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Abstract
Let F2m be a finite field of 2m elements and denote R = F2m [u]/〈uk〉 = F2m +uF2m +
· · · + uk−1

F2m (uk = 0), where k is an integer satisfying k ≥ 2. For any odd positive
integer n, an explicit representation for every self-dual cyclic code over R of length
2n and a mass formula to count the number of these codes are given. In particular, a
generator matrix is provided for the self-dual 2-quasi-cyclic code of length 4n over
F2m derived by an arbitrary self-dual cyclic code of length 2n over F2m + uF2m and
a Gray map from F2m + uF2m onto F

2
2m . Finally, the hull of each cyclic code with

length 2n over F2m + uF2m is determined and all distinct self-orthogonal cyclic codes
of length 2n over F2m + uF2m are listed.

Keywords Cyclic code · Self-dual code · Hull · Self-orthogonal code · Finite chain
ring

Mathematics Subject Classification 94B15 · 94B05 · 11T71

B Yuan Cao
yuancao@sdut.edu.cn

Yonglin Cao
ylcao@sdut.edu.cn

Fang-Wei Fu
fwfu@nankai.edu.cn

1 School of Mathematics and Statistics, Shandong University of Technology, Zibo 255091,
Shandong, China

2 Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics,
Hubei University, Wuhan 430062, China

3 Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,
Changsha University of Science and Technology, Changsha 410114, Hunan, China

4 Chern Institute of Mathematics and LPMC, and Tianjin Key Laboratory of Network and Data
Security Technology, Nankai University, Tianjin 300071, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00200-019-00408-9&domain=pdf


460 Y. Cao et al.

1 Introduction and preliminaries

The class of self-dual codes is an interesting topic in coding theory due to their con-
nections to other fields of mathematics such as lattices, cryptography, invariant theory,
block designs [5], etc. In many instances, self-dual codes have been found by first
finding a code over a ring and then mapping this code onto a code over a subring
through a map that preserves duality. In the literatures, the mappings typically map to
codes over F2, F4 and Z4 since codes over these rings have had the most use.

Throughout this paper, let F2m be a finite field of 2m elements and denote

R = F2m [u]
〈uk 〉 = F2m + uF2m + · · · + uk−1

F2m (uk = 0),

where k ∈ Z
+ satisfying k ≥ 2. Then R is a finite chain ring. Let N be a fixed positive

integer and denote RN = {(a0, a1, . . . , aN−1) | a0, a1, . . . , aN−1 ∈ R}. Then RN is
a free R-module with the usual componentwise addition and scalar multiplication by
elements of R. Any R-submodule C of RN is called a linear code over R of length
N . Moreover, the linear code C is said to be cyclic if (cN−1, c0, . . . , cN−2) ∈ C for all
(c0, . . . , cN−2, cN−1) ∈ C. The usual Euclidean inner product on RN is defined by:
[α, β] = ∑N−1

i=0 aibi ∈ R for all α = (a0, a1, . . . , aN−1), β = (b0, b1, . . . , bN−1) ∈
RN . Then the dual code of C is defined by C⊥ = {β ∈ RN | [α, β] = 0, ∀α ∈ C},
and C is said to be self-dual (resp. self-orthogonal) if C = C⊥ (resp. C ⊆ C⊥).

When k = 2 and m = 1, cyclic codes, self-dual codes and Type II codes over
F2 + uF2 were studied by [6] and [10]. Ling and Solé studied Type II codes over the
ring F4 + uF4 in [16], which was later generalized to the ring R = F2m + uF2m in
[4]. The common theme in the aforementioned works is that the map φ, defined by
φ(a + bu) = (b, a + b) for all a, b ∈ F2m , is a distance and duality preserving Gray
map from R onto F

2
2m . The map φ takes codes over R of length N to codes over F2m of

length 2N . There were many literatures on the construction of binary self-dual codes
from various kind of codes over F2m +uF2m form = 1, 2. Please refer to the literature
[12–15].

When k ≥ 3, for any finite field Fq of q elements, several different Gray type maps
were defined, in similar fashion obtaining different notions of distance for linear codes
over Fq [u]

〈uk 〉 , and a method to obtain explicitly new self-dual codes over Fq of larger

length was presented from self-dual codes over Fq [u]
〈uk 〉 in [3]. Hence the construction

and enumeration for self-dual codes over Fq [u]
〈uk 〉 for various prime power q and positive

integer k becomes a central topic in coding theory over finite rings.
Let R[x]

〈xN−1〉 = R[x]/〈xN − 1〉 = {∑0≤i≤N−1 ai x
i | a0, a1, . . . , aN−1 ∈ R} in

which the arithmetic is done modulo xN − 1. In this paper, cyclic codes over R of
length N are identified with ideals of the ring R[x]

〈xN−1〉 , under the map

σ : RN → R[x]/〈xN − 1〉 via σ : (a0, a1, . . . , aN−1) �→
N−1∑

i=0

ai x
i
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(∀a0, a1, . . . , aN−1 ∈ R). Moreover, ideals of R[x]
〈xN−1〉 are called simple-root cyclic

codes over R when N is relatively prime to the characteristic of R and called repeated-
root cyclic codes otherwise.

There were many literatures on cyclic codes of length N over finite chain rings
R = F2m [u]/〈uk〉 for various positive integers m, k, N . For example: When k = 2,
cyclic codes and self-dual codes over F2 + uF2 of odd length N were investigated
in [6]. Norton and Sălăgean [17] discussed simple-root cyclic codes over an arbitrary
finite chain ring R systematically. Dinh [9] studied constacyclic codes over Galois
extension rings of F2 + uF2 of length N = 2s .

When k ≥ 3, in 2007 Abualrub and Siap [1] studied cyclic codes over the rings
Z2 + uZ2 and Z2 + uZ2 + u2Z2 of the length n, where either n is odd or n = 2k (k
is odd) or n is a power of 2. This paper did not investigate self-dual cyclic codes over
rings Z2 + uZ2 and Z2 + uZ2 + u2Z2, but asked a question:
♦ Open problems include the study of self-dual codes and their properties.

In 2011, Al-Ashker and Hamoudeh [2] extended some of the results in [1], and
studied cyclic codes of an arbitrary length over the ringZ2+uZ2+u2Z2+· · ·+uk−1

Z2
with uk = 0. The rank and minimal spanning set of this family of codes were studied
and two open problems were asked:
♦ The study of cyclic codes of an arbitrary length over Zp + uZp + u2Zp + · · · +
uk−1

Zp, where p is a prime integer, uk = 0, and the study of dual and self-dual
codes and their properties over these rings.

In 2015, Singh et al. [19] studied cyclic code over the ring Rk,p = Zp[u]/〈uk〉
= Zp + uZp + u2Zp + · · · + uk−1

Zp for any prime integer p and positive integer N ,
where N allows that p|N . However, the dual code and self-duality for each cyclic
code over Rk,p were not considered in [19].

In 2016, Chen et al. [8] gave some new necessary and sufficient conditions for
the existence of nontrivial self-dual simple-root cyclic codes over finite commutative
chain rings and studied explicit enumeration formulas for these codes. But self-dual
repeated-root cyclic codes over finite commutative chain rings were not consid-
ered in [8].

In 2015, Sangwisut et al. [18] studied the hulls of simple-root cyclic and nega-
cyclic codes over a finite field Fq . Based on the characterization of their generator
polynomials, the dimensions of the hulls of cyclic and negacyclic codes over Fq were
determined and the enumerations for hulls of cyclic codes and negacyclic codes over
Fq were established. However, in the literature, the representation for the hulls of
repeated-root cyclic codes over the ring Fq + uFq (u2 = 0) have not been well
studied.

In 2016, we [7] gave a different approach from [1], [2] and [19] to study cyclic code
over R = F2m [u]

〈uk 〉 of length 2n for any odd positive integer n. We provided an explicit
representation for each cyclic code, gave clear formulas to calculate the number of
codewords in each code and the number of all these cyclic codes respectively. In
particular, we determined the dual code for each code and presented a criterion to
judge whether a cyclic code over R of length 2n is self-dual. Based on that, we study
the self-duality and hulls of cyclic codes over F2m [u]

〈uk 〉 with oddly even length in this
paper.

123



462 Y. Cao et al.

The present paper is organized as follows. In Sect. 2, we introduce necessary nota-
tions and sketch known results for cyclic codes over R of length 2n needed in this
paper. In Sect. 3, we give an explicit representation and enumeration for self-dual
cyclic codes over R of length 2n. Moreover, we obtain a clear Mass formula to count
all these codes. In Sect. 4, we provide a generator matrix for each self-dual 2-quasi-
cyclic code of length 4n over F2m derived by a self-deal cyclic code of length 2n over
F2m + uF2m . As an application, we list all 945 self-dual cyclic codes of length 30
over F2 + uF2. In Sect. 5, we determine the hull of each cyclic code of length 2n
over F2m + uF2m , and give an explicit representation and enumeration for all distinct
self-orthogonal cyclic codes of length 2n over F2m + uF2m . Section 6 concludes the
paper.

2 Known results for cyclic codes over R of length 2n

In this section, we list the necessary notations and known results for cyclic codes of
length 2n over the ring R = F2m [u]

〈uk 〉 needed in the following sections.
As n is odd, there are pairwise coprime monic irreducible polynomials f1(x) =

x − 1, f2(x), . . . , fr (x) in F2m [x] such that

xn − 1 = f1(x) f2(x) . . . fr (x). (1)

Then we have x2n − 1 = (xn − 1)2 = f1(x)2 . . . fr (x)2.
Let 1 ≤ j ≤ r . We assume deg( f j (x)) = d j and denote Fj (x) = x2n−1

f j (x)2
. Then

gcd(Fj (x), f j (x)2) = 1, and hence there exist a j (x), b j (x) ∈ F2m [x] such that
a j (x)Fj (x) + b j (x) f j (x)2 = 1.

As in [7], we adopt the following notations in this paper:

• A = F2m [x]
〈x2n−1〉 = {∑2n−1

i=0 ai xi | ai ∈ F2m , i = 0, 1, . . . , 2n − 1} in which the

arithmetic is done modulo x2n − 1.
• Let ε j (x) ∈ A be defined by

ε j (x) ≡ a j (x)Fj (x) = 1 − b j (x) f j (x)
2 (mod x2n − 1).

Then ε j (x)2 = ε j (x) and ε j (x)εl(x) = 0 in the ring A for all j �= l and j, l =
1, . . . , r (cf. [7, Theorem 2.3]).

• K j = F2m [x]
〈 f j (x)2〉 = {∑2d j−1

i=0 ai xi | ai ∈ F2m , i = 0, 1, . . . , 2d j − 1} in which the

arithmetic is done modulo f j (x)2.

• F j = F2m [x]
〈 f j (x)〉 = {∑d j−1

i=0 ai xi | ai ∈ F2m , i = 0, 1, . . . , d j − 1} in which the

arithmetic is done modulo f j (x). Then F j is an extension field of F2m with 2md j

elements.
• For each ϒ ∈ {A,K j ,F j }, we set

ϒ[u]
〈uk〉 = {α0 + uα1 + · · · + uk−1αk−1 | α0, α1, . . . , αk−1 ∈ ϒ} (uk = 0).
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Remark F j is a finite field with operations defined by the usual polynomial operations
modulo f j (x),K j is a finite chain ringwith operations defined by the usual polynomial
operations modulo f j (x)2 (cf. [7, Lemma 2.4(v)]) andA is a finite principal ideal ring
with operations defined by the usual polynomial operations modulo x2n − 1. As in
[7], we adopt the following points of view:

F j ⊆ K j ⊆ A and
F j [u]
〈uk〉 ⊆ K j [u]

〈uk〉 ⊆ A[u]
〈uk〉

only as sets. Obviously, F j is not a subfield of K j , K j is not a subring of A,
F j [u]
〈uk 〉 is

not a subring of
K j [u]
〈uk 〉 and

K j [u]
〈uk 〉 is not a subring of A[u]

〈uk 〉 , when n ≥ 2.

For any α(x) = ∑2n−1
i=0 αi x i ∈ R[x]

〈x2n−1〉 , where αi = ∑k−1
j=0 ai, j u

j ∈ R with
ai, j ∈ F2m for all i = 0, 1, . . . , 2n − 1 and j = 0, 1, . . . , k − 1, we define

Ψ (α(x)) = a0(x) + a1(x)u + · · · + ak−1(x)u
k−1 ∈ A[u]

〈uk〉

where a j (x) = ∑2n−1
i=0 ai, j x i ∈ A for all j = 0, 1, . . . , k − 1. Then the map Ψ is a

ring isomorphism from R[x]
〈x2n−1〉 onto

A[u]
〈uk 〉 (cf. [7], Lemma 2.2).

As in [7], we identify R[x]
〈x2n−1〉 with

A[u]
〈uk 〉 under this ring isomorphism Ψ in the rest

of this paper. From this, we deduce that C is a cyclic code over R of length 2n, i.e.
C is an ideal of R[x]

〈x2n−1〉 , if and only if C is an ideal of the ring A[u]
〈uk 〉 . Then in order to

determine cyclic codes over R of length 2n, it is sufficient to determine ideals of the
ring A[u]

〈uk 〉 .

First, every ideal of the ring A[u]
〈uk 〉 can be determined by a unique ideal of

K j [u]
〈uk 〉 for

each j = 1, . . . , r . See the following lemma.

Lemma 2.1 (cf. [7, Theorem 2.3]) Let C ⊆ A[u]
〈uk 〉 . Then C is a cyclic code over R of

length 2n if and only if for each integer j , 1 ≤ j ≤ r , there is a unique ideal C j of

the ring
K j [u]
〈uk 〉 such that

C =
r⊕

j=1

ε j (x)C j =
r∑

j=1

ε j (x)C j (mod x2n − 1),

where ε j (x)C j = {ε j (x)c j (x) (mod x2n − 1) | c j (x) ∈ C j } ⊆ A[u]
〈uk 〉 for all j =

1, . . . , r . Moreover, the number of codewords in C is equal to
∏r

j=1 |C j |.
To present all distinct ideals of the ring K j [u]/〈uk〉 for all j = 1, . . . , r , we need

the following lemma.

Lemma 2.2 (cf. [7, Lemma 2.4 (ii)–(iv)]) Using the notations above, for any integers
j, s: 1 ≤ j ≤ r and 1 ≤ s ≤ k, we have the following:
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(i) The ring
F j [u]
〈us 〉 is a finite commutative chain ring with the unique maximal ideal

u(
F j [u]
〈us 〉 ), the nilpotency index of u is equal to s and the residue field of

F j [u]
〈us 〉 is

(
F j [u]
〈us 〉 )/u(

F j [u]
〈us 〉 ) ∼= F j .

(ii) Every element α of
F j [u]
〈us 〉 has a unique u-adic expansion:

α = b0(x) + ub1(x) + · · · + us−1bs−1(x), b0(x), b1(x), . . . , bs−1(x) ∈ F j

Moreover, α is an invertible element of
F j [u]
〈us 〉 if and only if b0(x) �= 0. The set of

all invertible elements of
F j [u]
〈us 〉 is denoted by (

F j [u]
〈us 〉 )×.

(iii) |(F j [u]
〈us 〉 )×| = (2md j − 1)2(s−1)md j .

Using the notation of Lemma 2.2, all ideals of
K j [u]
〈uk 〉 are listed as follows:

Lemma 2.3 ([7, Theorem 2.6]) Let 1 ≤ j ≤ r . Then all distinct ideals of the ring
K j [u]
〈uk 〉 are given by the following table:

Number of ideals C j (ideal of
K j [u]
〈uk 〉 ) |C j |

k + 1 • 〈ui 〉 (0 ≤ i ≤ k) 22md j (k−i)

k • 〈us f j (x)〉 (0 ≤ s ≤ k − 1) 2md j (k−s)

Ω1(2
md j , k) • 〈ui + ut f j (x)ω〉 22md j (k−i)

(ω ∈ (
F j [u]
〈ui−t 〉 )

×, t ≥ 2i − k,

0 ≤ t < i ≤ k − 1)

Ω2(2
md j , k) • 〈ui + ut f j (x)ω〉 2md j (k−t)

(ω ∈ (
F j [u]
〈uk−i 〉 )

×, t < 2i − k,

0 ≤ t < i ≤ k − 1)
1
2 k(k − 1) • 〈ui , us f j (x)〉 2md j (2k−(i+s))

(0 ≤ s < i ≤ k − 1)

(2md j − 1) • 〈ui + ut f j (x)ω, us f j (x)〉 2md j (2k−(i+s))

·Γ (2md j , k) (ω ∈ (
F j [u]
〈us−t 〉 )

×, i + s ≤ k + t − 1,

0 ≤ t < s < i ≤ k − 2)

where |C j | is the number of elements in C j , and

� Ω1(2md j , k) =

⎧
⎪⎨

⎪⎩

2md j (
k
2+1)+2md j · k2 −2
2md j −1

− (k + 1), if k is even;
2(2md j · k+1

2 −1)

2md j −1
− (k + 1), if k is odd.

� Ω2(2md j , k) =
⎧
⎨

⎩

(2md j − 1)
∑k−1

i= k
2+1

(2i − k)2md j (k−i−1), if k is even;
(2md j − 1)

∑k−1
i= k+1

2
(2i − k)2md j (k−i−1), if k is odd.
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� Γ (2md j , k) can be calculated by the following recurrence formula:

Γ (2md j , ρ) = 0 for ρ = 1, 2, 3; Γ (2md j , ρ) = 1 for ρ = 4;

Γ (2md j , ρ) = Γ (2md j , ρ − 1) + ∑� ρ
2 �−1

s=1 (ρ − 2s − 1)2md j (s−1) for ρ ≥ 5.

Therefore, the number of all distinct ideals of the ring K j [u]/〈uk〉 is equal to

N(2m ,d j ,k) = 1 + k(k + 3)

2
+ Ω1(2

md j , k) + Ω2(2
md j , k) + (2md j − 1)Γ (2md j , k).

As the end of this section, we give an explicit formula to count the number of all
cyclic codes over R of length 2n.

Theorem 2.4 Using the notation above, let 1 ≤ j ≤ r .

(i) The number of all distinct ideals of the ring K j [u]/〈uk〉 is

N(2m ,d j ,k) =
⎧
⎨

⎩

∑ k
2
i=0(1 + 4i)2( k2−i)md j , if k is even;

∑ k−1
2

i=0(3 + 4i)2( k−1
2 −i)md j , if k is odd.

(2)

Precisely, we have

N(2m ,d j ,k) = (2md j +3)2( k2+1)md j −2md j (2k+5)+2k+1

(2md j −1)2
, when k is even;

N(2m ,d j ,k) = (3·2md j +1)2( k−1
2 +1)md j −2md j (2k+5)+2k+1

(2md j −1)2
, when k is odd.

(ii) The number of cyclic codes over F2m [u]/〈uk〉 of length 2n is equal to

∏r
j=1

(2md j +3)2( k2+1)md j −2md j (2k+5)+2k+1

(2md j −1)2
, when k is even;

∏r
j=1

(3·2md j +1)2( k−1
2 +1)md j −2md j (2k+5)+2k+1

(2md j −1)2
, when k is odd.

Proof (i) By the mathematical induction on k, one can easily verify that the equation
(2) holds.

Now, let k = 2s + 1 where s is a positive integer, and denote q = 2md j . Then
we have N(2m ,d j ,k) = ∑s

i=0(3 + 4i)qs−i = 3
∑s

i=0 q
s−i + 4qs

∑s
i=0 iq

−i in which
∑s

i=0 q
s−i = qs+1−1

q−1 . Then by

s∑

i=1

i xi−1 = d

dx

(
s∑

i=0

xi
)

= d

dx

(
xs+1 − 1

x − 1

)

= (s + 1)xs(x − 1) − (xs+1 − 1)

(x − 1)2
,

we have
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qs
s∑

i=0

iq−i = qs−1
s∑

i=1

i(q−1)i−1 = qs−1 · (s + 1)q−s(q−1 − 1) − (q−(s+1) − 1)

(q−1 − 1)2

= qs−1 · q−s+1

(q − 1)2

(
qs+1 − q(s + 1) + s

)
.

From these, we deduce N(2m ,d j ,k) = 3 · qs+1−1
q−1 + 4 · 1

(q−1)2
(
qs+1 − q(s + 1) + s

)
,

and hence N(2m ,d j ,k) = (3q+1)qs+1−q(4s+7)+4s+3
(q−1)2

where s = k−1
2 .

When k is even, the conclusion can be proved similarly. We omit this here.
(ii) It follows from (i) and Lemma 2.1. ��
For the special cases of k = 2, 3, 4, 5, we have the following conclusions.

Corollary 2.5 Let 2 ≤ k ≤ 5. The number of all ideals in K j [u]/〈uk〉 is

N(2m ,d j ,k) =

⎧
⎪⎪⎨

⎪⎪⎩

5 + 2d jm, when k = 2;
9 + 5 · 2d jm + 22d jm, when k = 4;
7 + 3 · 2d jm, when k = 3;
11 + 7 · 2d jm + 3 · 22d jm, when k = 5.

Finally, let n = 1 andm = 1. Then r = 1 and d1 = 1 in this case. We denote by Lk

the number of ideals in the ring (F2+uF2+···+uk−1
F2)[x]

〈x2−1〉 , where k ≥ 2. By Theorem 2.4,
we have that

Lk = N(2,1,k) =
{
10 · 2 k

2 − 2k − 9 if 2 | k;
14 · 2 k−1

2 − 2k − 9 if 2 � k.

For examples, we have L2 = 7, L4 = 23, L6 = 59, L8 = 135; L3 = 13, L5 = 37,
L7 = 89 and L9 = 197.

3 An explicit representation and enumeration for self-dual cyclic
codes over R of length 2n

In this section, we give an explicit representation for self-dual cyclic codes over R of
length 2n and a precise mass formula to count the number of these codes.

For any polynomial f (x) = ∑d
l=0 al x

l ∈ F2m [x] of degree d ≥ 1, recall that the
reciprocal polynomial of f (x) is defined as f̃ (x) = xd f ( 1x ) = ∑d

l=0 al x
d−l , and

f (x) is said to be self-reciprocal if f̃ (x) = δ f (x) for some δ ∈ F
×
2m . Then by Eq. (1)

in Sect. 2, it follows that

xn − 1 = xn + 1 = f̃1(x) f̃2(x) . . . f̃r (x).

Since f1(x) = x + 1, f2(x), . . . , fr (x) are pairwise coprime monic irreducible poly-
nomials in F2m [x], f̃1(x) = x + 1, f̃2(x), . . . , f̃r (x) are pairwise coprime irreducible
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polynomials in F2m [x] as well. Hence for each integer j , 1 ≤ j ≤ r , there is a unique
integer j ′, 1 ≤ j ′ ≤ r , such that

f̃ j (x) = δ j f j ′(x) where δ j ∈ F
×
2m .

After a rearrangement of f2(x), . . . , fr (x), there are integers λ, ε such that

• λ + 2ε = r where λ ≥ 1 and ε ≥ 0;

• f̃ j (x) = δ j f j (x), where δ j ∈ F
×
2m , for all j = 1, . . . , λ;

• f̃ j (x) = δ j f j+ε(x), where δ j ∈ F
×
2m , for all j = λ + 1, . . . , λ + ε.

Let 1 ≤ j ≤ r . Since f j (x)2 is a divisor of x2n −1, we have x2n ≡ 1 (mod f j (x)2),

i.e. x2n = 1 in the ring K j = F2m [x]
〈 f j (x)2〉 . This implies that

x−d = x2n−d in K j [u]/〈uk〉, 1 ≤ d ≤ 2n − 1.

For any integer s, 1 ≤ s ≤ k, and ω = ω(x) ∈ F j [u]
〈us 〉 , by Lemma 2.2(ii) we know that

ω(x) has a unique u-adic expansion:

ω(x) =
s−1∑

i=0

uiai (x), a0(x), a1(x), . . . , as−1(x) ∈ F j .

To simplify the expressions, we adopt the following notation in this paper:

• ω̂ = ω(x−1) = a0(x−1) + ua1(x−1) + · · · + us−1as−1(x−1) (mod f j (x)), when
1 ≤ j ≤ λ;

• ω̂ = ω(x−1) = a0(x−1)+ua1(x−1)+· · ·+us−1as−1(x−1) (mod f j+ε(x)), when
λ + 1 ≤ j ≤ λ + ε.

• Θ j,s = {ω ∈ (
F j [u]
〈us 〉 )× | ω + δ j x2n−d j ω̂ ≡ 0 (mod f j (x))}, where 1 ≤ j ≤ λ and

1 ≤ s ≤ k − 1.

For self-dual cyclic codes over R, using the notation above and by [7, Theorem
3.6], we have the following conclusion.

Theorem 3.1 Using the notations above, all distinct self-dual cyclic codes over the
ring R of length 2n are given by:

C =
(
⊕λ

j=1ε j (x)C j

)
⊕

(
⊕λ+ε

j=λ+1(ε j (x)C j ⊕ ε j+ε(x)C j+ε)
)

,

where C j is an ideal of K j [u]/〈uk〉 determined by the following conditions:

(i) If 1 ≤ j ≤ λ, C j is determined by the following conditions:

(†) When k is even, C j is given by one of the following six cases:

(†-1) C j = 〈u k
2 〉.

(†-2) C j = 〈 f j (x)〉.
(†-3) C j = 〈u k

2 + ut f j (x)ω〉, where ω ∈ Θ j, k2−t and 0 ≤ t ≤ k
2 − 1.
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(†-4) C j = 〈ui + f j (x)ω〉, where ω ∈ Θ j,k−i and
k
2 + 1 ≤ i ≤ k − 1.

(†-5) C j = 〈ui , uk−i f j (x)〉, where k
2 + 1 ≤ i ≤ k − 1.

(†-6) C j = 〈ui + ut f j (x)ω, uk−i f j (x)〉, where ω ∈ Θ j,k−i−t , 1 ≤ t <

k − i and k
2 + 1 ≤ i ≤ k − 2.

(‡) When k is odd, C j is given by one of the following four cases:
(‡-1) C j = 〈 f j (x)〉.
(‡-2) C j = 〈ui + f j (x)ω〉, where ω ∈ Θ j,k−i and

k+1
2 ≤ i ≤ k − 1.

(‡-3) C j = 〈ui , uk−i f j (x)〉, where k+1
2 ≤ i ≤ k − 1.

(‡-4) C j = 〈ui + ut f j (x)ω, uk−i f j (x)〉, where ω ∈ Θ j,k−i−t , 1 ≤ t <

k − i and k+1
2 ≤ i ≤ k − 2.

(ii) If λ + 1 ≤ j ≤ λ + ε, then (C j ,C j+ε) is given by one of the N(2m ,d j ,k) pairs
listed in the below table:

C j (mod f j (x)
2) C j+ε (mod f j+ε(x)

2)

• 〈ui 〉 (0 ≤ i ≤ k) � 〈uk−i 〉
• 〈us f j (x)〉 (0 ≤ s ≤ k − 1) � 〈uk−s , f j+ε(x)〉
• 〈ui + ut f j (x)ω〉 � 〈uk−i + uk+t−2i f j+ε(x)ω

′〉
(ω ∈ (

F j [u]
〈ui−t 〉 )

×, ω′ = δ j x
2n−d j ω̂ (mod f j+ε(x))

t ≥ 2i − k, 0 ≤ t < i ≤ k − 1)

• 〈ui + f j (x)ω〉 � 〈ui + f j+ε(x)ω
′〉

(ω ∈ (
F j [u]
〈uk−i 〉 )

×, ω′ = δ j x
2n−d j ω̂ (mod f j+ε(x))

2i > k, 0 < i ≤ k − 1)

• 〈ui + ut f j (x)ω〉 � 〈ui−t + f j+ε(x)ω
′, uk−i f j+ε(x)〉

(ω ∈ (
F j [u]
〈uk−i 〉 )

×, ω′ = δ j x
2n−d j ω̂ (mod f j+ε(x))

t < 2i − k, 1 ≤ t < i ≤ k − 1)

• 〈ui , us f j (x)〉 � 〈uk−s , uk−i f j+ε(x)〉
(0 ≤ s < i ≤ k − 1)

• 〈ui + f j (x)ω, us f j (x)〉 � 〈uk−s + uk−i−s f j+ε(x)ω
′〉

(ω ∈ (
F j [u]
〈us 〉 )×, ω′ = δ j x

2n−d j ω̂ (mod f j+ε(x))

i + s ≤ k − 1, 1 ≤ s < i ≤ k − 1)

• 〈ui + ut f j (x)ω, us f j (x)〉 � 〈uk−s + uk+t−i−s f j+ε(x)ω
′,

(ω ∈ (
F j [u]
〈us−t 〉 )

×, uk−i f j+ε(x)〉
i + s ≤ k + t − 1, ω′ = δ j x

2n−d j ω̂ (mod f j+ε(x))

1 ≤ t < s < i ≤ k − 2)

To listed all self-dual cyclic codes over R of length 2n, by Theorem 3.1 we need
to determine the set Θ j,s of elements ω ∈ (F j [u]/〈us〉)× satisfying

ω + δ j x
2n−d j ω̂ ≡ 0 (mod f j (x)) (3)
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for some integer s, 1 ≤ s ≤ k − 1, and for all j = 1, . . . , λ. To do this, we need the
following lemma.

Lemma 3.2 Using the notation above, let 1 ≤ j ≤ r . We have the following:

(i) δ j = 1 for all j = 1, . . . , λ.
(ii) d1 = 1, and 2 | d j for all j = 2, . . . , λ.

Proof (i) As 1 ≤ j ≤ λ, we have f̃ j (x) = δ j f j (x) where δ j ∈ F
×
2m . Since f j (x)

is a monic irreducible divisor of xn − 1 in F2m [x], we have that f j (x) = ˜̃f j (x) =
δ j f̃ j (x) = δ2j f j (x). This implies δ2j = 1, and hence δ j = 1 in F2m .

(ii) Assume that a ∈ F
×
2m and f (x) = x − a is a self-reciprocal polynomial. Then

there exists δ ∈ F
×
2m such that δx − δa = δ f (x) = f̃ (x) = 1 − ax . This implies that

δ = −a and−δa = 1. From this, we deduce that a2 = 1, and hence a = 1. Therefore,
f1(x) = x − 1 is the only self-reciprocal and monic irreducible divisor of xn − 1 in
F2m [x] with degree 1.

Now, let 2 ≤ j ≤ r . Then f j (x) is a self-reciprocal and monic irreducible divisor
of xn − 1 in F2m [x] with degree deg( f j (x)) = d j > 1. This implies that d j is even
from finite field theory. ��

Now, all distinct self-dual cyclic codes over R of length 2n can be listed explicitly
by Theorem 3.1 and the following theorem.

Theorem 3.3 Using the notation above, let 1 ≤ j ≤ r and 1 ≤ s ≤ k − 1. Then the
set Θ j,s is determined as follows:

(i) If j = 1, then

Θ1,s = (
F2m [u]
〈us〉 )× =

{
s−1∑

i=0

aiu
i | a0 �= 0, ai ∈ F2m , i = 0, 1, . . . , s − 1

}

.

Hence |Θ1,s | = (2m − 1)2(s−1)m.
(ii) Let 2 ≤ j ≤ r , and let � j (x) be a primitive element of the finite fieldF j = F2m [x]

〈 f j (x)〉 .
Then we have

Θ j,1 =
{

x− d j
2 � j (x)

l(2
d j
2 m+1) | l = 0, 1, . . . , 2

d j
2 m − 2

}

⊆ F j ;

and for any integer s, 2 ≤ s ≤ k − 1, we have

Θ j,s =
{
s−1∑

i=0

ai (x)u
i | a0(x) ∈ Θ j,1; ai (x) ∈ {0} ∪ Θ j,1, 1 ≤ i ≤ s − 1

}

.

Therefore, |Θ j,s | = (2
d j
2 m − 1)2(s−1)

d j
2 m for all s = 1, 2, . . . , k − 1.
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Proof (i) Let j = 1. By f1(x) = x − 1 and Lemma 2.2(ii), we have that x ≡ 1 (mod
f1(x)), F1 = F2m [x]

〈x−1〉 = F2m and

(F j [u]/〈us〉)× =
{
s−1∑

i=0

aiu
i | a0 �= 0, ai ∈ F2m , i = 0, 1, . . . , s − 1

}

.

In this case, by Lemma 3.2, Condition (3) is simplified to

ω + ω̂ = ω + ω ≡ 0 (mod x − 1). (4)

It is clear that every elements ω ∈ (F j [u]/〈us〉)× satisfies the above condition. Hence
Θ1,s = (F j [u]/〈us〉)× and |Θ1,s | = (2m − 1)2(s−1)m .

(ii) Let 2 ≤ j ≤ λ. Then d j is even and it is well known that

x−1 = x2
m
d j
2 in F j . (5)

Let ω = ω(x) ∈ (F j [u]/〈us〉)×. By Lemma 2.2(ii), ω(x) has a unique u-adic expan-
sion: ω(x) = ∑s−1

i=0 u
iai (x), a0(x) �= 0, where a0(x), a1(x), . . . , as−1(x) ∈ F j =

F2m [x]
〈 f j (x)〉 .

As gcd(x, f j (x)) = 1, Condition (3) for ω = ω(x) ∈ (F j [u]/〈us〉)× is trans-

formed to x
d j
2 ω(x) + x− d j

2 ω(x−1) ≡ 0 (mod f j (x)) by Lemma 3.2(i). Let’s

write it down specifically:
∑s−1

i=0 u
i
(

x
d j
2 ai (x)

)

+ ∑s−1
i=0 u

i
(

x− d j
2 ai (x−1)

)

≡
0 (mod f j (x)). This is equivalent to the following congruence relations

x
d j
2 ai (x) + x− d j

2 ai (x
−1) ≡ 0 (mod f j (x)), i = 0, 1, . . . , s − 1. (6)

For each 0 ≤ i ≤ s − 1, let ξi (x) = x
d j
2 ai (x) ∈ F j . Then

ai (x) = x− d j
2 ξi (x) ∈ F j . (7)

For any b ∈ F2m , by b2
m = b we have b2

d j
2 m = b(2m )

d j
2 = b in F2m ⊂ F j . Then

by x−1 = x2
d j
2 m

and ξi (x) = x
d j
2 ai (x) ∈ F j , it follows that

x− d j
2 ai (x

−1) = ξi (x
−1) = ξi (x)

2
d j
2 m

.

Therefore, Eq. (6) is equivalent to

ξi (x)

(

ξi (x)
2
d j
2 m−1 − 1

)

= ξi (x) + (ξi (x))
2
d j
2 m = 0 in F j , i = 0, 1, . . . , s − 1.
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From the latter condition, we deduce that ξi (x) = 0 when s ≥ 2 or ξi (x) ∈ F j

satisfying ξi (x)2
d j
2 m−1 = 1 for all s.

Since � j (x) is a primitive element ofF j , the multiplicative order of � j (x) is 2d jm −
1 = (2

d j
2 m +1)(2

d j
2 m −1). This implies that � j (x)2

d j
2 m+1 is a primitive (2

d j
2 m −1)th

root of unity. Hence ξi (x)2
d j
2 m−1 = 1 if and only if

ξi (x) =
(

� j (x)
2
d j
2 m+1

)l

= � j (x)
l(2

d j
2 m+1), 0 ≤ l ≤ 2

d j
2 m − 2.

Therefore, the conclusion for Θ j,s follows from Eq. (7) immediately. Moreover,

we have |Θ j,s | = |Θ j,1| ∏s
i=2(|Θ j,1| + 1) = (2

d j
2 m − 1)2(s−1)

d j
2 m for all s =

1, 2, . . . , k − 1. ��
Now is the time to give an explicit formula to count the number of all distinct

self-dual cyclic codes over the ring R of length 2n.

Corollary 3.4 Let NS(2m, k, n) be the number of all distinct self-dual cyclic codes
over the ring R of length 2n. Then

NS(2
m, k, n) =

⎛

⎜
⎝

k
2∑

s=0

2ms

⎞

⎟
⎠

⎛

⎜
⎝

λ∏

j=2

k
2∑

s=0

2
d j
2 ms

⎞

⎟
⎠

⎛

⎝
λ+ε∏

j=λ+1

N(2m ,d j ,k)

⎞

⎠ , when 2 | k;

NS(2
m, k, n) =

⎛

⎜
⎝

k−1
2∑

s=0

2ms

⎞

⎟
⎠

⎛

⎜
⎝

λ∏

j=2

k−1
2∑

s=0

2
d j
2 ms

⎞

⎟
⎠

⎛

⎝
λ+ε∏

j=λ+1

N(2m ,d j ,k)

⎞

⎠ , when 2 � k.

Proof Let k be even and 1 ≤ j ≤ λ. Then the number of ideals C j listed in (†) of
Theorem 3.1(i) is equal to

N j = 2 +
k
2−1∑

t=0

|Θ j, k2−t | +
k−1∑

i= k
2+1

|Θ j,k−i | + k − 1 − k

2
+

k−1∑

i= k
2+1

k−1−i∑

t=1

|Θ j,k−i−t |

= 1 + k

2
+ k

2
|Θ j,1| +

(
k

2
− 1

)

|Θ j,2| +
(
k

2
− 2

)

|Θ j,3| + 2|Θ j, k2−1| + |Θ j, k2
|

= 1 + k

2
+

k
2∑

s=1

(
k

2
− s + 1

)

|Θ j,s |.

By Theorem 3.3 (i) and (ii) respectively, we know |Θ1,s | = (2m − 1)2(s−1)m and

|Θ j,s | = (2
d j
2 m − 1)2(s−1)

d j
2 m when 2 ≤ j ≤ λ. Now, we set q1 = 2m and denote
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q j = 2
d j
2 m when 2 ≤ j ≤ λ, in the following. Then we have |Θ j,s | = qsj − qs−1

j for
all integers j , 1 ≤ j ≤ λ. From this, we obtain

N j = 1 + k

2
+ k

2
(q j − 1) +

(
k

2
− 1

)

(q2j − q j ) +
(
k

2
− 2

)

(q3j − q2j )

+
(
k

2
− 3

)

(q4j − q3j ) + · · · + 2

(

q
k
2−1
j − q

k
2−2
j

)

+
(

q
k
2
j − q

k
2−1
j

)

=
k
2∑

s=0

qsj .

Therefore, NS(2m, k, n) = N1(
∏λ

j=2 N j )(
∏λ+ε

j=λ+1 N(2m ,d j ,k)) by Theorem 3.1.
The conclusion for any odd integer k, k ≥ 3, can by proved similarly. Here, we

omit it. ��

4 Self-dual 2-quasi-cyclic codes of length 4n over F2m derived from
self-dual cyclic codes of length 2n over F2m + uF2m

In this section, We focus on self-dual cyclic codes of length 2n over R = F2m + uF2m

(u2 = 0), where n is odd. By Lemma 2.3, Corollary 2.5, Theorem 3.1, Theorem 3.3
and Corollary 3.4, we obtain the following conclusion.

Corollary 4.1 The number of self-dual cyclic codes of length 2n over the ring F2m +
uF2m (u2 = 0) is (1+2m) ·∏λ

j=2(1+2
d j
2 m) ·∏λ+ε

j=λ+1(5+2d jm). Precisely, all these
codes are given by

C =
(
⊕λ

j=1ε j (x)C j

)
⊕

(
⊕λ+ε

j=λ+1(ε j (x)C j ⊕ ε j+ε(x)C j+ε)
)

,

where C j is an ideal of K j + uK j (u2 = 0) listed as follows:

(i) C1 is one of the following 1 + 2m ideals:
〈u〉, 〈x − 1〉, 〈u + (x − 1)ω〉 where ω ∈ F2m and ω �= 0.

(ii) Let 2 ≤ j ≤ λ, and � j (x) is a primitive element of the finite field F j = F2m [x]
〈 f j (x)〉 .

Then C j is one of the following 1 + 2
d j
2 m ideals:

〈u〉, 〈 f j (x)〉;
〈u + f j (x)ω(x)〉, where ω(x) ∈ Θ j,1 and

Θ j,1 =
{

x− d j
2 � j (x)

l(2
d j
2 m+1) (mod f j (x)) | l = 0, 1, . . . , 2

d j
2 m − 2

}

.

(iii) Let λ+1 ≤ j ≤ λ+ ε. Then the pair (C j ,C j+ε) of ideals is one of the following
5+2d jm cases in the following table: whereL is the number of pairs (C j ,C j+ε)

in the same row,
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L C j (mod f j (x)
2) |C j | C j+ε (mod f j+ε(x)

2)

3 • 〈ui 〉 (i = 0, 1, 2) 4(2−i)d jm � 〈u2−i 〉
2 • 〈us f j (x)〉 (s = 0, 1) 2(2−s)d jm � 〈u2−s , f j+ε(x)〉
2d jm − 1 • 〈u + f j (x)ω〉 4d jm � 〈u + f j+ε(x)ω

′〉
1 • 〈u, f j (x)〉 23d jm � 〈u f j+ε(x)〉

ω = ω(x) ∈ F j = {∑d j−1
i=0 ai xi | a0, a1, . . . , ad j−1 ∈ F2m } and ω �= 0,

ω′ = δ j x−d j ω(x−1) (mod f j+ε(x)).

Remark For the cases of k = 3, 4, 5, we list all distinct self-dual cyclic codes of length
2n over the ring F2m [u]

〈uk 〉 in Appendix of this paper.
Now, let’s consider how to calculate the number of self-dual cyclic codes of length

2n over the ring R = F2m + uF2m directly from the odd positive integer n. Let
J1, J2, . . . , Jr be all the distinct 2m-cyclotomic cosets modulo n corresponding to the
factorization xn − 1 = f1(x) f2(x) . . . fr (x), where f1(x) = x − 1, f2(x), . . . , fr (x)
are distinct monic irreducible polynomials in F2m [x]. Then we have r = λ + 2ε and

• J1 = {0}, the set J j satisfies J j = −J j (mod n) and |J j | = d j for all j =
2, . . . , λ;

• Jλ+l+ε = −Jλ+l (mod n) and |Jλ+l | = |Jλ+l+ε | = dλ+l , for all l = 1, . . . , ε.

From this and by Corollary 4.1, we deduce that the number of self-dual cyclic codes
over R of length 2n is

(1 + 2m) ·
λ∏

j=2

(1 + 2
|J j |
2 m) ·

λ+ε∏

j=λ+1

(5 + 2|J j |m).

As an example, we list the number N of self-dual cyclic codes over F2 + uF2
of length 2n, where n is odd and 6 ≤ 2n ≤ 98, in the following table: where

2n N 2n N

6 9 = 3(1 + 2) 54 41553 = 3(1 + 2)(1 + 23)(1 + 29)
10 15 = 3(1 + 22) 58 49155 = 3(1 + 214)
14 39 = 3(5 + 23) 62 151959 = 3(5 + 25)3

18 81 = 3(1 + 2)(1 + 23) 66 323433 = 3(1 + 2)(1 + 25)3

22 99 = 3(1 + 25) 70 799695 = 3(1 + 22)(5 + 23)(5 + 212)
26 195 = 3(1 + 26) 74 786435 = 3(1 + 218)
30 945 = 3(1 + 2)(1 + 22)(5 + 24) 78 2399085 = 3(1 + 2)(1 + 26)(5 + 212)
34 867 = 3(1 + 24)2 82 3151875 = 3(1 + 210)2

38 1539 = 3(1 + 29) 86 6440067 = 3(1 + 27)3

42 8073 = 3(1 + 2)(5 + 23)(5 + 26) 90 34879005
46 6159 = 3(5 + 211) 94 25165839 = 3(5 + 223)
50 15375 = 3(1 + 22)(1 + 210) 98 81789123 = 3(5 + 23)(5 + 221)

34879005 = 3(1 + 2)(1 + 22)(1 + 23)(5 + 24)(5 + 212).
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Then we consider how to construct self-dual 2-quasi-cyclic codes of length 4n over
F2m from self-dual cyclic codes of length 2n over F2m + uF2m .

Let α = a + bu ∈ R where a, b ∈ F2m . As in [4], we define φ(α) = (b, a + b)
and define the Lee weight of α by wL(α) = wH (b, a + b), where wH (b, a + b) is the
Hamming weight of the vector (b, a + b) ∈ F

2
2m . Then φ is an isomorphism of F2m -

linear spaces from R onto F
2
2m , and can be extended to an isomorphism of F2m -linear

spaces from R[x]
〈x2n−1〉 onto F

4n
2m by the rule:

φ(ξ) = (b0, b1, . . . , b2n−1, a0 + b0, a1 + b1, . . . , a2n−1 + b2n−1), (8)

for all ξ = ∑2n−1
i=0 αi x i ∈ R[x]

〈x2n−1〉 , where αi = ai + biu with ai , bi ∈ F2m and
i = 0, 1, . . . , 2n − 1.

The following conclusion can be derived from [4, Corollary 14].

Lemma 4.2 Using the notation above, let C be an ideal of the ring R[x]
〈x2n−1〉 and set

φ(C) = {φ(ξ) | ξ ∈ C} ⊆ F
4n
2m . Then

(i) φ(C) is a 2-quasi-cyclic code over F2m of length 4n, i.e.,

(b2n−1, b0, b1, . . . , b2n−2, c2n−1, c0, c1, . . . , c2n−2) ∈ φ(C)

for all (b0, b1, . . . , b2n−2, b2n−1, c0, c1, . . . , c2n−2, c2n−1) ∈ φ(C).
(ii) The Hamming weight distribution of φ(C) is exactly the same as the Lee weight

distribution of C.
(iii) φ(C) is a self-dual code over F2m of length 4n if C is a self-dual code over R of

length 2n.

By Corollary 4.1, we can get a class of self-dual 2-quasi-cyclic codes over F2m of
length 4n from the class of self-dual cyclic code over R of length 2n and the Gray map
φ defined by Eq. (8). In the following, we consider how to give an efficient encoder for
each self-dual 2-quasi-cyclic code φ(C) of length 4n over F2m derived from a self-dual
cyclic code C of length 2n overF2m +uF2m . We denote by Atr the transpose of a matrix
A in this paper.

To simplify the symbol, in the following we identify each polynomial a(x) =
a0 + a1x + · · · + a2n−1x2n−1 ∈ F2m [x]

〈x2n−1〉 with the vector (a0, a1, . . . , a2n−1) ∈ F
2n
2m .

Moreover, for any integer 1 ≤ s ≤ n − 1 we denote:

[a(x)]s =

⎛

⎜
⎜
⎝

a(x)
xa(x)
. . .

xs−1a(x)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a0 a1 . . . a2n−2 a2n−1
a2n−1 a0 . . . a2n−3 a2n−2
. . . . . . . . . . . . . . .

a2n−s+1 a2n−s+2 . . . a2n−s−1 a2n−s

⎞

⎟
⎟
⎠ (9)

which is a matrix over F2m of size s × 2n.

Theorem 4.3 Using the notation above, every self-dual 2-quasi-cyclic code φ(C) of
length 4n overF2m derived from a self-dual cyclic code C of length 2n overF2m +uF2m
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has an F2m -generator matrix given by: G =

⎛

⎜
⎜
⎝

G1
G2
. . .

Gλ+ε

⎞

⎟
⎟
⎠ in which for each integer j ,

1 ≤ j ≤ r , G j is a matrix over F2m listed in the following:

(i) G1 is one of the following 1 + 2m matrices with size 2 × 4n:(
ε1(x) ε1(x)

(x − 1)ε1(x) (x − 1)ε1(x)

)

,

(
0 (x − 1)ε1(x)

(x − 1)ε1(x) (x − 1)ε1(x)

)

,
(

ε1(x) ε1(x) + (x − 1)ε1(x)ω
(x − 1)ε1(x) (x − 1)ε1(x)

)

where ω ∈ F2m and ω �= 0.

(ii) Let 2 ≤ j ≤ λ. Then G j is one of the following 1 + 2
d j
2 m matrices with size

2d j × 4n:( [ε j (x)]d j [ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

)

,

(
0 [ f j (x)ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

)

,
( [ε j (x)]d j [(1 + f j (x)ω(x))ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

)

where

ω(x) = x− d j
2 � j (x)

l(2
d j
2 m+1) (mod f j (x)), l = 0, 1, . . . , 2

d j
2 m − 2.

(iii) Let λ + 1 ≤ j ≤ λ + ε. Then G j is one of the following 5 + 2d jm matrices with
size 4d j × 4n:

⎛

⎜
⎜
⎝

0 [ε j (x)]d j

0 [ f j (x)ε j (x)]d j

[ε j (x)]d j [ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

[ε j (x)]d j [ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

[ε j+ε(x)]d j [ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

⎞

⎟
⎟
⎠ ;

⎛

⎜
⎜
⎝

0 [ε j+ε(x)]d j

0 [ f j+ε(x)ε j+ε(x)]d j

[ε j+ε(x)]d j [ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

⎞

⎟
⎟
⎠ ;

⎛

⎜
⎜
⎝

0 [ f j (x)ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

0 [ f j+ε(x)ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

[ε j+ε(x)]d j [ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

0 [ f j+ε(x)ε j+ε(x)]d j

⎞

⎟
⎟
⎠ ;
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⎛

⎜
⎜
⎝

[ε j (x)]d j [ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

0 [ f j (x)ε j (x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

⎞

⎟
⎟
⎠ ;

⎛

⎜
⎜
⎝

[ε j (x)]d j [(1 + f j (x)ω(x))ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

[ε j+ε(x)]d j [(1 + f j+ε(x)ω′(x))ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

⎞

⎟
⎟
⎠

where ω′(x) = δ j x−d j w(x−1) (mod f j+ε(x)), ω(x) ∈ F j and ω(x) �= 0.

Proof Let C be a self-dual cyclic code over F2m + uF2m of length 2n. By Corollary
4.1, C has a unique direct decomposition:

C = C1 ⊕ C2 ⊕ . . . ⊕ Cλ+ε, (10)

where C j = ε j (x)C j = {ε j (x)ξ | ξ ∈ C j } (mod x2n − 1) for all j = 1, . . . , λ,
C j = ε j (x)C j ⊕ ε j+ε(x)C j+ε (mod x2n − 1) for all j = λ + 1, . . . , λ + ε, and

– C1 is given by Corollary 4.1(i);
– C j is given by Corollary 4.1(ii) for all j = 2, . . . λ;
– (C j ,C j+ε) is given by Corollary 4.1(iii) for all j = λ + 1, . . . , λ + ε.

Now, let α(x) be an arbitrary element in the ring K j + uK j (u2 = 0) where K j =
F2m [x]
〈 f j (x)2〉 . Then there is a unique tuple (α0, α1, α2, α3) of elements inF j = F2m [x]

〈 f j (x)〉 ⊂ K j

such that
α = (

α0 + α1 f j (x)
) + u

(
α2 + α3 f j (x)

)
. (11)

Since {1, x, . . . , xd j−1} is an F2m -basis of F j , for each integer 0 ≤ t ≤ 3 there is a

unique row matrix at = (at,0, at,1, . . . , at,d j−1) ∈ F
d j
2m such that

αt = at,0 + at,1x + · · · + at,d j−1x
d j−1 = at Xd j , (12)

where Xdj = (1, x, . . . , xd j−1)tr .
Let Dj = Dj;(g(x),h(x)) = 〈g(x)+uh(x)〉be an ideal of the ringK j+uK j generated

by g(x)+uh(x), where g(x), h(x) ∈ K j = F2m [x]
〈 f j (x)2〉 , and denoteD j = ε j (x)Dj . Then

D j is an F2m -subspace ofA+ uA, whereA = F2m [x]
〈x2n−1〉 , and the F2m -dimension ofD j

is log2m |Dj |. Hence dimF2m (D j ) = l if |Dj | = 2ml . Now, we claim that a generator
matrix of the F2m -subspace φ(D j ) is the following:

G j;(g(x),h(x)) =

⎛

⎜
⎜
⎝

[h(x)ε j (x)]d j [(g(x) + h(x))ε j (x)]d j

[ f j (x)h(x)ε j (x)]d j [ f j (x)(g(x) + h(x))ε j (x)]d j

[g(x)ε j (x)]d j [g(x)ε j (x)]d j

[ f j (x)g(x)ε j (x)]d j [ f j (x)g(x)ε j (x)]d j

⎞

⎟
⎟
⎠ . (13)
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In fact, by Eq. (11), each element ξ of Dj is of the form:

ξ = α(g(x) + uh(x))

= (α0 + α1 f j (x))g(x) + u
(
(α0 + α1 f j (x))h(x) + (α2 + α3 f j (x))g(x)

)
.

Then by Eq. (8) in Sect. 4 and Eq. (12), we have

φ(ε j (x)ξ) = (
(α0 + α1 f j (x))h(x)ε j (x) + (α2 + α3 f j (x))g(x)ε j (x),

(α0 + α1 f j (x))(g(x) + h(x))ε j (x) + (α2 + α3 f j (x))g(x)ε j (x)
)

= (α0, α1, α2, α3)

⎛

⎜
⎜
⎝

h(x)ε j (x) (g(x) + h(x))ε j (x)
f j (x)h(x)ε j (x) f j (x)(g(x) + h(x))ε j (x)
g(x)ε j (x) g(x)ε j (x)

f j (x)g(x)ε j (x) f j (x)g(x)ε j (x)

⎞

⎟
⎟
⎠

= (a0, a1, a2, a3)G j;(g(x),h(x)).

From this, we deduce that the F2m -subspace φ(D j ) is generated by the row vectors of
G j;(g(x),h(x)). Hence G j;(g(x),h(x)) is a generator matrix over F2m .

♦ Let consider Case (ii) first. Let 2 ≤ j ≤ λ and C j be an ideal ofK j +uK j given
by Corollary 4.1(ii). Then we have one of the following three cases:

(ii-1) C j = 〈u〉 = Dj;(0,1). In this case, we have g(x) = 0 and h(x) = 1.
Then by Eq. (13), G j;(0,1) is a generator matrix of φ(C j ) over F2m . By deleting
the bottom zero row vectors of G j;(0,1), a generator matrix of φ(C j ) over F2m is

given by G j =
( [ε j (x)]d j [ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

)

. Then by |C j | = 2md j , we have

dimF2m (φ(C j )) = 2d j .
(ii-2) C j = 〈 f j (x)〉 = Dj;( f j (x),0). In this case, we have g(x) = f j (x) and

h(x) = 0. Then by Eq. (13), G j;( f j (x),0) is a generator matrix of φ(C j ) over F2m . As
f j (x)2 = 0 inK j , both the second row and the 4th row of the block matrixG j;( f j (x),0)
are zero vector. By deleting the two zero row vectors ofG j;( f j (x),0), a generator matrix

of φ(C j ) over F2m is given by G j =
(

0 [ f j (x)ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

)

. Then by

|C j | = 2md j , we have dimF2m (φ(C j )) = 2d j .
(ii-3) C j = 〈u + f j (x)ω(x)〉 = Dj;( f j (x)ω(x),1). In this case, we have g(x) =

f j (x)ω(x) and h(x) = 1. Then by Eq. (13), G j;( f j (x)ω(x),1) is a generator matrix of
φ(C j ) over F2m . As f j (x)2 = 0 in K j , we have f j (x)g(x) = 0 and f j (x)(g(x) +
h(x)) = f j (x). Hence

G j;( f j (x)ω(x),1) =

⎛

⎜
⎜
⎝

[ε j (x)]d j [( f j (x)ω(x) + 1)ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

[ f j (x)ω(x)ε j (x)]d j [ f j (x)ω(x)ε j (x)]d j

0 0

⎞

⎟
⎟
⎠ .

Sinceω(x) is a polynomial in F2m [x] of degree less than d j −1 byω(x) ∈ F×
j , we see

that every row vector of the matrix [ f j (x)ω(x)ε j (x)]d j is an F2m -linear combination

123



478 Y. Cao et al.

of the row vectors of [ f j (x)ε j (x)]d j . Hence a generator matrix of φ(C j ) over F2m is

given by G j =
( [ε j (x)]d j [(1 + f j (x)ω(x))ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

)

.

♦ The conclusions in Case (i) can be proved similarly as that in Case (ii) above.
♦ We consider Case (iii). Let C j = ε j (x)C j ⊕ ε j+ε(x)C j+ε , where λ + 1 ≤ j ≤

λ+ ε and the pair (C j ,C j+ε) of ideals is given by the table in Corollary 4.1. Then we
have φ(C j ) = φ(ε j (x)C j ) ⊕ φ(ε j+ε(x)C j+ε) and dimF2m (φ(C j ) = 4d j . Therefore,

a generator matrix of φ(C j ) over F2m is given by G j =
(
A
B

)

, where A and B are

generator matrices of φ(ε j (x)C j ) and φ(ε j+ε(x)C j+ε) over F2m respectively. Using
Eq. (13), matrices A and B can be determined similarly as that in Case (ii) above.
Here are some cases:

� Let C j = 〈1〉 = Dj;(1,0) and C j+ε = {0}. Then B = 0, and by Eq. (13) we have

A =

⎛

⎜
⎜
⎝

0 [ε j (x)]d j

0 [ f j (x)ε j (x)]d j

[ε j (x)]d j [ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

⎞

⎟
⎟
⎠ .

� Let C j = 〈u〉 = Dj;(0,1) and C j+ε = 〈u〉 = Dj+ε;(0,1). Then by the proof

of (ii) and d j+ε = d j , we deduce that A =
( [ε j (x)]d j [ε j (x)]d j

[ f j (x)ε j (x)]d j [ f j (x)ε j (x)]d j

)

and

B =
( [ε j+ε(x)]d j [ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

)

.

� Let C j = 〈u f j (x)〉 = Dj;(0, f j (x)) and C j+ε = 〈u, f j+ε(x)〉 = 〈u〉 +
〈 f j+ε(x)〉 = Dj+ε;(0,1) + Dj+ε;( f j+ε (x),0). Then by the proof of (ii), we see

that B1 =
( [ε j+ε(x)]d j [ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

)

is a generator matrix of

φ(ε j+ε(x)Dj+ε;(0,1)) and B2 =
(

0 [ f j+ε(x)ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

)

is a

generator matrix of φ(ε j+ε(x)Dj+ε;( f j+ε (x),0)). Since the last row of the block
matrices B1 and B2 are the same, a generator matrix of φ(ε j (x)C j+ε) is given by

B =
⎛

⎝
[ε j+ε(x)]d j [ε j+ε(x)]d j

[ f j+ε(x)ε j+ε(x)]d j [ f j+ε(x)ε j+ε(x)]d j

0 [ f j+ε(x)ε j+ε(x)]d j

⎞

⎠.

From Eq. (13), we deduce that A = ([ f j (x)ε j (x)]d j , [ f j (x)ε j (x)]d j

)
is a a gener-

ator matrix of φ(ε j (x)C j ) = φ(ε j (x)Dj;(0, f j (x))), since u2 = 0 and f j (x)2 = 0.
� The other conclusion in Case (iii) can be proved similarly. Here, we omit these

details. ��
As the end of this section, we list all distinct self-dual cyclic codes C over F2 +uF2

of length 30. We have x15 − 1 = f1(x) f2(x) f3(x) f4(x) f5(x), where

– f1(x) = x − 1, f2(x) = x2 + x + 1, f3(x) = x4 + x3 + x2 + x + 1,
– f4(x) = x4 + x + 1 and f5(x) = x4 + x3 + 1

are irreducible polynomials in F2[x] satisfying f̃ j (x) = f j (x) for all j = 1, 2, 3,
and f̃4(x) = f5(x) with δ4 = 1. Hence r = 5, λ = 3, ε = 1, d1 = 1, d2 = 2 and
d3 = d4 = d5 = 4.
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Using the notation in Sect. 2, we have

ε1(x) =x28 + x26 + x24 + x22 + x20 + x18 + x16 + x14 + x12 + x10 + x8 + x6

+ x4 + x2 + 1,

ε2(x) =x28 + x26 + x22 + x20 + x16 + x14 + x10 + x8 + x4 + x2,

ε3(x) =x28 + x26 + x24 + x22 + x18 + x16 + x14 + x12 + x8 + x6 + x4 + x2,

ε4(x) =x24 + x18 + x16 + x12 + x8 + x6 + x4 + x2,

ε5(x) =x28 + x26 + x24 + x22 + x18 + x14 + x12 + x6.

Obviously, x is a primitive element of the finite field F2 = F2[x]〈 f2(x)〉 and

Θ2,1 = {x− 2
2 xl(2

2
2 +1) | l = 2

2
2 − 2 = 0} = {x + 1} (mod f2(x));

x + 1 is a primitive element of the finite field F3 = F2[x]〈 f3(x)〉 and

Θ3,1 = {x− 4
2 (x + 1)l(2

4
2 +1) | l = 0, 1, 2

4
2 − 2 = 2} (mod f3(x))

= {x3, x3 + x + 1, x + 1}.

Moreover, for anyω(x) = a+bx+cx2+dx3 ∈ F3 = F2[x]〈 f4(x)〉 satisfying (a, b, c, d) ∈
F
4
2 \ {(0, 0, 0, 0)}, we have

ω′(x) = δ4x
−4ω(x−1) = x11ω(x14) (mod f5(x) = x4 + x3 + 1)

= (a + b + d)x3 + (a + c + d)x2 + (b + d)x + a + c.

Let K j = F2[x]
〈 f j (x)2〉 for all j = 1, 2, 3, 4, 5. By Corollary 4.1, all 945 self-dual cyclic

codes over F2 + uF2 of length 30 are given by

C = C1 ⊕ C2 ⊕ C3 ⊕ C4,

where

– C1 = ε1(x)C1, C1 is one of the following 3 ideals of the ring K1 + uK1: 〈u〉,
〈(x − 1)〉, 〈u + (x − 1)〉.

– C2 = ε2(x)C2, C2 is one of the following 3 ideals of the ring K2 + uK2: 〈u〉,
〈(x2 + x + 1)〉, 〈u + (x2 + x + 1) · (x + 1)〉.

– C3 = ε3(x)C3, C3 is one of the following 5 ideals of the ring K3 + uK3: 〈u〉,
〈(x4 + x3 + x2 + x + 1)〉, 〈u + (x4 + x3 + x2 + x + 1) · ω(x)〉 with ω(x) ∈ Θ3,1.

– C4 = ε4(x)C4 ⊕ ε5(x)C5, C j is an ideal of the ring K j + uK j for j = 4, 5, and
the pair (C4,C5) is one of the following 21 cases:

C4 = 〈ui 〉 and C5 = 〈u2−i 〉, where i = 0, 1, 2;
C4 = 〈 f4(x)〉 and C5 = 〈 f5(x)〉;
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C4 = 〈u f4(x)〉 and C5 = 〈u, f5(x)〉;
C4 = 〈u, f4(x)〉 and C5 = 〈u f5(x)〉;
C4 = 〈u+ f4(x)(a+bx +cx2 +dx3)〉 and C5 = 〈u+ f5(x)((a+b+d)x3 +
(a + c + d)x2 + (b + d)x + a + c)〉, where (a, b, c, d) ∈ F

4
2 \ {(0, 0, 0, 0)}.

Finally, by Lemma 4.2 and Theorem 4.3 we obtain 945 binary self-dual 2-quasi-
cyclic codes φ(C) of length 60. For example, among these codes we have the following
48 self-dual and 2-quasi-cyclic codes φ(C) with basic parameters [60, 30, 8], which
are determined by:

– C2 is 〈u〉 or 〈u + (x2 + x + 1) · (x + 1)〉.
– The pair (C4,C5) is (〈ui 〉, 〈u2−i 〉), for i = 0, 2.
– The pair (C1,C3) is one of the following 12 cases:

� C1 = 〈u〉, and C3 is one of the following 4 ideals:
〈(x4+x3+x2+x+1)〉, 〈u+(x4+x3+x2+x+1) ·ω(x)〉withω(x) ∈ Θ3,1;
� C1 = 〈(x − 1)〉, and C3 is one of the following 4 ideals:
〈u〉, 〈u + (x4 + x3 + x2 + x + 1) · ω(x)〉 with ω(x) ∈ Θ3,1;
� C1 = 〈u + (x − 1)〉, and C3 is one of the following 4 ideals:
〈u〉, 〈(x4 + x3 + x2 + x + 1)〉, 〈u + (x4 + x3 + x2 + x + 1) · ω(x)〉 with
ω(x) ∈ {x3, x3 + x + 1}.

5 The hull of every cyclic code with length 2n over F2m + uF2m

In this section, we determine the hull of each cyclic code over F2m +uF2m with length
2n where n is odd.

As a generalization for the hull of a linear code over finite field, for any linear code
C of length 2n over the ring F2m +uF2m , the hull of C is defined by Hull(C) = C∩C⊥.

Let φ be the isomorphism ofF2m -linear spaces from
(F2m+uF2m )[x]

〈x2n−1〉 ontoF
4n
2m defined

by Eq. (8) in Sect. 4. Then from properties for ideals in a ring and Lemma 4.2, we
deduce the following conclusion immediately.

Proposition 5.1 Let C be a cyclic code of length 2n over F2m + uF2m and φ(C) be
defined as in Lemma 4.2. Then

(i) Hull(C) is a cyclic code over F2m + uF2m of length 2n.
(ii) Hull(φ(C)) = φ(C) ∩ (φ(C))⊥ is a 2-quasi-cyclic code over F2m of length 4n,

and Hull(φ(C)) = φ(Hull(C)).
(iii) The Hamming weight distribution of Hull(φ(C)) is exactly the same as the Lee

weight distribution of Hull(C).

It is known that a class of entanglement-assisted quantum error correcting codes
(EAQECCs) can be constructed from classical codes and their basic parameters are
related to the hulls of classical codes ([11, Corollary 3.1]):
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Let C be a classical [n, k, d]q linear code and C⊥ its Euclidean dual with
parameters [n, n − k, d⊥]q . Then there exist [[n, k − dim(Hull(C)), d; n −
k − dim(Hull(C))]]q and [[n, n − k − dim(Hull(C)), d⊥; k − dim(Hull(C))]]q
EAQECCs. Further, if C is MDS then the two EAQECCs are also MDS.

Using the notation in the beginning of Sect. 3, we denote

�( j) =
⎧
⎨

⎩

j, when 1 ≤ j ≤ λ;
j + ε, when λ + 1 ≤ j ≤ λ + ε;
j − ε, when λ + ε + 1 ≤ j ≤ λ + 2ε.

The dual code for every cyclic code of length 2n over F2m [u]
〈uk 〉 , where k ≥ 2, has been

determined by [7, Theorem 3.5]. In particular, we have the following:

Lemma 5.2 Let C be a cyclic code of length 2n over F2m + uF2m (u2 = 0) with
canonical form decomposition C = ⊕r

j=1 ε j (x)C j , where C j is an ideal ofK j +uK j .
Then

• |C| = ∏r
j=1 |C j | and dimF2m (C) = ∑r

j=1 dimF2m (C j ).

• The dual code of C is given by C⊥ = ⊕r
j=1 ε j (x)Dj , where D j is an ideal

of K j + uK j determined by the following table for all j = 1, . . . , r: where

L C j (mod f j (x)
2) |C j | κ j D�( j) (mod f�( j)(x)

2)

1 • 〈0〉 1 0 � 〈1〉
1 • 〈1〉 42d jm 4d j � 〈0〉
1 • 〈u〉 4d jm 2d j � 〈u〉
1 • 〈 f j (x)〉 4d jm 2d j � 〈 f�( j)(x)〉
1 • 〈u f j (x)〉 2d jm d j � 〈u, f�( j)(x)〉
2d jm − 1 • 〈u + f j (x)ω〉 4d jm 2d j � 〈u + f�( j)(x)ω

′〉
1 • 〈u, f j (x)〉 23d jm 3d j � 〈u f�( j)(x)〉

κ j = dimF2m (C j ), L is the number of pairs (C j , D�( j)) in the same row, and

ω = ω(x) ∈ F j = {∑d j−1
i=0 ai xi | a0, a1, . . . , ad j−1 ∈ F2m } and ω �= 0,

ω′ = δ j x−d j ω(x−1) (mod f�( j)(x)).

For each integer j , 1 ≤ j ≤ r , let F j \ {0} = {ω1, . . . , ω2d j m−1}. Then the ideal
lattice of the ring K j + uK j is the following figure.
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〈1〉

〈u, f j (x)〉

〈 f j (x)〉 〈u〉 〈u + f j (x)ω1〉 . . . 〈u + f j (x)ω2d j m−1〉

〈u f j (x)〉

〈0〉

Then we have the following conclusion.

Theorem 5.3 Let C be a cyclic code of length 2n over F2m +uF2m with canonical form
decomposition C = ⊕r

j=1 ε j (x)C j , where C j is an ideal ofK j + uK j . Then the Hull
of C is given by

Hull(C) =
r⊕

j=1

ε j (x)Hj ,

where Hj is an ideal of K j + uK j determined by the following conditions for all
j = 1, . . . , r:

(i) Let j = 1. Then

H1 =

⎧
⎪⎪⎨

⎪⎪⎩

〈0〉, if C1 = 〈0〉 or 〈1〉;
〈u(x − 1)〉, if C1 = 〈u(x − 1)〉 or 〈u, x − 1〉;
〈x − 1〉, if C1 = 〈x − 1〉;
〈u + (x − 1)a〉, if C1 = 〈u + (x − 1)a〉 where a ∈ F2m .

(ii) Let 2 ≤ j ≤ λ. Then

Hj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈0〉, if C j = 〈0〉 or 〈1〉;
〈u f j (x)〉, if C j = 〈u f j (x)〉 or 〈u, f j (x)〉;
〈 f j (x)〉, if C j = 〈 f j (x)〉;
〈u + f j (x)ω〉, if C j = 〈u + f j (x)ω〉 where ω ∈ {0} ∪ Θ j,1;
〈u f j (x)〉, if C j = 〈u + f j (x)ω〉 where 0 �= ω ∈ F j \ Θ j,1.
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(iii) Let λ + 1 ≤ j ≤ λ + ε. Then the pair (Hj , Hj+ε) of ideals is given by one of
the following six cases, where S j+ε is the set of all 5 + 2d jm ideals in the ring
K j+ε + uK j+ε listed by Lemma 5.2.

1. Let C j = 〈0〉. Then
� Hj = 〈0〉 and Hj+ε = C j+ε , for every C j+ε ∈ S j+ε .

2. Let C j = 〈u f j (x)〉. Then
� Hj = 〈0〉 and Hj+ε = 〈u, f j+ε(x)〉, if C j+ε = 〈1〉;
� Hj = 〈u f j (x)〉 and Hj+ε = C j+ε , if C j+ε ∈ S j+ε and C j+ε �= 〈1〉.

3. Let C j = 〈 f j (x)〉. Then
� Hj = 〈 f j (x)〉 and Hj+ε = 〈 f j+ε(x)〉, if C j+ε = 〈 f j+ε(x)〉;
� Hj = 〈u f j (x)〉 and Hj+ε = 〈 f j+ε(x)〉, if C j+ε = 〈u, f j+ε(x)〉;
� Hj = 〈0〉 and Hj+ε = 〈 f j+ε(x)〉, if C j+ε = 〈1〉;
� Hj = 〈 f j (x)〉 and Hj+ε = C j+ε , if C j+ε = 〈u f j+ε(x)〉, 〈0〉;
� Hj = 〈u f j (x)〉 and Hj+ε = 〈u f j+ε(x)〉,
if C j+ε = 〈u + f j+ε(x)ω′〉 for any ω′ ∈ F j+ε .

4. Let C j = 〈u + f j (x)ω0〉, where ω0 = ω0(x) ∈ F j . Denote ω′
0 = ω′

0(x) =
δ j x−d j ω0(x−1) (mod f j+ε(x)) in the following. Especially, we have ω′

0 = 0
when ω0 = 0. Then

� Hj = 〈u + f j (x)ω0〉 and Hj+ε = C j+ε ,
if C j+ε = 〈u f j+ε(x)〉, 〈u + f j+ε(x)ω′

0〉, 〈0〉;� Hj = 〈u f j (x)〉 and Hj+ε = 〈u+ f j+ε(x)ω′
0〉, if C j+ε = 〈u, f j+ε(x)〉;

� Hj = 〈0〉 and Hj+ε = 〈u + f j+ε(x)ω′
0〉, if C j+ε = 〈1〉;

� Hj = 〈u f j (x)〉 and Hj+ε = 〈u f j+ε(x)〉, if C j+ε = 〈 f j+ε(x)〉, 〈u +
f j+ε(x)ω′〉 where ω′ ∈ F j+ε \ {ω′

0}.
5. Let C j = 〈u, f j (x)〉. Then

� Hj = 〈u, f j (x)〉 and Hj+ε = 〈0〉, if C j+ε = 〈0〉;
� Hj = D�( j+ε) and Hj+ε = 〈u f j+ε(x)〉, if C j+ε ∈ S j+ε \ {〈0〉}.

6. Let C j = 〈1〉. Then
� Hj = D�( j+ε) and Hj+ε = 〈0〉, for every C j+ε ∈ S j+ε .

Moreover, we have that dimF2m (Hull(C)) = ∑r
j=1 dimF2m (Hj ).

Remark (†) In Cases 5 and 6 of (iii) above, by Lemma 5.2 and �( j + ε) = j the
ideal D�( j+ε) in the ring K j + uK j is determined by the following table: where L is

L C j+ε (mod f j+ε(x)
2) |C j+ε | D�( j) = Dj (mod f j (x)

2)

1 • 〈0〉 1 � 〈1〉
1 • 〈1〉 42d jm � 〈0〉
1 • 〈u〉 4d jm � 〈u〉
1 • 〈 f j+ε(x)〉 4d jm � 〈 f j (x)〉
1 • 〈u f j+ε(x)〉 2d jm � 〈u, f j (x)〉
2d jm − 1 • 〈u + f j+ε(x)ω〉 4d jm � 〈u + f j (x)ω

′〉
1 • 〈u, f j+ε(x)〉 23d jm � 〈u f j (x)〉
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the number of pairs (C j+ε, Dj ) in the same row, d j = d j+ε and

ω = ω(x) ∈ F j+ε = {
d j−1∑

i=0

ai x
i | a0, a1, . . . , ad j−1 ∈ F2m } and ω �= 0,

ω′ = δ j+εx
−d j ω(x−1)(mod f j (x)).

(‡) The F2m -dimension dimF2m (Hj ) can be obtained easily through the table in
Lemma 5.2.

Proof LetC⊥ = ⊕r
j=1 ε j (x)Dj , where Dj is an ideal of the ringK j+uK j determined

by Lemma 5.2 for j = 1, . . . , r . Since ε j (x)2 = ε j (x) and ε j (x)εl(x) = 0 in the ring
A for all j �= l and j, l = 1, . . . , r , by Lemma 2.1 it follows that Hull(C) = C∩C⊥ =⊕r

j=1 ε j (x)Hj where Hj = C j ∩ Dj for all j = 1, . . . , r . Then by Lemma 5.2 we
have the following three cases.

Case i: j = 1. In this case, we have �(1) = 1, f1(x) = x − 1 and F1 = F2m . By
Lemma 3.2, we know that δ1 = 1, d1 = 1 and ω′ = ω for any ω ∈ F2m \ {0}. Then
we have one of the following four subcases:

(i-1) Let C1 = 〈0〉 or 〈1〉. Then H1 = C1 ∩ D1 = 〈0〉.
(i-2) Let C1 = 〈u(x − 1)〉 or 〈u, x − 1〉. Then H1 = C1 ∩ D1 = 〈u(x − 1)〉.
(i-3) Let C1 = 〈x − 1〉. Then H1 = C1 ∩ D1 = 〈x − 1〉.
(i-4) Let C1 = 〈u + (x − 1)a〉, where a ∈ F2m . Then D1 = 〈u + (x − 1)a〉 by

Lemma 5.2. This implies H1 = C1 ∩ D1 = 〈u + (x − 1)a〉.
Case ii: 2 ≤ j ≤ λ. In this case, we have �( j) = j , F j = F2m [x]

〈 f j (x)〉 . By Lemma 3.2,
we know that δ j = 1. Then we have one of the following five subcases:

(ii-1) Let C j = 〈0〉 or 〈1〉. Then Hj = C j ∩ Dj = 〈0〉.
(ii-2) Let C j = 〈u f j (x)〉 or 〈u, f j (x)〉. Then Hj = C j ∩ Dj = 〈u f j (x)〉.
(ii-3) Let C j = 〈 f j (x)〉. Then Hj = C j ∩ Dj = 〈 f j (x)〉.
(ii-4) LetC j = 〈u+ f j (x)ω〉, whereω = ω(x) ∈ {0}∪Θ j,1. For anyω ∈ Θ j,1, by the

definition of the set Θ j,1 before Theorem 3.1, we have that ω = δ j x−d j ω̂ = ω′
in the finite field F j . This implies Dj = 〈u + f j (x)ω〉 for all ω ∈ {0} ∪ Θ j,1.
Hence Hj = C j ∩ Dj = 〈u + f j (x)ω〉.

(ii-5) Let C j = 〈u + f j (x)ω〉, where ω �= 0 and ω ∈ F j \ Θ j,1. By Lemma 5.2,
we have that Dj = 〈u + f j (x)ω′〉 and ω �= ω′. From this, we deduce that
Hj = C j ∩ Dj = 〈u f j (x)〉.

Case iii: λ + 1 ≤ j ≤ λ + ε. In this case, we have �( j) = j + ε, �( j + ε) = j ,
F j = F2m [x]

〈 f j (x)〉 andF j+ε = F2m [x]
〈 f j+ε (x)〉 . Thenwe have one of the following seven subcases:

(iii-1) C j = 〈0〉. In this case, by Lemma 5.2 we have Dj+ε = 〈1〉. This implies
Hj = C j ∩ Dj = 〈0〉 and Hj+ε = C j+ε ∩ Dj+ε = C j+ε for any ideal C j+ε of
K j+ε + uK j+ε by Lemma 5.2.

(iii-2) C j = 〈u f j (x)〉. In this case, we have Dj+ε = 〈u, f j+ε(x)〉. Then by
Lemma 5.2 we have the following conclusions:

� IfC j+ε = 〈1〉, then Dj = D�( j+ε) = 〈0〉 by Lemma 5.2. Hence Hj = C j ∩Dj =
〈0〉 and Hj+ε = C j+ε ∩ Dj+ε = Dj+ε = 〈u, f j+ε(x)〉.
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� IfC j+ε �= 〈1〉, we haveC j+ε ⊆ 〈u, f j+ε(x)〉, and that Dj = D�( j+ε) ⊇ 〈u f j (x)〉
by Lemma 5.2. Hence Hj = C j ∩ Dj = C j = 〈u f j (x)〉, and Hj+ε = C j+ε ∩
Dj+ε = C j+ε for any ideal C j+ε of K j+ε + uK j+ε satisfying C j+ε �= 〈1〉.
(iii-3)C j = 〈 f j (x)〉. In this case, we have Dj+ε = 〈 f j+ε(x)〉. Then by Lemma 5.2

we have the following conclusions:

� If C j+ε = 〈 f j+ε(x)〉, 〈u, f j+ε(x)〉 or 〈1〉, then Dj = D�( j+ε) = 〈 f j (x)〉,
〈u f j (x)〉 or 〈0〉 respectively. Hence Hj = C j ∩ Dj = Dj and Hj+ε =
C j+ε ∩ Dj+ε = Dj+ε = 〈 f j+ε(x)〉.

� IfC j+ε = 〈u f j+ε(x)〉 or 〈0〉, then Dj = D�( j+ε) = 〈u, f j (x)〉 or 〈1〉 respectively.
Hence Hj = C j ∩ Dj = C j = 〈 f j (x)〉 and Hj+ε = C j+ε ∩ Dj+ε = C j+ε .

� If C j+ε = 〈u + f j+ε(x)ω′〉 where ω′ = ω′(x) ∈ F j+ε , then Dj = D�( j+ε) =
〈u + f j (x)ω〉 where ω = ω(x) ∈ F j satisfying

ω′(x) = δ j x
−d j ω(x−1) (mod f j+ε(x)).

Hence Hj = C j ∩ Dj = 〈 f j (x)〉 ∩ 〈u + f j (x)ω〉 = 〈u f j (x)〉 and Hj+ε =
C j+ε ∩ Dj+ε = 〈u + f j+ε(x)ω′〉 ∩ 〈 f j+ε(x)〉 = 〈u f j+ε(x)〉.
(iii-4) C j = 〈u〉. In this case, we have Dj+ε = 〈u〉. Similar to the case (iii-3), by

Lemma 5.2 we have the following conclusions:

� If C j+ε = 〈u〉, 〈u, f j+ε(x)〉 or 〈1〉, then Dj = D�( j+ε) = 〈u〉, 〈u f j (x)〉 or 〈0〉
respectively. Hence Hj = C j ∩ Dj = Dj and Hj+ε = Dj+ε = 〈u〉.

� IfC j+ε = 〈u f j+ε(x)〉 or 〈0〉, then Dj = D�( j+ε) = 〈u, f j (x)〉 or 〈1〉 respectively.
Hence Hj = C j ∩ Dj = C j = 〈u〉 and Hj+ε = C j+ε ∩ Dj+ε = C j+ε .

� If C j+ε = 〈 f j+ε(x)〉 or 〈u + f j+ε(x)ω′〉 where ω′ = ω′(x) ∈ F j+ε \ {0}, then
Dj = D�( j+ε) = 〈 f j (x)〉 or 〈u + f j (x)ω〉 where ω = ω(x) ∈ F j \ {0} satisfying
ω′(x) = δ j x−d j ω(x−1) (mod f j+ε(x)). Hence Hj = C j ∩ Dj = 〈u〉 ∩ Dj =
〈u f j (x)〉 and Hj+ε = C j+ε ∩ Dj+ε = C j+ε ∩ 〈u〉 = 〈u f j+ε(x)〉.
(iii-5) C j = 〈u + f j (x)ω0〉 where ω0 = ω0(x) ∈ F j \ {0}. In this case, we

have Dj+ε = 〈u + f j+ε(x)ω′
0〉 where ω′

0 ∈ F j+ε \ {0} satisfying ω′
0 = ω′

0(x) =
δ j x−d j ω0(x−1) (mod f j+ε(x)). Then by Lemma 5.2 we have the following conclu-
sions:

� If C j+ε = 〈u + f j+ε(x)ω′
0〉, 〈u, f j+ε(x)〉 or 〈1〉, then Dj = D�( j+ε) = 〈u +

f j (x)ω0〉, 〈u f j (x)〉 or 〈0〉 respectively. Hence Hj = C j ∩ Dj = Dj and Hj+ε =
C j+ε ∩ Dj+ε = C j+ε = 〈u + f j+ε(x)ω′

0〉.� IfC j+ε = 〈u f j+ε(x)〉 or 〈0〉, then Dj = D�( j+ε) = 〈u, f j (x)〉 or 〈1〉 respectively.
Hence Hj = C j = 〈u + f j (x)ω0〉 and Hj+ε = C j+ε ∩ Dj+ε = C j+ε .

� If C j+ε = 〈 f j+ε(x)〉, 〈u〉 or 〈u + f j+ε(x)ω′〉 where ω′ = ω′(x) ∈ F j+ε \ {ω′
0},

then Dj = D�( j+ε) = 〈 f j (x)〉, 〈u〉 or 〈u+ f j (x)ω〉 where ω = ω(x) ∈ F j \ {ω0}
satisfying ω′(x) = δ j x−d j ω(x−1) (mod f j+ε(x)). Hence Hj = C j ∩ Dj =
〈u + f j (x)ω0〉 ∩ Dj = 〈u f j (x)〉 and Hj+ε = C j+ε ∩ Dj+ε = C j+ε ∩ 〈u +
f j+ε(x)ω′

0〉 = 〈u f j+ε(x)〉.
(iii-6) C j = 〈u, f j (x)〉. In this case, we have Dj+ε = 〈u f j+ε(x)〉. Then by

Lemma 5.2 we have the following conclusions:
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� IfC j+ε = 〈0〉, then Dj = D�( j+ε) = 〈1〉 by Lemma 5.2. Hence Hj = C j ∩Dj =
C j = 〈u, f j (x)〉 and Hj+ε = C j+ε ∩ Dj+ε = 〈0〉.

� IfC j+ε �= 〈0〉, we haveC j+ε ⊇ 〈u f j+ε(x)〉, and that Dj = D�( j+ε) ⊆ 〈u, f j (x)〉
by Lemma 5.2. Hence Hj = C j ∩Dj = Dj , and Hj+ε = C j+ε ∩Dj+ε = C j+ε =
〈u f j+ε(x)〉 for any ideal C j+ε of K j+ε + uK j+ε satisfying C j+ε �= 〈0〉.
(iii-7) C j = 〈1〉. In this case, we have Dj+ε = 〈0〉. This implies Hj = C j ∩ Dj =

Dj = D�( j+ε) and Hj+ε = C j+ε ∩ Dj+ε = 〈0〉 for any ideal C j+ε ofK j+ε +uK j+ε

by Lemma 5.2.
When ω0 = ω0(x) = 0, we have ω′

0 = ω′
0(x) = δ j x−d j ω0(x−1) = 0 as well.

Hence the Case (iii-4) and Case (iii-5) can be combined into one case where ω0 ∈
F j . ��

For any cyclic code C of length 2n over F2m + uF2m , it is clear that C is self-
orthogonal if and only if C ⊆ C⊥. The latter is equivalent to that Hull(C) = C. From
this and by Theorem 5.3, we deduce the following corollary immediately.

Corollary 5.4 Using the notation in Theorem 5.3, all distinct self-orthogonal cyclic
codes of length 2n over F2m + uF2m are given by

C =
r⊕

j=1

ε j (x)C j (mod x2n − 1),

where C j is an ideal of the ring K j + uK j listed as follows.

(i) C1 is one of the following 3 + 2m ideals:

〈0〉, 〈u(x − 1)〉, 〈x − 1〉, 〈u + (x − 1)a〉 where a ∈ F2m .

(ii) Let 2 ≤ j ≤ λ. Then C j is one of the following 3 + 2
d j
2 m ideals:

〈0〉, 〈u f j (x)〉, 〈 f j (x)〉, 〈u + f j (x)ω〉 where ω ∈ {0} ∪ Θ j,1.

(iii) Let λ + 1 ≤ j ≤ λ + ε. Then the pair (C j ,C j+ε) of ideals is given by one of the
following five subcases:

� 5 + 2d jm pairs:

{
C j = 〈0〉,
C j+ε ∈ S j+ε .

� 4 + 2d jm pairs:

{
C j = 〈u f j (x)〉,
C j+ε ∈ S j+ε and C j+ε �= 〈1〉.

� 3 pairs:

{
C j = 〈 f j (x)〉,
C j+ε = 〈 f j+ε(x)〉, 〈u f j+ε(x)〉, 〈0〉.

� 3 · 2d jm pairs:

{
C j = 〈u + f j (x)ω0〉,
C j+ε = 〈u + f j+ε(x)ω′

0〉, 〈u f j+ε(x)〉, 〈0〉; ∀ω0 ∈ F j .

� 2 pairs:

{
C j = 〈u, f j (x)〉, 〈1〉
C j+ε = 〈0〉.

123



On self-duality and hulls of cyclic codes over… 487

Therefore, the number of self-orthogonal cyclic codes of length 2n over F2m + uF2m

is (3 + 2m) · ∏λ
j=2(3 + 2

d j
2 m) · ∏λ+ε

j=λ+1(14 + 5 · 2d jm).

Now, we list the number NO of self-orthogonal cyclic codes C over F2 + uF2 of
length 2n, where n is odd and 6 ≤ 2n ≤ 98, in the following table.

2n NO 2n NO

6 25 = 5(3 + 2) 54 141625 = 5(3 + 2)(3 + 23)(3 + 29)
10 45 = 5(3 + 22) 58 81935 = 5(3 + 214)
14 270 = 5(14 + 5 · 23) 62 26340120 = 5(14 + 5 · 25)3
18 275 = 5(3 + 2)(3 + 23) 66 982600 = 5(3 + 2)(3 + 25)3

22 175 = 5(3 + 25) 70 38733660
26 335 = 5(3 + 26) 74 1310735 = 5(3 + 218)
30 16450 = 25(3 + 22)(14 + 5 · 24) 78 34327450 = 25(3 + 26)(14 + 5 · 212)
34 1805 = 5(3 + 24)2 82 5273645 = 5(3 + 210)2

38 2575 = 5(3 + 29) 86 11240455 = 5(3 + 27)3

42 450900 = 25(14 + 5 · 23)(14 + 5 · 26) 90 3708389300
46 51270 = 5(14 + 5 · 211) 94 209715270 = 5(14 + 5 · 223)
50 35945 = 5(3 + 22)(3 + 210) 98 2831158980

where 38733660 = 5(3 + 22)(14 + 5 · 23)(14 + 5 · 212) and

3708389300 = 5(3 + 2)(3 + 22)(3 + 23)(14 + 5 · 24)(14 + 5 · 212),
2831158980 = 5(14 + 5 · 23)(14 + 5 · 221).

Remark (i) LetC be a cyclic code of length 2n overF2m +uF2m . ThenC is orthogonal
self-contained if and only if Hull(C) = C⊥. All distinct orthogonal self-contained
cyclic codes of length 2n over F2m + uF2m can be determined by Theorem 5.3 similar
to the case of self-orthogonal cyclic codes. Furthermore, we can obtain orthogonal
self-contained and 2-quasi-cyclic codes of length 4n over F2m by Eq. (8) in Sect. 4. A
class of EAQECCs has been constructed from orthogonal self-contained cyclic codes
and LCD codes in literatures (see [11, Proposition 4.2] and [20], for example).

(ii) Let φ be the isomorphism of F2m -linear spaces from
(F2m+uF2m )[x]

〈x2n−1〉 onto F
4n
2m

defined by Eq. (8). By Proposition 5.1, we see that φ(C) is a self-orthogonal 2-quasi-
cyclic code of length 4n over the finite fieldF2m for every self-orthogonal cyclic code C
over the ring F2m +uF2m of length 2n. In particular, The Hamming weight distribution
of φ(C) is the same as the Lee weight distribution of C by Lemma 4.2(ii).

(iii) On the last line of the three tables in Pages 265, 272 and 274 of [7], the range
0 ≤ t < s < i ≤ k − 1 (resp. 1 ≤ t < s < i ≤ k − 1) for the triple (t, s, i) of
integers should be changed to 0 ≤ t < s < i ≤ k − 2 (resp. 1 ≤ t < s < i ≤ k − 2).
Because there is no triple (t, s, i) of integers satisfying all the conditions: i = k − 1,
i + s ≤ k + t − 1 (i.e., s ≤ t) and t < s.
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6 Conclusions and further research

We have given an explicit representation for self-dual cyclic codes of length 2n over
the ring R = F2m [u]/〈uk〉 = F2m + uF2m + · · · + uk−1

F2m (uk = 0) and a clear
Mass formula to count the number of these codes, for any integer k ≥ 2 and positive
odd integer n. Then, all self-dual 2-quasi-cyclic codes over finite field F2m of length
4n derived from self-dual cyclic codes of length 2n over F2m + uF2m (u2 = 0) are
determined by providing their generator matrices precisely. Moreover, we determine
the hull of each cyclic code of length 2n over F2m + uF2m , and give an explicit
representation and enumeration for self-orthogonal cyclic codes of length 2n over
F2m + uF2m .

Giving an explicit representation and enumeration for self-dual cyclic codes over R
for arbitrary even length and considering the construction of EAQECCs from the class
of self-orthogonal (resp. orthogonal self-contained) 2-quasi-cyclic codes of length 4n
over F2m derived from self-orthogonal (resp. orthogonal self-contained) cyclic codes
of length 2n over F2m + uF2m are future topics of interest.
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Appendix: All distinct self-dual cyclic codes of length 2n over the ring
R = F2m [u]

〈uk〉 , where 3 ≤ k ≤ 5 and n is odd

By Lemma 2.3, Corollary 2.5, Theorem 3.1 and Theorem 3.3, we have the follows
conclusions.

Case k = 4

Using the notation in Theorem 3.3(ii), the number of self-dual cyclic codes of length
2n over F2m + uF2m + u2F2m + u3F2m (u4 = 0) is

(1 + 2m + 4m) ·
λ∏

j=2

(1 + 2
d j
2 m + 2d jm) ·

λ+ε∏

j=λ+1

(9 + 5 · 2d jm + 4d jm).

Precisely, all these codes are given by

C =
(
⊕λ

j=1ε j (x)C j

)
⊕

(
⊕λ+ε

j=λ+1(ε j (x)C j ⊕ ε j+ε(x)C j+ε)
)

,
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where C j is an ideal of K j + uK j + u2K j + u3K j (u4 = 0) listed as follows:

(i) C1 is one of the following 1 + 2m + 4m ideals:

〈u2〉, 〈(x − 1)〉;
〈u2 + u(x − 1)ω〉 where ω ∈ F2m and ω �= 0;
〈u2 + (x − 1)ω〉 where ω = a0 + ua1, a0, a1 ∈ F2m and a0 �= 0;
〈u3 + (x − 1)ω〉 where ω ∈ F2m and ω �= 0;
〈u3, u(x − 1)〉.

(ii) Let 2 ≤ j ≤ λ. Then C j is one of the following 1 + 2
d j
2 m + 2d jm ideals:

〈u2〉, 〈 f j (x)〉;
〈u2 + u f j (x)ω〉 where ω ∈ Θ j,1;
〈u2 + f j (x)ω〉 where ω = a0(x) + ua1(x), a0(x) ∈ Θ j,1 and a1(x) ∈ {0} ∪ Θ j,1;
〈u3 + f j (x)ω〉 where ω ∈ Θ j,1;
〈u3, u f j (x)〉.

(iii) Let λ+1 ≤ j ≤ λ+ε. Then the pair (C j ,C j+ε) of ideals is one of the following
9 + 5 · 2d jm + 4d jm cases listed in the following table:

L C j (mod f j (x)
2) |C j | C j+ε (mod f j+ε(x)

2)

5 • 〈ui 〉 (0 ≤ i ≤ 4) 4(4−i)d jm � 〈uk−i 〉
4 • 〈us f j (x)〉 (0 ≤ s ≤ 3) 2(4−s)d jm � 〈u4−s , f j+ε(x)〉
3(2d jm − 1) • 〈ui + ui−1 f j (x)ω〉 4(4−i)d jm � 〈u4−i + u3−i f j+ε(x)ω

′〉
(i = 1, 2, 3)

4d jm − 2d jm • 〈u2 + f j (x)ϑ〉 42d jm � 〈u2 + f j+ε(x)ϑ
′〉

2d jm − 1 • 〈u3 + f j (x)ω〉 24d jm � 〈u3 + f j+ε(x)ω
′〉

2d jm − 1 • 〈u3 + u f j (x)ω〉 23d jm � 〈u2 + f j+ε(x)ω
′,

u f j+ε(x)〉
6 • 〈ui , us f j (x)〉 2(8−(i+s))d jm � 〈u4−s , u4−i f j+ε(x)〉

(0 ≤ s < i ≤ 3)
2d jm − 1 • 〈u2 + f j (x)ω, u f j (x)〉 25d jm � 〈u3 + u f j+ε(x)ω

′〉

where L is the number of pairs (C j ,C j+ε) in the same row, and

ω = ω(x) ∈ F j = F2m [x]
〈 f j (x)〉 , ω �= 0 and

ω′ = δ j x
−d j ω(x−1) (mod f j+ε(x));
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ϑ = a0(x) + ua1(x) with a0(x), a1(x) ∈ F j and a0(x) �= 0, and

ϑ ′ = δ j x
−d j

(
a0(x

−1) + ua1(x
−1)

)
(mod f j+ε(x)).

Case k = 3

Using the notation in Theorem 3.3(ii), the number of self-dual cyclic codes of length
2n over the ring F2m + uF2m + u2F2m (u3 = 0) is

(1 + 2m) ·
λ∏

j=2

(1 + 2
d j
2 m) ·

λ+ε∏

j=λ+1

(7 + 3 · 2d jm).

Precisely, all these codes are given by

C =
(
⊕λ

j=1ε j (x)C j

)
⊕

(
⊕λ+ε

j=λ+1(ε j (x)C j ⊕ ε j+ε(x)C j+ε)
)

,

where C j is an ideal of K j + uK j + u2K j (u3 = 0) listed as follows:

(i) C1 is one of the following 1 + 2m ideals:

〈(x − 1)〉, 〈u2, u(x − 1)〉;
〈u2 + (x − 1)ω〉 where ω ∈ F2m and ω �= 0.

(ii) Let 2 ≤ j ≤ λ. Then C j is one of the following 1 + 2
d j
2 m ideals:

〈 f j (x)〉, 〈u2, u f j (x)〉;
〈u2 + f j (x)ω〉 where ω ∈ Θ j,1.

(iii) Let λ+1 ≤ j ≤ λ+ε. Then the pair (C j ,C j+ε) of ideals is one of the following
7 + 3 · 2d jm cases listed in the following table:

L C j (mod f j (x)
2) |C j | C j+ε (mod f j+ε(x)

2)

4 • 〈ui 〉 (i = 0, 1, 2, 3) 4(3−i)d jm � 〈u3−i 〉
3 • 〈us f j (x)〉 (0 ≤ s ≤ 2) 2(3−s)d jm � 〈u3−s , f j+ε(x)〉
2d jm − 1 • 〈u + f j (x)ω〉 42d jm � 〈u2 + u f j+ε(x)ω

′〉
2d jm − 1 • 〈u2 + u f j (x)ω〉 4d jm � 〈u + f j+ε(x)ω

′〉
2d jm − 1 • 〈u2 + f j (x)ω〉 23d jm � 〈u2 + f j+ε(x)ω

′〉
3 • 〈ui , us f j (x)〉 2(6−(i+s))d jm � 〈u3−s , u3−i f j+ε(x)〉

(0 ≤ s < i ≤ 2)
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whereL is the number of pairs (C j ,C j+ε) in the same row, ω = ω(x) ∈ F j = F2m [x]
〈 f j (x)〉

with ω �= 0, and ω′ = δ j x−d j ω(x−1) (mod f j+ε(x)).

Case k = 5

♦Using the notation in Theorem 3.3(ii), the number of self-dual cyclic codes of length
2n over the ring F2m + uF2m + u2F2m + u3F2m + u4F2m (u5 = 0) is

(1 + 2m + 4m) ·
λ∏

j=2

(1 + 2
d j
2 m + 2d jm) ·

λ+ε∏

j=λ+1

(11 + 7 · 2d jm + 3 · 4d jm).

Precisely, all these codes are given by

C =
(
⊕λ

j=1ε j (x)C j

)
⊕

(
⊕λ+ε

j=λ+1(ε j (x)C j ⊕ ε j+ε(x)C j+ε)
)

,

where C j is an ideal ofK j +uK j +u2K j +u3K j +u4K j (u5 = 0) listed as follows:

(i) Let λ+1 ≤ j ≤ λ+ε. Then the pair (C j ,C j+ε) of ideals is one of the following
11 + 7 · 2d jm + 3 · 4d jm cases listed in the following table:

L C j (mod f j (x)
2) |C j | C j+ε (mod f j+ε(x)

2)

6 • 〈ui 〉 (0 ≤ i ≤ 5) 4(5−i)d jm � 〈u5−i 〉
5 • 〈us f j (x)〉 2(5−s)d jm � 〈u5−s , f j+ε(x)〉

(0 ≤ s ≤ 4)

4(2d jm − 1) • 〈ui + ui−1 f j (x)ω〉 4(5−i)d jm � 〈u4−i f j+ε(x)ω
′

(i = 1, 2, 3, 4) +u5−i 〉
4d jm − 2d jm • 〈u2 + f j (x)ϑ〉 43d jm � 〈u3 + u f j+ε(x)ϑ

′〉
4d jm − 2d jm • 〈u3 + u f j (x)ϑ〉 42d jm � 〈u2 + f j+ε(x)ϑ

′〉
4d jm − 2d jm • 〈u3 + f j (x)ϑ〉 25d jm � 〈u3 + f j+ε(x)ϑ

′〉
2d jm − 1 • 〈u4 + f j (x)ω〉 25d jm � 〈u4 + f j+ε(x)ω

′〉
2d jm − 1 • 〈u4 + u f j (x)ω〉 24d jm � 〈u3 + f j+ε(x)ω

′,
u f j+ε(x)〉

2d jm − 1 • 〈u4 + u2 f j (x)ω〉 23d jm � 〈u2 + f j+ε(x)ω
′,

u f j+ε(x)〉
10 • 〈ui , us f j (x)〉 2(10−(i+s))d jm � 〈u5−s , u5−i f j+ε(x)〉

(0 ≤ s < i ≤ 4)
2d jm − 1 • 〈u2 + f j (x)ω, u f j (x)〉 27d jm � 〈u4 + u2 f j+ε(x)ω

′〉
2d jm − 1 • 〈u3 + f j (x)ω, u f j (x)〉 26d jm � 〈u4 + u f j+ε(x)ω

′〉
2d jm − 1 • 〈u3 + u f j (x)ω, 25d jm � 〈u3 + u f j+ε(x)ω

′,
u2 f j (x)〉 u2 f j+ε(x)〉
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where L is the number of pairs (C j ,C j+ε) in the same row;

ω = ω(x) ∈ F j = F2m [x]
〈 f j (x)〉 , ω �= 0 and

ω′ = δ j x
−d j ω(x−1) (mod f j+ε(x));

ϑ = a0(x) + ua1(x) with a0(x), a1(x) ∈ F j and a0(x) �= 0, and

ϑ ′ = δ j x
−d j

(
a0(x

−1) + ua1(x
−1)

)
(mod f j+ε(x)).

(ii) C1 is one of the following 1 + 2m + 4m ideals:
〈(x − 1)〉;
〈u3 + (x − 1)ω〉 where ω = a0 + ua1, a0, a1 ∈ F2m and a0 �= 0;
〈u4 + (x − 1)ω〉 where ω ∈ F2m and ω �= 0;
〈u3, u2(x − 1)〉, 〈u4, u(x − 1)〉;
〈u3 + u(x − 1)ω, u2(x − 1)〉 where ω ∈ F2m and ω �= 0.

(iii) Let 2 ≤ j ≤ λ. Then C j is one of the following 1 + 2
d j
2 m + 2d jm ideals:

〈 f j (x)〉;
〈u3+ f j (x)ω〉whereω = a0(x)+ua1(x), a0(x) ∈ Θ j,1 and a1(x) ∈ {0}∪Θ j,1;
〈u4 + f j (x)ω〉 where ω ∈ Θ j,1;
〈u3, u2 f j (x)〉, 〈u4, u f j (x)〉;
〈u3 + u f j (x)ω, u2 f j (x)〉 where ω ∈ Θ j,1.
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