
AAECC (2021) 32:97–111
https://doi.org/10.1007/s00200-019-00403-0

ORIG INAL PAPER

On the self-dual codes with an automorphism of order 5

Nikolay Yankov1 · Damyan Anev1

Received: 4 May 2018 / Revised: 8 September 2018 / Accepted: 1 November 2019 /
Published online: 7 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
For lengths 60, 62, and 64, by applying the method for constructing self-dual codes
having an automorphism of odd prime order, we classify all optimal singly even self-
dual codes with an automorphism of order 5 with 12 cycles. For the binary self-dual
[62, 31, 12] codes we have found five new values of the parameter in the weight
enumerator thus doubling the number of know values. For length 64 we have found
codeswith 14newparameter values for bothknownweight enumerators.By shortening
all binary self-dual [60, 30, 12] codes having an automorphism of order 5 we construct
many new [58, 29, 10] self-dual codes. We have found a new value of the parameter
in the weight enumerator of these codes.

Keywords Automorphism · Classification · Self-dual codes · Shortening

Mathematics Subject Classification 94B05 · 11T71

1 Introduction

Let Fq be the finite field of q elements, for a prime power q. A linear [n, k]q code C
is a k-dimensional subspace of Fn

q . The elements of C are called codewords, and the
(Hamming) weight of a codeword v ∈ C is the number of the non-zero coordinates
of v. We use wt(v) to denote the weight of a codeword. The minimum weight d of
C is the minimum nonzero weight of any codeword in C and the code is called an
[n, k, d]q code. A matrix whose rows form a basis of C is called a generator matrix
of this code.

B Nikolay Yankov
jankov_niki@yahoo.com

Damyan Anev
damian_anev@mail.bg

1 Faculty of Mathematics and Informatics, Konstantin Preslavski University of Shumen, 9712 Shumen,
Bulgaria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00200-019-00403-0&domain=pdf


98 N. Yankov, D. Anev

Table 1 Self-dual codes with an automorphism of order 5 with 10 cycles

[50, 25, 10]SE ,#270 [52, 26, 10]SE ,#18777 [54, 27, 10]SE ,#119162

[56, 28, 12]DE ,#3763 [58, 29, 10]SE ,#1823426 [60, 30, 12]SE ,#79

Let (u, v) ∈ Fq for u, v ∈ F
n
q be an inner product in F

n
q . The dual code of an

[n, k]q code C is C⊥ = {u ∈ F
n
q | (u, v) = 0 for all v ∈ C} and C⊥ is a linear

[n, n − k]q code. In the binary case the inner product is the standard one, namely,
(u, v) = ∑n

i=1 uivi . If C ⊆ C⊥, C is termed self-orthogonal, and if C = C⊥,
C is self-dual. A binary self-dual code is doubly-even if all codewords have weight
divisible by four, and singly-even if there is at least one nonzero codeword of weight
≡ 2 (mod 4). Self-dual doubly-even codes exist only if n is a multiple of eight.

The weight enumeratorW (y) of a code C is defined asW (y) = ∑n
i=0 Ai yi , where

Ai is the number of codewords of weight i in C . We say that two binary linear codes
C and C ′ are equivalent if there is a permutation of coordinates which sends C to C ′.
The set of coordinate permutations that maps a code C to itself forms a group called
the automorphism group of C (denoted by Aut(C)). Let Sn be the symmetric group
of degree n. We say that a permutation σ ∈ Sn is of type p − (c, f ) if it has exactly c
cycles of length p and f fixed point in its decomposition.

All optimal binary self-dual codes of lengths 52–60 having an automorphism of
order 7 or 13 were classified in [1].

Recently, all codes of lengths 50 ≤ n ≤ 60 having an automorphism of type
5-(10, f ) for f = 0, 2, 4, 6, 8 and 10 were classified up to equivalence in [2]. For
comparison reasons, we give the information for the number of inequivalent such
codes, in Table1.

From [3, Table 3] we have the following cases for the length n and the type of
automorphism: n = 60 + 2t , type 5-(12, 2t), t = 0, 1, . . . , 5. So we have been
intrigued to investigate and classify optimal self-dual codes of lengths 60 ≤ n ≤ 64
with an automorphism of order 5 with 12 cycles. To do so we continue with some
properties of the binary self-dual codes having an automorphism of prime odd order.

2 Constructionmethod

Let C be a binary self-dual code of length n with an automorphism

σ = (1, 2, . . . , p)(p + 1, p + 2, . . . , 2p) · · · (p(c − 1) + 1,

p(c − 1) + 2, . . . , pc), (1)

of type p − (c, f ), where f = n − pc. Denote the cycles of σ by �1,�2, . . . , �c,
and the fixed points by �c+1, . . . , �c+ f . Let Fσ (C) = {v ∈ C | vσ = v}, Eσ (C) =
{v ∈ C | wt(v|�i ) ≡ 0 (mod 2), i = 1, . . . , c + f }, where v|�i is the restriction of
v on �i .
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On the self-dual codes with an automorphism of order 5 99

Theorem 1 [4] Assume C is a self-dual code having an automorphism of type p −
(c, f ). The code C is a direct sum of the subcodes Fσ (C) and Eσ (C). Then Fσ (C)

and Eσ (C) are subspaces of dimensions c+ f
2 and (p−1)c

2 , respectively.

From the definition of Fσ (C) it follows that v ∈ Fσ (C) iff v ∈ C and v is constant
on each cycle. Let π : Fσ (C) → F

c+ f
2 be the projection map where if v ∈ Fσ (C),

(vπ)i = v j for some j ∈ �i , i = 1, 2, . . . , c + f .
Denote by Eσ (C)∗ the code Eσ (C) with the last f coordinates deleted. So

Eσ (C)∗ is a self-orthogonal binary code of length pc. For v in Eσ (C)∗ we let
v|�i = (v0, v1, . . . , vp−1) correspond to the polynomial v0 + v1x + · · · + vp−1x p−1

from P , where P is the set of even-weight polynomials in F2[x]/〈x p − 1〉. Thus we
obtain the map ϕ : Eσ (C)∗ → Pc.

Theorem 2 [5] A binary [n, n/2] code C with an automorphism σ defined in (1) is
self-dual if and only if the following two conditions hold:
(i) Cπ = π(Fσ (C)) is a binary self-dual code of length c + f , (ii) for every two
vectors u, v ∈ Cϕ = ϕ(Eσ (C)∗) we have

∑c
i=1 ui (x)vi (x

−1) = 0. If 2 is a primitive
root modulo p then Cϕ is a self-dual code of length c over the field P ∼= F2p−1 under

the inner product (u, v) = ∑c
i=1 uiv

2(p−1)/2

i .

To classify all codes, we need additional conditions for equivalence and we use the
following theorem.

Theorem 3 [6] The following transformations preserve the decomposition and send
the code C to an equivalent one: (i) a permutation of the fixed coordinates; (ii) a
permutation of the p-cycles coordinates; (iii) a substitution x → x2 in Cϕ and (iv) a
multiplication of the j-th coordinate of Cϕ by xt j where t j is an integer, 0 ≤ t j ≤ p−1,
j = 1, 2, . . . , c.

3 Self-dual codes with twelve cycles of length five

Let C be an optimal binary self-dual code having an automorphism of order 5 with 12
cycles and f = 2t , t = 0, . . . , 5 fixed points. Since 2 is a primitive root modulo 5,
according to Theorem 2, the subcode Cϕ is a self-dual code of length c over the field
P under the inner product

(u, v) =
c∑

i=1

uiv
4
i . (2)

Furthermore P is a finite field with 16 elements, P ∼= F16 = {0, e = α0, αk |k =
1, . . . , 14}, where e = x + x2 + x3 + x4, α = 1 + x is a primitive element of
multiplicative order 15. We list the elements of P∗—the multiplicative group of P in
Table 2. Denoting δ = α5 the group P∗ can also be described as P∗ = {α3tδl | 0 ≤
t ≤ 4, 0 ≤ l ≤ 2}.
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100 N. Yankov, D. Anev

Table 2 The multiplicative
group of the field P∗ ∼= F

∗
16

e 01111 α 11000 α2 10100

α3 11110 α4 10001 α5 01001

α6 11101 α7 00011 α8 10010

α9 11011 α10 00110 α11 00101

α12 10111 α13 01100 α14 01010

Table 3 Cases for the first row of Gϕ

v1 = (0, 0, 0, 0, 0, e) v2 = (0, 0, 0, e, e, e) v3 = (0, 0, 0, e, δ, δ)

v4 = (0, 0, 0, e, δ2, δ2) v5 = (0, 0, e, e, δ, δ2) v6 = (0, e, δ, δ, δ, δ)

v7 = (0, e, δ2, δ2, δ2, δ2) v8 = (0, e, δ, δ, δ2, δ2) v9 = (0, e, e, e, e, e)

v10 = (0, e, e, e, δ, δ) v11 = (0, e, e, e, δ2, δ2) v12 = (e, e, δ, δ, δ, δ2)

v13 = (e, e, δ, δ2, δ2, δ2) v14 = (e, e, e, e, δ, δ2)

Proposition 1 Let Cϕ be a self-dual code of length 12 over P under the orthogonality
condition (2), such that Eσ (C) is a code with minimum weight at least 12. Then the
code Cϕ has a generator matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

eI6

t11 t12 t13 t14 t15 t16
t21 l22 l23 l24 l25 l26
t31 l32 l33 l34 l35 l36
t41 l42 l43 l44 l45 l46
t51 l52 l53 l54 l55 l56
t61 l62 l63 l64 l65 l66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3)

ti j ∈ {0, e, δ, δ2}, j = 1, . . . , 6, li j ∈ P. Furthermore (t11, . . . , t16) is one
of the following seven vectors (0, 0, e, e, δ, δ2), (0, e, δ, δ, δ, δ), (0, e, δ, δ, δ2, δ2),
(0, e, e, e, e, e), (0, e, e, e, δ, δ), (e, e, δ, δ, δ, δ2), (e, e, e, e, δ, δ2).

Proof We begin by row reducing the matrix Gϕ. Using transformation (iv) from The-
orem 3 we can assume that the elements in the first row of Gϕ are from the set
{0, e, δ, δ2}. Assume we use the following partial ordering in P 0 ≺ e ≺ δ ≺ δ2.

Further interchanging the columns of Gϕ , it follows that, we can take 0 � t11 � t12 �
t13 � t14 � t15 � t16 � δ2. Using (2) we can reduce the vector v = (t11, . . . , t16) to
cases listed in Table 3. The transformation γ : x → x2, (iii) from Theorem 3, maps δ

to δ2 and vice versa and we have v4
γ−→ v3, v7

γ−→ v6, v11
γ−→ v10, v13

γ−→ v12.

Obviously, the vectors (e, 0, . . . , 0, v1), δ(e, 0, . . . , 0, v2), and δ(e, 0, . . . , 0, v3)
have weight 8, which concludes this proof.

Since P∗ = {α3tδl}, 0 ≤ t ≤ 4, 0 ≤ l ≤ 2 every element t j1 ∈ P∗, j = 2, . . . , 6
can be transformed into e, δ or δ2 using a multiplication of j-th row of Gϕ by α−3t ,
followed by some cyclic shifts in the j-th column. ��

By using a computer for calculating the possible second row of the matrix (3) we
have found 242 inequivalent codes. Of these 242 codes: 66 are obtained from v5, 136
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On the self-dual codes with an automorphism of order 5 101

Table 4 The order of the automorphism groups of optimal codes over F16

|Aut(C)| 5 10 15 20 30 40 50 60 80

# 56,190 3815 24 310 32 34 7 28 6

|Aut(C)| 90 100 120 160 200 240 1200 13,200

# 1 2 8 4 2 2 1 1

from v6, 123 from v8, 17 from v9, 136 from v10, 193 from v11, and 137 from v14 (note
that we have some codes that can be obtained from different first row).

Next for each of these 242 inequivalent codes we add a third row and check the
result codes for minimum weight and equivalence. Of the 690,626 constructed codes
there are exactly 35,191 inequivalent codes after row 3. Then for every one of these
codes we add a fourth row and again check the result codes for minimum weight and
equivalence. It turns out that there are exactly 681,862 inequivalent such codes (out
of a total of 9,084,240 codes).

After that we added the fifth and sixth row of the matrix and check the resulted
codes for equivalence and that their minimum weight is at least 12. After checking
7,197,760 codes our exhaustive computer search shows the following result.

Proposition 2 Up to permutational equivalence there are exactly 60,467 codes Cϕ

over P such that the code ϕ−1(Cϕ) has a minimum weight 12. Six of these codes have
minimum weight 16 and the rest have minimum weight 12.

The number of the different values of |Aut(C)| of the constructed codes is given in
Table 4.

Denote by Hi , i = 1, . . . , 60,467, the generator matrices of the codes obtained.
These matrices can be obtained from [7]. For equivalence check and also for finding
the weight distribution of the codes obtained we use the program Q-extensions [8]
(Table 5).

Remark 1 The calculations involving the construction of the rows of the matrices Hi

have been performed by both authors independently. The first author used own Delphi
source code for code generation, the total CPU-time for the computation was about a
week on a 3 GHz processor. The second author used GAP 4.8 [9] for the generation
of the codes. This computation took about two weeks. Both authors constructed the
same result with a total of 60,467 codes.

4 [60, 30, 12] binary self-dual codes with an automorphism of type
5-(12, 0)

Let C be a [60, 30, 12] binary self-dual code with an automorphism of type 5-
(12, 0). There are two possible forms for the weight enumerator of a binary self-dual
[60, 30, 12] code [10]:
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102 N. Yankov, D. Anev

Table 5 The number of optimal codes with Ad over F16

d = 12

Ad 15 20 25 30 35 40 45 50 55 60

# 1 5 2 9 16 35 36 93 118 207

Ad 65 70 75 80 85 90 95 100 105 110

# 328 544 690 994 1327 1702 2113 2527 2951 3483

Ad 115 120 125 130 135 140 145 150 155 160

# 3780 3927 4039 4166 3990 3844 3610 3191 2677 2269

Ad 165 170 175 180 185 190 195 200 205 210

# 1775 1602 1145 882 637 496 367 244 162 126

Ad 215 220 225 230 235 240 245 250 255 260

# 77 55 49 51 31 31 20 10 4 6

Ad 265 270 275 280 320 390

# 1 3 4 5 3 1

d = 16

Ad 10,395 10,410 10,420 10,450 10,455 10,470

# 1 1 1 1 1 1

W60,1 = 1 + 3451y12 + 24,128y14 + 33,6081y16 + · · · ,

W60,2 = 1 + (2555 + 64β)y12 + (33,600 − 384β)y14 + · · · , 0 ≤ β ≤ 10.

A code exists for W60,1 [10] and for W60,2 when β = 0, 1, 2, 5, 6, 7, and 10 [11].
By Theorem 2 the code Cπ is a [12, 6] binary self-dual code. There are exactly

three such codes 6i2, 2i2 + h8 and d12 (see [12]). We have that any 2-weight vector
in Cπ will lead to a 10-weight vector in Fσ (C) therefore we look for a [12, 6, 4] and
thus the only possible code is d12.

Let Q1 be the automorphism group of the code d12 with the generator matrix

G1 =
(

I6| I4 A
AT I4

)

, where A in a 2 × 4 all-ones matrix. We have

Q1 = 〈(1, 3, 8)(2, 7, 9), (1, 11, 6, 4, 2, 9)(3, 7, 12, 5, 10, 8)〉, |Q1| = 23,040.

For a permutation τ ∈ S12 denote byCτ
1, j , j = 1, . . . , 60,467 the [62, 31] self-dual

code determined by the matrix G1, with columns permuted by τ , as a generator for
Fσ (C) and Hj as a generator matrix for Eσ (C)∗. If τ1 and τ2 belong to one and the
same right coset of Q1 in S12, then the codes Cτ1

1, j and Cτ2
1, j are equivalent. Thus we

can only use the right transversal T1 of S12 with respect to Q1,we have |T | = 20,790.
After calculating all codesCτ

1, j , j = 1, . . . , 60,467 for τ ∈ T1 we obtain the following
result.

Theorem 4 Up to equivalence, there are exactly 236 optimal binary self-dual
[60, 30, 12] codes having an automorphism of type 5-(12, 0).
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On the self-dual codes with an automorphism of order 5 103

Table 6 The number of codes obtained for the pair (β, |Aut(C)|)
|Aut(C)|
5 10 15 20 30 40 60 100 120 240 4000

β = 0 8 21 4 6 8 3

β = 5 11

β = 10 38 75 3 20 19 2 14 2 1 1

Remark 2 All codes that we have obtained haveweight enumeratorW60,2.The number
of inequivalent codes for the pairs (β, |Aut(C)|) are summarized in Table 6.

Amongst codes, constructed by us, we have found 13 codes, equivalent to the codes
from [13].

5 [62, 31, 12] binary self-dual codes with automorphism of type
5-(12, 2)

For the self-dual [62, 31, 12] code there are two possibilities [10]:

W62,1 = 1 + 2308y12 + 23,767y14 + 279,405y16 + · · · ,

W62,2 = 1 + (1860 + 32β)y12 + (28,055 − 160β)y14 + · · · ,

where β is an integer parameter 0 ≤ β ≤ 93. Only codes with weight enumerator
W62,2 where β = 0, 9, 10, 15, 16 are known (see [3,13,14] and [15]).

According to Theorem 2 Cπ is a [14, 7] binary self-dual code. Using [12], there are
exactly four such codes, namely 7i2, 3i2⊕e8, i2⊕d12, and 2e7. If a 2-weight codeword
occur in Cπ then the minimum weight of C is d ≤ 10 therefore only a [14, 7, 4] code
can generate Cπ . Thus we have Cπ

∼= 2e7. Choosing all
(14
2

)
splittings of {1, . . . , 14}

into sets Xc of cyclic and X f – fixed points we found two different codesCπ generated

by G2 = (I7|Z2) and G3 = (I7|Z3), where Z2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0 0
0 1 1 0 1 1 1
1 0 1 0 1 1 1
1 1 0 0 1 1 1
0 0 0 1 0 1 1
0 0 0 1 1 0 1
0 0 0 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Z3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 1 0
0 1 0 1 1 1 1
1 0 0 1 1 1 1
1 1 0 1 1 0 1
0 0 1 0 1 0 1
0 0 1 1 0 0 1
0 0 1 1 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, and the generator matrices are given so that X f = {13, 14}.
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104 N. Yankov, D. Anev

Table 7 Codes obtained with
different β using the matrix G2

β 1 6 11 16 21

# 429 718 523 138 91

Although we have constructed the two direct summands for the code C we have to
attach them together. Let the subcode Fσ (C) be fixed as generated by the matrix G2
or G3. We have to consider all (even equivalent) possibilities for the second subcode
Eσ (C).

Let Qi , i = 2, 3 be the subgroup of the automorphism group of the [14, 7] binary
code generated by Gi consisting of the automorphisms of this code that permute the
first 12 coordinates (corresponding to the 5-cycle coordinates) among themselves and
permute the last 2 coordinates (corresponding to the fixed point coordinates) among
themselves. Let Sti , i = 2, 3 be the subgroup of the symmetric group S12 consisting
of the permutations in Qi restricted to the first 12 coordinates, ignoring the action on
the fixed points. We have:

St2 =〈(1, 9, 4, 2)(3, 8)(5, 11), (1, 10, 9, 4, 2, 8, 3)(5, 7)(6, 11)〉,
St3 =〈(1, 3, 9)(2, 4, 8)(5, 10)(6, 7), (1, 10, 2, 12, 3, 5)(4, 7, 9, 11, 8, 6)〉,

|St2| = 1344, and |St3| = 1152.

For a permutation τ ∈ S12 denote by Cτ
i, j , i = 2, 3, j = 1, . . . , 60,467 the [62, 31]

self-dual code determined by the matrixGi , with columns permuted by τ , as a genera-
tor for Fσ (C) and Hj as a generator matrix for Eσ (C)∗. If τ1 and τ2 belong to one and
the same right coset of St2 (or St3) in S12, then the codes C

τ1
i, j and C

τ2
i, j are equivalent.

Thus we can only use the right transversals T2 and T3 of S12 with respect to St2 and
St3. We have calculated |T2| = 356,400, |T3| = 415,800. After calculating all codes
Cτ
i, j , i = 2, 3, j = 1, . . . , 60,467 for τ ∈ Ti , i = 2, 3 we summarize the results as

follows.

Theorem 5 In total there are exactly 4636 inequivalent binary self-dual [62, 31, 12]
codes with an automorphism of type 5-(12, 2). There exist binary self-dual [62, 31, 12]
codes with weight enumerator W62,2 for β = 0, 1, 6, 11 and 21.

Remark 3 We have checked a total of more than 46 billion codes. Computational time
for this length was about a week on a 4 core 3Ghz CPU. We have the following result.

The complete information on codes obtained is listed in Table 7 for codes when
Cπ is generated by G2 and in Table 8 for the other case. Our results show only codes
with weight enumerator W62,2. The codes in Table 7 all have |Aut(C)| = 5 that is the
reason we only give their weight distribution. We note that the values β = 0, 1, 6, 11,
and 21 for W62,2 appear for the first time in the literature. Examples of codes for
every new value of β can be obtained from [7]. All self-dual [62, 31, 12] codes with
|Aut(C)| ≡ 0 (mod 15) from the paper [13] have occurred also in our results.
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On the self-dual codes with an automorphism of order 5 105

Table 8 The number of codes
for different pairs (β, |Aut(C)|)
obtained using the matrix G3

|Aut(C)|
5 10 15 30 60

β = 0 528 72 9 8 2

β = 5 1036

β = 10 793 74 9 7

β = 15 198 1

6 [64, 32, 12] binary self-dual codes with automorphism of type
5-(12, 4)

For [64, 32, 12] self-dual codes there is one possibility for a doubly-even code:

W64 = 1 + 2976y12 + 454,956y16 + 18,275,616y20 + · · · (4)

Such codes exist, for example in [16] they are derived from binary image of an
extended Reed–Solomon code over F16.

Thepossibleweight enumeratorsW64,i of extremal singly even self-dual [64, 32, 12]
codes are given in [10]:

W64,1 =1 + (1312 + 16β)y12 + (22,016 − 64β)y14 + · · · ,

W64,2 =1 + (1312 + 16β)y12 + (23,040 − 64β)y14 + · · · ,

where β are integers with 14 ≤ β ≤ 104 for W64,1 and 0 ≤ β ≤ 277 for W64,2.
Extremal singly even self-dual codes with weight enumerator W64,1 are known for

β ∈
{
14, 16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32,
34, 35, 36, 38, 39, 44, 46, 53, 59, 60, 64, 74

}

(see [15,17–19]). Extremal singly even self-dual codes with weight enumeratorW64,2
are known for

β ∈
{
0, 1, . . . , 42, 44, 45, 48, 50, 51, 52, 56, 58, 64, 65, 72,
80, 88, 96, 104, 108, 112, 114, 118, 120, 184

}

\ {31, 39}

(see [15,17–19]).
In this case Cπ is a binary self-dual [16, 8] code. There are exactly seven such

codes: five singly even i2 ⊕ 2e7, 2i2 ⊕ d12, 4i2 ⊕ e8, 8i2, 2d8 and two doubly-even
d16 and 2e8. The minimum weight d = 12 of the code C limits the minimum weight
of Cπ to d ′ ≥ 4 effectively eliminating all codes with the summand i2. Using the
codes 2d8, d16, and 2e8 for all possible

(16
4

)
splittings of {1, . . . , 16} into sets Xc and

X f , we have calculated the minimum weight of the code Fσ (C). For a code Cπ there
occur a total of 8 different generator matrices: one from 2e8 generating a doubly-even
subcode Fσ (C); six from d16 with all six codes singly-even; and one doubly-even

123



106 N. Yankov, D. Anev

Table 9 The generator matrices
G4, . . . ,G11

Gi Support

G4 1ade, 29de, 39ae, 49ad, 5cfg, 6bfg, 7bcg, 8bcf

G5 19fg, 2afg, 3bdefg, 4cdefg, 5bcd, 6bce, 79abcf, 89abcg

G6 19cg, 2acg, 3bcefg, 4cdefg, 5bde, 6bdf, 79abcd, 89abdg

G7 19fg, 2afg, 3bcdfg, 4bcefg, 5bde, 6cde, 79adef, 89adeg

G8 19cg, 2cdg, 3acefg, 4bcefg, 5abe, 6abf, 79abcd, 89abdg

G9 1ceg, 2cfg, 38abcg, 49abcg, 589a, 689b, 789cef, 89defg

G10 1ceg, 2cfg, 38abcg, 49abcg, 589a, 689b, 789efg, 89cdef

G11 19cg, 2acg, 3bcg, 4cdg, 5ceg, 6cfg, 79abdefg, 89abcdef

Table 10 Number of
doubly-even codes for different
values of |Aut(C)|,
gen(Cπ ) = G4

|Aut(C)|
15 20 30 40 60 80 120 320 480 61,440

# 462 1180 205 32 44 7 3 1 1 1

Table 11 Number of
doubly-even codes for different
values of |Aut(C)|,
gen(Cπ ) = G11

|Aut(C)|
15 20 30 40 80 120 320 1280 1920

# 406 1212 8 102 13 1 1 1 1

code from 2d8. Denote by G4, . . . ,G11 the generator matrices of these 8 codes, only
the matrices G9 and G10 are not in standard form. Assuming that Xc = {1, . . . , 12}
we give the support of the rows of the matrices G4, . . . ,G11 in Table 9 (for shortness
the coordinates 10, 11, . . . , 16 are denoted by the letters a, b, . . . g, respectively). We
note π−1(G4) and π−1(G11) generate doubly-even subcodes Fσ (C) and therefore
only in both those cases the [64, 32, 12] codes will be doubly-even.

For 4 ≤ i ≤ 11, using the double transversal Ti , of S12 with respect to the groups
Sti and denoting Cτ

i, j the code determined by the matrix Gi , with columns permuted
by τ , as a generator for Fσ (C) and Hj , as a generator matrix for Eσ (C)∗, we have
calculated the weight distribution of all codes, except for Cτ

4, j and Cτ
11, j where the

resulting [64, 32, 12] codes are doubly-even. For the codes Cτ
4, j and C

τ
11, j , due to the

huge computer time needed to find all codes, we have calculated only the codes for
which the automorphism group of Hj is not of order 5, 10, 20, and 40.

Up to equivalence we summarize our results for code with |Aut(C)| �= 5 when
gen(Cπ ) = G4 and gen(Cπ ) = G11 in Tables 10 and 11, respectively.

Examining the singly-even [64, 32, 12] codes with an automorphism of type 5-
(12, 4) we have calculated their weight distributions and we also did a check for
equivalence. The cardinality of the transversals T4, . . . , T11 and the computational
time used to compute these cases are given in Table 12. We have checked a total of
more than 530 billion codes. Computational time for this length was about 2 months
on a 4 core 3Ghz CPU. We have the following result.
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Table 12 Generators of Sti , cardinality of transversals Ti and computational time for 4 ≤ i ≤ 11

i Sti |Ti | CPU time

4 〈(5, 7, 12, 8)(6, 11), (1, 12)(2, 11)(3, 7)(4, 8)(5, 10)(6, 9), 103,950 45

(5, 8, 11, 12, 7, 6)〉
5 〈(1, 8)(7, 9), (5, 6), (3, 4)(11, 12), (3, 11)(4, 12), 1,247,400 169

(1, 10, 7, 9, 2, 8)〉
6 〈(1, 8)(5, 6, 11)(7, 9), (1, 2, 7)(6, 11)(8, 9, 10)〉 3,326,400 362

7 〈(1, 6, 7, 11, 9, 12, 8, 5)(2, 3)(4, 10), (1, 9)(2, 10)(7, 8), 103,950 95

(1, 10)(2, 9)〉
8 〈(3, 4)(10, 11), (3, 10)(4, 11), (5, 6), 3,742,200 436

(1, 4, 9, 3)(2, 5, 12, 6)(7, 11, 8, 10)〉
9 〈(2, 12, 7)(3, 4)(5, 8, 10, 9), (1, 7, 2, 12)(3, 5, 11, 4, 10, 6)(8, 9)〉 103,950 73

10 〈(2, 7, 12)(5, 9, 10, 8)(6, 11), (1, 12, 2, 7)(3, 11, 9)(4, 6, 8)〉 103,950 66

11 〈(1, 2, 7, 3)(5, 12, 6)(8, 11, 9, 10), (1, 8, 3)(4, 5)(7, 11, 9)〉 103,950 43

Table 13 Values of (β, |Aut(C)|) for gen(Cπ ) = G5, all codes with W64,2

β |Aut(C)| β |Aut(C)|
5 10 20 3840 5 10 20 3840

2 41,405 1276 42 190 55 3

7 156,993 2653 3 47 13 3

12 242,328 4093 52 2 3

17 199,556 3357 6 57 1

22 99,742 2672 5 62 1

27 32,902 1181 7 112 1

32 7890 599 7

37 1472 141 7

Bold values denote the new codes

Theorem 6 Up to equivalence there exists exactly 6,834,068 binary singly-even
[64, 32, 12] codes with an automorphism of type 5-(12, 4). Of these codes 1469019
and 5365049 have weight enumerator W64,1 andW64,2, respectively. There exist codes
with W64,1 for β = 19, 49, and, 54, and W64,2 for β = 31, 39, 46, 47, 49, 54, 55,
57, 60, 62, and 69.

Remark 4 Examples of codes for every new value of β are listed in [7] (Tables 13, 14,
15, 16, 17, 18).

7 New [58, 29, 10] binary self-dual codes
There are two possible weight enumerators for a self-dual [58, 29, 10] code in [10].
Harada in [11] proved that indeed the first weight enumerator only occur for γ = 55.
Thus we have the following enumerators:
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Table 14 Values of (β, |Aut(C)|) for gen(Cπ ) = G6, all codes with W64,2

β |Aut(C)| β |Aut(C)| β |Aut(C)|
5 10 15 5 10 15 5 10 15

1 111,858 21 251,899 32 41 471 3

6 426,555 6 26 80,756 11 46 69

11 649,414 10 31 19,082 10 3 51 6

16 521,540 29 2 36 3377 4

Bold values denote the new codes

Table 15 Values of
(β, |Aut(C)|) for
gen(Cπ ) = G7, all codes with
W64,1

β |Aut(C)|
5 10 15 20 30 40 60 80 120

14 111,063 5763 20 369 40 1 21 1 2

19 208,085 5340 2

24 204,253 6932 257

29 123,799 3900 10 7 26

34 49,982 2639 126 1

39 13,252 995 3

44 2515 515 1 40 11 7

49 267 129 3

54 25 49 5

59 2 2

64 1 3

74 1

W58,1 = 1 + 55y10 + 5188y12 + 18,180y14 + 432,333y16 + . . . ,

W58,2 = 1 + (319 − 24β − 2γ )y10 + (3132 + 152β + 2γ )y12 + . . . ,

where 0 ≤ β ≤ 11 and 0 ≤ γ ≤ 159 − 12β. Codes are known with W58,1 and with
W58,2 for [11]:

• β = 0, γ ∈ {2m|m = 0, . . . , 65, 68, 71, 79};
• β = 1, γ ∈ {2m|m = 8, . . . , 58, 63};
• β = 2, γ ∈ {2m|0, 4, 6, . . . , 55}.

Let C be a self-dual [60, 30, 12] code. By choosing a pair 1 ≤ i1 < i2 ≤ 60 of
coordinates we can construct a new code [20]

C ′ = {(x1, . . . , xi−1, xi+1, . . . , x j−1, x j+1, . . . , xn)|(x1, . . . , x60) ∈ C60,i , xi1 = xi2}.

It is well known that C ′ is a self-dual code of length 58 and we say that C ′ is obtained
from C by subtracting. Since all codes we are shortening have minimum weight 12,
all codewords obtained have minimum weight 10 so all C ′ are self-dual [58, 29, 10]
codes.
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Table 16 Values of (β, |Aut(C)|) for gen(Cπ ) = G8, all codes with W64,2

β |Aut(C)|
5 10 20 40 60 80 120 160 320 640 1280

0 131,026 4710 215 9 3 2 15 1 1

5 497,611 8391 145 1 1

10 748,582 14,825 347

15 590,339 11,627 158

20 281,964 9395 310 2

25 90,259 4356 87

30 22,243 2122 98

35 4151 603 20

40 2124 629 95 1 1 12 1

45 380 73 13 1

50 56 53 5

55 1 5 3

60 5 2

80 2

Table 17 Values of (β, |Aut(C)|) for gen(Cπ ) = G9, all codes with W64,2

β |Aut(C)|
5 10 15 20 40 80 120 240 1,290,240

4 3587 345 41

9 13,807 506 21

14 20,919 1111 52

19 17,641 711 1 14

24 9452 659 61 2

29 3542 288 1

34 1068 193 14

39 192 58 1

44 43 17 10

49 5 2 1

54 3 2

64 1 1

69 1 1

114 1

184 1
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Table 18 Values of (β, |Aut(C)|) for gen(Cπ ) = G10, all codes with W64,1

β |Aut(C)| β |Aut(C)|
5 10 20 40 80 5 10 20 40 80

14 112,397 3811 139 2 2 44 2394 367 42

19 211,966 4147 276 5 49 260 91 11 1

24 202,640 4712 121 54 23 15 6

29 119,621 2940 117 1 59 3 1

34 47,117 1844 93 3 64 1 1 1

39 12,510 816 51 6

Bold values denote the new codes

We start with the 315 binary self-dual [60, 30, 12] codes with an automorphism of
order 5: 236 constructed in Sect. 4, and the 79 codes with an automorphism of type
5-(10, 10) from [21]. Since the minimum weight of all codes we are shortening is
12, all new codewords have minimum weight 10, so all codes C ′ are in fact optimal
self-dual [58, 29, 10] codes. By shortening for all pair (i1, i2), 1 ≤ i1 < i2 ≤ 60 we
obtain the following result.

Proposition 3 Up to equivalence there are exactly 53,968 binary self-dual [58, 29, 10]
codes obtained by subtracting the [60, 30, 12] self-dual code with an automorphism of
type 5-(12, 0). Of these codes 189 have W58,1 and 53,779 have W58,2 for 80 different
pairs (γ, β) :
• β = 0, γ = 2m,m ∈ {0, 26, 29, . . . , 64, 66};
• β = 1, γ = 2m,m ∈ {39, . . . , 55};
• β = 2, γ = 2m,m ∈ {26, 28, . . . , 51}.

Remark 5 For the first time in the literature we construct [58, 29, 10] codes withW58,2
for β = 0, γ = 132. Of the three codes constructed 2 have automorphism group of 4
elements and one has |Aut(C)| = 8. All codes with |Aut(C)| ≡ 0 (mod 5) have an
automorphism of type 5-(10, 8) an thus are known from [21]. All other codes are new.
An example of a code for the parameters β = 0, γ = 132 in W58,2 is available in [7].
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