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Abstract
Let R = Fq + v1Fq + · · · + vrFq , where q is a power of a prime, v2i = vi , viv j =
v jvi = 0 for 1 ≤ i, j ≤ r and r ≥ 1. In this paper, the structure of cyclic codes

over the ring R is studied and a Gray map φ from Rn to F
(r+1)n
q is given. We give a

construction of quantum codes from cyclic codes over the ring R. We derive Euclidean
dual containing codes over Fq and Hermitian dual containing codes over Fp2m as Gray
images of cyclic codes over R. In particular, we use r + 1 codes associated with a
cyclic code over R of arbitrary length to determine the parameters of the corresponding
quantum code. Furthermore, some new non-binary quantum codes are obtained.

Keywords Quantum codes · Cyclic codes · Dual containing codes · Gray map

1 Introduction

Quantum error-correcting codes were used in quantum communication and quantum
computation to protect quantum information from errors due to the decoherence and
other quantum noise. Quantum error-correcting codes provided an efficient way to
overcomedecoherence.After the great discovery in [7,25], the constructionof quantum
error-correcting codes from classical cyclic codes and their generalizations over the
finite field Fq has developed rapidly.
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Cyclic codes form an important class of linear codes due to their good algebraic
structures in coding theory and decoding theory. There are some papers on quantum
codes construction from cyclic codes (see [1–4,10,15–18,21–23]).

The study of coding theory over finite commutative rings was first started in 1970s.
Hammons et al. [12] proved that important families of binary non-linear codes were in
fact images under a Gray map of linear codes over Z4. Codes over finite commutative
rings have been developed rapidly after the study of Hammons et al., such as [1–
3,8,10,11,15,21,24].

As an application, codes over finite commutative rings can be used to construct
quantum codes. Qian et al. [23] provided a construction for quantum error-correcting
codes starting from cyclic codes over finite chain ring F2 + uF2, where u2 = 0. Later,
a construction of quantum codes from cyclic codes of odd length over finite chain ring
F4 + uF4 was given by Kai and Zhu [15]. In [24], Qian presented a new method of
constructing quantum codes from cyclic codes over finite non-chain ring F2 + vF2,
where v2 = v. Motivated by [24], Ashraf and Mohammad [1] gave a construction of
quantum codes from cyclic codes over finite non-chain ring F3 + vF3, where v2 = 1.
Furthermore, quantum codes from cyclic codes over finite non-chain rings Fp + vFp

[2] andFq+uFq+vFq+uvFq with u2 = u, v2 = v, uv = vu [3] were also studied by
Ashraf and Mohammad. Gao [10] investigated quantum codes from cyclic codes over
the ring Fq + vFq + v2Fq + v3Fq , where q = pr , p is a prime, 3|(p− 1) and v4 = v.
Further, u-constacyclic codes over Fp + uFp with u2 = 1 and their applications of
constructing new non-binary quantum codeswere studied byGao andWang. Recently,
Özen et al. [21] established a construction for quantum codes from cyclic codes over
finite non-chain ring F3 +uF3 +vF3 +uvF3, where u2 = 1, v2 = 1 and uv = vu. At
the same time, Dertli et al. [8] studied the structure of cyclic and quasi-cyclic codes
over the finite ring F2 + v1F2 + · · · + vrF2, where v2i = vi , viv j = v jvi = 0 for
1 ≤ i, j ≤ r and r ≥ 1.

In this paper, motivated by the previous work [8,21], we study quantum codes
construction from cyclic codes over the finite ring Fq + v1Fq + · · · + vrFq , where
v2i = vi , viv j = v jvi = 0 for 1 ≤ i, j ≤ r and r ≥ 1.

The paper is organized as follows. In Sect. 2, the structure of cyclic codes C over
the ring R is studied and a Gray map φ from Rn to F

(r+1)n
q is given. Furthermore,

the relationship between C and φ(C) is studied. Section 3 gives a method to derive
Euclidean dual containing codes over Fq as Gray images of cyclic codes over R.
A necessary and sufficient condition for cyclic codes over R to be Euclidean dual
containing is presented. From these linear codes, we obtain some new non-binary
quantum codes. A construction of Hermitian dual containing codes over Fp2m as Gray
images of cyclic codes over R is introduced in Sect. 4. Some new non-binary quantum
codes are obtained.

2 Cyclic codes over the finite ring Fq + v1Fq + · · · + vrFq

In this section, we study the structure of cyclic codes over the ring R and give a Gray
map φ from Rn to F

(r+1)n
q . Furthermore, the relationship between C and φ(C) is
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studied, where C is a linear code of length n over R. The notations C and C denote
codes over rings and fields, respectively, in the whole paper.

Let Fq be a finite field of cardinality q, where q is a power of a prime. Let R =
Fq [v1, v2, . . . , vr ]

/〈
v2i − vi , viv j = v jvi = 0

〉 = Fq + v1Fq + · · · + vrFq , where
1 ≤ i, j ≤ r and r ≥ 1. It is clear that R is a finite commutative ring with qr+1

elements. This ring is a semi-local ring. There are r + 1 maximal ideals of R. For any
element α of R, we have α = α0 + α1v1 + α2v2 + · · · + αrvr , where αi ∈ Fq for
0 ≤ i ≤ r . By the Chinese Remainder Theorem, we have that any element α ∈ R can
be expressed uniquely as

α = (1 − v1 − v2 − · · · − vr )β0 + β1v1 + β2v2 + · · · + βrvr ,

where β0, β1, . . . , βr ∈ Fq .
Let Rn be the set of n-tuples over R, i.e., Rn = {(c0, c1, . . . , cn−1)|ci ∈ R, i =

0, 1, . . . , n − 1}, where n is a positive integer. A linear code C of length n over R
is defined to be an R-submodule of Rn . For a linear code C of length n over R, if
it is invariant with respect to the cyclic shift operator σ , which maps the element
(c0, c1, . . . , cn−1) of Rn to the element (cn−1, c0, . . . , cn−2), then we call C a cyclic
code. Let C be a cyclic code of length n over R. It is not difficult to see that C is an
ideal of R = R[x]/〈xn − 1〉.

Let C be a linear code of length n over R. Let e0 = 1 − v1 − v2 − · · · − vr ,
e1 = v1, . . ., er = vr . It is not difficult to verify that ei e j = 0 for i �= j , ei ei = ei
and e0 + e1 + · · · + er = 1 in R, where i = 0, 1, . . . , r . This implies that ei is an
idempotent in R and R = e0R⊕ e1R⊕· · ·⊕ er R = e0Fq ⊕ e1Fq ⊕· · ·⊕ erFq . Then
C can be uniquely expressed as

C = e0C0 + e1C1 + · · · + erCr , (1)

where C0,C1, . . . ,Cr are linear codes of length n over Fq .
For any a = a0 + a1v1 + · · · + arvr = e0a(0) + e1a(1) + · · · + era(r) ∈ R,

we identify the element a with the vector a, i.e., a = (a(0), a(1), . . . , a(r)). Let
GLr+1(Fq) be the set of all (r + 1) × (r + 1) invertible matrices over Fq . We define
a Gray map

φ : R → F
r+1
q

a = (a(0), a(1), . . . , a(r)) 
→ (a(0), a(1), . . . , a(r))M,

where M ∈ GLr+1(Fq). Clearly, φ is an Fq -module isomorphism. For simplicity,
we abbreviate the vector (a(0), a(1), . . . , a(r))M as aM in the rest of this paper.
Similarly, the Gray map φ can be extended to map from Rn to F(r+1)n

q as follows

φ : Rn → F
(r+1)n
q

(a0, a1, . . . , an−1) 
→ (a0M, a1M, . . . , an−1M).

For any element a = (a(0), a(1), . . . , a(r)) ∈ R, we denote the Hamming weight
wtH (aM) of aM as the Gray weight of a, i.e., wtG(a) = wtH (aM). The Gray weight
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of any element (a0, a1, . . . , an−1) ∈ Rn is defined to be the integral
n−1∑

i=0
wtG(ai ). Let

C be a linear code of length n over R, the Gray distance of c1, c2 ∈ C be defined to
be dG(c1, c2) = wtG(c1 − c2). The minimum Gray distance dG of C is defined as
dG(C) = min{wtG(c)|0 �= c ∈ C}.

According to the above definitions, we have that φ(C) is a linear code of length
(r + 1)n over Fq . Furthermore, for any c = (a0, a1, . . . , an−1), c1, c2 ∈ C, we have

wtG(c) =
n−1∑

i=0

wtG(ai ) =
n−1∑

i=0

wtH (ai M) = wtH (cM),

dG(c1, c2) = wtG(c1 − c2) = wtH ((c1 − c2)M) = wtH (c1M − c2M)

= dH (c1M, c2M).

This implies that the Gray map φ is a weight and distance preserving map from Rn

(Gray weight or Gray distance) to F
(r+1)n
q (Hamming weight or Hamming distance).

Lemma 1 Let a = (a(0), a(1), . . . , a(r)) ∈ R. Then a is a unit if and only if a(i) �=
0 (mod p) for 0 ≤ i ≤ r .

Proof By the Chinese Remainder Theorem, we have that a is a unit over R ⇐⇒
a(0), a(1), . . . , a(r) are units over Fq ⇐⇒ a(i) �= 0 (mod p) for 0 ≤ i ≤ r . The
proof is completed. 
�

According to the decomposition (1) of C and the notations given above, we give
an explicitly expression of Ci as follows. Define

Ci = {ci ∈ F
n
q |∃ c0, . . . , ci−1, ci+1, . . . , cr ∈ F

n
q , e0c0 + e1c1 + · · · + er cr ∈ C}

for any 0 ≤ i ≤ r . Then Ci is a linear code of length n over Fq such that

C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr .

Let G be the generator matrix of C, then

G =

⎛

⎜⎜⎜
⎝

e0G0
e1G1

...

erGr

⎞

⎟⎟⎟
⎠

, (2)

where G0,G1, . . . ,Gr are generator matrices of linear codes C1,C2, . . . ,Cr , respec-
tively.

According to the above discussion, we have the following results.

Lemma 2 Let C be a linear code over R with length n, dimension
∑r

i=0 ki and min-
imum Gray distance dG, i.e., C is a [n,

∑r
i=0 ki , dG ]R linear code, where ki is the

dimension of Ci for any 0 ≤ i ≤ r . Then φ(C) is a [(r + 1)n,
∑r

i=0 ki , dG ]Fq linear
code.
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Proof By the definition of the map φ, we have M ∈ GLr+1(Fq) is a (r + 1)× (r + 1)
invertible matrix. Since all the rows of the generator matrix G (2) of C are linear
independent, we have that the dimension of φ(C) is

∑r
i=0 ki . Since φ is a weight and

distance preservingmap from Rn toF(r+1)n
q ,we getφ(C) is a [(r+1)n,

∑r
i=0 ki , dG ]Fq

linear code. 
�
Lemma 3 Let C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr be a linear code of length n over R.
Then C is a cyclic code over R if and only if C0,C1, . . . ,Cr are cyclic codes over Fq .

Proof Let (ci,0, ci,1, . . . , ci,n−1) ∈ Ci and c j = ∑r
i=0 ei ci, j for 0 ≤ j ≤ n − 1.

Then, we have

(c0, c1, . . . , cn−1) ∈ C.

Since C is a cyclic code over R, we have (cn−1, c0, c1, . . . , cn−2) ∈ C. It is easy to
find that

(cn−1, c0, c1, . . . , cn−2) =
r∑

i=0

ei (ci,n−1, ci,0, ci,1, . . . , ci,n−2).

By the uniqueness presentation of decomposition of linear codes over R, we get
(ci,n−1, ci,0, ci,1, . . . , ci,n−2) ∈ Ci . This implies thatC0,C1, . . . ,Cr are cyclic codes
over Fq .

Conversely, suppose that Ci is a cyclic code over Fq for any 0 ≤ i ≤ r . Let
(c0, c1, . . . , cn−1) ∈ C, where c j = ∑r

i=0 ei ci, j for 0 ≤ j ≤ n − 1. Then
(ci,0, ci,1, . . . , ci,n−1) ∈ Ci . It is easy to show that (cn−1, c0, c1, . . . , cn−2) =∑r

i=0 ei (ci,n−1, ci,0, ci,1, . . . , ci,n−2) ∈ e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr = C, which
follows that C is a cyclic code over R. 
�
Theorem 1 LetC = e0C0⊕e1C1⊕· · ·⊕erCr be a cyclic code of length n over R. Then
there exists a polynomial g(x) ∈ R[x], g(x)|(xn − 1) such that C = 〈g(x)〉, where
g(x) = ∑r

i=0 ei gi (x) and gi (x) is the generator polynomial of Ci for 0 ≤ i ≤ r .

Proof Let C = 〈∑r
i=0 ei gi (x)〉 be a cyclic code of length n over R, where gi (x) is

the generator polynomial of Ci for 0 ≤ i ≤ r . According to the definition of C, we
have C ⊆ C. On the other hand, since eiCi = eiC, we have C ⊆ C. Thus we get
C = C = 〈∑r

i=0 ei gi (x)〉.
By the fact that gi (x) is the generator polynomial of Ci for 0 ≤ i ≤ r , we

have gi (x)|(xn − 1) in Fq [x]. Then, there exists a polynomial hi (x) ∈ Fq [x]
such that xn − 1 = gi (x)hi (x) for 0 ≤ i ≤ r . Furthermore, it is not diffi-
cult to verify that

(∑r
i=0 ei gi (x)

) (∑r
i=0 ei hi (x)

) = xn − 1. This implies that
g(x) = ∑r

i=0 ei gi (x)|(xn − 1). 
�
With the notations and results above, we have the following lemma.

Lemma 4 Let C = 〈g(x)〉 be a cyclic code of length n over R, where g(x) =∑r
i=0 ei gi (x), gi (x) is the generator polynomial of Ci and deg(gi (x)) = ti for

0 ≤ i ≤ r . Then, we have |C| = |φ(C)| = q(r+1)n−(t0+···+tr ).
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3 Quantum codes from Euclidean dual containing codes

In this section, we provide amethod to derive Euclidean dual containing codes over Fq

as Gray images of cyclic codes over R. From these linear codes, some new non-binary
quantum codes are obtained.

For any x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn , the Euclidean inner
product is defined as

x · y =
n−1∑

i=0

xi yi (3)

For a linear code C of length n over R, its Euclidean dual code C⊥E is defined as

C⊥E = {x ∈ Rn|x · c = 0 ∀ c ∈ C}.

Furthermore,C is said to be self-orthogonal ifC ⊆ C⊥E , dual containing ifC⊥E ⊆ C
and self-dual if C = C⊥E .

Theorem 2 Let C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr be a linear code of length n over R.
Then

C⊥E = e0C
⊥E
0 ⊕ e1C

⊥E
1 ⊕ · · · ⊕ erC

⊥E
r (4)

Furthermore, C is Euclidean self-dual over R if and only if C0,C1, . . . ,Cr are
Euclidean self-dual over Fq .

Proof By the decomposition (4) of C⊥E and the notations given above, we give a
explicitly expression of C⊥E

i as follows. Define

C
⊥E
i = {xi ∈ F

n
q |∃ x0, . . . , xi−1, xi+1, . . . , xr ∈ F

n
q , e0x0 + e1x1 + · · · + er xr ∈ C⊥E }

for any 0 ≤ i ≤ r . According to the definitions of ei and C
⊥E
i , we have C⊥E =

e0C
⊥E
0 ⊕ e1C

⊥E
1 ⊕ · · · ⊕ erC

⊥E
r . It is obvious that C⊥E

i ⊆ C⊥E
i for any 0 ≤ i ≤ r .

Let xi ∈ C⊥E
i , for any ci ∈ Ci , there exist c0, . . . , ci−1, ci+1, . . . , cr ∈ F

n
q such that

xi · (e0c0 + · · · + er cr ) = 0. With the uniqueness presentation of decomposition of
linear codes over R, we have xi ∈ C

⊥E
i , i.e., C⊥E

i ⊆ C
⊥E
i . Then we get C⊥E =

e0C
⊥E
0 ⊕ e1C

⊥E
1 ⊕ · · · ⊕ erC

⊥E
r .

If C0,C1, . . . ,Cr are Euclidean self-dual over Fq , then we have C is Euclidean
self-dual over R. On the other hand, if C is Euclidean self-dual over R, then Ci is
self-orthogonal, i.e., Ci ⊆ C⊥E

i . In fact, we have Ci = C⊥E
i . Otherwise, there exists

an element xi ∈ C⊥E
i \Ci and x j ∈ C j for i �= j such that (e0x0 + e1x1 + · · · +

er xr )2 �= 0. This contradicts the fact that C is Euclidean self-dual over R. Thus, we
have C0,C1, . . . ,Cr are Euclidean self-dual over Fq . 
�
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According to Lemma 3 and Theorem 2, we get the following lemma directly.

Lemma 5 Let C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr be a cyclic code of length n over R.
Then its Euclidean dual code C⊥E is also a cyclic code of length n over R.

For any polynomial f (x) ∈ Fq [x] of degree n, the reciprocal of f (x) is defined
as f ∗(x) = xn f (x−1). Let C be a cyclic code of length n over Fq with generator
polynomial g(x) ∈ Fq [x] and check polynomial h(x) = (xn − 1)

/
g(x). Let C⊥E

be the Euclidean dual code of C . Then, according to [19, Theorem 4], we have the
following result.

Lemma 6 The Euclidean dual code C⊥E is cyclic and has generator polynomial

g⊥E (x) = xdeg(h(x))h(x−1) = h∗(x).

With the notations above, by Lemma 6, we give the ideal presentation of the
Euclidean dual code C⊥E of C in the following theorem.

Theorem 3 Let C = 〈e0g0(x) + e1g1(x) + · · · + er gr (x)〉 be a cyclic code of length
n over R. Then

C⊥E = 〈
e0h

∗
0(x) + e1h

∗
1(x) + · · · + er h

∗
r (x)

〉

and |C⊥E | = q
∑r

i=0 deg gi (x), where gi (x) is the generator polynomial of Ci and
hi (x) = (xn − 1)

/
gi (x) for 0 ≤ i ≤ r .

Proof Let C ′ = 〈
e0h∗

0(x) + e1h∗
1(x) + · · · + er h∗

r (x)
〉
. According to the definition of

the Euclidean inner product (3) and Lemma 6, it is clear that

(e0g0(x) + e1g1(x) + · · · + er gr (x)) · (e0h∗
0(x) + e1h∗

1(x) + · · · + er h∗
r (x))

∗

=
r∑

i=0
ei e∗

i gi (x)hi (x) =
r∑

i=0
ei e∗

i (x
n − 1) = 0.

Then, we have C ′ ⊆ C⊥E . It is not difficult to show that |C ′| = q
∑r

i=0 deg gi (x). As,
by Lemma 4, |C| = q(r+1)n−∑r

i=0 deg gi (x), we have |C ′| = |C⊥E |. This implies that
C⊥E = C ′. 
�
Lemma 7 Let C = 〈g′(x)〉 be a cyclic code of length n over Fq and C⊥E = 〈h′∗(x)〉,
where h′(x) = (xn − 1)

/
g′(x) in Fq [x]. Then C⊥E ⊆ C if and only if

xn − 1 ≡ 0 (mod h′(x)h′∗(x)).

Proof IfC⊥E ⊆ C , then we have g′(x)|h′∗(x). Thus, there exists a polynomial k(x) ∈
Fq [x] such that h′∗(x) = g′(x)k(x). As h′(x)h′∗(x) = h′(x)g′(x)k(x) = (xn −
1)k(x), we have xn − 1 ≡ 0 (mod h′(x)h′∗(x)).

If xn − 1 ≡ 0 (mod h′(x)h′∗(x)), then there exists a polynomial k(x) ∈ Fq [x]
such that h′(x)h′∗(x) = (xn − 1)k(x) = g′(x)h′(x)k(x). This implies that h′∗(x) ∈
〈g′(x)〉 = C . Since h′∗(x) is the generator polynomial of C⊥E , we have C⊥E ⊆ C . 
�

123



168 Y. Gao et al.

The following theorem gives a necessary and sufficient condition cyclic codes over
R to be Euclidean dual containing.

Theorem 4 Let C = 〈e0g0(x), e1g1(x), . . . , er gr (x)〉 be a cyclic code of length n
over R and C⊥E = 〈

e0h∗
0(x), e1h

∗
1(x), · · · , er h∗

r (x)
〉
. Then C⊥E ⊆ C if and only if

xn − 1 ≡ 0 (mod hi (x)h∗
i (x)) for 0 ≤ i ≤ r .

Proof The proof process is similar to that of [8, Theorem 4.8]. 
�
It is not difficult to show that Euclidean dual containing cyclic codes given in

Theorem 4 exist. From the Ref. [7], we have

xn − 1 =
∏

i

pi (x)
∏

j

q j (x)q
∗
j (x),

where the pi (x), q j (x) and q∗
j (x) are all distinct and p∗

i (x) = β pi (x), β is a unit in
R. Then a divisor g(x) of xn − 1 generates a Euclidean dual containing cyclic code if
and only if g(x) is divisible by each of pi (x)’s and by at least one from each q j (x),
q∗
j (x) pair.
From the results given above, we have the following corollary directly.

Corollary 1 Let C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr be a cyclic code of length n over
R. Then C is Euclidean dual containing, i.e., C⊥E ⊆ C if and only if C⊥E

i ⊆ Ci for
0 ≤ i ≤ r .

Let C be a Euclidean dual containing code of length n over R. With the discussion
above, the relationship between C and φ(C) is given as follows.

Theorem 5 Let C be a Euclidean dual containing code of length n over R and M ∈
GLr+1(Fq) such that MMT = λIr+1, where MT is the transpose of M, λ ∈ F

∗
q , Ir+1

is a (r + 1) × (r + 1) identity matrix. Then φ(C) is a dual containing code of length
(r + 1)n over Fq . Furthermore, if C is Euclidean self-dual over R, then φ(C) is also
Euclidean self-dual over Fq .

Proof For any c = (c0, c1, . . . , cn−1), d = (d0, d1, . . . , dn−1) ∈ φ(C), there exist
x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ C and M ∈ GLr+1(Fq) such that
c = (x0M, x1M, . . . , xn−1M) and d = (y0M, y1M, . . . , yn−1M). Then, we have

c · d = cdT =
n−1∑

j=0

x j MMT yTj =
n−1∑

j=0

x jλIr+1y
T
j = λ

n−1∑

j=0

x j y
T
j .

Due to C is self-orthogonal over R, it follows that x · y = ∑n−1
j=0 x j y

T
j = 0. This

implies that c · d = 0, i.e., φ(C) is a self-orthogonal code of length (r + 1)n over Fq .
Let C be a Euclidean self-dual code of length n over R satisfying the above prop-

erties. Since φ is an Fq -module isomorphism, we have |C| = |φ(C)| = (qr+1)
n
/
2 =

q(r+1)n
/
2. Then, we have φ(C) is Euclidean self-dual over Fq . 
�
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A q-ary quantum code Q of length n and size K is a K -dimensional subspace of
the qn-dimensional Hilbert space (Cq)⊗n . Let k = logq(K ). We use [[n, k, d]]q to
denote a quantum code over Fq with length n, dimension k and minimum Hamming
distance d.

According to [13,14], we have the quantum singleton bound as follows.

Lemma 8 (Quantum Singleton Bound) Let C be an [[n, k, d]]q quantum code. Then
k ≤ n − 2d + 2.

A quantum code [[n, k, d]]q achieving this quantum singleton bound, i.e., n =
k + 2d − 2, is called a quantum MDS code. The following lemmas are useful for our
results.

Lemma 9 [13, Lemma 20] (CSS Construction) Let C1 and C2 denote two classical
linear codes with parameters [n, k1, d1]q and [n, k2, d2]q such that C⊥

2 ≤ C1. Then
there exists an [[n, k1 + k2 − n, d]]q stabilizer code with minimum distance d =
min{wt(c)|c ∈ (C1\C⊥

2 ) ∪ (C2\C⊥
1 )} that is pure to min{d1, d2}.

Lemma 10 [13, Corollary 21] If C is a classical linear [n, k, d]q code containing its
dual, then there exists an [[n, 2k − n,≥ d]]q stabilizer code that is pure to d.

According toCorollary 1, Theorem5 andLemmas 8 and 9,with the notations above,
we have the existence of non-binary quantum error-correcting codes as follows.

Theorem 6 Let C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr be an [n, k, dG ]R cyclic code. If
C⊥E
i ⊆ Ci for 0 ≤ i ≤ r , then C⊥E ⊆ C and there exists a quantum error-correcting

code with parameters [[(r + 1)n, 2k − (r + 1)n,≥ dG ]]q , where k = ∑r
i=0 ki and ki

is the dimension of Ci .

Next, we give two examples to construct quantum MDS codes over finite fields F7
and F11.

Example 1 Let R = F7 + v1F7 and n = 3. Then x3 − 1 = (x + 3)(x + 5)(x + 6) over
F7. Let g(x) = (1− v1)g0(x) + v1g1(x) with g0 = x + 5 and g1 = x + 3. By [6] and
Lemma 6, we have thatC0 = 〈x+5〉 andC⊥E

0 = 〈4x2+2x+1〉 = 〈(x+5)(4x+3)〉.
Then we have C⊥E

0 ⊆ C0. With a similar method, we have C⊥E
1 = 〈2x2 + 4x + 1〉 =

〈(x + 3)(2x + 5)〉 ⊆ C1 = 〈x + 3〉. Let C = 〈g(x)〉, according to Theorem 3 and
Corollary 1, we have C⊥E ⊆ C.

Let M =
(
6 2
2 1

)
∈ GL2(F7). Then we have MMT =

(
5 0
0 5

)
. With the compu-

tational algebra systems Magma [6], we have that φ(C) is an [6, 4, 3] linear code over
F7. By Lemma 7 and Theorem 6, we obtain a quantum MDS code with parameters
[[6, 2, 3]]7.
Example 2 Let R = F11 + v1F11 and n = 5. Then x5 − 1 = (x + 2)(x + 6)(x +
7)(x + 8)(x + 10) over F11. Let g(x) = (1 − v1)g0(x) + v1g1(x) with g0 = x + 6
and g1 = x + 2. Let C = 〈g(x)〉, C0 = 〈x + 6〉 and C1 = 〈x + 2〉. It is not difficult
to verify that C⊥E

0 ⊆ C0 and C⊥E
1 ⊆ C1. By Theorem 3 and Corollary 1, we have

C⊥E ⊆ C.
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Table 1 New quantum codes [[n, k, d]]q
n r 〈g0(x), . . . , gr (x)〉 φ(C) [[n, k, d]]q [[n′, k′, d ′]]q
12 2 〈12, 12, 12〉 [36, 33, 2]3 [[36, 30, 2]]3 [[36, 28, 2]]3 (Ref. [21])

24 2 〈12, 12, 12〉 [72, 69, 2]3 [[72, 66, 2]]3 [[72, 64, 2]]3 (Ref. [21])

20 2 〈12, 12, 13〉 [60, 57, 2]5 [[60, 54, 2]]5 [[60, 48, 2]]5 (Ref. [3])

32 2 〈12, 12, 12〉 [96, 93, 2]5 [[96, 90, 2]]5 [[96, 80, 2]]5 (Ref. [3])

40 2 〈12, 12, 13〉 [120, 117, 2]5 [[120, 114, 2]]5 [[120, 112, 2]]5 (Ref. [3])

28 3 〈12, 12, 12, 12〉 [112, 108, 2]5 [[112, 104, 2]]5 [[112, 64, 2]]5 (Ref. [3])

3 1 〈15, 13〉 [6, 4, 3]7 [[6, 2, 3]]7 MDS

56 2 〈11, 16, 11〉 [168, 165, 2]7 [[168, 162, 2]]7 [[98, 94, 2]]7 (Ref. [11])

126 1 〈16, 11〉 [252, 250, 2]7 [[252, 248, 2]]7 [[238, 234, 2]]7 (Ref. [11])

5 1 〈16, 12〉 [10, 8, 3]11 [[10, 6, 3]]11 MDS

11 2 〈1(10), 191, 1(10)〉 [33, 29, 3]11 [[33, 25, 3]]11 [[24, 16, 3]]11 (Ref. [9])

Let M =
(
10 2
2 1

)
∈ GL2(F11). Then we have MMT =

(
5 0
0 5

)
. Using Magma

[6],wehave thatφ(C) is an [10, 8, 3] linear codeoverF11.ByLemma7andTheorem6,
we obtain a quantum MDS code with parameters [[10, 6, 3]]11.

At the last of this section, with the methods given in Examples 1 and 2, we list some
new non-binary quantum codes for r ≥ 1 and q ≤ 11 in Table 1. For simplicity, we
list the coefficients of the polynomials in descending order in Table 1. For example,
the polynomial x6 + x5 + x4 + 2x + 3 is represented by 1110023.

4 Quantum codes fromHermitian dual containing codes

In this section, we introduce a construction of Hermitian dual containing codes over
Fp2m as Gray images of cyclic codes over R. Moreover, we construct some new non-
binary quantum codes according to these linear codes.

Let q = p2m , where p is a prime and m is a positive integer. In this sec-
tion, we consider the ring R = Fp2m [v1, v2, . . . , vr ]

/〈
v2i − vi , viv j = v jvi

〉 =
Fp2m + v1Fp2m + · · · + vrFp2m . For any vectors x = (x0, x1, . . . , xn−1) and
y = (y0, y1, . . . , yn−1) ∈ F

n
p2m

, their Hermitian inner product is defined as

〈x, y〉H =
n−1∑

i=0

xi y
pm

i .

Furthermore, x and y are called orthogonal with respect to the Hermitian inner product
if 〈x, y〉H = 0.

Let C be a linear code over R. the Hermitian dual code of C is defined as

C⊥H = {x ∈ Rn|〈x, c〉H = 0 ∀ c ∈ C}.
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C is called dual containing if C⊥H ⊆ C and self-dual if C = C⊥H . For any c =
(c0, c1, . . . , cn−1) ∈ C, we denote cp

m = (cp
m

0 , cp
m

1 , . . . , cp
m

n−1). Similarly, for any

invertible matrix M = (mi j )0≤i, j≤r ∈ GLr+1(Fp2m ), denote Mpm = (mpm

i j )
0≤i, j≤r

.

A q2-cyclotomic coset modulo n containing a is defined by Ca = {aq2k(mod n) :
k ≥ 0}, where a is not necessarily the least number in Ca . The set of q2-cyclotomic
cosets modulo n is denoted by Cq2,n . Let C be a cyclic code over Fq2 . Then C is an
ideal of Fq2 [x]

/〈xn − 1〉 and C = 〈g(x)〉, where g(x)|(xn − 1). The defining set of
C is defined as

Z = {i : g(αi ) = 0, 0 ≤ i < n},

where α is a primitive nth root of unity in some extension of Fq2 .
According to [4,20], we have a necessary and sufficient condition for the existence

of dual containing cyclic codes over Fq2 in the following lemma.

Lemma 11 [20, Lemma 4.1]Assume that gcd(q, n) = 1. A cyclic code of length n over
Fq2 with defining set Z contains its Hermitian dual code if and only if Z ∩ Z−q = φ,
where Z−q = {−qz(mod n) : z ∈ Z}.

With the notations and properties above, we consider Hermitian dual containing
cyclic codes over the ring R.

Theorem 7 Let C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr be a cyclic code of length n over R.
Then

(i) the Hermitian dual code of C is

C⊥H = e0C
⊥H
0 ⊕ e1C

⊥H
1 ⊕ · · · ⊕ erC

⊥H
r .

Furthermore, C⊥H
0 ,C⊥H

1 , . . . ,C⊥H
r are cyclic codes of length n over Fp2m and

C⊥H is a cyclic code of length n over R.

(ii) C is Hermitian self-dual over R if and only if C0,C1, . . . ,Cr are Hermitian self-
dual over Fp2m .

Proof (i) With a similar proof process of Theorem 2, we define C⊥H
i = {xi ∈

F
n
p2m

|∃ x0, . . . , xi−1, xi+1, . . . , xr ∈ F
n
p2m

, e0x0 + e1x1 +· · ·+ er xr ∈ C⊥H } for
any 0 ≤ i ≤ r . Then we have C⊥H = e0C⊥H

0 ⊕ e1C⊥H
1 ⊕ · · · ⊕ erC⊥H

r . It is not

difficult to show that C⊥H
i = C⊥H

i . Then we have

C⊥H = e0C
⊥H
0 ⊕ e1C

⊥H
1 ⊕ · · · ⊕ erC

⊥H
r .

Since C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr is a cyclic code of length n over R, by
Lemma 3, we have that Ci is cyclic code of length n over Fp2m for 0 ≤ i ≤ r .

ThenC⊥H
i is a cyclic code of length n over Fp2m . This implies thatC⊥H is a cyclic

code of length n over R.
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(ii) If C0,C1, . . . ,Cr are Hermitian self-dual over Fp2m , then we have C is Hermitian
self-dual over R. Conversely, if C is Hermitian self-dual over R, then Ci is self-
orthogonal, i.e., Ci ⊆ C⊥H

i . In fact, we have Ci = C⊥H
i . Otherwise, there exists

an element xi ∈ C⊥H
i \Ci and x j ∈ C j for i �= j such that

〈(e0x0 + e1x1 + · · · + er xr ), (e0x0 + e1x1 + · · · + er xr )〉H �= 0.

This leads to a contradiction. Thenwe haveC0,C1, . . . ,Cr areHermitian self-dual
over Fp2m . 
�

Theorem 8 Let C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr be a cyclic code of length n over

R. Let Zi be the defining set of Ci and Z−pm

i = {−pmzi (mod n) : zi ∈ Zi } be the
defining set of C⊥H

i for 0 ≤ i ≤ r . Then C⊥H ⊆ C if and only if Zi ∩ Z−pm

i = φ.

Proof According to Lemma 10, if Zi ∩ Z−pm

i = φ for 0 ≤ i ≤ r , then we have

C⊥H
i ⊆ Ci . It is obvious that eiC

⊥H
i ⊆ eiCi . Then we have e0C

⊥H
0 ⊕ e1C

⊥H
1 ⊕ · · ·⊕

erC
⊥H
r ⊆ e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr . This implies that C⊥H ⊆ C.
On the other hand, if C⊥H ⊆ C, then we have e0C

⊥H
0 ⊕ e1C

⊥H
1 ⊕ · · · ⊕ erC

⊥H
r ⊆

e0C0⊕e1C1⊕· · ·⊕erCr . By taking mod e0, mod e1, . . ., mod er , respectively, we
have C⊥H

i ⊆ Ci for 0 ≤ i ≤ r . Then Zi ∩ Z−pm

i = φ. 
�
Let C be a Hermitian dual containing code of length n over R. The following

theorem gives the relationship between C and φ(C).

Theorem 9 Let C be a Hermitian dual containing code of length n over R and M ∈
GLr+1(Fp2m ) such that M(Mp)T = λIr+1, where λ ∈ F

∗
p2m

, Ir+1 is a (r+1)×(r+1)
identity matrix. Then φ(C) is a Hermitian dual containing code of length (r+1)n over
Fp2m . Furthermore, if C is Hermitian self-dual over R, then φ(C) is also Hermitian
self-dual over Fp2m .

Proof The proof process is similar to that of Theorem 5. 
�
By [5,13], we can construct quantum codes via the Hermitian construction given

in the following lemma.

Lemma 12 (Hermitian Construction) If there exists a classical linear [n, k, d]q2 code
C such that C⊥H ⊆ C, then there exists an [[n, 2k − n,≥ d]]q stabilizer code.

With the results given above, we obtain a method to construct quantum codes over
Fp immediately.

Theorem 10 Let C = e0C0 ⊕ e1C1 ⊕ · · · ⊕ erCr be a [n, k, dG ]R cyclic code. If
C⊥H
i ⊆ Ci for 0 ≤ i ≤ r , then C⊥H ⊆ C and there exists a quantum error-correcting

code with parameters[[(r + 1)n, 2k − (r + 1)n, dG ]]pm , where k = ∑r
i=0 ki and ki

is the dimension of Ci .

With the notations and results above, we give some new quantum codes over F13
and F17.

123



Quantum codes from cyclic codes over the ring… 173

Table 2 New quantum codes [[n, k, d]]pm
n r 〈g0(x), . . . , gr (x)〉 φ(C) [[n, k, d]]pm

5 1 〈1w301, 1w541〉 [10, 6, 4]132 [[10, 2, 4]]13
5 2 〈1w301, 1w301, 1w541〉 [15, 9, 5]132 [[15, 3, 5]]13
6 1 〈16(12), 17(12)〉 [12, 8, 3]132 [[12, 4, 3]]13
8 2 〈1w26w63, 1w110w63, 1w131w105〉 [24, 18, 4]132 [[24, 12, 4]]13
12 2 〈1(11), 19, 15〉 [36, 33, 2]132 [[36, 30, 2]]13
12 2 〈178, 12(11), 1(11)(11)〉 [36, 30, 4]132 [[36, 24, 4]]13
12 1 〈1972(10), 147(11)(10)〉 [24, 16, 5]132 [[24, 8, 5]]13
12 1 〈135(12)(11)5, 1(10)51(11)8〉 [24, 14, 6]132 [[24, 4, 6]]13
8 2 〈18, 18, 18〉 [24, 21, 2]172 [[24, 18, 2]]17
12 2 〈1η168, 14, 1η264〉 [36, 33, 2]172 [[36, 30, 2]]17
16 2 〈15(10), 1(11)(11), 1(14)7〉 [48, 42, 3]172 [[48, 36, 3]]17
16 2 〈1(12)(11)2, 167(13), 1368〉 [48, 39, 4]172 [[48, 30, 4]]17
16 2 〈1(16)8(12)8, 182(10)9, 171(15)(15)〉 [48, 36, 5]172 [[48, 24, 5]]17
16 1 〈1(11)(13)6(16)(11), 13(16)(12)1(14)〉 [32, 22, 6]172 [[32, 12, 6]]17
16 2 〈1(13)1(15)(11)95, 1(12)93767, 159(14)7(11)7〉 [48, 30, 7]172 [[48, 12, 7]]17
16 1 〈12(11)4(16)78(13), 1(15)(11)(13)(16)(10)84〉 [32, 18, 8]172 [[32, 4, 8]]17

Example 3 Let R = F132 + v1F132 + v2F132 and n = 5. Then C169,5
0 = {0}, C169,5

1 =
{1, 4} and C169,5

2 = {2, 3}. Let Z0 = Z1 = {1, 4} and Z2 = {2, 3} be the defining
sets of C0, C1 and C2, respectively. It is easy to show that Z−13

0 = Z−13
1 = {2, 3}

and Z−13
2 = {1, 4}. Then, we have Zi ∩ Z−13

i = φ for 0 ≤ i ≤ 2, i.e., C⊥H
i ⊆ Ci .

According to Theorem 8, we have C = e0C0 ⊕ e1C1 ⊕ e2C2 is a Hermitian dual
containing code over R, i.e., C⊥H ⊆ C.

Let g0(x) = g1(x) = (x−ρ1)(x−ρ4) = x2+w30x+1 and g2(x) = (x−ρ2)(x−
ρ3) = x2+w54x+1,wherew is a primitive element ofF132 = F13[x]

/〈
x2 + 12x + 2

〉

with ord(w) = 132 − 1 = 168 and ρ is a primitive 5th root of unity over the splitting
field of x5 − 1 over F132 . Then, C0 = 〈g0(x)〉, C1 = 〈g1(x)〉 and C2 = 〈g2(x)〉.

Let M =
⎛

⎝
11 2 1
12 11 2
2 1 2

⎞

⎠ ∈ GL2(F132). Then we have M(M13)T =
⎛

⎝
9 0 0
0 9 0
0 0 9

⎞

⎠ .With

the computational algebra systemsMagma [6], we have that φ(C) is a [15, 9, 5] linear
code over F132 . By Theorems 9 and 10, we obtain a quantum code with parameters
[[15, 3, 5]]13.

At the last of this example, we give some new quantum codes over F13 and F17
from cyclic codes over the ring R in Table 2, where η is a primitive element of
F172 = F17[x]

/〈
x2 + 16x + 3

〉
with ord(η) = 172 − 1 = 288.
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