + b(x) ⋅ 2f i(x)

s ∣ a(x), b(x) ∈ Ri}.
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Proof (i) Denote C = C(l,s;v(x)) in the following. Then by the definition of C and 
fi(x)

l + 2v(x) = f i(x)
l , it follows that C = ⟨f i(x)l⟩ immediately.

By 2f i(x)
s ∈ C , we have that f i(x)

s ∈ (C ∶ 2) . This implies f i(x)
s =

�(f i(x)
s) ∈ �(C ∶ 2) = (C ∶ 2) . Hence ⟨f i(x)s⟩ ⊆ (C ∶ 2).

Conversely, let e(x) ∈ (C ∶ 2) . Then e(x) ∈ Ri and e(x) + 2c(x) ∈ (C ∶ 2) for 
some c(x) ∈ Ri . This implies 2e(x) = 2(e(x) + 2c(x)) ∈ C . Hence there exist 
a(x), b(x) ∈ Ri such that 2e(x) = a(x) ⋅ (fi(x)

l + 2v(x)) + b(x) ⋅ 2f i(x)
s. Since fi(x)l is a 

monic polynomial in ℤ4[x] , by comparing the coefficients on both sides of the equa-
tion, we know that a(x) = 2a1(x) for some a1(x) ∈ Ri . Therefore, by 2fi(x)l = 2f i(x)

l , 
2b(x) = 2b(x) , 4 = 0 and s ≤ l , it follows that 

 This implies e(x) ∈ ⟨f i(x)s⟩ . Hence (C ∶ 2) = ⟨f i(x)s⟩.
(ii) Let �|C be the restriction of � on the ideal C = C(l,s;v(x)) . Then �|C is a surjec-

tive ring homomorphism from C onto �(C) = C = {�(c(x)) ∣ c(x) ∈ C} . This implies 
�(C) ≅ C∕ker(�|C) , where ker(�|C) = {c(x) ∈ C ∣ �(c(x)) = c(x) = 0} is the kernel 
of �|C . Therefore, |C| = |�(C)||ker(�|C)| . By the definition of � and 2 ⋅ 2 = 0 , we 
have 

 This implies |ker(�|C)| = |�(C ∶ 2)| . Then by (i) and Lemma 2.2 (iii), we obtain 
|C| = |�(C)||�(C ∶ 2)| = |C||(C ∶ 2)| = 2mi(4−l) ⋅ 2mi(4−s) = 2mi(8−(l+s)).

(iii) Let s = l . Then 2f i(x)s = 2fi(x)
l = 2(fi(x)

l + 2v(x)) ⊆ ⟨fi(x)l + 2v(x)⟩ . There-
fore, C(l,s;v(x)) = ⟨fi(x)l + 2v(x), 2f i(x)

s⟩ = ⟨fi(x)l + 2v(x)⟩.
(iv) The part “ ⟸ ” can be easily verified. Here, we only prove the part “ ⟹ ”. 

Now, let C(l,s;u(x)) = C(l,s;v(x)) = C . Then we see that 2(u(x) − v(x)) = (fi(x)
l + 2u(x))

−(fi(x)
l + 2v(x)) ∈ C . This implies u(x) − v(x) ∈ (C ∶ 2) . As u(x), v(x) ∈ Ri , by (i) it 

follows that u(x) − v(x) ∈ (C ∶ 2) = ⟨f i(x)s⟩ . Hence u(x) ≡ v(x) (mod f i(x)s ) in �2[x] .  
 ◻

Now, we illustrate how to determine elements wi(x),wi,0(x),wi,0(x) ∈ Ti.

Theorem 2.5 Let 1 ≤ i ≤ r . Then 2fi(x) is a divisor of fi(x)2 − fi(x
2) in ℤ4[x] (cf. [6, 

Lemma 5 (i)]). Denote gi(x) =
fi(x)

2−fi(x
2)

2fi(x)
∈ ℤ4[x] and set wi(x) = gi(x) (mod 2) . Then

(4)C(l,s;u(x)) = C(l,s;v(x)) ⟺ u(x) ≡ v(x) (mod f i(x)
s) in �2[x].

2e(x) =2a1(x) ⋅ (fi(x)
l + 2v(x)) + 2b(x)f i(x)

s = 2a1(x)f i(x)
l + 2b(x)f i(x)

s

=2(a1(x)f i(x)
l−s + b(x)) ⋅ f i(x)

s.

ker(�|C) ={2c1(x) ∈ C ∣ c1(x) ∈ Ri}

={2(c1(x) + 2b(x)) ∈ C ∣ c1(x) + 2b(x) ∈ Ri, c1(x), b(x) ∈ Ri}

=2(C ∶ 2) = 2�(C ∶ 2).
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 (i) (cf. [6, Lemma 5 (i)]) We have fi(x)2 = fi(x
2) + 2fi(x)wi(x) in ℤ4[x] and 

0 ≠ wi(x) ∈ Ti.
 (ii) We have fi(x)4 = 2f i(x)

2wi(x)
2 . Moreover, let

in �2[x] . Then wi,0(x),wi,1(x) ∈ Ti satisfying

Proof (ii) By 4 = 0 and fi(x)2 = fi(x
2) + 2fi(x)gi(x) in ℤ4[x] , it follows that

From this and by wi(x) = gi(x) (mod 2), we deduce that

i.e. fi(x)4 = 2f i(x)
2wi(x)

2 in the ring Ri . By 0 ≠ wi(x) ∈ Fi , we see that wi(x) 
is an invertible element of Ri , i.e. wi(x) ∈ R

×

i
 , by Lemma 2.2 (ii). This implies 

wi(x)
2 ∈ R

×

i
 . Since deg(wi(x)

2) = 2deg(wi(x)) ≤ 2mi − 2 , by Lemma 2.2 
(ii), there exists a unique ordered pair (wi,0(x),wi,1(x)) of elements in Fi such 
that wi,0(x) ≠ 0 and wi(x)

2 = wi,0(x) + wi,1(x)f i(x) in Ri . The latter implies 
wi(x)

2 ≡ wi,0(x) + wi,1(x)f i(x) (mod f i(x)4 ), and hence wi(x)
2 ≡ wi,0(x) + wi,1(x)f i(x) 

(mod f i(x)2 ) in �2[x] .   ◻

In order to determine the subsets Vi , W
(0)

i
 and W(1)

i,h0(x)
 of Fi , for any h0(x) ∈ W

(0)

i
 

and 2 ≤ i ≤ � , we need the following lemma.

Lemma 2.6 (cf. [6, Lemma 5.1 (i)–(iv)]) Let 2 ≤ i ≤ � and set

Then we have the following conclusions: 

 (i) In the finite field Fi , we have x−1 = x2
mi
2 .

 (ii) Hi is a subfield of Fi with 2
mi

2  elements.
 (iii) Let TrFi∕Hi

 be the trace function from Fi onto Hi defined by: 

wi,0(x) = wi(x)
2 (mod f i(x)) and wi,1(x) =

wi(x)
2 − wi,0(x)

f i(x)
(mod f i(x))

wi(x)
2 = wi,0(x) + wi,1(x)f i(x) ( mod (f i(x))

2) and wi,0(x) ≠ 0 in �2[x].

fi(x)
4 =

(
fi(x

2) + 2fi(x)gi(x)
)2

= fi(x
2)2 = fi((x

2)2) + 2fi(x
2)gi(x

2)

=fi(x
4) + 2

(
fi(x)

2 − 2fi(x)gi(x)
)
gi(x

2)

=fi(x
4) + 2fi(x)

2gi(x
2).

fi(x)
4 ≡2fi(x)

2gi(x
2) ≡ 2f i(x)

2gi(x
2) ≡ 2f i(x)

2wi(x
2)

≡2f i(x)
2wi(x)

2 (mod ⟨fi(x4), 4⟩),

Hi = {a(x) ∈ Fi = �2[x]∕⟨f i(x)⟩ ∣ a(x)2
mi
2
≡ a(x) (mod f i(x))}.
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Then for any � ∈ Hi , the number of elements � ∈ Fi such that TrFi∕Hi
(�) = � 

is 2
mi

2  , i.e. |Tr−1
Fi∕Hi

(�)| = 2
mi

2  (cf. [24, Corollary 7.17]).
 (iv) Let wi(x) be determined by Lemma 2.5. Then xmiwi(x

−1) ≡ wi(x) (mod f i(x) ) in 
�2[x] and x

mi

2 wi(x
−1) ∈ Hi.

Finally, the subsets Vi , W
(0)

i
 and W(1)

i,h0(x)
 of Fi can be calculated by the following 

theorem.

Theorem 2.7 Using the notations in Lemma 2.6, we have the following: 

 (i) Vi =
{
x

3mi

2 �(x)
(
mod f i(x)

)
∣ �(x) ∈ Tr−1

Fi∕Hi
(0)

}
 .  Therefore,  we have 

|Vi| = |Tr−1
Fi∕Hi

(0)| = 2
mi

2 .
 (ii) We have that xmiwi(x

−1)2 ∈ Hi and

Hence |W(0)

i
| = |Tr−1

Fi∕Hi

(
xmiwi(x

−1)2
)| = 2

mi

2 .
 (iii) Let h0(x) ∈ W

(0)

i
 . Then h0(x) + x2mi(wi(x

−1)2 + h0(x
−1)) ≡ 0 (mod f i(x) ) in �2[x] . 

Let �i(x) ∈ Fi be defined by

Then we have that x−
mi

2 �i(x) ∈ Hi and

Hence |W(1)

i,h0
| = |Tr−1

Fi∕Hi
(x−

mi

2 �i(x))| = 2
mi

2 .

Proof (i) Let h(x) ∈ Ti = Fi . Then h(x) ∈ Vi if and only if h(x) satisfies the follow-
ing congruence relation: 

By Lemma 2.6 (i), we have x2
mi
2 = x−1 in Fi . This implies that (h(x))2

mi
2 = h(x−1) . 

Hence Eq. (5) is equivalent to 

TrFi∕Hi
(�) = � + �2

mi
2
, ∀� ∈ Fi.

W
(0)

i
=
{
xmi�(x)

(
mod f i(x)

)
∣ �(x) ∈ Tr−1

Fi∕Hi

(
xmiwi(x

−1)2
)}

.

�i(x) ∶=
h0(x) + x2mi (wi(x

−1)2 + h0(x
−1))

f i(x)

(
mod f i(x)

)
in �2[x].

W
(1)

i,h0(x)
=
{
x

mi

2 �(x)
(
mod f i(x)

)
∣ �(x) ∈ Tr−1

Fi∕Hi

(
x
−

mi

2 �i(x)
)}

.

(5)h(x) + x3mih(x−1) ≡ 0 (mod f i(x)) in �2[x].
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Now, denote �(x) = x
−

3mi

2 h(x) . Then �(x) ∈ Tr−1
Fi∕Hi

(0) and h(x) = x
3mi

2 �(x) . Hence 
Vi = x

3mi

2 ⋅ Tr−1
Fi∕Hi

(0) =
{
x

3mi

2 �(x) ∈ Fi ∣ �(x) ∈ Tr−1
Fi∕Hi

(0)
}

.
(ii) By Lemma 2.6 (iv), we have x

mi

2 wi(x
−1) ∈ Hi . Since Hi is a subfield of Fi , we 

obtain xmiwi(x
−1)2 = (x

mi

2 wi(x
−1))2 ∈ Hi.

Let h0(x) ∈ Fi . Then h0(x) ∈ W
(0)

i
 if and only if h0(x) satisfies the following congru-

ence relation: 

By x2
mi
2 = x−1 and (h0(x))

2
mi
2 = h0(x

−1) , Eq.  (6) is equivalent to that 
TrFi∕Hi

(x−mih0(x)) = x−mih0(x) + xmih0(x
−1) = xmiwi(x

−1)2. Now, we set 
�(x) = x−mih0(x) . Then �(x) ∈ Tr−1

Fi∕Hi

(
xmiwi(x

−1)2
)
 and h0(x) = xmi�(x) . So 

W
(0)

i
= {xmi�(x) ∈ Fi ∣ �(x) ∈ Tr−1

Fi∕Hi
(xmiwi(x

−1)2)}.
(iii) Let h0(x) ∈ W

(0)

i
 . Then h0(x) satisfies Eq.  (6). This implies that 

h0(x) + x2mi(wi(x
−1)2 + h0(x

−1)) is a multiple of the polynomial f i(x) in �2[x] . Hence 
the polynomial �i(x) ∈ Fi is well-defined.

As 2 ≤ i ≤ � , fi(x) is self-reciprocal in ℤ4[x] . This implies that f i(x) is a self-
reciprocal polynomial in �2[x] , i.e., ̃f i(x) = f i(x) . From this and by deg(f i(x)) = mi , 
we deduce xmi f i(x

−1) =
̃
f i(x) = f i(x) . Further, by Lemma 2.6 (iv), it follows that 

wi(x)
2 = (xmiwi(x

−1)) = x2miwi(x
−2) . Hence

This implies x−
mi

2 �i(x) ∈ Hi.
Now, let h1(x) ∈ Fi . Then h1(x) ∈ W

(1)

i,h0(x)
 if and only if h1(x) satisfies the follow-

ing congruence relation:

TrFi∕Hi
(x−

3mi

2 h(x)) =x−
3mi

2 h(x) + (x−
3mi

2 h(x))2
mi
2

=x−
3mi

2 h(x) + x
3mi

2 h(x−1)

=x−
3mi

2

(
h(x) + x3mih(x−1)

)

=0 in Fi.

(6)h0(x) + x2mi (wi(x
−1)2 + h0(x

−1)) ≡ 0 (mod f i(x)) in �2[x].

(
x
−

mi

2 �i(x)
)2

mi
2

=x
mi

2

(
h0(x) + x2mi(wi(x

−1)2 + h0(x
−1))

f i(x)

)2
mi
2

=x
mi

2 ⋅

h0(x
−1) + x−2mi(wi(x)

2 + h0(x))

f i(x
−1)

=x
mi

2 ⋅

h0(x
−1) + x−2mi(wi(x)

2 + h0(x))

x−mi f i(x)

=x−
mi

2 ⋅

x2mih0(x
−1) + wi(x)

2 + h0(x)

f i(x)

=x−
mi

2 �i(x).
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where �̂i,0(x) = x2mi (wi(x
−1)2 + h0(x

−1)) and �̂i,1(x) = xmih1(x
−1) . Since

Equation (7) is equivalent to �i(x) + h1(x) + xmih1(x
−1) ≡ 0 (mod f i(x) ) in �2[x] , i.e., 

TrFi∕Hi
(x−

mi

2 h1(x)) = x
−

mi

2 h1(x) + x
mi

2 h1(x
−1) = x

−
mi

2 �i(x) . Therefore, 
h1(x) = x

mi

2 �(x) ∈ Fi , where �(x) ∈ Tr−1
Fi∕Hi

(x−
mi

2 �i(x)) . Hence 
W

(1)

i,h0(x)
=
{
x

mi

2 �(x) ∈ Fi ∣ �(x) ∈ Tr−1
Fi∕Hi

(
x
−

mi

2 �i(x)
)}

.
Finally, the conclusions |Vi| = |W(0)

i
| = |W(1)

i,h0(x)
| = 2

mi

2  follow from Lemma 2.6 
(iii) immediately.   ◻

3  Main results

In this section, we list the main results of this paper by four theorems. Every result 
here is a significant simplification of the original in that it requires only 10 cases, 
compared to the 20 cases that the paper [5] requires. In particular, the expression 
here is much more direct and explicit. Moreover, they are interesting development 
and a non-trivial extension of the theory in [6].

First, we list all distinct ideals of B by the following theorem.

Theorem 3.1 All distinct cyclic codes over ℤ4 of length 4n are given by:

where

which is a subcode of C for all i, 1 ≤ i ≤ r , and Ci is an ideal of the ring Ri listed by 
the following table: 

Case Ci Type of Ci |Ci| L

1. ⟨0⟩ 4
0
2
0 1 1

2. ⟨1⟩ 4
4mi2

0
2
8mi 1

(7)h0(x) + h1(x)f i(x) ≡ �̂i,0(x) + �̂i,1(x)f i(x) (mod f i(x)
2) in �2[x],

h0(x) + �̂i,0(x) + �̂i,1(x)f i(x)

= h0(x) + x2mi (wi(x
−1)2 + h0(x

−1)) + xmih1(x
−1)f i(x)

= �i(x)f i(x) + xmih1(x
−1)f i(x) (mod f i(x)

2),

C =

r⨁
i=1

Ci =

r∑
i=1

Ci = {�1(x) +⋯ + �r(x) ∣ �i(x) ∈ Ci, i = 1,… , r},

Ci = �i(x)Ci = {�i(x)b(x) ∣ b(x) ∈ Ci} (mod x4n − 1),
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Case Ci Type of Ci |Ci| L

3. ⟨2f i(x)s⟩ (s = 0, 1, 2, 3) 4
0
2
(4−s)mi 2

(4−s)mi 4

4. ⟨fi(x)l, 2⟩ (l = 1, 2, 3) 4
(4−l)mi2

lmi 2
(8−l)mi 3

5. ⟨fi(x) + 2h(x)⟩ 4
3mi2

0
2
6mi 2

mi

6. ⟨fi(x)2 + 2h(x), 2f i(x)⟩ 4
2mi2

mi 2
5mi 2

mi

7. ⟨fi(x)2 + 2(h
0
(x) + h

1
(x)f i(x))⟩ 4

2mi2
0

2
4mi (2mi )2

8. ⟨fi(x)3 + 2h(x), 2f i(x)⟩ 4
mi2

2mi 2
4mi 2

mi

9. ⟨fi(x)3 + 2f i(x)h(x), 2f i(x)
2⟩ 4

mi2
mi 2

3mi 2
mi

10. ⟨fi(x)3 + 2f i(x) ⋅ (wi,0(x) + h(x)f i(x))⟩ 4
mi2

0
2
2mi 2

mi

where h(x), h0(x), h1(x) ∈ Ti arbitrary, and L is the number of ideals Ci in the same 
row.

Further, let 4k0,i2k1,i be the type of the subcode Ci listed in the table above for all 
integers i: 1 ≤ i ≤ r . Then the cyclic code C is of type

Hence the number of codewords in C is 
∏r

i=1
�Ci� = 22

∑r

i=1
k0,i+

∑r

i=1
k1,i . Moreover, the 

minimum Hamming distance (Lee distance and Euclidean distance) of C satisfies 
dmin(C) ≤ min{dmin(�i(x)Ci) ∣ i = 1,… , r}.

Therefore, the number of all cyclic codes C over ℤ4 of length 4n is equal to ∏r

i=1
(9 + 5 ⋅ 2mi + 4mi).

Using the notation of Theorem 3.1, C =
⨁r

j=1
�j(x)Cj is called the canonical form 

decomposition of the cyclic code C over ℤ4.
Similar to [8, Eq.  (9)], in the rest of this paper we identify each polynomial 

a(x) = a0 + a1x +⋯ + a4n−1x
4n−1 ∈ B =

ℤ4[x]

⟨x4n−1⟩ with (a0, a1,… , a4n−1) ∈ ℤ
4n
4

 . Fur-
ther, for any integer 1 ≤ � ≤ 4(n − 1) , define:

which is a matrix over ℤ4 of size � × 4n . Then we provide an efficient encoder for 
each cyclic code C over ℤ4 of length 4n by the following theorem.

Theorem  3.2 Let C be a cyclic code over ℤ4 of length 4n with canonical form 
decomposition C =

⨁r

i=1
Ci , where Ci = �i(x)Ci and Ci is an ideal of Ri given by the 

table in Theorem 3.1. Then a generator matrix Gi for each subcode Ci , 1 ≤ i ≤ r , is 
given by the following table: 

4
∑r

i=1
k0,i2

∑r

i=1
k1,i .

(8)[a(x)]�,4n =

⎛⎜⎜⎜⎝

a(x)

xa(x)

…

x�−1a(x)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

a0 a1 … a4n−2 a4n−1
a4n−1 a0 … a4n−3 a4n−2
… … … … …

a4n−�+1 a4n−�+2 … a4n−�−1 a4n−�

⎞⎟⎟⎟⎠
,
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Case Generator matrix Gi Subcode Ci

1. 0  {0}
2. [�i(x)]4mi ,4n  {uGi ∣ u ∈ ℤ

4mi

4
}

3. [2f i(x)
s�i(x)](4−s)mi ,4n

 {vGi ∣ v ∈ �
(4−s)mi

2
}

4. (
[fi(x)

l�i(x)](4−l)mi ,4n

[2�i(x)]lmi ,4n

)
{(u, v)Gi ∣ u ∈ ℤ

(4−l)mi

4
, v ∈ 𝔽

lmi

2
}

5. [(fi(x) + 2h(x))�i(x)]3mi ,4n  {uGi ∣ u ∈ ℤ
3mi

4
}

6. (
[(fi(x)

2 + 2h(x))�i(x)]2mi ,4n

[2f i(x)�i(x)]mi ,4n

)
{(u, v)Gi ∣ u ∈ ℤ

2mi

4
, v ∈ 𝔽

mi

2
}

7. [(fi(x)
2 + 2(h

0
(x) + h

1
(x)f i(x)))�i(x)]2mi ,4n

 {uGi ∣ u ∈ ℤ
2mi

4
}

8. (
[(fi(x)

3 + 2h(x))�i(x)]mi ,4n

[2f i(x)�i(x)]2mi ,4n

)
{(u, v)Gi ∣ u ∈ ℤ

mi

4
, v ∈ 𝔽

2mi

2
}

9.
(

[(fi(x)
3 + 2f i(x)h(x))�i(x)]mi ,4n

[2f i(x)
2�i(x)]mi ,4n

)
{(u, v)Gi ∣ u ∈ ℤ

mi

4
, v ∈ 𝔽

mi

2
}

10. [(fi(x)
3 + 2f i(x)(wi,0(x) + h(x)f i(x)))�i(x)]mi ,4n

 {uGi ∣ u ∈ ℤ
mi

4
}

where h(x), h0(x), h1(x) ∈ Ti arbitrary.

Now, we determine the dual code of each cyclic code.

Theorem  3.3 Let C be a cyclic code over ℤ4 of length 4n with canonical form 
decomposition C =

⨁r

i=1
�i(x)Ci , where Ci is an ideal of the ring Ri . Then the dual 

code of C is given by C⊥ =
⨁r

i=1
𝜀𝜇(i)(x)D𝜇(i) =

⨁r

j=1
𝜀j(x)Dj, where D�(i) is an ideal 

of R�(i) determined by the following table: 

Ci (mod fi(x4)) D�(i) (mod f�(i)(x4))

⋄ ⟨0⟩ ∙ ⟨1⟩
⋄ ⟨1⟩ ∙ ⟨0⟩
⋄ ⟨2f i(x)s⟩ (s = 0, 1, 2, 3) ∙ ⟨f�(i)(x)4−s, 2⟩
⋄ ⟨fi(x)l, 2⟩ (l = 1, 2, 3) ∙ ⟨2f �(i)(x)4−l⟩
⋄ ⟨fi(x) + 2h(x)⟩ ∙ ⟨f�(i)(x)3 + 2f �(i)(x) ⋅ (x

2miwi,0(x
−1) + �̂i(x)f �(i)(x))⟩

 where �̂i(x) = xmi

(
wi,1(x

−1) + h(x−1)
)

⋄ ⟨fi(x)2 + 2h(x), 2f i(x)⟩ ∙ ⟨f�(i)(x)3 + 2f �(i)(x)̂ti(x), 2f �(i)(x)
2⟩

 where t̂i(x) = x2mi

(
wi,0(x

−1) + h(x−1)
)

⋄ ⟨fi(x)2 + 2(h
0
(x) + h

1
(x)f i(x))⟩ ∙ ⟨f�(i)(x)2 + 2(�̂i,0(x) + �̂i,1(x)f �(i)(x))⟩

 where �̂i,0(x) = x2mi (wi(x
−1)2 + h

0
(x−1))

 and �̂i,1(x) = xmi h
1
(x−1)

⋄ ⟨fi(x)3 + 2h(x), 2f i(x)⟩ ∙ ⟨f�(i)(x)3 + 2x3mi h(x−1), 2f �(i)(x)⟩
⋄ ⟨fi(x)3 + 2f i(x)h(x), 2f i(x)

2⟩ ∙ ⟨f�(i)(x)2 + 2̂ti(x), 2f �(i)(x)⟩
 where t̂i(x) = x2mi

(
wi,0(x

−1) + h(x−1)
)
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Ci (mod fi(x4)) D�(i) (mod f�(i)(x4))

⋄ ⟨fi(x)3 + 2f i(x)(wi,0(x) + h(x)f i(x))⟩ ∙ ⟨f�(i)(x) + 2�̂i(x)⟩
 where �̂i(x) = xmi (wi,1(x

−1) + h(x−1))

in which � is a permutation on the set {1,… , r} defined by

and h(x), h0(x), h1(x) ∈ Ti arbitrary.

Finally, we list all distinct self-dual cyclic codes by the following theorem.

Theorem 3.4 Using the notation of Sect. 2, all distinct self-dual cyclic codes over 
ℤ4 of length 4n are given by:

where for each integer i, 1 ≤ i ≤ r , Ci is an ideal of Ri given by the following three 
cases: 

 (i) C1 is one of the following 3 ideals: 

 (ii) If 2 ≤ i ≤ � , Ci is one of the following 1 + 2
mi

2 + 2mi ideals:
 (ii-1) Ci = ⟨2⟩.
 (ii-2) Ci = ⟨fi(x)2 + 2(h0(x) + h1(x)f i(x))⟩ , where h0(x) ∈ W

(0)

i
 and h1(x) ∈ W

(1)

i,h0(x)
.

 (ii-3) Ci = ⟨fi(x)3 + 2h(x), 2f i(x)⟩ , where h(x) ∈ Vi.
 (iii) If i = � + j , where 1 ≤ j ≤ � , (Ci,Ci+�) is one of 4m�+j + 5 ⋅ 2m�+j + 9 pairs of 

ideals given by the following table:

Ci (mod fi(x4)) Ci+� (mod fi+�(x4))

⋄ ⟨0⟩ ∙ ⟨1⟩
⋄ ⟨1⟩ ∙ ⟨0⟩
⋄ ⟨2f i(x)s⟩ (s = 0, 1, 2, 3) ∙ ⟨fi+�(x)4−s, 2⟩
⋄ ⟨fi(x)l, 2⟩ (l = 1, 2, 3) ∙ ⟨2f i+�(x)4−l⟩
⋄ ⟨fi(x) + 2h(x)⟩ ∙ ⟨fi+�(x)3 + 2f i+�(x) ⋅ (x

2miwi,0(x
−1) + �̂i(x)f i+�(x))⟩

 where �̂i(x) = xmi

(
wi,1(x

−1) + h(x−1)
)

⋄ ⟨fi(x)2 + 2h(x), 2f i(x)⟩ ∙ ⟨fi+�(x)3 + 2f i+�(x)̂ti(x), 2f i+�(x)
2⟩

 where t̂i(x) = x2mi

(
wi,0(x

−1) + h(x−1)
)

�(i) = i, if 1 ≤ i ≤ �; �(� + j) = � + j + � and �(� + j + �) = � + j, ∀j = 1,… , �,

C =
⨁
1≤i≤r

�i(x)Ci,

C1 = ⟨2⟩, C1 = ⟨(x − 1)3, 2(x − 1)⟩, C1 = ⟨(x − 1)3 + 2, 2(x − 1)⟩,
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Ci (mod fi(x4)) Ci+� (mod fi+�(x4))

⋄ ⟨fi(x)2 + 2(h
0
(x) + h

1
(x)f i(x))⟩ ∙ ⟨fi+�(x)2 + 2(�̂i,0(x) + �̂i,1(x)f i+�(x))⟩

 where �̂i,0(x) = x2mi (wi(x
−1)2 + h

0
(x−1))

 and �̂i,1(x) = xmi h
1
(x−1)

⋄ ⟨fi(x)3 + 2h(x), 2f i(x)⟩ ∙ ⟨fi+�(x)3 + 2x3mi h(x−1), 2f i+�(x)⟩
⋄ ⟨fi(x)3 + 2f i(x)h(x), 2f i(x)

2⟩ ∙ ⟨fi+�(x)2 + 2̂ti(x), 2f i+�(x)⟩
 where t̂i(x) = x2mi

(
wi,0(x

−1) + h(x−1)
)

⋄ ⟨fi(x)3 + 2f i(x)(wi,0(x) + h(x)f i(x))⟩ ∙ ⟨fi+�(x) + 2�̂i(x)⟩
 where �̂i(x) = xmi (wi,1(x

−1) + h(x−1))

in which h(x), h0(x), h1(x) ∈ Ti arbitrary.
Therefore, the number of self-dual cyclic codes over ℤ4 of length 4n is

Remark 

 (i) In [5, Corollary 4.6], the number of self-dual cyclic codes over ℤ4 of length 
4n was proposed as: 

 The mistake in this formula occurs in the cases (ii-2) and (ii-3). Obviously, 
the conclusion of [5, Corollary 4.6] holds when � = 1.

 (ii) By the table in p. 302 of [5], the number N  of self-dual cyclic codes over 
ℤ4 of length 4n was proposed by the following table, where n is odd and 
12 ≤ 4n ≤ 100:

4n N 4n N 4n N

12, 20, 44, 52, 76 9 28  339 84  4500225
36, 68, 100 27 60  9315 92  12613659

 There are mistakes in this table. Now, we correct them as follows: 

4n N corrected

12 21 = 3 ⋅ (1 + 2 + 2
2) ✓

20 63 = 3 ⋅ (1 + 2
2 + 2

4) ✓

28 339 = 3 ⋅ (9 + 5 ⋅ 2
3 + 4

3)

36 1533 = 3 ⋅ (1 + 2 + 2
2) ⋅ (1 + 2

3 + 2
6) ✓

3 ⋅
∏
2≤i≤�

(1 + 2
mi

2 + 2mi) ⋅

�∏
j=1

(9 + 5 ⋅ 2m�+j + 4m�+j).

3� ⋅
∏
1≤j≤�

(9 + 5 ⋅ 2m�+j + 4m�+j).
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4n N corrected

44 3171 = 3 ⋅ (1 + 2
5 + 2

10) ✓

52 12483 = 3 ⋅ (1 + 2
6 + 2

12) ✓

60 152145 = 3 ⋅ (1 + 2 + 2
2) ⋅ (1 + 2

2 + 2
4) ⋅ (9 + 5 ⋅ 2

4 + 4
4) ✓

68 223587 = 3 ⋅ (1 + 2
4 + 2

8)2 ✓

76 787971 = 3 ⋅ (1 + 2
9 + 2

18) ✓

84 10500525 = 3 ⋅ (1 + 2 + 2
2) ⋅ (9 + 5 ⋅ 2

3 + 4
3) ⋅ (9 + 5 ⋅ 2

6 + 4
6) ✓

92 12613659 = 3 ⋅ (9 + 5 ⋅ 2
11 + 4

11)

100 66124863 = 3 ⋅ (1 + 2
2 + 2

4) ⋅ (1 + 2
10 + 2

20) ✓

4  Examples

In this section, we show how to use Theorem 3.4 to construct self-dual codes over 
ℤ4 of length 4n.

Example 4.1 We construct all 21 self-dual cyclic codes over ℤ4 of length 12.
First, we have y3 − 1 = f1(y)f2(y) , where f1(y) = y − 1 and f2(y) = y2 + y + 1 . 

In this case, � = r = 2 , � = 0 . f̃1(y) = c1f1(y) , f̃2(y) = c2f1(y) , c1 = −1 and c2 = 1 . 
Obviously, 3 ⋅ f2(y) + (y + 2)f1(y) = 1 in ℤ4[y].

Using the notation in Sect. 2, we obtain

Further, by Theorems 2.5, 2.7 and Lemma 2.6 we have the following: 

⋄  f 2(x) = x2 + x + 1 , R2 =
�2[x]

⟨(x2+x+1)4⟩ and T2 = {a + bx ∣ a, b ∈ �2}.

⋄  g2(x) =
(x2+x+1)2−((x2)2+x2+1)

2(x2+x+1)
= x ∈ ℤ4[x] , w2(x) = g2(x) = x (mod 2), and 

w2(x)
2 = x2 = 1 + x + 1 ⋅ (x2 + x + 1).

  Hence wi,0(x) = 1 + x and wi,1(x) = 1.
⋄  F2 =

�2[x]

⟨x2+x+1⟩ = {a + bx ∣ a, b ∈ �2} and H2 = {� ∈ F2 ∣ �
21 = �} = �2.

⋄  Tr−1
F2∕H2

(0) = {� ∈ F2 ∣ � + �2 = 0} = {0, 1}  ; 
Tr−1

F2∕H2
(1) = {� ∈ F2 ∣ � + �2 = 1} = {x, 1 + x}.

⋄  V2 = {x
3⋅2

2 � ∣ � ∈ Tr−1
F2∕H2

(0)} = x3 ⋅ Tr−1
F2∕H2

(0) = {0, 1} (mod x2 + x + 1).

⋄  W(0)

2
= {x2� ∣ � ∈ Tr−1

F2∕H2
(1)} = {1, x} , since xm2w2(x

−1)2 = x2x−2 = 1.

⋄  W(1)

2,1
= {x−

2

2 � ∣ � ∈ Tr−1
F2∕H2

(0)} = {0, x} . This conclusion is due to 

�2(x) =
1+x4(x−2+1)

x2+x+1
=

1+x2+x4

x2+x+1
= x2 + x + 1 = 0 ∈ F2 and x−

2

2 �2(x) = 0 ∈ H2.

⋄  W(1)

2,x
= {x−

2

2 � ∣ � ∈ Tr−1
F2∕H2

(1)} = {1, 1 + x} . This conclusion is due to 

�2(x) =
x+x4(x−2+x−1)

x2+x+1
=

x+x2+x3

x2+x+1
= x ∈ F2 and x−

2

2 �2(x) = 1 ∈ H2.

�1(x) = 3f2(x
4) = 3x8 + 3x4 + 3 and �2(x) = (x4 + 2)f1(x

4) = x8 + x4 + 2.
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Then by Theorem 3.4 (i) and (ii), all distinct 21 self-dual cyclic codes over ℤ4 of 
length 12 are given by C = 𝜀1(x)C1 ⊕ 𝜀2(x)C2, where C1 is given by Theorem 3.4 (i) 
and C2 is an ideals of the ring ℤ4[x]

⟨x8+x4+1⟩ given by:
C2 = ⟨2⟩.
C2 = ⟨f2(x)2 + 2(h0(x) + h1(x)f 2(x))⟩ , h1(x) ∈ W

(1)

2,h0(x)
 and h0(x) ∈ W

(0)

2
.

C2 = ⟨f2(x)3 + 2h(x), 2f 2(x)⟩ , h(x) ∈ V2.
Specifically, all these 21 self-dual cyclic codes over ℤ4 are the following:

where C1,j is an ideals of the ring ℤ4[x]

⟨x4−1⟩ given by:
C1,1 = ⟨2⟩, C1,2 = ⟨(x − 1)3, 2(x − 1)⟩, C1,3 = ⟨(x − 1)3 + 2, 2(x − 1)⟩;
and C2,k is an ideals of the ring ℤ4[x]

⟨x8+x4+1⟩ given by:
C2,1 = ⟨2⟩ ,     C2,2 = ⟨(x2 + x + 1)2 + 2⟩,
C2,3 = ⟨(x2 + x + 1)2 + 2(1 + x ⋅ (x2 + x + 1))⟩,
C2,4 = ⟨(x2 + x + 1)2 + 2(x + (x2 + x + 1))⟩,
C2,5 = ⟨(x2 + x + 1)2 + 2(x + (1 + x)(x2 + x + 1))⟩,
C2,6 = ⟨(x2 + x + 1)3, 2(x2 + x + 1)⟩,
C2,7 = ⟨(x2 + x + 1)3 + 2, 2(x2 + x + 1)⟩.
Now, let

G1,1 =

⎛⎜⎜⎜⎝

2 0 0 0 2 0 0 0 2 0 0 0

0 2 0 0 0 2 0 0 0 2 0 0

0 0 2 0 0 0 2 0 0 0 2 0

0 0 0 2 0 0 0 2 0 0 0 2

⎞⎟⎟⎟⎠
 , G1,2 =

⎛⎜⎜⎝

1 1 3 3 1 1 3 3 1 1 3 3

2 2 0 0 2 2 0 0 2 2 0 0

0 2 2 0 0 2 2 0 0 2 2 0

⎞⎟⎟⎠
,

G1,3 =

⎛⎜⎜⎝

3 1 3 3 3 1 3 3 3 1 3 3

2 2 0 0 2 2 0 0 2 2 0 0

0 2 2 0 0 2 2 0 0 2 2 0

⎞⎟⎟⎠
 ; G2,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 2 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0 0 2 0 0

0 0 0 0 0 0 2 0 0 0 2 0

0 0 0 0 0 0 0 2 0 0 0 2

2 0 0 0 0 0 0 0 2 0 0 0

0 2 0 0 0 0 0 0 0 2 0 0

0 0 2 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G2,2 =

⎛⎜⎜⎜⎝

3 0 2 0 1 2 3 2 0 2 3 2

2 3 0 2 0 1 2 3 2 0 2 3

3 2 3 0 2 0 1 2 3 2 0 2

2 3 2 3 0 2 0 1 2 3 2 0

⎞⎟⎟⎟⎠
 , G2,3 =

⎛⎜⎜⎜⎝

3 0 2 0 1 0 1 0 0 0 1 0

0 3 0 2 0 1 0 1 0 0 0 1

1 0 3 0 2 0 1 0 1 0 0 0

0 1 0 3 0 2 0 1 0 1 0 0

⎞⎟⎟⎟⎠
,

G2,4 =

⎛⎜⎜⎜⎝

3 0 2 0 1 2 1 2 0 2 1 2

2 3 0 2 0 1 2 1 2 0 2 1

1 2 3 0 2 0 1 2 1 2 0 2

2 1 2 3 0 2 0 1 2 1 2 0

⎞⎟⎟⎟⎠
 , G2,5 =

⎛⎜⎜⎜⎝

3 0 2 0 1 0 3 0 0 0 3 0

0 3 0 2 0 1 0 3 0 0 0 3

3 0 3 0 2 0 1 0 3 0 0 0

0 3 0 3 0 2 0 1 0 3 0 0

⎞⎟⎟⎟⎠

G2,6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 2 1 1 0 3 3 2 3 3

3 0 1 1 2 1 1 0 3 3 2 3

0 0 0 0 2 2 2 0 2 2 2 0

0 0 0 0 0 2 2 2 0 2 2 2

2 0 0 0 0 0 2 2 2 0 2 2

2 2 0 0 0 0 0 2 2 2 0 2

⎞⎟⎟⎟⎟⎟⎟⎠

 , G2,7 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 2 3 1 0 3 1 2 3 3

3 0 1 1 2 3 1 0 3 1 2 3

0 0 0 0 2 2 2 0 2 2 2 0

0 0 0 0 0 2 2 2 0 2 2 2

2 0 0 0 0 0 2 2 2 0 2 2

2 2 0 0 0 0 0 2 2 2 0 2

⎞⎟⎟⎟⎟⎟⎟⎠

.

Cj,k = 𝜀1(x)C1,j ⊕ 𝜀1(x)C2,k, j = 1, 2, 3 and k = 1, 2,… , 7,
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Then by Theorem 3.2, the self-dual cyclic code Cj,k over ℤ4 of length 12 is gen-

erated by the matrix 
(

G1,j

G2,k

)
 , and the type of Cj,k is given by:

C1,1 = 2(ℤ12
4
) is the trivial self-dual cyclic code of type 40212;

C1,k is of type 4424 for k = 2, 3, 4, 5 ; C1,k is of type 4228 for k = 6, 7;
Cj,k is of type 4522 for j = 2, 3 and k = 2, 3, 4, 5;
Cj,k is of type 4326 for j = 2, 3 and k = 6, 7.

Example 4.2 We construct self-dual cyclic codes over ℤ4 of length 28.
In this case, y7 − 1 = f1(y)f2(y)f3(y) , where f1(y) = y − 1 , f2(y) = y3 + 2y2 + y + 3 

and f3(y) = y3 + 3y2 + 2y + 3 = 3f̃3(y) . These imply f 1(x) = x + 1 , 
f 2(x) = x3 + x + 1 and f 3(x) = x3 + x2 + 1 in �2[x].

Using the notations in Sect.  2, we have r = 3 , � = 1 , � = 1 , m1 = 1 and 
m2 = m3 = 3 . Hence there are 

∏3

i=1
(9 + 5 ⋅ 2mi + 4mi) = 293687 distinct cyclic 

codes over ℤ4 of length 28.
For each i = 1, 2, 3 , let Fi(y) =

x7−1

fi(y)
 and find polynomials ui(y), vi(y) ∈ ℤ4[y] satis-

fying ui(y)Fi(y) + vi(y)fi(y) = 1 . Then set �i(x) = ui(x
4)Fi(x

4) (mod x28 − 1 ). Pre-
cisely, we have

�1(x) = 3x24 + 3x20 + 3x16 + 3x12 + 3x8 + 3x4 + 3,
�2(x) = 2x24 + 2x20 + 3x16 + 2x12 + 3x8 + 3x4 + 1,
�3(x) = 3x24 + 3x20 + 2x16 + 3x12 + 2x8 + 2x4 + 1 . 

⋄  R1 =
ℤ4[x]

⟨f1(x4)⟩ =
ℤ4[x]

⟨x4−1⟩ and F1 = �2[x]∕⟨f 1(x)⟩ = {0, 1} = T1.

⋄  Ri =
ℤ4[x]

⟨fi(x4)⟩ and Fi =
�2[x]

⟨f i(x)⟩
= {t0 + t1x + t2x

2 ∣ t0, t1, t2 ∈ {0, 1}} = Ti , for 
i = 2, 3.

⋄  g2(x) =
(x3+2x2+x+3)2−(x6+2x4+x2+3)

2(x3+2x2+x+3)
= 2x2 + 2x + 1 ∈ ℤ4[x],

  w2(x) = 1 = g2(x) (mod 2), w2,0(x) = 1 and w2,1(x) = 0 which satisfy
  w2(x)

2 = 1 = w2,0(x) + w2,1(x)f 2(x) in R2 = �2[x]∕⟨f 2(x)4⟩.

By Theorem 3.4, all 339 self-dual codes over ℤ4 of length 28 are given by:

where Ci is an ideal of Ri , 1 ≤ i ≤ 3 , given by the following:
♢ C1 is one of the following 3 ideals in R1:

♢ (C2,C3) is one of the following 113 pairs of ideals, where C2 is an ideal of R2 and 
C3 is an ideal of R3 : 

C = 𝜀1(x)C1 ⊕ 𝜀2(x)C2 ⊕ 𝜀3(x)C3,

⟨2⟩, ⟨(x − 1)3, 2(x − 1)⟩, ⟨(x − 1)3 + 2, 2(x − 1)⟩.
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 1. C2 = ⟨0⟩ and C3 = ⟨1⟩;
 2. C2 = ⟨1⟩ and C3 = ⟨0⟩;
 3. C2 = ⟨2f 2(x)s⟩ and C3 = ⟨f3(x)4−s, 2⟩ , where s = 0, 1, 2, 3;
 4. C2 = ⟨f2(x)l, 2⟩ and C3 = ⟨2f 3(x)4−l⟩ , where l = 1, 2, 3;
 5. C2 = ⟨f2(x) + 2h(x)⟩ and C3 = ⟨f3(x)3 + 2f 3(x)(x

6 + �̂2(x)f 3(x))⟩;
 6. C2 = ⟨f2(x)2 + 2h(x), 2f 2(x)⟩ and C3 = ⟨f3(x)3 + 2f 3(x)̂t2(x), 2f 3(x)

2⟩;
 7. C2 = ⟨f2(x)2 + 2(h0(x) + h1(x)f 2(x))⟩ and C3 = ⟨f3(x)2 + 2(�̂2,0(x) + �̂2,1(x)f 3(x))⟩;
 8. C2 = ⟨f2(x)3 + 2h(x), 2f 2(x)⟩ and C3 = ⟨f3(x)3 + 2(ax2 + bx + c), 2f 3(x)⟩ in which 

ax2 + bx + c ≡ x3⋅3h(x−1) (mod ⟨2, f 3(x)⟩);
 9. C2 = ⟨f2(x)3 + 2f 2(x)h(x), 2f 2(x)

2⟩ and C3 = ⟨f3(x)2 + 2̂t2(x), 2f 3(x)⟩;
 10. C2 = ⟨f2(x)3 + 2f 2(x)(1 + h(x)f 2(x))⟩ and C3 = ⟨f3(x) + 2�̂2(x)⟩,

where

h(x) = h0(x) = a + bx + cx2 and h1(x) = g + ux + vx2 with a, b, c, g, u, v ∈ �2;
�̂2(x) = (a + b)x2 + cx + a ≡ x3(w2,1(x

−1) + h(x−1)) ≡ x3h(x27) 
≡ x3(a + bx27 + cx26) (mod f 3(x) = x3 + x2 + 1 ) in �2[x];
t̂2(x) = (a + c + 1)x2 + (a + b + c + 1)x + b + c ≡ x2⋅3(w2,0(x

−1) + h(x−1)) (mod 
f 3(x) ) in �2[x];
�̂2,0(x) = bx5 + (a + c + 1)x4 + 1 + a ≡ x2⋅3(w2(x

−1)2 + h0(x
−1)) (mod f 3(x)2 ) in 

�2[x];
�̂2,1(x) = (g + u)x2 + vx + g ≡ x3h1(x

−1) (mod f 3(x) ) in �2[x].

Shi et al. obtained some good cyclic codes over ℤ4 from (1 + 2u)-constacyclic codes 
over the ring ℤ4[u]∕⟨u2 − 1⟩ by [22, Tables 1–3]. From self-dual negacyclic codes 
over the ring ℤ4[v]

⟨v2+2v⟩ of length 14, 36 new and good self-dual 2-quasi-twisted ℤ4-
codes with parameters (28, 228, dL = 8, dE = 12) and of type 47214 and parameters 
(28, 228, dL = 6, dE = 12) and of type 46216 were given in [9]; From self-dual cyclic 
codes over ℤ4[v]

⟨v2+2v⟩ of length 15, 70 new and good self-dual 2-quasi-cyclic ℤ4-codes 
with parameters (30, 230, dL = 12) and 92 new and good self-dual 2-quasi-cyclic ℤ4-
codes with parameters (30, 230, dL = 10) were obtained in [10], where dH , dL and dE 
be the minimum Hamming distance, Lee distance and Euclidean distance of a ℤ4-
code respectively (cf. [25]).

Now, among the 339 self-dual codes over ℤ4 of length 28 listed above, we have 
the following 50 new and good self-dual cyclic ℤ4-codes with basic parameters 
(28, |C| = 228, dH = 4, dL = 8, dE = 8):

• 8 self-dual cyclic ℤ4-codes of type 41224 determined by:
  C1 = ⟨2⟩ , C2 = ⟨f2(x) + 2(a + bx + cx2)⟩,
  C3 = ⟨f3(x)3 + 2f 3(x)(x

6 + ((a + b)x2 + cx + a)f 3(x))⟩,
  where a, b, c ∈ �2 = {0, 1}.
• 8 self-dual cyclic ℤ4-codes of type 41224 determined by:
  C1 = ⟨2⟩ , C2 = ⟨f2(x)3 + 2f 2(x)(1 + (a + bx + cx2)f 2(x))⟩,
  C3 =

⟨
f3(x) + 2((a + b)x2 + cx + a)

⟩
 , where a, b, c ∈ �2.

• 4 self-dual cyclic ℤ4-codes of type 41028 determined by:
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  C1 = ⟨(x − 1)3, 2(x − 1)⟩ , C2 = ⟨2f 2(x)3⟩ and C3 = ⟨f3(x), 2⟩ , or C2 = ⟨f2(x), 2⟩ 
and C3 = ⟨2f 3(x)3⟩;

  C1 = ⟨(x − 1)3 + 2, 2(x − 1)⟩ , C2 = ⟨2f 2(x)3⟩ and C3 = ⟨f3(x), 2⟩ , or 
C2 = ⟨f2(x), 2⟩ and C3 = ⟨2f 3(x)3⟩.

• 2 self-dual cyclic ℤ4-codes of type 47214 determined by:
  C1 = ⟨(x − 1)3, 2(x − 1)⟩ , C2 = ⟨f2(x)2, 2⟩ and C3 = ⟨2f 3(x)2⟩;
  C1 = ⟨(x − 1)3 + 2, 2(x − 1)⟩ , C2 = ⟨f2(x)2, 2⟩ and C3 = ⟨2f 3(x)2⟩.
• 6 self-dual cyclic ℤ4-codes of type 41322 determined by:
  C1 = ⟨(x − 1)3, 2(x − 1)⟩ , C2 = ⟨f2(x)2 + 2h(x), 2f 2(x)⟩,
  C3 = ⟨f3(x)3 + 2f 3(x)̂t2(x), 2f 3(x)

2⟩,
  where (h(x), t̂2(x)) ∈ {(x2, 1), (x, x2 + 1), (x2 + x, x), (x2 + 1, x2 + x + 1) , (x + 1,

x + 1), (x2 + x + 1, x2)}.
• 6 self-dual cyclic ℤ4-codes of type 41322 determined by:
  C1 = ⟨(x − 1)3, 2(x − 1)⟩ , C2 = ⟨f2(x)3 + 2f 2(x)(1 + h(x)f 2(x))⟩,
  C3 = ⟨f3(x) + 2�̂2(x)⟩,
  where (h(x), �̂2(x)) ∈ {(x2, x), (x, x2), (x2 + x, x2 + x) , (x2 + 1, x2 + x + 1), (x + 1, 1),

(x2 + x + 1, x + 1)}.
• 8 self-dual cyclic ℤ4-codes of type 41322 determined by:
  C1 = ⟨(x − 1)3 + 2, 2(x − 1)⟩ , C2 = ⟨f2(x)2 + 2(a + bx + cx2), 2f 2(x)⟩,
  C3 = ⟨f3(x)3 + 2f 3(x)((a + c + 1)x2 + (a + b + c + 1)x + b + c), 2f 3(x)

2⟩,
  where a, b, c ∈ �2.
• 8 self-dual cyclic ℤ4-codes of type 41322 determined by:
  C1 = ⟨(x − 1)3 + 2, 2(x − 1)⟩ , C2 = ⟨f2(x)3 + 2f 2(x)(1 + (a + bx + cx2)f 2(x))⟩,
  C3 = ⟨f3(x) + 2((a + b)x2 + cx + a)⟩ , where a, b, c ∈ �2.

5  Proofs of Theorems 3.1–3.4

In this section, we give the detail proofs for Theorems 3.1–3.4. First, we prove that 
ideals of the ring B are determined by ideals of rings Ri , i = 1,… , r.

Proposition 5.1 Let C ⊆ B =
ℤ4[x]

⟨x4n−1⟩ . Then C is a cyclic code over ℤ4 of length 4n if 
and only if for each integer i, 1 ≤ i ≤ r , there is a unique ideal Ci of the ring Ri such 
that C =

⨁r

i=1
Ci =

∑r

i=1
Ci , where

Moreover, the number of codewords in C is equal to �C� = ∏r

i=1
�Ci�.

Proof Let C be a cyclic code over ℤ4 of length 4n. By Lemma 2.1 and properties of 
isomorphic rings, there is a unique ideal C of the direct product ring R1 ×⋯ ×Rr 
such that C = �(C) . Hence for each integer i, 1 ≤ i ≤ r , there is a unique ideal Ci of 
Ri such that C = C1 ×⋯ × Cr . This implies

Ci = �i(x)Ci = {�i(x)ci(x) ∣ ci(x) ∈ Ci} (mod x4n − 1).
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Then the conclusion follows from Lemma 2.1(i), Ci = 𝜀i(x)Ci ⊆ Bi for all i and 
�C� = �C� = �C1 ×⋯ × Cr� = ∏r

i=1
�Ci� .   ◻

Then we investigate properties of ideals in the ring Ri =
ℤ4[x]

⟨fi(x4)⟩.

Proposition 5.2 For any integer i, 1 ≤ i ≤ r , let Ci = ⟨fi(x)l + 2v(x), 2f i(x)
s⟩ be an 

ideal of Ri , where v(x) ∈ Ri and 0 ≤ s ≤ l ≤ 4 , and set Ci = 𝜀i(x)Ci ⊆ B . Then we 
have the following conclusions: 

 (i) The set Ci is a cyclic code of type 4(4−l)mi2(l−s)mi over ℤ4 with length 4n.

 (ii) Using the notation in Eq. (8), let G =

(
Gi,(1)

Gi,(2)

)
 , where

Then Ci =
{
(a, b)Gi ∣ a ∈ ℤ

(4−l)mi

4
, b ∈ 𝔽

(l−s)mi

2

}
.

Proof (i) For any vectors a = (a0, a1,… , a(4−l)mi−1
) ∈ ℤ

(4−l)mi

4
 and b = (b0, b1 , 

… , b(l−s)mi−1
) ∈ �

(l−s)mi

2
 , define a map � by

(mod fi(x4) ). Now, we claim that � is a bijection from ℤ(4−l)mi

4
× 𝔽

(l−s)mi

2
 onto Ci . In 

fact, since Ci is an ideal of Ri generated by fi(x)l + 2v(x) and 2f i(x)s , we see that 
�(a, b) ∈ Ci . By Lemma 2.4, it follows that

Hence we only need to prove that the map � is injective.

In fact, let c = (c0, c1, c2,… , c(4−l)mi−1
) ∈ ℤ

(4−l)mi

4
 and d = (d0, d1,… , d(l−s)mi−1

) ∈ 

�
(l−s)mi

2
 satisfying �(a, b) = �(c, d) (mod fi(x

4) ). For each integer j, 
0 ≤ j ≤ (4 − l)mi − 1 , we write: aj = a0,j + 2a1,j and cj = c0,j + 2c1,j , where 
a0,j, a1,j, c0,j, c1,j ∈ �2 . Then by �(a, b) = �(c, d) (mod fi(x

4) ), we have that 
�(a, b) ( mod ⟨f i(x)4, 2⟩) = �(c, d) ( mod ⟨f i(x)4, 2⟩) . This implies

Since both 
∑

0≤j≤(4−l)mi−1
a0,jx

j and 
∑

0≤j≤(4−l)mi−1
c0,jx

j are polynomials in �2[x] of 

degree ≤ (4 − l)mi − 1 < (4 − l)deg(f i(x)) , From the equation above, we can deduce 

C ={�(c1(x),… , cr(x)) ∣ ci(x) ∈ Ci, i = 1,… , r}

=

r∑
i=1

{�i(x)ci(x) ∣ ci(x) ∈ Ci} (mod x4n − 1).

Gi,(1) =
[(
fi(x)

l + 2v(x)
)
�i(x)

]
(4−l)mi,4n

, Gi,(2) =
[
2f i(x)�i(x)

]
(l−s)mi,4n

.

�(a, b) =
∑

0≤j≤(4−l)mi−1

ajx
j
(
fi(x)

l + 2v(x)
)
+

∑
0≤t≤(l−s)mi−1

2btx
tf i(x)

s

|Ci| = 2mi(8−(l+s)) = 22(4−l)mi+(l−s)mi = |ℤ(4−l)mi

4
× 𝔽

(l−s)mi

2
|.

( ∑
0≤j≤(4−l)mi−1

a0,jx
j

)
f i(x)

l =

( ∑
0≤j≤(4−l)mi−1

c0,jx
j

)
f i(x)

l ( mod f i(x)
4).
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∑
0≤j≤(4−l)mi−1

a0,jx
j =

∑
0≤j≤(4−l)mi−1

c0,jx
j in �2[x] , by Lemma 2.2 (ii). This implies 

a0,j = c0,j, ∀j = 0, 1,… , (4 − l)mi − 1.

Moreover, by �(a, b) = �(c, d) (mod fi(x4) ) and 2(fi(x)l + 2v(x)) = 2f i(x)
l , we 

obtain

Since 
∑

0≤j≤(4−l)mi−1
a1,jx

j and 
∑

0≤j≤(4−l)mi−1
c1,jx

j are polynomials in �2[x] of degree 
≤ (4 − l)mi − 1 < (4 − l)deg(f i(x)) , 

∑
0≤t≤(l−s)mi−1

btx
t and 

∑
0≤t≤(l−s)mi−1

dtx
t are 

polynomials in �2[x] of degree ≤ (l − s)mi − 1 < (l − s)deg(f i(x)) , we see that ∑
0≤j≤(4−l)mi−1

a1,jx
j =

∑
0≤j≤(4−l)mi−1

c1,jx
j and 

∑
0≤t≤(l−s)mi−1

btx
t =

∑
0≤t≤(l−s)mi−1

dtx
t 

in �2[x] . This implies

Summing up the results above, we get the following: a = c and b = d . Therefore, � 
is injective and hence a bijection. Moreover, it is clear that

Hence � is additive group isomorphism from (ℤ(4−l)mi

4
,+) × (𝔽

(l−s)mi

2
,+) onto (Ci,+) . 

So Ci is an abelian group of type 4(4−l)mi2(l−s)mi.
By Lemma 5.1, Ci = �i(x)Ci is a cyclic code over ℤ4 of length 4n. Using Lemma 

2.1 (iii), the map �i induces an additive group isomorphism from (Ci,+) onto (Ci,+) . 
Hence, Ci is an abelian group of type 4(4−l)mi2(l−s)mi.

(ii) For any positive integer k, denote Xk = (1, x,… , xk−1)tr where Mtr represents 
the transpose of a matrix M. Using the notation of Eq. (8), by the proof of (i), each 
codeword in Ci can be uniquely expessed as

i.e., �i(x)�(a, b) = (a, b)Gi , where a ∈ ℤ
(4−l)mi

4
 and b ∈ �

(l−s)mi

2
.

Therefore, Ci = {(a, b)Gi ∣ a ∈ ℤ
(4−l)mi

4
 , b ∈ �

(l−s)mi

2
} .   ◻

A. Proof for Theorem 3.1.
By Proposition 5.2, the ideal Ci of Ri listed in the table of Theorem 3.1 is of 

the type as given by the table, for all Cases 1–10. Further, as ideals in distinct 
cases are of different types, any two ideals are distinct in different cases. Obvi-
ously, the 7 ideals in Cases 3 and 4 are distinct, as they are of different types. 
Then we need to consider ideals Ci of Ri in Cases 5–10.

2

(( ∑
0≤j≤(4−l)mi−1

a1,jx
j

)(
f i(x)

)l

+

( ∑
0≤t≤(l−s)mi−1

btx
t

)(
f i(x)

)s

)

=2

(( ∑
0≤j≤(4−l)mi−1

c1,jx
j

)(
f i(x)

)l

+

( ∑
0≤t≤(l−s)mi−1

dtx
t

)(
f i(x)

)s

)
.

a1,j = c1,j, 0 ≤ j ≤ (4 − l)mi − 1; and bt = dt, 0 ≤ t ≤ (l − s)mi − 1.

�((a, b) + (c, d)) = �((a + c, b + d) = �(a, b) + �(c, d).

�i(x)�(a, b) =
(
aX(4−l)mi

)(
fi(x)

l + 2v(x)
)
+ (bX(l−s)mi

)f i(x)
s

=a
(
X(4−l)mi

fi(x)
l + 2v(x)

)
+ b(X(l−s)mi

f i(x)
s)

=aGi,(1) + bGi,(2),
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Case 5. Let h(x), q(x) ∈ Ti = {
∑mi−1

j=0
tjx

j ∣ tj ∈ {0, 1}, j = 0, 1,… ,mi − 1} be 
such that ⟨fi(x) + 2h(x)⟩ = ⟨fi(x) + 2q(x)⟩ as ideals of the ring Ri . Then by Lemma 
2.4 (iii) and Equation (4), we have h(x) ≡ q(x) (mod f i(x) ) in �2[x] . This implies 
h(x) = q(x) . Therefore, the ideals Ci in Case 5 are distinct.

Case 6. Let h(x), q(x) ∈ Ti be such that ⟨fi(x)2 + 2h(x), 2f i(x)⟩ = ⟨fi(x)2 + 2q(x),

2f i(x)⟩ . Then by Eq.  (4) in Lemma 2.4, we have that h(x) ≡ q(x) (mod f i(x) ) in 
�2[x] . This implies h(x) = q(x).

Similarly, one can easily verify that the ideals Ci in Case 8 are distinct.
Case 7. Let h0(x), h1(x), q0(x), q1(x) ∈ Ti be such that ⟨fi(x)2 + 2(h

0
(x) + h

1
(x)f i(x))⟩

= ⟨fi(x)2 + 2(q
0
(x) + q

1
(x)f i(x))⟩  as ideals of Ri . By Lemma 2.4 (iii) and Eq.  (4), 

we have h0(x) + h1(x)f i(x) ≡ q0(x) + q1(x)f i(x) (mod f i(x)2 ) in �2[x] . This implies 
h0(x) = q0(x) and h1(x) = q1(x) . Therefore, the ideals Ci in Case 7 are distinct.

Case 9. Let h(x), q(x) ∈ Ti be such that ⟨fi(x)3 + 2h(x)f i(x), 2f i(x)
2⟩ 

= ⟨fi(x) + 2q(x)f i(x), 2f i(x)
2⟩ as ideals of Ri . By Lemma 2.4 (iii) and Eq.   (4), we 

have h(x)f i(x) ≡ q(x)f i(x) (mod f i(x)2 ) in �2[x] . This implies that h(x) = q(x) . There-
fore, the ideals Ci in Case 9 are distinct.

Case 10. Let h(x), q(x) ∈ Ti be such that ⟨fi(x)3 + 2f i(x) ⋅ (wi,0(x) + h(x)f i(x))⟩
= ⟨fi(x)3 + 2f i(x) ⋅ (wi,0(x) + q(x)f i(x))⟩ . By Lemma 2.4 (iii) and Eq.  (4), we have 
f i(x) ⋅ (wi,0(x) + h(x)f i(x)) ≡ f i(x) ⋅ (wi,0(x) + q(x)f i(x)) (mod f i(x)3 ) in �2[x] . This 
implies wi,0(x) + h(x)f i(x)) ≡ wi,0(x) + q(x)f i(x) (mod f i(x)2 ), and hence h(x) = q(x) . 
So, the ideals Ci in Case 10 are distinct.

As stated above, we conclude that all ideals of Ri in Cases 1–10 are distinct. 
Now, let Li be the number of all ideals in Ri . Then we have

Further, by Proposition 5.1 the number of cyclic ideals over ℤ4 of length 4n is 
equal to 

∏r

i=1
Li ≥

∏r

i=1
(9 + 5 ⋅ 2mi + (2mi)2) . On the other hand, by [11, Cor-

ollary 3.4], we know that the number of cyclic ideals over ℤ4 of length 4n equals ∏r

i=1
(9 + 5 ⋅ 2mi + (2mi)2) . From these, we deduce that

Therefore, all distinct ideals of Ri have been listed by the table in Theorem 3.1. The 
other conclusions follow from Proposition 5.1 immediately.

B. Proof for Theorem 3.2.
The result follows directly from Theorem 3.1 and Proposition 5.2.

C. Proof for Theorem 3.3
As usual, for any a = (a0, a1,… , a4n−1) ∈ ℤ

4n
4

 , we identify a with 
a(x) =

∑4n−1

j=0
ajx

j ∈ B = ℤ4[x]∕⟨x4n − 1⟩ in the following. In the ring B , we have 
that x4n = 1 , and hence x−1 = x4n−1 . Moreover, we have x4n ≡ 1 (mod fi(x4) ), since 
fi(x

4) is a divisor of x4n − 1 in ℤ4[x] . This implies x4n = 1 and x−1 = x4n−1 in the ring 
Ri = ℤ4[x]∕⟨fi(x4)⟩ for all i. Define

Li ≥ 9 + 5 ⋅ 2mi + (2mi)2, i = 1, 2,… , r.

Li = 9 + 5 ⋅ 2mi + (2mi)2, i = 1, 2,… , r.
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It is clear that � is a ring automorphism of B and satisfies �−1 = � . Then, by a direct 
calculation, we get the following lemma.

Lemma 5.3 Let a, b ∈ ℤ
4n
4

 where b = (b0, b1,… , b4n−1) . Then [a, b] = 0 if 

a(x)�(b(x)) = 0 in the ring B where b(x) =
∑4n−1

j=0
bjx

j.

In Theorem 3.4, we define by � the permutation on the set {1,… , r}:

Whether � denotes the automorphism of B or this map on the set {1,… , r} is deter-
mined by the context. By a method paralleling to that above [6, Lemma 7] and its 
proof, we can prove the following lemma. Here we omit its proof.

Lemma 5.4 Using the notations in Sect. 2, we have the following: 

 (i) For each integer i, 1 ≤ i ≤ r , there is a unique element ci ∈ ℤ
×
4
= {1,−1} such 

that f̃i(x) = cif�(i)(x).
 (ii) For any integer i, 1 ≤ i ≤ r , we have that �(�i(x)) = �i(x

−1) = ��(i)(x) in the 
ring B and �(Bi) = B�(i).

 (iii) Let �|Bi
∶ Bi → B�(i) be the restriction of � on Bi , and define

Using the notation in Lemma 2.1 (iii), we have the following commutative 
diagram of ring isomorphisms:

Let �i = �−1
�(i)

(�|Bi
)�i . Then �i is a ring isomorphism from Ri onto R�(i) . 

Moreover, we have �−1
i

= ��(i) where ��(i) ∶ R�(i) → Ri is defined by 
��(i)(a(x)) = a(x−1) = a(x4n−1) (mod fi(x

4)) for all a(x) ∈ K�(i).

For any ideal Ci of the ring Ri = ℤ4[x]∕⟨fi(x4)⟩ , recall that the annihilator of Ci 
is defined as the ideal Ann(Ci) = {� ∈ Ri ∣ �� = 0,∀� ∈ Ci} of Ri . The annihila-
tor of each ideal in Ri is given by the following proposition.

�(a(x)) = a(x−1) = a0 +
∑

1≤j≤4n−1

ajx
4n−j, ∀a(x) ∈ B.

�(i) = i, if 1 ≤ i ≤ �; �(� + j) = � + j + � and �(� + j + �) = � + j, ∀j = 1,… , �.

�i(c(x)) = c(x−1) = c(x4n−1)
(
mod f�(i)(x

4)
)
, ∀c(x) ∈ Ri.

Ri = ℤ4[x]∕⟨fi(x4)⟩
�−1
�(i)

(��Bi )�i

⟶ R�(i) = ℤ4[x]∕⟨f�(i)(x4)⟩
�i ↓ ↓ ��(i)

Bi = �i(x)Ri

��Bi
⟶ B�(i) = ��(i)(x)Ri
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Proposition 5.5 Using the notation in Sect. 2 and Theorem 3.1, for any integer i, 
1 ≤ i ≤ r , the annihilator Ann(Ci) of each ideal Ci in Ri is given by the following 
table: 

Ci in Theorem 3.1 Ann(Ci)

Case 1 ⟨1⟩
Case 2 ⟨0⟩
Case 3 ⟨fi(x)4−s, 2⟩
Case 4 ⟨2f i(x)4−l⟩
Case 5

⟨
fi(x)

3 + 2f i(x) ⋅
(
wi,0(x) + (wi,1(x) + h(x))f i(x)

)⟩

Case 6 ⟨fi(x)3 + 2f i(x) ⋅ (wi,0(x) + h(x)), 2f i(x)
2⟩

Case 7
⟨
fi(x)

2 + 2

(
wi(x)

2 + h
0
(x) + h

1
(x)f i(x)

)⟩

Case 8 ⟨fi(x)3 + 2h(x), 2f i(x)⟩
Case 9 ⟨fi(x)2 + 2(wi,0(x) + h(x)), 2f i(x)⟩
Case 10 ⟨fi(x) + 2(wi,1(x) + h(x))⟩
where 0 ≤ s ≤ 3 , 1 ≤ l ≤ 3 , and h(x), h0(x), h1(x) ∈ Ti.

Proof Let Si be the set of all ideals in Ri listed in the table of Theorem 3.1, and 
assume Ci ∈ Si . It is clear that Ann(Ci) = D , where D ∈ Si satisfying the following 
conditions:

By the table in Theorem 3.1, there are 10 cases for all distinct ideals of Ri . Hence 
we have the following four situations:

(i) Let Ci be given by Case 7 in the table of Theorem 3.1. Then |Ci| = 24mi . We set 
D = ⟨fi(x)2 + 2(wi(x)

2 + h0(x) + h1(x)f i(x))⟩ . By Theorem  3.1, we see that D is an 
ideal of Ri and |D| = 24mi . Now, denote

� = fi(x)
2 + 2(h0(x) + h1(x)f i(x)),

� = fi(x)
2 + 2(wi(x)

2 + h0(x) + h1(x)f i(x)).
Then Ci = {�� ∣ � ∈ Ri} and D = {�� ∣ � ∈ Ri} . By Theorem  2.5 (ii), 

we have fi(x)
4 = 2f i(x)

2wi(x)
2 = 2fi(x)

2wi(x)
2 in Ri . This implies that 

�� = fi(x)
4 + 2fi(x)

2
⋅ (h0(x) + h1(x)f i(x) + wi(x)

2 + h0(x) + h1(x)f i(x)) = 0, and 
hence Ci ⋅ D = {�� ⋅ �� ∣ �, � ∈ Ri} = {0} . Then by Condition (9), we conclude 
that D = Ann(Ci).

(ii) Let Ci = ⟨fi(x)3 + 2f i(x)h(x), 2f i(x)
2⟩ be given by Case 9 in the table of The-

orem  3.1. Then |Ci| = 23mi . We set D = ⟨fi(x)2 + 2(wi,0(x) + h(x)), 2f i(x)⟩ . Then 
by Theorem 3.1, D is an ideal of Ri and |D| = 25mi . As f i(x)4 = 0 in Ri , we have 
2f i(x)

2
⋅ fi(x)

2 = fi(x)
3
⋅ 2f i(x) = 2f i(x)

4 = 0 . This implies

Since fi(x)4 = 2f i(x)
2wi(x)

2 = 2f i(x)
2(wi,0(x) + wi,1(x)f i(x)) by Theorem  2.5 (ii), it 

follows that

(9)Ci ⋅ D = {0} and |D| = Max{|J| ∣ Ci ⋅ J = {0}, J ∈ Si}.

2f i(x)
2
⋅ (fi(x)

2 + 2(wi,0(x) + h(x))) = (fi(x)
3 + 2f i(x)h(x)) ⋅ 2f i(x) = 0.
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This implies Ci ⋅ D = {0} . Then by Condition (9), we have D = Ann(Ci).
(iii) Let Ci = ⟨fi(x)3 + 2f i(x)(wi,0(x) + h(x)f i(x))⟩ be given by Case 10 in the table 

of Theorem  3.1. Then |Ci| = 22mi . Set D = ⟨fi(x) + 2(wi,1(x) + h(x))⟩ . By Theo-
rem 3.1, we see that D is an ideal of Ri and |D| = 26mi.

By Theorem 2.5 (ii), it follows that

This implies Ci ⋅ D = {0} . Then by Condition (9), we have D = Ann(Ci).
(iv) If Ci is an ideal of Ri given by Cases 1–6 and Case 8 in the table of Theo-

rem 3.1, the conclusions for each Ann(Ci) follow from Theorem 2.5 and direct cal-
culations. Here, we omit these elementary calculations.   ◻

Lemma 5.6 Let a(x) =
∑r

i=1
�i(x)�i, b(x) =

∑r

i=1
�i(x)�i ∈ B , where �i, �i ∈ Ri . 

Then a(x)�(b(x)) =
∑r

i=1
�i(x)(�i ⋅ �

−1
i
(��(i))).

Proof By Lemma 5.4 (ii), we have �−1
i
(��(i)) ∈ �−1

i
(R�(i)) = Ri . This implies 

�i ⋅ �
−1
i
(��(i)) ∈ Ri for all i. If j ≠ �(i) , then i ≠ �(j) and so �i(x)��(j)(x) = 0 in the 

ring B , by Lemma 2.1 (i). Therefore, by Lemma 5.4 (iii) it follows that

Hence a(x)�(b(x)) =
∑r

i=1
�i(x)(�i ⋅ �

−1
i
(��(i))) by Lemma 2.1 (i).   ◻

Now, we prove Theorem 3.3 as follows:
Let C =

⨁r

i=1
�i(x)Ci be a cyclic code over ℤ4 of length 4n, where Ci is an ideal 

of the ring Ri given by Theorem 3.1. For each integer 1 ≤ j ≤ r , define

where Ann(C�(j)) is the annihilator of C�(j) determine by Proposition 5.5, for all 
j = 1,… , r . Then by Lemma 5.4 (iii), we have �−1

�(j)
(Hj) = �j(Hj) = Ann(C�(j)) . 

(
fi(x)

3 + 2f i(x)h(x)
)
⋅

(
fi(x)

2 + 2(wi,0(x) + h(x))
)

= fi(x)
5 + 2f i(x)

3(wi,0(x) + 2h(x))

= 2f i(x)
3(wi,0(x) + wi,1(x)f i(x)) + 2f i(x)

3wi,0(x)

= 0.

(
fi(x)

3 + 2f i(x)(wi,0(x) + h(x)f i(x))
)
⋅

(
fi(x) + 2(wi,1(x) + h(x))

)

= fi(x)
4 + 2f i(x)

3(wi,1(x) + h(x)) + 2f i(x)
2(wi,0(x) + h(x)f i(x))

= 2f i(x)
2(wi,0(x) + wi,1(x)f i(x)) + 2f i(x)

3wi,1(x) + 2f i(x)
2wi,0(x)

= 0.

a(x)�(b(x)) =

r∑
i,j=1

�i(x)�i ⋅ �(�j(x)�j) =

r∑
i,j=1

�i(x)�i ⋅ �(�j(x))�j(�j)

=

r∑
i,j=1

�i(x)�i ⋅ ��(j)(x)�j(�j) =

r∑
i=1

�i(x)�i ⋅ �i(x)��(i)(��(i)).

Hj = ��(j)(Ann(C�(j))) = �−1
j
(Ann(C�(j))),
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Assume i = �(j) . Then we have �(i) = j and �−1
i
(H�(i)) = Ann(Ci) . Now, let 

H =
⨁r

i=1
��(i)(x)H�(i) =

∑r

j=1
�j(x)Hj ( mod x4n − 1).

By Proposition 5.1, we know that H is a cyclic code over ℤ4 of length 4n. As 
Ci ⋅ Ann(Ci) = {0} , by Lemma 5.6 it follows that

From this and by Lemma 5.3, we deduce that H ⊆ C
⊥ . Further, by Theorem 3.1 and 

Proposition 5.5, we have |Ci||Ann(Ci)| = 28mi for all i. This implies

by Proposition 5.1 and 
∑r

i=1
mi = n . Then from the theory of linear codes over ℤ4 

(cf. [23]), we deduce that C⊥ = H.
To prove Theorem 3.3, it is sufficient to prove H�(i) = D�(i) , where D�(i) is an 

ideal of the ring R�(i) listed in the table of Theorem 3.3, 1 ≤ i ≤ r.
Since x−1 = x4n−1 in Ri , we have x ∈ R

×
i
 , for all i. By Lemma 5.4 (i), we know 

that f̃i(x) = cif�(i)(x) where ci ∈ {1,−1} . This implies 2ci = 2 in ℤ4 . Then by the def-
inition of �i in Lemma 5.4 (iii), for k = 1, 2, 3 , we have

and so �i(2f i(x)
k) = �i(2fi(x)

k) = 2ck
i
x−kmi f�(i)(x)

k = 2x−kmi f �(i)(x)
k.

(i) Let Ann(Ci) = ⟨fi(x)4−s, 2⟩ be given in Case 3 of Proposition 5.5. By x ∈ R
×
�(i)

 , 
it follows that

The equations H�(i) = D�(i) for Cases 1, 2, 4 can be proved similarly as Case 3.
(ii) Let Ann(Ci) = ⟨fi(x)3 + 2f i(x)(wi,0(x) + �i(x)f i(x))⟩ be given in Case 5 of 

Proposition 5.5, where �i(x) = wi,1(x) + h(x) . Then we have

where �̂i(x) = xmi(wi,1(x
−1) + h(x−1)) ∈ R�(i) . Hence H�(i) = D�(i).

The equation H�(i) = D�(i) for Case 10 can be proved similarly as Case 5.

C ⋅ �(H) =

r∑
i=1

�i(x)
(
Ci ⋅ �

−1
i
(H�(i))

)
=

r∑
i=1

�i(x)
(
Ci ⋅ Ann(Ci)

)
= {0}.

�C��H� = (

r�
i=1

�Ci�)(
r�

i=1

�H�(i)�) =
r�

i=1

��Ci��Ann(Ci)�
�
= 28

∑r

i=1
mi = �ℤ4�4n,

�i(fi(x)
k) =(�i(fi(x)))

k = fi(x
−1)k = x−kmi (xmi fi(x

−1))k

=x−kmi (̃fi(x))
k = ck

i
x−kmi f�(i)(x)

k,

H�(i) =⟨�i(fi(x)
4−s),�i(2)⟩ = ⟨c4−s

i
x−(4−s)mi f�(i)(x)

4−s, 2⟩
=⟨f�(i)(x)4−s, 2⟩ = D�(i).

H�(i) =
�
�i

�
fi(x)

3 + 2f i(x)(wi,0(x) + �i(x)f i(x))
��

=⟨c3
i
x−3mi f�(i)(x)

3

+ 2x−mi f �(i)(x) ⋅ (wi,0(x
−1) + �i(x

−1)x−mi f �(i)(x))⟩
=
�
f�(i)(x)

3 + 2f �(i)(x)
�
x2miwi,0(x

−1) + �̂i(x)f �(i)(x)
��

,
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(iii) Let Ann(Ci) = ⟨fi(x)3 + 2f i(x)ti(x), 2f i(x)
2⟩ be given in case 6 of Proposition 

5.5, where ti(x) = wi,0(x) + h(x) . Then we have

where t̂i(x) = x2mi (wi,0(x
−1) + h(x−1)) ∈ R�(i) . Hence H�(i) = D�(i).

The equation H�(i) = D�(i) for Case 9 can be proved similarly as Case 6.
(iv) Let Ann(Ci) = ⟨fi(x)2 + 2(wi(x)

2 + h0(x) + h1(x)f i(x))⟩ be given in Case 7 of 
Proposition 5.5, where �i,j(x) = wi,j(x) + hj(x) for j = 0, 1 . Then

where �̂i,0(x) = x2mi (wi(x
−1)2 + h0(x

−1)) and �̂i,1(x) = xmih1(x
−1) in R�(i).

(v) Let Ann(Ci) = ⟨fi(x)3 + 2h(x), 2f i(x)⟩ be given in Case 8 of Propo-
sition 5.5. Then we have H�(i) = ⟨c3

i
x−3mi f�(i)(x)

3 + 2h(x−1), 2x−mi f �(i)(x)⟩ 
= ⟨f�(i)(x)3 + 2x3mih(x−1), 2f �(i)(x)⟩ = D�(i).

On the basis of the above discussion, we get C⊥ =
⨁r

i=1
𝜀𝜇(i)(x)D𝜇(i) , where D�(i) 

is an ideal of R�(i) given in the table of Theorem 3.3 for all i = 1,… , r . This proves 
the theorem 3.3.

D. Proof for Theorem 3.4
Using the notation of Theorem 3.3, by Proposition 5.1, we see that C is self-dual 

if and only if the ideal Ci of Ri satisfies Ci = Di for all i = 1,… , r , where the pair 
(Ci,D�(i)) of ideals is listed in the table of Theorem 3.3. Then the latter condition is 
equivalent to that Ci satisfies the following conditions:

♢ Let i = 1 . There are 3 ideals of R1 satisfies C1 = D1 = D�(1):
C1 = ⟨2⟩ , C1 = ⟨(x − 1)3, 2(x − 1)⟩ and C1 = ⟨(x − 1)3 + 2, 2(x − 1)⟩.
♢ Let 2 ≤ i ≤ � . In this case, �(i) = i . Then by Theorems 3.1 and 3.3, we see that 

Ci is one of the following three subcases:
⊳ Ci = ⟨2⟩.
⊳ Ci = ⟨fi(x)3 + 2h(x), 2f i(x)⟩ , where h(x) ∈ Ti satisfying Eq. (5) in the proof of 

Theorem 2.7, i.e., h(x) ∈ Vi by Theorem 2.7 (i).
⊳ Ci = ⟨fi(x)2 + 2(h0(x) + h1(x)f i(x))⟩ , where h0(x), h1(x) ∈ Ti satisfying Equation 

(7) in the proof of Theorem  2.7, i.e., h0(x) ∈ W
(0)

i
 and h1(x) ∈ W

(1)

i,h0(x)
 by Theo-

rem 2.7 (ii) and (iii).
By Theorem 2.7, there are 1 + 2

mi

2 + (2
mi

2 )2 ideals Ci of Ri satisfies Ci = Di = D�(i) , 
for all i = 2,… , �.

♢ Let i = � + j where 1 ≤ j ≤ � . Then �(i) = i + � and �(i + �) = i . In this case, 
Ct = Dt for all t = � + 1,… , � + 2� if and only if: Ci is any ideal of Ri listed in the 
table of Theorem 3.1 and Ci+� = D�(i) , where D�(i) = Di+� is given by the table in 
Theorem 3.3, for all i = � + j and 1 ≤ j ≤ �.

H�(i) =
�
c3
i
x−3mi f�(i)(x)

3 + 2x−mi f �(i)(x)ti(x
−1), 2x−2mi f �(i)(x)

2
�

=⟨f�(i)(x)3 + 2f �(i)(x)̂ti(x), f �(i)(x)
2⟩,

H�(i) =⟨c2i x−2mi f�(i)(x)
2 + 2(wi(x

−1)2 + h0(x
−1) + h1(x

−1)x−mi f �(i)(x))⟩
=
�
f�(i)(x)

2 + 2
�
�̂i,0(x) + �̂i,1(x)f �(i)(x)

��
= D�(i),
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As stated above, we see that the number of self-dual cyclic codes over ℤ4 of 
length 4n is 3 ⋅

∏
2≤i≤�(1 + 2

mi

2 + 2mi) ⋅
∏�

j=1
(9 + 5 ⋅ 2m�+j + 4m�+j).

6  Conclusions

We give an explicit representation and enumeration for all distinct cyclic codes over 
ℤ4 of length 4n where n is odd. Using this representation, we provide an efficient 
encoder for each code and determine its type explicitly. Then we give a precise 
description for the dual codes and listed explicitly all distinct self-dual cyclic codes 
over ℤ4 of length 4n. Compared with the results in the literature, the results in this 
paper are more simple and practical for constructing self-dual cyclic codes over ℤ4 
of length 4n, for a given odd positive integer n.

Obtaining some bounds for the minimal distance such as BCH-like of a self-dual 
cyclic code over ℤ4 of length 4n by just looking at the representation of such codes 
are future topics of interest.
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