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Abstract
In this paper, we first discuss the bentness of a large class of quadratic Boolean func-
tions in polynomial form f (x) = ∑n/2−1

i=1 Trn1(ci x
1+2i ) + Trn/2

1 (cn/2x1+2n/2
), where

n is even, ci ∈ GF(2n) for 1 ≤ i ≤ n/2 − 1 and cn/2 ∈ GF(2n/2). The bentness
of these functions can be connected with linearized permutation polynomials. Hence,
methods for constructing quadratic bent functions are given. Further, we consider a
subclass of quadratic Boolean functions of the form f (x) = ∑m/2−1

i=1 Trn1(ci x
1+2ei )+

Trn/2
1 (cm/2x1+2n/2

), where n = em, m is even, and ci ∈ GF(2e). The bentness of
these functions is characterized and some methods for deriving new quadratic bent
functions are given. Finally, when m and e satisfy some conditions, we determine the
number of these quadratic bent functions.

Keywords Bent function · Boolean function · Linearized permutation polynomial ·
Cyclotomic polynomial · Semi-bent function

Mathematics Subject Classification 06E75 · 94A60

1 Introduction

A bent function, whose Hamming distance to the set of all affine Boolean functions
equals 2n−1 ± 2n/2−1, is a Boolean function with even n variables from GF(2n) to
GF(2). Further, it has maximum nonlinearity and the absolute value of its Walsh
transform has a constant magnitude [24]. Nonlinearity is an important property for a
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Boolean function in cryptographic applications. Bent functions have been extensively
studied [3–7,10,15,18,27]. Since bent functions with maximal nonlinearity have a
close relationship with sequences, bent functions are often used in the construction
of sequences with maximally linear complexity and low correlation [2,8,9,16,17,23,
25]. Further, many applications of bent functions can be found in coding theory and
combinatorial design [19].

As another class of Boolean functions, semi-bent functions are also highly nonlin-
ear. For an even integer n, the Walsh spectra of bent functions with n variables have
the value ±2n/2 while the Walsh spectra of semi-bent functions are {0,± 2n/2+1}. For
an odd integer n, the Walsh spectra of semi-bent functions are {0,± 2(n+1)/2}. The
semi-bentness of quadratic Boolean functions of the form

f (x) =
�(n−1)/2�∑

i=1

ciTr
n
1

(
x1+2i

)
, ci ∈ GF(2)

was studied [6,14,15]. Let c(x) = ∑�(n−1)/2�
i=1 ci (xi + xn−i ). For odd n, f (x) is semi-

bent if and only if gcd(c(x), xn + 1) = x + 1. For even n, f (x) is semi-bent if and
only if gcd(c(x), xn + 1) = x2 + 1.

For further generalization, Ma et al. [18] applied techniques from [15] and consid-
ered the quadratic Boolean functions of the form

f (x) =
n/2−1∑

i=1

ciTr
n
1

(
x1+2i

)
+ Trn/2

1

(
x1+2n/2

)
, (1)

where ci ∈ GF(2) and Trn/2
1 (x) is the trace function from GF(2n/2) to GF(2). They

proved that f (x) is a bent function if and only if gcd(c(x), xn + 1) = 1, where
c(x) = ∑(n−2)/2

i=1 ci (xi + xn−i )+ xn/2. For some special cases of n, Yu and Gong [27]
considered the concrete constructions of bent functions of the form (1) and presented
some enumeration results.

Hu and Feng [10] generalized results of Ma et al. [18] and studied the quadratic
Boolean functions of the form

f (x) =
m/2−1∑

i=1

ciTr
n
1

(
βx1+2ei

)
+ Trn/2

1

(
βx1+2n/2

)
, (2)

where ci ∈ GF(2), n = em,m is even andβ ∈ GF(2e). They obtained that f (x) is bent
if and only if gcd(c(x), xm + 1) = 1, where c(x) = ∑m/2−1

i=1 ci (xi + xm−i ) + xm/2.
Further, they presented the number of bent functions for some specified m. Note that
β ∈ GF(2e), then (β2e−1

)1+2ei = β2e = β. The function f (x) of the form (2) satisfies
that

f (x) =
m/2−1∑

i=1

ciTr
n
1

((
β2e−1

x
)1+2ei

)

+ Trn/2
1

((
β2e−1

x
)1+2n/2)

,
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where ci ∈ GF(2). From the transformation x �−→ β2e−1
x , a bent function of the form

(2) is changed into a bent function of the form (1). Actually, (2) does not introduce
new bent functions.

In this paper, we first consider quadratic Boolean functions of the form

f (x) =
n/2−1∑

i=1

Trn1(ci x
1+2i ) + Trn/2

1

(
cn/2x

1+2n/2
)

,

where n is even, ci ∈ GF(2n) for 1 ≤ i ≤ n/2 − 1 and cn/2 ∈ GF(2n/2). We present
the characterization of the bentness of these functions from some specific linearized
polynomials. Further, we generalize results in [10,18] and characterize the bentness
of quadratic Boolean functions of the form

f (x) =
m/2−1∑

i=1

Trn1
(
ci x

1+2ei
)

+ Trn/2
1

(
cm/2x

1+2n/2
)

,

where n = em,m is even, and ci ∈ GF(2e). Further, some examples of bent functions
are given. Methods for deriving new quadratic bent functions from known quadratic
bent functions are presented. Finally, we determine the number of these bent functions
for the case m = 2v0 pr and gcd(e, p − 1) = 1, where v0 > 0, r > 0, p is an odd
prime satisfying ordp(2) = p − 1 or ordp(2) = (p − 1)/2 ((p − 1)/2 is odd).

The rest of the paper is organized as follows: Sect. 2 introduces some notations
and background. Section 3 gives the description of bentness of quadratic Boolean
functions considered in this paper andmethods of deriving new bent functions. Section
4 enumerates the number of quadratic bent functions for a special case. Finally, Sect. 5
concludes this paper.

2 Preliminaries

In this section, some notations are given first. Let GF(2n) be the finite field with 2n

elements. Let GF(2n)∗ be the multiplicative group of GF(2n). Let e|n and the trace
function Trne (x) from GF(2n) to GF(2e) be defined by Trne (x) = ∑n/e−1

0 x2
ei
, where

x ∈ GF(2n). The trace function satisfies that

(1) Trne (x
2e ) = Trne (x), where x ∈ GF(2n).

(2) Trne (ax + by) = aTrne (x) + bTrne (y), where x, y ∈ GF(2n) and a, b ∈ GF(2e).

Whenn is even, a quadraticBoolean function fromGF(2n) toGF(2) can be represented
by

f (x) =
n/2−1∑

i=0

Trn1
(
ci x

1+2i
)

+ Trn/2
1

(
cn/2x

1+2n/2
)

, (3)

where ci ∈ GF(2n) for 0 ≤ i ≤ n/2 − 1 and cn/2 ∈ GF(2n/2).
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When n is odd, f (x) can be represented by

f (x) =
(n−1)/2∑

i=0

Trn1
(
ci x

1+2i
)

, (4)

where ci ∈ GF(2n).
For a Boolean function f (x) over GF(2n), the Hadamard transform is defined by

f̂ (λ) =
∑

x∈GF(2n)

(−1) f (x)+Trn1(λx), λ ∈ GF(2n).

For a quadratic Boolean function f (x) of the form (3) or (4), the distribution of the
Hadamard transform can be described by the quadratic form

Q f (x, y) = f (x + y) + f (x) + f (y).

For the quadratic form Q f , define

K f = {x ∈ GF(2n) : Q f (x, y) = 0,∀y ∈ GF(2n)}

and k f = dimGF(2)(K f ). Then 2|(n−k f ). The distribution of theHadamard transform
values of f̂ (λ) is given in the following theorem.

Theorem 1 [6,11] Let f (x) be a quadratic Boolean function of the form (3) or (4) and
k f = dimGF(2)(K f ). The distribution of the Hadamard transform values of f (x) is
given by

f̂ (λ) =

⎧
⎪⎨

⎪⎩

0, 2n − 2n−k f t imes

2(n+k f )/2, 2n−k f −1 + 2(n−k f )/2−1 t imes

−2(n+k f )/2, 2n−k f −1 − 2(n−k f )/2−1 t imes.

Bent functions as an important class of Boolean functions are defined below.

Definition 1 Let f (x) be a Boolean function from GF(2n) to GF(2). Then f (x) is
called a bent function if for any λ ∈ GF(2n), f̂ (λ) ∈ {2n/2,−2n/2}.
Bent functions only exist in the case of even n. From Theorem 1, the following result
on bent functions is given below.

Corollary 1 Let f (x) be a quadratic function of the form (3) over GF(2n), then f (x)
is bent if and only if K f = {0}.

3 New construction of quadratic bent functions in polynomial forms

In this section, let n be even. We present the characterization of the bentness for
quadratic Boolean functions and some methods for constructing bent functions.
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3.1 Bent functions and linearized permutation polynomials

In this subsection, we discuss the relationship between bentness of quadratic Boolean
function and linearized permutation polynomials. From Theorem 1 and Corollary 1,
we have the following well known result.

Theorem 2 [6,11] The quadratic Boolean function

f (x) =
n−1∑

i=0

Trn1
(
ci x

1+2i
)

, ci ∈ GF(2n)

is bent if and only if L f (x) = ∑n−1
i=1 (ci + c2

i

n−i )x
2i is a linearized permutation poly-

nomial, i.e., L f (x) = 0 only has a solution 0.

The following corollary as a direct consequence of Theorem 2 characterizes the
bentness of quadratic Boolean functions.

Corollary 2 Let f (x) be a quadratic Boolean function defined by

f (x) =
n/2−1∑

i=1

Trn1
(
ci x

1+2i
)

+ Trn/2
1

(
cn/2x

1+2n/2
)

, (5)

where n is even, ci ∈ GF(2n) for 1 ≤ i ≤ n/2 − 1 and cn/2 ∈ GF(2n/2). Then f (x)
is bent if and only if

L f (x) =
n/2−1∑

i=1

(
ci x

2i + c2
n−i

i x2
n−i

)
+ cn/2x

2n/2
(6)

is a linearized permutation polynomial, i.e., L f (x) = 0 has only a solution 0.

From Corollary 2, the bentness of quadratic Boolean functions depends on the corre-
sponding linearized permutation polynomial (6). Hence, many results and techniques
on linearized permutation polynomials, such as theories of non-commutative polyno-
mials [21,22], can be used to study quadratic bent functions. New results on linearized
permutation polynomials can be found in [26]. So far, bent functions constructed of
the form (5) generally satisfy that ci ∈ GF(2). We will present some bent functions
with the form (5) with ci ∈ GF(2n)\GF(2) for some i . FromCorollary 2, the following
corollary characterizes a class of monomial bent functions, which is a special case of
Theorem 2 in [12].

Corollary 3 Let i be an integer satisfying 1 ≤ i ≤ n/2 − 1. Let α ∈ GF(2n)∗ and
n = 2v0n0, where n0 is odd. Let f (x) = Trn1(αx

1+2i ). Then

(1) there exists α ∈ GF(2n) making f (x) bent if and only if 2v0 � i .
(2) let 2v0 � i . Then f (x) is bent if and only if α satisfies

α(2n−1)(2gcd(i,n)−1)/(2gcd(2i,n)−1) = α(2n−1)/(2gcd(i,n)+1) 
= 1.
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In particular, let α be a primitive element in GF(2n), then f (x) is bent.

Proof From the definition of f (x), L f (x) = αx2
i + α2n−i

x2
n−i

. From Corollary 2, f
is bent if and only if

K f = {x ∈ GF(2n) : L f (x) = 0} = {0}.

Since x �→ x2
i
is an isomorphism forGF(2n), then K f = {0} if and only if K 2i

f = {x ∈
GF(2n) : α2i x2

2i + αx = 0} = {0}. Then K 2i
f = {0} if and only if α /∈ Γ = {z2i+1 :

z ∈ GF(2n)} [12]. Note that GF(2n)\Γ 
= ∅ if and only if gcd(2i + 1, 2n − 1) > 1.
From Lemma 11.1 in [20], gcd(2i + 1, 2n − 1) > 1 if and only if gcd(2i, n) =
2 · gcd(i, n). Equivalently, 2v0 � i . Hence, Result (1) follows. We have α /∈ Γ if and

only if α(2n−1)/gcd(2i+1,2n−1) 
= 1. Note that gcd(2i + 1, 2n − 1) = gcd(22i−1,2n−1)
gcd(2i−1,2n−1)

=
2gcd(i,n) + 1. Hence, Result (2) follows. �

Theorem 3 Let α ∈ GF(2n)∗ and (α + α−4) ∈ GF(2n/2), the Boolean function
f (x) = Trn1(x

1+2n/2−2
)+Trn/2

1 ((α+α−4)x1+2n/2
) is bent if and only if α(2n−1)/3 
= 1.

Proof From the Boolean function f (x), L f (x) = x2
n/2−2 + (α +α−4)x2

n/2 + x2
n/2+2

.
After some transformation, the factorization of the linear transform L f (x) is L f (x) =
Tα−4(Tα(x2

n/2−2
)), where Tα(x) = x + αx2

2
and Tα−4(x) = x + α−4x2

2
. Since

x �→ x2
n/2−2

is an invertible linear transformation, L f (x) is invertible if and only if
both Tα(x) and Tα−4(x) are invertible. It is easily verified that both Tα(x) and Tα−4(x)
are invertible if and only if α(2n−1)/3 
= 1. From Corollary 2, this theorem follows. �

Remark 1 (i) If n/2 is even, then 3|(2n/2 − 1) and 3 � (2n/2 + 1). Let w be the largest

integer satisfying 3w|(2n/2−1) and ζ3w be a primitive 3w-th root of unity. Takeα =
βζ i3w , where β ∈ GF(2n/2), 3 � ord(β) and 3 � i . Obviously, ζ3w ∈ GF(2n/2) and
α ∈ GF(2n/2). Then (α+α−4) ∈ GF(2n/2). It is easily verified that α(2n−1)/3 
= 1.
Hence, α satisfies Theorem 3 and f (x) in Theorem 3 is a bent function.

(ii) If n/2 is odd, then 3|(2n/2 + 1) and 3 � (2n/2 − 1). Let w be the largest inte-
ger satisfying 3w|(2n/2 + 1). Take α = (Trnn/2(u))3/5u, where u ∈ GF(2n),

u1+n/2 = 1 and 3w|ord(u). Note that 5 � 2n/2 −1 and gcd(5, ord(Trnn/2(u))) = 1.

Then (Trnn/2(u))3/5 is well defined. Since 3w|ord(u), u /∈ GF(2n/2). Let λ =
Trnn/2(u) = u + u2

n/2 ∈ GF(2n/2), then the minimal polynomial of u over

GF(2n/2) is

u2 + λu + 1 = 0. (7)

Since 3 � (2n/2−1), thenα satisfies thatα(2n−1)/3 
= 1. From Identity (7),α+α−4 =
λ−12/5(λ4 + λ2 + 1) ∈ GF(2n/2). Hence, f (x) defined in Theorem 3 is bent.

The following proposition makes a supplement to Theorem 3.
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Table 1 Nm (1 ≤ m ≤ 10) m 1 2 3 4 5 6 7 8 9 10

Nm 1 3 3 15 11 47 43 175 171 751

Proposition 1 Let b ∈ GF(2n/2). If b /∈ {α + α−4 : α ∈ GF(2n)}. Then the Boolean
function f (x) = Trn1(x

1+2n/2−2
) + Trn/2

1 (bx1+2n/2
) is bent.

Proof From the Boolean function f (x), we have L f (x) = x2
n/2−2 + bx2

n/2 + x2
n/2+2

.

Then L f (x) is invertible if and only if T (x) = x4
2 +bx

4 +x is invertible over GF(xn).
Suppose that T (x) is not invertible. Then there exists α ∈ GF(2n) such that T (α) =0,
i.e., α15 + bα3 + 1 = 0. Hence, b = (α−3) + (α−3)4, which makes a contradiction.
Then this proposition holds. �

Let n = 2m, NM = GF(2m)\{x12 + 1

x3
: x ∈ GF(2m)∗}, and Nm = #Nm .

From Theorem 3 and Proposition 1, the Boolean function f (x) = Trn1(x
1+2n/2−2

) +
Trn/2

1 (bx1+2n/2
) is bent if and only if b ∈ Nm , where b ∈ GF(2m).

Example 1 Let n = 2m = 20. Let GF(2n) = GF(2)(α), where α satisfies that α20 +
α10 + α9 + α7 + α6 + α5 + α4 + α + 1 = 0. Take b = α878425. Then b ∈ GF(2m),
b10 + b7 + b6 + b5 + b4 + b3 + b2 + b + 1 = 0 and b ∈ Nm . Then f (x) =
Tr201 (x1+28) + Tr101 (bx1+210) is bent.

When 1 ≤ m ≤ 10, from the computer program, we have the following table of values
of Nm (Table 1).

3.2 A subclass of quadratic bent functions

In this subsection, let n = me and m be even. we will consider a special subclass of
Boolean functions in (5). This subclass can be seen as a generalization of functions in
[10,18,27] and contains more bent functions.

Theorem 4 Let f (x) be a Boolean function defined by

f (x) =
m/2−1∑

i=1

Trn1
(
ci x

1+2ei
)

+ Trn/2
1

(
cm/2x

1+2n/2
)

, (8)

where n = em, m is even, and ci ∈ GF(2e), then f (x) is bent if and only if
gcd(c f (x), xm + 1) = 1, where

c f (x) =
m/2−1∑

i=1

ci
(
x + xm−i

)
+ cm/2x

m/2. (9)

In particular, if f (x) is bent, then cm/2 
= 0.
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Proof Since m is even and e = n
m divides n

2 , then cm/2 ∈ GF(2e) ⊆ GF(2n/2).
Note that Trnn/2(·) is surjective from GF(2n) to GF(2n/2). Then there exists

c′
m/2 ∈ GF(2n) satisfying cm/2 = Trnn/2(c

′
m/2) = c′

m/2 + c′2n/2

m/2 . Hence, f (x) =
∑m/2−1

i=1 Trn1(ci x
1+2ei ) + Trn1(c

′
m/2x

1+2n/2
). From the similar proof of Theorem 2,

L f (x) = ∑m/2−1
i=1 ci (x2

ei + x2
e(m−i)

) + cm/2x2
em/2 = ∑m−1

i=1 ai x2
ei
, where ai ={

ci , 1 ≤ i ≤ m/2,

cm−i , m/2 < i ≤ m − 1.

Letα ∈ GF(2n) be a regular element inGF(2e), i.e., {α, α2e , α2e·2 , . . . , α2e(m−1)} is a
basis of GF(2n) over GF(2e), then the matrix associated with the linear transformation
L f (x) under this basis is

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 a1 a2 · · · am−1
am−1 0 a1 · · · am−2
am−2 am−1 0 · · · am−3

...
...

... · · · ...

a1 a2 a3 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Hence L f (x) is a linearized permutation polynomial if and only if A is non-singular.
From the theory of cyclic codes in [1], A is non-sigular if and only if the dimensionm−
gcd(0+a1x+a2x2, . . . , am−1xm−1, xm−1) of the cyclic code overGF(2e), generated
by rows of A, ism, i.e. gcd(c f , xm +1) = gcd(0+a1x+a2x2, . . . , am−1xm−1, xm −
1) = 1. Finally, if cm/2 = 0, then (x + 1)|c f (x).

Hence, this theorem follows. �

Example 2 Let m = 10, e = 3, and n = 30. Let GF(23) = G f (2)(β), where β3 +
β + 1 = 0. Let c1 = β5, c2 = β5, c3 = β4, c4 = β3, and c5 = β5. Then c f (x) =
∑4

1 ci (x
i + x10−i )+c5x5 and gcd(c f (x), x5 +1) = 1. From Theorem 4, the Boolean

function f (x) = ∑4
i=1 Tr

30
1 (ci x1+8i ) + Tr151 (c5x1+215) is bent. And the number of

such bent functions is 28224. This can be verified by the computer program.

Corollary 4 Let m = 2v0 , where v0 ≥ 1. The Boolean function of the form (8) is
bent if and only if cm/2 
= 0. Further, the number of bent functions with this form is
(2e − 1)2e(m/2−1).

Proof Sincem = 2v0 , xm+1 = (x+1)2
v0 . Then gcd(c f (x), xm+1) = 1 if and only if

(x+1) � c f (x), i.e., c f (1) 
= 0. Note that c f (1) = cm/2. From Theorm 4, f (x) is bent
if and only if cm/2 
= 0. From the random choice of ci ∈ GF(2e) (1 ≤ i ≤ m/2 − 1),
the number of bent functions is (2e − 1)2e(m/2−1). This theorem follows. �

Theorem 5 Let n = 2v0m0, where m0 is odd. Let λ ∈ GF(22e)∗ satisfying λ + 1

λ
∈

GF(2e)∗. Then the Boolean function f (x) = Trn1(x
1+2ei ) + Trn/2

1 ((λ + 1
λ
)x1+2n/2

) is
bent if and only if λm0/gcd(i,m0) 
= 1.
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Proof From the definition of f (x),

c f (x) = (xi + xm−i ) +
(

λ + 1

λ

)

xm/2

≡ (xi + x−i ) +
(

λ + 1

λ

)

≡ (xi + λ)(xi + 1
λ
)

xi
mod xm0 + 1,

Then gcd(c f (x), xm + 1) = 1 if and only if gcd(xi + λ, xm0 + 1) = gcd(xi +
1
λ
, xm0 + 1) = 1. From gcd(xi + λ, xm0 + 1) = 1, we have λm0/gcd(i,m0) 
= 1.

Similarly, gcd(xi + 1
λ
, xm0 + 1) = 1 if and only if λ−m0/gcd(i,m0) 
= 1. Note that

λm0/gcd(i,m0) 
= 1 if and only if λ−m0/gcd(i,m0) 
= 1. Hence, this theorem follows. �

Remark 2 Let β ∈ GF(2e)∗. Then f (x) of the form (8) is bent if and only if fβ(x) =
∑m/2−1

i=1 Trn1(βci x
1+2ei )+Trn/2

1 (βcm/2x1+2n/2
) is bent. Bent functions of the form (8)

contain the functions studied in [10]. From the transformation x �−→ β2e−1
x , f (x)

can be changed into fβ(x), which explains the relationship between bent functions
presented by Hu and Feng [10] and bent functions constructed by Ma et al. [18].

Theorem 6 Let ci ∈ GF(2e) for 1 ≤ i ≤ m/2 and β ∈ GF(2e). Then f (x) of the form
(8) is bent if and only if f+(x) = f (x) + ∑m/2−1

i=1 Trn1(βx
1+2ei ) is bent.

Proof We have c f+(x) = c f (x) + β
∑m/2−1

i=1 (xi + xm−i ) = c f (x) + β(xm/2 +
1)

∑m/2−1
i=1 xi . For any polynomial g(x), gcd(g(x), xm + 1) = 1 if and only if

gcd(g(x), xm/2 + 1) = 1. Then gcd(c f+(x), xm/2 + 1) = gcd(c f , xm/2 + 1). Hence,
this theorem follows. �

From Theorem 6, we have a generalization of Theorem 5 in [10].

Corollary 5 Let m0 be the largest odd integer dividing m. Let 1 ≤ k ≤ m/2 − 1,
d ≥ 1, β1 ∈ GF(2e)∗ and β2 ∈ GF(2e). The Boolean function f (x) =
∑m/2−1

i=1 Trn1(β2x1+2ei )+Trn/2
1 (β1x1+2n/2

)+∑k
i=1 Tr

n
1(β1x1+2edi ) is bent if and only

if gcd((2k + 1)d,m0) = gcd(d,m0).

Proof From Theorem 6 and Theorem 4 in [10], this theorem follows. �

Theorem 7 Let ai , bi ∈ GF(2e) for 1 ≤ i ≤ m/2. Two Boolean functions f1(x)
and f2(x) are defined by f1(x) = ∑m/2−1

i=1 Trn1(ai x
1+2ei ) + Trn/2

1 (am/2x1+2n/2
) and

f2(x) = ∑m/2−1
i=1 Trn1(bi x

1+2ei ) + Trn/2
1 (bm/2x1+2n/2

). Let (
∑m/2−1

i=1 ai (x + xm−i ) +
am/2xm/2)(

∑m/2−1
i=1 bi (x + xm−i ) + bm/2xm/2)xm/2 ≡ ∑m−1

i=0 ci xi mod xm + 1,
where ci ∈ GF(2e). Let a0 = b0 = 0. Let am− j = a j , bm−k = bk for m/2 + 1 ≤
j, k ≤ m. Then ci = ∑

j + k ≡ i + m/2 mod m
0 ≤ j, k ≤ m − 1

a jbk . Further,

(1) c0 = 0 and cm−i = ci for 1 ≤ i ≤ m − 1;
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(2) f1∗2(x) = ∑m/2−1
i=1 Trn1(ci x

1+2ei )+Trn/2
1 (cm/2x1+2n/2

) is bent if and only if both
f1(x) and f2(x) are bent.

Proof Note that c0 = ∑
j + k ≡ m/2 mod m
0 ≤ j, k ≤ m − 1

a jbk = 0. For 1 ≤ i ≤ m − 1, we have

cm−i = ∑
j + k ≡ m/2 − i mod m

0 ≤ j, k ≤ m − 1
a jbk = ci Hence, Result (1) follows. From the definition

of f1∗2(x), c f1∗2(x) = ∑m−1
i=0 ci xi . Further, c f1∗2(x) ≡ c f1(x) · c f2(x) mod xm + 1.

Then gcd(c f1∗2(x), x
m+1) = gcd(c f1(x)·c f2(x), x

m+1).Hence, gcd(c f1∗2(x), x
m+

1) = 1 if and only if gcd(c f1(x), x
m + 1) = gcd(c f1 · c f2(x), x

m + 1) = 1. From
Theorem 4, Result (2) follows. �

Corollary 6 Let m0 be the maximum odd positive integer dividing m, then the Boolean
function

f (x) =Trn1(x
1+2ed1 ) + Trn1(x

1+2ed2 ) + Trn1(x
1+2e(d1+d2+m/2)

)

+ Trn1(x
1+2e(d1−d2+m/2)

) + Trn/2
1 (x1+2n/2

)

is bent if and only if gcd(3d1,m0) = gcd(d1,m0) and gcd(3d2,m0) = gcd(d2,m0).

Proof From Theorem 7 and Theorem 4 in [10], this corollary follows. �


4 The number for bent functions in casem = 2v0pr and
gcd(e,p− 1) = 1

In this section, we will determine the number of bent functions of the form (8). In [10,
27], cyclotomic polynomials and their factorization are used in the enumeration. Our
method can be generalized for general cases. Before the enumeration, some knowledge
on monic self-reciprocal polynomials is given first.

Definition 2 The reciprocal polynomial g∗(x) of a polynomial g(x) of degree n is
defined by g∗(x) = xng(1/x). A polynomial is called self-reciprocal if it coincides
with its reciprocal polynomial.

Lemma 1 Let A(x) = ∑n1
i=0 ai x

i be a monic self-reciprocal polynomial of degree n1
and B(x) = ∑n

i=0 bi x
i be a polynomial of degree n2. Then A(x)B(x) is a monic self-

reciprocal polynomial of degree n1 + n2 if and only if B(x) is a monic self-reciprocal
polynomial.

Proof Let C(x) = A(x)B(x) = ∑n1+n2
i=0 ci xi . Suppose B(x) is a monic self-

reciprocal polynomial, then c0 = a0b0 = an1bn2 = cn1+n2 = 1. For 0 < k < n1+n2,
cn1+n2−k = ∑

i+ j=n1+n2−k ai b j = ∑
(n1−i)+(n2− j)=k an1−i bn2− j = ck . Hence C(x)

is a monic self-reciprocal polynomial of degree n1 + n2.
On the other hand, suppose that C(x) is a monic self-reciprocal polynomial. From

a0b0 = c0 = 1 and an1bn2 = cn1+n2 = 1, b0 = 1 and bn2 = 1. If B(x) is not monic
self-reciprocal, there exists an integer k satisfying that 0 < k < n2, bk 
= bn2−k and
bk−1 = bn2−(k−1), . . ., b0 = bn2 . Then 0 = ck − cn1+n2−k = bk − bn2−k . The result
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bk = bn2−k contradicts the supposition of k. Hence, B(x) is a monic self-reciprocal
polynomial.

This theorem follows. �

Lemma 2 Let A(x), g(x) ∈ GF(2e)[x] and A(x) be monic self-reciprocal. Let
g(x) be irreducible and g(x)|A(x), then g∗(x)|A(x), where g∗(x) is the recipro-
cal polynomial of g(x). Further, if g(x) is not self-reciprocal, then g̃(x)|A(x), where
g̃(x) = g(x)g∗(x).

Proof If g(x) is self-reciprocal, g∗(x) = g(x), the results obviously hold.
Suppose that g(x) is not self-reciprocal. From g(x)|A(x), g∗(x)|A∗(x) =

A(x). Then g∗(x)|A(x). Since g(x) is irreducible, gcd(g(x), g∗(x)) = 1 and
g(x)g∗(x)|A(x). Hence, this lemma follows. �

Corollary 7 Let A(x) ∈ GF(2e)[x] be a monic self-reciprocal polynomial. Then A(x)
has the following factorization.

A(x) =g1(x)g
∗
1(x) · · · gs(x)g∗

s (x)gs+1(x) · · · gs+t (x)

=g̃1(x) · · · g̃s(x)g̃s+1(x) · · · g̃s+t (x), (10)

where gi (x), g∗
j (x) (1 ≤ i ≤ s + t, 1 ≤ j ≤ s) are irreducible. gi (x) is not self-

reciprocal for 1 ≤ i ≤ s and g̃i (x) = gi (x)g∗
i (x), where g∗

i (x) is the reciprocal
polynomial of gi (x). gi (x) is self-reciprocal for s + 1 ≤ i ≤ s + t and g̃i (x) = gi (x).

Proof From Lemmas 1 and 2, this corollary follows. �

Let the monic self-reciprocal polynomial A(x) ∈ GF(2e)[x] without duplicate

factors have the following factorization of the form (10)

A(x) = g̃1(x) · · · g̃s(x)g̃s+1(x) · · · g̃s+t (x), (11)

where g̃i (x) is self-reciprocal. Further, suppose g̃i (x) is monic. Then ni =
deg(g̃i (x)) (1 ≤ i ≤ s + t) is even. For a positive even integer k, let Rk be a
set of polynomial C(x) ∈ GF(2e)[x], where C(x) satisfies the following conditions.

(i) deg(C(x)) ≤ k and deg(C(x)) is even;
(ii) C(x) is monic self-reciprocal;
(iii) gcd(C(x), x + 1) = 1.

For an even integer h > deg(A(x)), define Ph(A(x)) as a set

Ph(A(x)) = {C(x) ∈ Rh : gcd(C(x), A(x)) = 1}.

Then we have the enumeration for #(Rk) and #(Ph(A(x))).

Lemma 3 With the previously defined notation,

#(Rk) =2
ek
2 , #(Ph(A(x))) = 2

eh
2

s+t∏

i=1

(

1 −
(
1

2e

) ni
2

)

.
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Proof Note that the monic self-reciprocal polynomial x2i +a2i−1x2i−1+· · ·+ai xi +
· · · + a1x1 + 1 of even degree is coprime to x + 1 if and only if ai 
= 0. From the
definition of Rk , the numbers of polynomials of degree 0, 2, 4, 6, . . . , k in Rk are
1, (2e − 1), (2e − 1)(2e)1, (2e − 1)(2e)2, . . . , (2e − 1)(2e)k/2−1 respectively. Hence,

#(Rk) = 1 + ∑i=k/2−1
i=0 (2e − 1)(2e)i = 2

ek
2 .

To enumerate Ph(A(x)), we introduce the auxiliary set

Mh(i1, i2, . . . , ik) = {C(x) ∈ Rh :
k∏

j=1

g̃i j (x)|C(x)},

where 1 ≤ k ≤ s + t and 1 ≤ i1 < i2 < · · · < ik ≤ s + t .
From Lemma 1, for any C(x) ∈ Mh(i1, i2, . . . , ik), C(x) can be uniquely repre-

sented by C(x) = C ′(x)
∏k

j=1 g̃i j (x), where C
′(x) ∈ Rh−ni1−···−nik

. Then

#(Mh(i1, i2, . . . , ik)) = #(Rh−ni1−···−nik
).

Since A(x) has no duplicate factors, gcd(g̃i (x), g̃ j (x)) = 1 (i 
= j) and deg(g̃i (x))
is even. Then gcd(g̃i (x), x + 1) = 1. From the inclusion-exclusion principle,

#(Ph(A(x))) = #(Rh) −
∑

1≤i1≤s+t

#(Mh(i1)) +
∑

1≤i1<i2≤s+t

#(Mh(i1, i2))

+ (−1)s+t#(Mh(1, 2, . . . , s + t))

= #(Rh) +
s+t∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+t

#(Mh(i1, i2, . . . , is+t ))

= #(Rh) +
s+t∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+t

#(Rh−ni1−···−nik
)

= 2
eh
2 +

s+t∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+t

2e
h−ni1

−ni2
···−nik

2

= 2
eh
2

(

1 +
s+t∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+t

2−e
ni1

+ni2
···+nik

2

)

= 2
eh
2

s+t∏

k=1

(

1 −
(
1

2e

) ni
2

)

.

Hence, this lemma follows. �

Nowwe consider the number of bent functions. Letm = 2v0 pr and gcd(e, p−1) =

1, where v0 > 0, r > 0 and p is an odd prime satisfying ordp(2) = p − 1 or
ordp(2) = (p−1)/2((p−1)/2 is odd).Wefirst discuss the factorization of x pr +1 over
GF(2e), which is connected with cyclotomic polynomials [13]. The d-th cyclotomic
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polynomial Qd(x), whose roots are primitive d-th roots of unity, is amonic polynomial
of order d and degree φ(d), where φ(·) is Euler-totient function. From [1,6], we have
the following lemma.

Lemma 4 With the previously defined notation, we have the following results.

(1) If gcd(e, p − 1) = 1, then ord p(2e) = ord p(2).
(2) x pr + 1 has no duplicate factors.
(3) For any i ≥ 1, Q pi (x) is a monic self-reciprocal polynomial of even degree.
(4) Let i ≥ 1. If ordp(2) = p − 1, Q pi (x) is irreducible over GF(2e). If ordp(2) =

(p − 1)/2 is odd, then Qpi (x) = gi (x)g∗
i (x), where gi (x), g

∗
i (x) ∈ GF(2e) are

monic irreducible polynomials and g∗
i (x) is the reciprocal polynomial of gi (x).

(5) x pr + 1 = (x + 1)Qp(x) · · · Qpr (x) and
x pr +1
x+1 is a monic self-reciprocal poly-

nomial.
(6) If ordp(2) = p − 1 or ordp(2) = (p − 1)/2 ((p − 1)/2 is odd), then x pr +1

x+1 =
Qp(x) · · · Qpr (x) is a factorization in the form of (10) or (11).

The following theorem presents the number of a special class of quadratic bent
functions.

Theorem 8 Let m = 2v0 pr , where v0 ≥ 1, r ≥ 1 and p satisfies that ordp(2) = p−1
or ordp(2) = (p − 1)/2 ((p − 1)/2 is odd). Let gcd(e, p − 1) = 1. The number of
bent functions of the form (8) is

(2e − 1)2e
m−2
2

r∏

i=1

(

1 −
(
1

2e

) pi−pi−1

2
)

.

Proof FromTheorem4, theBoolean function in (8) is bent if and only if the polynomial
c f (x) in (9) is coprime to xm+1. There exists an integer k satisfying that 1 ≤ k ≤ m/2,
ck 
= 0 and ck−1 = · · · = c1 = 0. Then we have

c f (x) = ckx
k(xm−2k + ck+1

ck
xm−2k−1 + · · · + cm/2

ck
xm/2−k + · · · + ck+1

ck
x1 + 1)

= ckx
kC(x).

Hence gcd(c f (x), xm + 1) = 1 if and only if gcd(C(x), xm + 1) = 1. Note that xm +
1 = (x pr + 1)2

v0 . Equivalently, gcd(C(x), x pr + 1) = 1, i.e., C(x) ∈ Pm−2(
x pr +1
x+1 ).

Since ck ∈ GF(2e)∗, the number of bent functions of the form (8) is

#(GF(2e)∗)#
(

Pm−2

(
x pr + 1

x + 1

))

. (12)
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From Result (6) in Lemma 4, x
pr +1
x+1 = Qp(x) · · · Qpr (x) is the factorization of x pr +1

x+1
in the form (11) and ni = φ(pi ) = pi − pi−1 (1 ≤ i ≤ r). From Lemma 3

#

(

Pm−2

(
x pr + 1

x + 1

))

= 2e
m−2
2

r∏

i=1

⎛

⎝1 −
(
1

2e

) pi−pi−1

2

⎞

⎠ .

From Identity (12), this theorem follows. �

Example 3 Letm = 2p = 2×5, and e = 3. Then ord5(2) = 4 and gcd(3, 4)=1. From
Theorem 8, the Boolean function in (8) is bent. The number of such bent functions is
28224. This can be verified by a computer program.

Remark 3 From Remark 2, bent functions of the form (8) contain more functions than
the functions defined in [10]. Under conditions in Theorem 8, the number of bent
functions of the form (8) is greater than that of bent functions in Theorem 8 of [10].

5 Conclusion

In this paper, we present the relationship between quadratic Boolean functions and lin-
earized permutation polynomials. A large class of quadratic bent functions is discussed
and studied. Some quadratic bent functions are constructed. Further, new quadratic
bent functions can be derived from known quadratic bent functions. Finally, for spe-
cial n, we present the construction and the number of quadratic bent functions. Our
technique can be used in the study of semi-bent functions.
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