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Abstract
In this note, we give a very simple description of the generalized Hamming weights
of Reed–Muller codes. For this purpose, we generalize the well-known Macaulay
representation of a nonnegative integer and state some of its basic properties.
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1 Preliminaries

Let Fq be the finite field with q elements and denote by A
m := A

m(Fq) the
m-dimensional affine space defined over Fq . This space consists of qm points
(a1, . . . , am) with a1, . . . , am ∈ Fq . Let T (m) := Fq [x1, . . . , xm] denote the ring
of polynomials in m variables and coefficients in Fq . Further let T≤d(m) be the set
of polynomials in T (m) of total degree at most d. A monomial Xα1

1 · · · Xαm
m is called

reduced if (α1, . . . , αm) ∈ {0, 1, . . . , q − 1}m . Similarly a polynomial f ∈ T (m) is
called reduced if it is an Fq -linear combination of reduced monomials. We denote the
set of reduced polynomials by T red(m) and define T red≤d (m) := T≤d(m) ∩ T red(m).

One reason for considering reduced polynomials comes fromcoding theory. Indeed,
Reed–Muller codes are obtained by evaluating certain polynomials in the points of
A
m , but the evaluation map

Ev : T (m) → F
qm
q , defined by Ev( f ) = ( f (P))P∈Am
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is not injective. However, its restriction to T red(m) is. In fact, the kernel of Ev consists
precisely of the ideal I ⊂ T (m) generated by the polynomials xqi − xi (1 ≤ i ≤ m).
Workingwith reducedpolynomials is simply a convenientway to take this into account,
since for two reduced polynomials f1, f2 ∈ T (m) the equality f1 + I = f2 + I holds
if and only if f1 = f2.

The Reed–Muller code RMq(d,m) is the set of vectors from F
qm
q obtained by

evaluating polynomials of total degree up to d in the qm points of Am , that is to say:

RMq(d,m) := {( f (P))P∈Am : f ∈ T≤d(m)}.

By the above, we also have RMq(d,m) := {( f (P))P∈Am : f ∈ T red≤d (m)} and
moreover, we have

dim RMq(d,m) = dim T red≤d (m). (1)

Reed–Muller codes RMq(d,m) have been studied extensively for their elegant alge-
braic properties. Their generalized Hamming weights dr (RMq(d,m)) have been
determined in [4] by Heijnen and Pellikaan. For a general linear code C ⊆ F

n
q these

are defined as follows:

dr (C) := min
D⊆C :dim D=r

|supp(D)|,

where the minimum is taken over all r -dimensional Fq -linear subspaces D of C and
where supp(D) denotes the support of D, that is to say

supp(D) := {i : ∃ (c1, . . . , cn) ∈ D, ci 	= 0}.

In case of Reed–Muller codes, there is a direct relation between generalized Hamming
weights and the number of common solutions to systems of polynomial equations.
Indeed, if D ⊂ RMq(d,m) is spanned by ( fi (P))P∈Am for f1, . . . , fr ∈ T red≤d (m),
then |supp(D)| = qm−|Z( f1, . . . , fr )|where Z( f1, . . . , fr ) := {P ∈ A

m : f1(P) =
· · · = fr (P) = 0} denotes the set of common zeros of f1, . . . , fr in them-dimensional
affine space Am over Fq . Therefore, if we define

ēAr (d,m) := max
{
|Z( f1, . . . , fr )| : f1, . . . , fr ∈ T red≤d (m) linearly independent

}
,

(2)
then dr (RMq(d,m)) = qm − ēAr (d,m). Note that T red(m) is a vector space over Fq

of dimension qm and that a reduced polynomial has total degree at most m(q − 1).
Therefore T red(m) = T red

≤m(q−1)(m). This implies in particular that RMq(d,m) = F
qm
q

for d ≥ m(q − 1). Therefore, we will always assume that d ≤ m(q − 1).
The result of Heijnen–Pellikaan in [4] on the value of dr (RMq(d,m)) can now be

restated as follows, see for example [2].

ēAr (d,m) =
m∑
i=1

μi q
m−i , (3)

123



A note on the generalized Hamming weights of Reed–Muller… 235

where (μ1, . . . , μm) is the r -th m-tuple in descending lexicographic order among all
m-tuples (β1, . . . , βm) ∈ {0, 1, . . . , q − 1}m satisfying β1 + · · · + βm ≤ d.

Following the notation in [4], we denote with ρq(d,m) the dimension of
RMq(d,m). Equation (1) implies that ρq(d,m) = dim(T red≤d (m)). In particular, we
have

ρq(d,m) = dim(T≤d(m)) =
(
m + d

d

)
, if d ≤ q − 1, (4)

since T≤d(m) = T red≤d (m) if d < q. Here as well as later on we use the convention that(a
b

) = 0 if a < b. In particular we have ρq(d,m) = 0 if d < 0. As shown in [1, §5.4],
for the general case d ≤ m(q − 1), we have

ρq(d,m) = dim
(
T red≤d (m)

)
=

d∑
i=0

m∑
j=0

(−1) j
(
m

j

)(
m − 1 + i − q j

m − 1

)
. (5)

In this note, we will present an easy-to-obtain expression for ēAr (d,m) involving a
certain representation of the number ρq(d,m)−r that we introduce in the next section.

2 The d-th Macaulay representation with respect to q

Let d be a positive integer. The d-th Macaulay (or d-binomial) representation, of a
nonnegative integer N is a way to write N as sum as certain binomial coefficients. To
be precise

N =
d∑

i=1

(
si
i

)
,

where the si integers satisfying sd > sd−1 > · · · > s1 ≥ 0. The usual convention that(a
b

) = 0 if a < b, is used. For example, the d-th Macaulay representation of 0 is given

by 0 = ∑d
i=1

(i−1
i

)
.Given d and N the integers si exist and are unique. TheMacaulay

representation is among other things used for the study of Hilbert functions of graded
modules, see for example [3]. It is well known (see for example [3]) that if N and
M are two nonnegative integers with Macaulay representations given by (kd , . . . , k1)
and (�d , . . . , �1) then N ≤ M if and only if (kd , . . . , k1) � (�d , . . . , �1), where �
denotes the lexicographic order.

For our purposes it is more convenient to define mi := si − i . We then obtain

N =
d∑

i=1

(
mi + i

i

)
, (6)

where mi are integers satisfying md ≥ md−1 ≥ · · · ≥ m1 ≥ −1. The reason for this
is that for d ≤ q − 1 we have ρq(d,m) = (m+d

d

)
. Therefore, we can interpret Eq. (6)

as a statement concerning dimensions of the Reed–Muller codes RMq(i,mi ). For a
suitable choice of N , it turns out that themi completely determine the value of ēAr (d,m)

if d ≤ q − 1. For d ≥ q, even though the dimension ρq(d,m) is not longer given by
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(m+d
d

)
, there exists a variant of the usual d-th Macaulay representation that turns out

to be equally meaningful for Reed–Muller codes. Before stating this representation,
we give a lemma.

Lemma 2.1 Let m ≥ 1 be an integer. We have

ρq(d,m) =
min{d,q−1}∑

i=0

ρq(d − i,m − 1).

Proof Any polynomial f ∈ T (m) can be seen as a polynomial in the variable Xm with
coefficients in T (m − 1). This implies that T (m) = ∑

i≥0 X
i
mT (m), where the sum

is a direct sum. Similarly we can write

T red≤d (m) =
min{d,q−1}∑

i=0

Xi
mT

red≤d−i (m − 1).

The result now follows. ��
A consequence of this lemma is the following.

Corollary 2.2 Let d = a(q − 1) + b for integers a and b satisfying a ≥ 0 and
1 ≤ b ≤ q − 1. Further suppose that m ≥ a. Then

ρq(d,m) − 1 =
a−1∑
j=0

q−2∑
�=0

ρq(d − j(q − 1) − �,m − j − 1) +
b∑

i=1

ρq(i,m − a − 1).

Proof This follows using Lemma 2.1 repeatedly. First applying the lemma to each
sum within the double summation on the right-hand side, we see that

a−1∑
j=0

q−2∑
�=0

ρq(d − j(q − 1) − �,m − j − 1)

=
a−1∑
j=0

(
ρq(d − j(q − 1),m − j) − ρq(d − ( j + 1)(q − 1),m − j − 1)

)

= ρq(d,m) − ρq(d − a(q − 1),m − a) = ρq(d,m) − ρq(b,m − a).

Using the same lemma to rewrite the single summation on the right-hand side in Eq.
(9) we see that if m > a

b∑
i=1

ρq(i,m − a − 1) = ρq(b,m − a) − ρq(0,m − a − 1) = ρq(b,m − a) − 1,

while if m = a, the single summation equals 0 and the double summation simplifies
to ρq(d,m) − 1. In either case, we obtain the desired result ��
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We can now show the following.

Theorem 2.3 Let N ≥ 0 and d ≥ 1 be integers and q a prime power. Then there exist
uniquely determined integers m1, . . . ,md satisfying

1. N = ∑d
i=1 ρq(i,mi ),

2. −1 ≤ m1 ≤ · · · ≤ md ,

3. for all i satisfying 1 ≤ i ≤ d−q+1, either mi+q−1 > mi or mi+q−1 = mi = −1.

Proof We start by showing uniqueness. Suppose that

N =
d∑

i=1

ρq(i,mi ) =
d∑

i=1

ρq(i, ni ) (7)

and the integers n1, . . . , nd and m1, . . .md satisfy the conditions from the theorem.
First of all, if md = −1 or nd = −1 then N = 0. Either assumption implies that
(md , . . . ,m1) = (−1, . . . ,−1) = (nd , . . . , n1). Indeed ni ≥ 0 or mi ≥ 0 for some
i directly implies that N > 0. Therefore we from now on assume that md ≥ 0 and
nd ≥ 0. To arrive at a contradiction, we may assume without loss of generality that
nd ≤ md − 1.

Define e to be the smallest integer such that ne ≥ 0. Equation (7) can then be
rewritten as

N =
d∑

i=1

ρq(i,mi ) =
d∑

i=e

ρq(i, ni ) (8)

Condition 3 from the theorem implies that ni−q+1 < ni for all i satisfying e ≤ i ≤ d.
Now write d − e + 1 = a(q − 1) + b for integers a and b satisfying a ≥ 0 and
1 ≤ b ≤ q − 1. With this notation, we obtain that for any 0 ≤ j ≤ a − 1 and
0 ≤ � ≤ q − 2 we have that

nd− j(q−1)−� ≤ nd − j ≤ md − j − 1.

In particular choosing j = a − 1 and � = 0, this implies that md ≥ a + nq−1+b ≥
a + 1 + nb ≥ a. Using these observations, we obtain from Eq. (7) that

ρq(d,md) ≤ N =
d∑

i=e

ρq(i, ni )

≤
a−1∑
j=0

q−2∑
�=0

ρq(d − j(q − 1) − �,md − j − 1)

+
b∑

i=1

ρq(e + i − 1,md − a − 1). (9)
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Applying the same technique as in the proof of Corollary 2.2, we derive that

a−1∑
j=0

q−2∑
�=0

ρq(d − j(q − 1) − �,md − j − 1) = ρq(d,md) − ρq(b + e − 1,md − a)

and Eq. (9) can be simplified to

ρq(d,md) ≤ ρq(d,md)−ρq(b+e−1,md −a)+
b∑

i=1

ρq(e+i−1,md −a−1). (10)

For md = a the right-hand side equals ρq(d,md) − 1, leading to a contradiction. If
md > q, Eq. (10) implies

ρq(b + e − 1,md − a) ≤
b∑

i=1

ρq(e + i − 1,md − a − 1)

=
b−1∑
j=0

ρq(e + b − 1 − j,md − a − 1)

<

min{e+b−1,q−1}∑
j=0

ρq(e + b − 1 − j,md − a − 1)

= ρq(b + e − 1,md − a),

where in the last equality we used Lemma 2.1. Again we arrive at a contradiction. This
completes the proof of uniqueness of the d-th Macaulay representation with respect
to q.

Now we show existence. Let d, N and q be given. We will proceed with induction
on d. For d = 1, note that ρq(1,m) = m + 1 for any m ≥ −1. Therefore, for a given
N ≥ 0, we can write N = ρq(1, N − 1).

Now assume the theorem for d − 1. There exists md ≥ −1 such that

ρq(d,md) ≤ N < ρq(d,md + 1). (11)

Applying the induction hypothesis on N − ρq(d,md), we can find md−1, . . . ,m1
satisfying the conditions of the theorem for d − 1. In particular we have that

1. N − ρq(d,md) = ∑d−1
i=1 ρq(i,mi ),

2. −1 ≤ m1 ≤ · · · ≤ md−1,

3. mi+(q−1) > mi for all 1 ≤ i ≤ d − q.

Clearly this implies that N = ∑d
i=1 ρq(i,mi ), but it is not clear a priori that

m1, . . . ,md satisfy conditions 2 and 3 as well. Conditions 2 and 3 would follow
once we show that md ≥ md−1 and either md > md−q+1 or md = md−q+1 = −1.
First of all, ifmd = −1, then N = 0 and (md , . . . ,m1) = (−1, . . . ,−1). Hence there
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is nothing to prove in that case. Assume md ≥ 0. From Eq. (11) and Lemma 2.1 we
see that

N − ρq(d,md) < ρq(d,md + 1) − ρq(d,md) =
min{d,q−1}∑

i=1

ρq(d − i,md). (12)

First suppose that d ≤ q − 1. First of all, Condition 3 is empty in that setting. Further,
Eq. (12) implies

N − ρq(d,md) <

d∑
i=1

ρq(d − i,md) =
d−1∑
i=1

ρq(d − i,md) + 1

and hence

N − ρq(d,md) ≤
d−1∑
i=1

ρq(d − i,md) =
d−2∑
j=0

ρq(d − 1 − j,md) < ρq(d − 1,md + 1).

This shows that md−1 ≤ md as desired.
Now suppose that d ≥ q. In this situation Eq. (12) implies

N − ρq(d,md) <

q−1∑
i=1

ρq(d − i,md) =
q−2∑
j=0

ρq(d − 1 − j,md) < ρq(d − 1,md + 1).

Hence md−1 ≤ md as before. Finally assume that md ≤ md−q+1. Then by the
previous and Condition 2, we have md = md−1 = · · · = md−q+1. Hence N ≥∑q−1

i=0 ρq(d − i,md) = ρq(d,md + 1) which is in contradiction with Eq. (11). This
concludes the induction step and hence the proof of existence. ��

We call the representation of N in the above theorem the d-th Macaulay represen-
tation of N with respect to q. One retrieves the usual d-th Macaulay representation
letting q tend to infinity. We refer to (md , . . . ,m1) as the coefficient tuple of this
representation. A direct corollary of the above is the following.

Corollary 2.4 The coefficient tuple (md , . . . ,m1) of the d-th Macaulay representation
with respect to q of a nonnegative integer N can be computed using the following
greedy algorithm: The coefficient md−i can be computed recursively (starting with
i = 0) as the unique integer md−i ≥ −1 such that

ρq(d − i,md−i ) ≤ N −
d∑

j=d−i+1

ρq( j,m j ) < ρq(d − i,md−i + 1).

Proof From the existence-part of the proof of Theorem 2.3 it follows directly that the
given greedy algorithm finds the desired coefficients. ��
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A further corollary is the following. As before  denotes the lexicographic order.

Corollary 2.5 Suppose the N and M are two nonnegative integers whose respective
coefficient tuples are (nd , . . . , n1) and (md , . . . ,m1). Then

N ≤ M if and only if (nd , . . . , n1)  (md , . . . ,m1).

Proof Assume (nd , . . . , n1)  (md , . . . ,m1). It is enough to show the corollary in
case nd < md .Weknow from the previous corollary that nd andmd maybe determined
using the given greedy algorithm. In particular this implies that nd < md implies

N < ρq(d, nd + 1) ≤ ρq(d,md) ≤ M .

Assume that N ≤ M . We use induction on d. The induction basis is trivial: If d = 1,
then m1 = M − 1 and n1 = N − 1. For the induction step, note that N ≤ M <

ρq(d,md + 1) implies by the greedy algorithm that nd ≤ md . If nd < md , we are
done. If nd = md , we replace N with N −ρq(d,md) and M with M −ρq(d,md) and
use the induction hypothesis to conclude that (nd , . . . , n1)  (md , . . . ,m1). ��

3 A simple expression for ēAr (d,m)

We are now ready to state and prove the relation between the Macaulay representation
with respect to q and ēAr (d,m).

Theorem 3.1 For 1 ≤ r ≤ ρq(d,m), let the d-th Macaulay representation of
ρq(d,m) − r with respect to q be given by

ρq(d,m) − r =
d∑

i=1

ρq(i,mi ).

Denoting the floor function as �·�, we have

ēAr (d,m) =
d∑

i=1

�qmi �.

Proof We know from Eq. (3) that we need to show that

d∑
i=1

�qmi � =
m∑
i=1

μi q
m−i ,

with (μ1, . . . , μm) is the r -th element in descending lexicographic order among all
m-tuples (β1, . . . , βm) in {0, 1, . . . , q − 1}m satisfying β1 + · · · + βm ≤ d. First
of all note that since r ≥ 1, we have ρq(d,m) − r < ρq(d,m). In particular this
implies that md ≤ m − 1. Therefore the coefficients of the d-tuple (md , . . . ,m1) are
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in {−1, 0, . . . ,m − 1}. Now for 1 ≤ i ≤ m + 1 define μi := |{ j : m j = m − i}|.
Since the d-tuple (md , . . . ,m1) is nonincreasing by Condition 2 from Theorem 2.3,
we can reconstruct it uniquely from the (m+1)-tuple (μ1, μ2, . . . , μm+1).Moreover,
Condition 3 from Theorem2.3, implies that (μ1, . . . , μm) ∈ {0, 1, . . . , q − 1}m , but
note that μm+1 could be strictly larger than q − 1. Further by construction we have
μ1 + · · · + μm + μm+1 = d, implying that μ1 + · · · + μm ≤ d. Note that μm+1 is
determined uniquely by (μ1, . . . , μm), since μ0 = d − μ1 − · · · − μm . Therefore
the correspondence between the d-tuples (md , . . . ,m1) of coefficients of the d-th
Macaulay representations with respect to q of integers 0 ≤ N < ρq(d,m) and the
m-tuples (μ1, . . . , μm) ∈ {0, 1, . . . , q − 1}m satisfying μ1 + · · · + μm ≤ d, is a
bijection. Moreover by construction we have

d∑
i=1

�qmi � =
m+1∑
j=1

μ j�qm− j� =
m∑
j=1

μ j q
m− j .

What remains to be shown is that the constructed m-tuple coming from the integer
ρq(d,m)−r is in fact the r -th in descending lexicographic order. First of all, by Corol-
lary 2.2we see that for r = 1 and d = aq+b that them-tuple associated toρq(d,m)−1
equals (q − 1, . . . , q − 1, b, 0, . . . , 0), which under the lexicographic order is the
maximal m-tuple among all m-tuples (β1, . . . , βm) ∈ {0, 1, . . . , q − 1}m satisfying
β1 +· · ·+βm ≤ d. Next we show that the conversion between d-tuples (md , . . . ,m1)

to m-tuples (μ1, . . . , μm) preserves the lexicographic order. Suppose therefore that
1 ≤ r ≤ s ≤ ρq(d,m). We write N := ρq(d,m) − s and M := ρq(d,m) − r . and
denote their Macaulay coefficient tuples with (nd , . . . , n1) and (md , . . . ,m1). Since
N ≤ M , Corollary 2.5 implies that (nd , . . . , n1)  (md , . . . ,m1). Also, since these
d-tuples are nonincreasing, this implies that their associated m-tuples (ν1, . . . , νm)

and (μ1, . . . , μm) satisfy (ν1, . . . , νm)  (μ1, . . . , μm). Indeed assuming without
loss of generality that ν1 < μ1 we see that mi = ni = m − 1 for d − ν1 ≤ i ≤ d but
ni < mi = m − 1 for i = ν1 + 1. Now the desired result follows immediately. ��

Combining this theoremwith the greedy algorithm inCorollary 2.4, it is very simple
to compute values of ēAr (d,m) or equivalently of dr (RMq(d,m)). We illustrate this in
the two following examples. The parameters in these example also occur in examples
from [4].

Example 3.2 Let q = 4, r = 8, d = m = 3. Since d ≤ q − 1, we may work with
the usual Macaulay representation when applying Theorem 3.1. We have ρq(d,m) =(6
3

) = 20 and hence

ρq(d,m) − r = 12 =
(
5

3

)
+

(
2

2

)
+

(
1

1

)
= ρ4(3, 2) + ρ4(2, 0) + ρ4(1, 0)

is the 3-rd Macaulay representation of 12. Theorem 3.1 implies that ēA8 (3, 3) = 42 +
40 + 40 = 18 and hence d8(RM4(3, 3)) = 64− 18 = 46 in accordance with Example
6.10 in [4].
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Example 3.3 Let q = 2, r = 10, d = 3 and m = 5. We have ρ2(3, 5) = 26 by Eq. (5)
and hence applying the greedy algorithm from Corollary 2.4, we compute that

ρq(d,m) − r = 16 = 15 + 1 + 0 = ρ2(3, 4) + ρ2(2, 0) + ρ2(1,−1)

is the 3rd Macaulay representation of 16 with respect to 2. Theorem 3.1 implies that
ēA10(3, 3) = 24 + 20 = 17 and hence d8(RM2(3, 5)) = 32 − 17 = 15 in accordance
with Example 6.12 in [4].

Remark 3.4 Theorem 3.1 is somewhat similar in spirit as Theorem 6.8 from [4] in the
sense that in both theorems a certain representation in terms of dimensions of Reed–
Muller codes is used to give an expression for dr (RMq(d,m)). Where we studied
decompositions of ρq(d,m) − r , in [4] the focus was on r itself. This suggest there
may exist a duality between the two approaches, but the similarities seem to stop there.
The representation in [4] is not the Macaulay representation with respect to q that we
have used here. For us it is for example very important that each degree i between
1 and d occurs once in Theorem 2.3 (implying that the greedy algorithm terminates
after at most d iterations), while this is not the case in Theorem 6.8 [4]. It could be
interesting future work to determine if a deeper lying relationship between the two
approaches exists.
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