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1 Introduction

Throughout this paper, let ¢ = 2™ for a positive integer m. Let I, denote the finite
field with ¢ elements and g be a generator of IFZ = F,\{0}.

Let F; denote the vector space of all n-tuples over the binary field F>. A binary
code C of length n is a subset of IF’;. Usually, the vectors in C are called codewords of
C. For any codewords x and y in C, the Hamming distance d(X, y) is defined as the
number of coordinates in which x and y differ. The minimum distance of a code C is
the smallest distance between distinct codewords. An [n, k, d] binary linear code C is
defined as a k-dimensional subspace of I, with minimum (Hamming) distance d.

For a codeword ¢ € C, the (Hamming) weight wz(c¢) is the number of nonzero
coordinates in ¢. We use A; to denote the number of codewords of weight i in C. Then
(1, Ay, ..., Ay) is called the weight distribution of C, and the weight enumerator is
defined as the polynomial 1 + Ajx + Ayx? 4+ ... + A,x". If the number of nonzero
A; (1 <i < n)equals ¢, then C is called a t-weight code. The reader is referred to
[23] for the general theory of linear codes.

The weight distribution is an important research topic in coding theory, as it contains
crucial information for computing the probability of error correction and detection. A
great deal of researchers are devoted to constructing and determining specific linear
codes [6,15,17,26,29,30,33]. The weight distribution of Reed—Solomon codes was
determined by Blake [1] and Kith [24]. A survey of the Hamming weights of irreducible
cyclic codes was given by Ding and Yang in [16]. The weight distributions of reducible
cyclic codes can be found in [13,19-21,25,35].

Recently, in [9, 14], Ding proposed a generic construction of linear codes as follows.

Let D ={di,d>, ...,d,} C IFZ and Tr denote the absolute trace function from F,
onto its prime subfield IF,. A linear code Cp of length n can be constructed by

Cp = {(Tr(xdy), Tr(xda), ..., Tr(xdy)) : x € Fg}.

Here and hereafter D is called the defining set of C p. This method has been widely used
in the literature to acquire linear codes with a few weights [8,10-12,18,31,32,34,37-
39].

Choosing the defining set D is an important and interesting problem. Several kinds
of defining sets were discussed in [9]. For example, D can optionally be the preimage of
quadratic forms over IF;, for odd characteristic p [33,34]. Using the theory of quadratic
forms, the authors of [33,34] determined the weight distributions.

Motivated by the work in [9] and [10], for a subset D of F, we can construct a

class of linear codes Cp by the image (multiset) of D under a function f over Fy,.
Namely, we define Cp as

Cp ={(Tr (xf(@d)))gep : x € Fy}. M

h . o
In the paper, we choose f(x) = x> !, where i < m is a positive factor of m. Note

that f is a quadratic form over F.
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Table 1 The weight distribution . .
Weight Multiplicity A
of the codes of Theorem 1 cemtw whprerty
0 1
2'7172 om _ | _ szh
2m—2 _ 2m+£tf4 2m—h—1 " (_l)aszgfz
h—4 —h=2
2m—2+2m+2 2m—h—l _ (_1)a2m >
Table 2 The weight distribution . .
Weigh Multipl A
of the codes of Corollary 1 cight w ultplicity
0 1
2m—1 1
om—2 om+l _ o om—h+l
2m—2 _ 2%;1_4 2m—h
om=2 4 2m+£h4 om—h

Generally speaking, the theory and results of quadratic forms on a finite field with
an odd characteristic cannot be easily extended to those of quadratic forms on a finite
field with characteristic 2. We shall employ exponential sums to investigate the weight
distributions of the following two classes of binary linear codes C p with

D=Da:{xeFZ:Tr(x)=a},aeIF2, 2)
D=F. 3)

Naturally, a generalization of the code C p is defined as

ED = {(Tr ()cdzh+l + u))deD cuclky, xe Fq} . 4)

The weight distributions of linear codes C p, and E/Da are then settled and the main
results are listed as follows.

Theorem 1 Let m/ h be odd. Then, the code Cp, of (2)isa[2"~' —14a, m] binary
linear code with the weight distribution in Table 1.

Corollary 1 Let m/ h be odd. Then, the code E’DI defined in (4) isa [2"', m + 1]
binary linear code with the weight distribution in Table 2.

Corollary 2 Letm/ h be odd. Then, the code E’DO definedin (4)isa[2" ' —1,m+1]
binary linear code with the weight distribution in Table 3.

The above theorem presents the parameters of ZDG (a = 0, 1) for the case in which
m/h =1 (mod 2). Next, we assume m/ h is even and m = 2e for a positive integer
e > 1. In this case, the parameters of Cp, (a = 0, 1) are given in the two theorems
below.
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Table 3 The weight distribution

Weight Multiplicity A

of the codes of Corollary 2 cemtw Py
0 1
=l 1
2;7172 om _ 1 _ szh
2m—2 1 om _ | _ 2m—h
-2 "= il oM
2m—2 " 2’71+£74 1 2m—h—1 " 21717;172
2}7172 + 2m+£1—4 szhfl _ 2m—Th—2
2’”_2 _ 2m+£tf4 1 2m—h—l _ 2)7175172

Table 4 The weight distribution of the codes of Theorem 2

Weight w Multiplicity A

0 1

e
m—2 1\ oeth—1 am=2h=l )~y hpe=h=1

2 +(=Dh2 2

2m72 + (_1)%26#»/172 (2/1 _ 1)2m—2h

om=2 om—1 _ (_1)5(2/1 — 1y@m—2h=1 4 ge=h-1)

m=2 _ (_1)fige-] =1 @h9=2h 1)l y (1) ¢~ @l poepe=2h)

P

Theorem 2 Let m/h be even and m/h > 2. Then, the code 600 of 2)isal2" 1 —
1, m] binary linear code with the weight distribution in Table 4.

Corollary 3 Letm/ h be even. Then, the code E/Do definedin (4)isa[2" ' =1, m+1]
binary linear code with the weight distribution in Table 5.

Theorem 3 Letm/h be evenandm/h > 2. Then, the code EDI of 2)isa 2= m]
binary linear code with the weight distribution in Table 6.

Corollary 4 Let m/h be even. Then, the code f/Dl definedin (4) isa [2" ', m+1]
binary linear code with the weight distribution in Table 7.

Let D = IF’["I. If m/h is odd, then gcd (2h +1,2" — 1) = 1 (Lemma 2.1, [5]). So
fx) = ¥ +lisa permutation polynomial over IF;;. It is well known that |{x € IE‘; :
Tr(ax) = 0}] = 2"~! — 1 forevery « € IFZ. Therefore, we have that Cp of (3) is
a constant-weight linear code with parameters [2" — 1, m, 2™ — 2"~ 1]. It is optimal
by the Griesmer bound (Chapter 2, [23]) in this case. If m/h > 2 is even, the code

Cp is a two-weight binary linear code, and the weight distribution of C p is given in
Theorem 4 below.
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Table 5 The weight distribution of the codes of Corollary 3

Weight w Multiplicity A
0 1
o=l 1
e
m=2 _ (_1yEoeth—1 om=2h =l (—1) hpe=h-]
2 + (=12 i
e
m=2 _ 1\ Eyeth—1 _ am—2h—ly(—qyhpemhl
2 ( 1) 2 1 2h+1
2m—2 + (_1)%26-"}1—2 (2]‘! _ 1)2]71—2h
2m72 _ (71)%26+h72 -1 (2h _ 1)2m72h
2m72 2m71 _ (_1)%(21’1 _ 1)(2m72h71 +2€,h,1)
2m72 -1 szl _ (_])%(2/’1 _ 1)(2"’!72/17] _,’_267/171)
om=2 _ (1§ ge-] om=1(ah {2=2h_1y_oh  (_1yfi2e=1 (2h 40¢ _ne—2hy
2h4]
e
m=2 4 (_1yfoe—1 _ =l oh =2 1) oh 4 (1) hae 1 (@h 4o —2¢—2h)
2 + (=12 1 EY
Table 6 The weight distribution of the codes of Theorem 3
Weight w Multiplicity A
0 1
e
m=2 _ (_1yhoeth—1 b G VL i
2 +(=Dr2 2h 4]
2m72 + (71)%28+h72 (2/’1 _ 1)2}7172}!
2m72 2”171 — 14+ (_1)%287}171(2/1 —1) - (2/’1 _ 1)2m72h71
e
m=2 _ _1\Epe—1 @e—(=1yh)2eth-1
2 (=Hnr2 i1

Theorem 4 Let m/h > 2 be even and D = IFZ Then the code Cp of (3) is a
[2™ — 1, m] binary linear code with the weight distribution in Table 8.

If m/ h is even, we know ged(2" +1,2" —1) = 2" 4+1,i.e.,2" +1 | 2" — 1. Hence
F(x) = x¥*isa (2" + 1)-to-1 function over F} in the case thatm/h = 0 (mod 2).
This implies that a binary code can be punctured from the code C p in Theorem 4.

LetD = (x¥'* 1 x e %} and

Cp={(Tr(xd)) ;e : x € Fy}. 3)

Then the parameters of 55 can easily be derived from those of the code C p in Theorem
4, and are given in the following corollary.

Corollary 5 Let m/h > 2 be even. Then the code Eﬁ isa[@Q™ — 1)/(2h + 1), m]
binary linear code with the weight distribution in Table 9.
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Table 7 The weight distribution of the codes of Corollary 4

Weight w Multiplicity A
0 1
om-l 1
m=2 4 (_1ykoeth—1 =21y 1) i gemhe]
2 +(=Dr2 Y
e
m=2 _ (_1yhoeth—1 om=2h=14 1y pe—h—1
2 (=Dr2 21
2m—2 + (_1)%26-"}1—2 (2h _ 1)2m—2h
2m72 _ (71)%26+h72 (2h _ 1)2"172/1
2m72 m _ 9 4 (_1)%26711(211 - (2h _ 1)2mf2h
e
m=2 _ _1yEqe—I @¢—(=1h)2eth-1
2 (=1)n2 2h 1]
-2 4 (1)fge- @ () peth]
2hy1

Table 8 The weight distribution

Weigh Multiplicity A
of the codes of Theorem 4 cight w uluplicity
0 1
m—1 _ (_1yfse—1 @"-12"
2 (=Hnr2 CL|
m—1  (_1yhoeth—1 2m—1
2 +(=Dnr2 T
Table 9 The weight distribution . .
Weight Multiplicity A
of the codes of Corollary 5 asmtw whprety
0 1
211171_(_”%2@71 (Zm—l)Zh
2h 41 2h+1
=ty figeth! oy
2ht1 2h41

Example 1 Let (m, h) = (5, 1). A Magma program shows that fDO has parameters
[15, 5, 6] and weight enumerator 1 + 10x% + 15x8 + 6x10, while 501 has parameters
[16, 5, 6] and weight enumerator 1 + 6x°% 4+ 15x8 + 10x'°, which both agree with
Theorem 1. Here C Dy 1s almost optimal since the optimal one has parameters [15, 5, 7].

Example 2 1f (m,h) = (6, 1), a Magma program shows that Cp, has parameters
[31, 6, 8] and weight enumerator 1 +3x8 4 16x!2+26x'0 +18x20. If (m, h) = (8, 2),
a Magma program shows that C D, has parameters [127, 8, 56] and weight enumerator
1 + 108x%% + 98x6* 4 48x80 4+ x%. Therefore, our experimental results here agree
with Theorem 2. Note that the code EDO with parameters [31, 6, 8] is far from being
optimal, since an optimal [31, 6] code has minimum distance 15. And the code EDI
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Several classes of binary linear codes and their weight enumerators 99

with parameters [127, 8, 56] is close to an optimal code, since an optimal [127, 8]
code has minimum distance 63.

Example 3 1f (m,h) = (6, 1), a Magma program shows that Cp, has parameters
[32, 6, 8] and weight enumerator 14 2x8 4+ 16x24+21x104+24x20 1f (m, h) = (8, 2),
a Magma program shows that C p, has parameters [128, 8, 56] and weight enumerator
1 4 96x°° + 109x%* + 48x30 4+ 2x%. Therefore, our experimental results here agree
with Theorem 3.

Example 4 If (m, h) = (8, 1), a Magma program shows that Cp has parameters
[255, 8, 120] and weight enumerator 1 + 170x'20 4 85x'4 . If (m, h) = (8,2), a
Magma program shows that C p has parameters [255, 8, 120] and weight enumerator
1 +204x'29 4+ 51x190 Therefore, our experimental results here agree with Theorem
4. Here the code 55 in Corollary 5 in the two specific cases has parameters [85, 8, 40]
and [51, 8, 24], respectively, both of which are optimal due to the Griesmer bound.

2 Preliminaries

In this section, we present some results on exponential sums, which will be needed in
calculating the weight distributions of the codes of (2).

An additive character of Fy is a group homomorphism x from (F,, +) into the
multiplicative group of complex numbers of absolute value 1, i.e., x(g1 + g2) =
x(g1)x (g2) forall g1, g2 € ;. Each additive character over I, can be given by

xp(c) = (=) forall ¢ € F,,

for some b € FF,. The additive character xo is called frivial, whereas other characters
Xp With b € ]FZ are called nontrivial. Among the additive characters of F,, we have
the canonical additive character x1 defined by x1(c) = (=)@ forall c € F,. See
[27] for more information about characters over finite fields.

Define the exponential sum

Sp(a, b) = Z X1 (axzh'H +bx> ,

xelfy

where a € ]FZ, b € F,, and h is a proper positive divisor of m. In general, to evaluate
an exponential sum over a finite field is challenging. So far it has been determined
only in certain special cases [2-5,20,22]. The following lemmas present the values of
Sp(a, b).

Lemma 1 (Theorem 4.1, [5]) If m/ h is odd, then er]Fq X1 (axzhH) = 0 for each
ace IF;.

Lemma 2 (Theorem 4.2, [5]) Let b € IFZ and suppose m/ h is odd. Then, Sp(a, b) =
2" 41

Sp(1, bc™h), where ¢ € F(’; is the unique element satisfying c = a. Further, we

have
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100 F. Lietal.

0, if Trp(b) #1,
S l,b == m
n(1,5) {j:Z i Trb) =1,

where and hereafter Try, is the trace function from Fy to Fon.
Lemma 3 (Theorem 5.2, [S]) Let m/ h be even and m = 2e for some integer e. Then,

(—1h2e, if a# g’(2h+l)f0r any integert,
—(=D)i2e+hif a = g'@"*D for some integer t,

Sn(a, 0) ={

where g is a generator of ]F;.

Lemma 4 (Theorem 5.3, [S]) Let b € IE"Z and suppose m/ h is even such that m = 2e

. h 2h
for some integer e. Let f(x) = a®> x> +ax € Fylx]. There are two cases.

1. Ifa # g’(2h+]) for any integer t, then f is a permutation polynomial of . Let

h
xo be the unique element satisfying f (x) = b> . Then,
Sy(a, b) = (—1)52‘?)(1 (axth).

h
2. Ifa = g’(zhH), then Sp(a, b) = 0 unless the equation f(x) = b*> is solvable. If
the equation is solvable, with solution xq say, then,

—(=DF2 5 (axd ™), if Trat@) =0,

S/’l(av b) = e 2h+1 .
(—1)h2¢ ) (axo ) , if Tra(a) # 0.
Lemma 5 (Theorem 3.1, [5]) Let g be a primitive element of F,. For any a € F},
consider the equation a3 +ax = 0 over IF,.

1. Ifm/ h is odd, then there are 2" solutions to this equation for any choice of a € IFZ.

. . h
2. Ifm/ h is even, then there are two possible cases. If a = g' >+ for some t, then
. . . h .
there are 2*" solutions to this equation. If a # g' @D for any t, then there exists
one solution only, x = 0.

3 Proofs

We follow the notation from Sect. 2 above. In this section, we determine the length of
the code 61)0 (a =0, 1) of (2) and provide a formula for the weight of a codeword ¢,
b e IF;;) in E[)a (a = 0, 1). We also provide the proofs of the presented theorems. As
for the corollaries, it is not difficult to prove them via their corresponding theorems,
thus we omit the details.
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Several classes of binary linear codes and their weight enumerators 101

By the definition of D, (a = 0, 1), we know

=l _ 1 ifa=0,
'D“|_{2m—1, if a=1.

We define N(a,b) = {x € F; : Tr(x) = a and Tr(bx2h+1) = 0}, and denote
by wt(cp) the Hamming weight of the codeword ¢, with b € IF:; of the code ED,,
(a =0, 1). It can be easily checked that

wt(ep) = 2"~ — |N(a, b)|. (©6)

In terms of exponential sums, for b € F, we have

- yTr(x)—ya ' Tr px2+1
W@ =2 (07 (0™
= 2_2 er]F (1 + (_1)Tr(x)—a) <1 + (_1)Tr(bx2h+l)>

_ Am=2 _2 Tr h)czhJrl ) Tr x+bx2h+1 —a
SERCI PRSI IS MRS
= 2" 4272 (S(b, 0) + (= 1) Sy (b, 1)) . (6"

Based on the above discussion, the weight distribution of ED,, can be determined
by using the value distribution of Sy, (b, ¢) with b € IF’:I and ¢ € F,. By the lemmas
presented in Sect. 2, we are ready to compute the weight distributions of the codes
Cp, (a=0,1).

Proof of Theorem 1 We present only the proof for Cp,, since the proof for the case
in which ¢ = 1 is similar. By Lemma 1, we have S, (b,0) =0 forb € IFZ It follows
from Lemma 2 that

- o if Try (c7!) # 1,
Sn(b, 1) = Sp (LC ) = {izmz“’, if Try, (c7!) =1, @

where b € IF; and 2"+ = b. We get

m+h—4 m+h—4

|N(0,b)|e{2m—2,2m—2—z 3=t gm=2 4 pmg=t }

Hence, the weight wt (c;) of the codeword ¢, (b € IF;;) in 500 satisfies

wi(cp) € {2’”*2, m=2 4 27"”5“4} .

m+h—4 m+h—4
2

Suppose w = m=2_7 , Wy =2""2 3 =2m"24 277  Note that ifm/h
is odd, then gcd (2h +1,2"m — 1) = 1. This means that when b ranges over IFZ, the
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102 F. Lietal.

. h .
element ¢ with ¢2 1 = b takes on each element of IFZ exactly once. Hence, we obtain

feery o (") £ 1. =bandb e Ty}

=2"—-1-

{c € F; : Try, (c_l) =1, A+ —pandb e ]FZ}

— 2m _ 2m—h _ 1’

ie., Ay, = 2™ — 2"~ _ 1. (Please see the definition of A; in the second paragraph
of page 2.) The first two Pless Power Moments (Page 260, [23]) yield the following
two equations:

{Awl + Aw, + Auy =2" — 1, ®)

wlAwl + w2Au}2 + w3Aw3 = n2m_1.

Here n = 2~ — 1. Solving the system of equations (8), we get Theorem 1. And we
complete the proof. O

Next, we assume m/h = 0 (mod 2), m = 2e, and g is a generator of ]FZ. In order

to give a proof of Theorem 2, we need the following auxiliary lemma. This lemma
can be found in equation (10) in [10].

Lemma 6 Let Ty = {x ek, : Tr <x2h+1> = 0} and Ty = F\To. If m/ h is even
withm = 2e, then |To| = 2™~ — (= 1)#2¢th=1 gnd |Ty| = 2m—1 + (—1)i2eth=1,

Proof of Theorem 2 For b € F*,if b # g’ @"+1) for any integer ¢, then by Lemma 3,
we have S, (b, 0) = (— 1)%26, and by Lemma 4, we get

S(b, 1) = (=DF2¢50 (b3 1)

where x( satisfies bzh ngh +bxy = 1.
Ifb=g' (2"+1) for some integer ¢, then by Lemma 3, we obtain

Sp(b,0) = —(—1)F2¢th,
Assume ¢ = g', then b = c2th1 and it follows from Lemma 2 that S, (b, 1) =
h
Su (1, ¢™1) . For the above ¢ € F, let fo(x) = - (0’1)2 .If f.(x) has no

root in ]F:;, by Lemma 4, we obtain S, (b, 1) = S, (1, ¢~1) = 0. Note that Tr (1) = 0,
since m/ h is even. If f;(x) has a root xg in F, by Lemma 4, we get

e h
Sp(b, 1) = Sp(1, ¢y = —(=1)i2¢t y (X§ “)-
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Several classes of binary linear codes and their weight enumerators 103

By Equations (6) and (6"), we know that for b € F*, wr(c;) belongs to the set
{2}’)1—2 + (_1)%264‘1’!—17 22—2(28 + (_1)%2/1)7 2m—2’ 2m—2 _ (_1)%22—1} .

Define wy = 272 4 (=1)i2¢th=1 = 2¢722¢ 4+ (=1)i2"), w3 =
2m—2’ Wy = om=2 _ (_1)%23—1'

The next step is to determine the number A, of codewords with weight w;. If
fe(x) = 0 (for some ¢ € [Fy) is solvable in F;, by Lemma 5, there are 221 solutions
of this equation over IF,. Since ged(2",2™ — 1) = 1, it can be easily checked that

{xo elF,: xgyl + xo = (c‘l)zh, ce Fq} = F,. Hence we get

2% o . _
{c € FZ cx2 = (c~1?" is solvable in FqH =2
2h / .
and {c € IF;; - x2" 4+ x = (¢ H?" has no root in IF‘qH =m _pm=2h
. h . . m_ym—2h
Since x2'*1 is a (2h + 1)-to-1 function on F,, there are % elements b
zm_2m72

h. It follows from

h .
b=t e F}) such that Sy(b, 1) = 0, ie., Au, = 57—

Lemmas 4 and 6 that

B . szl_i_(_l)%zeJrhfl
Then we have

2m—1 4 (_1)%26+h—1
2252k 4 1)

{pemy:b=cand 516, 1) = (-F2 Y| =

2m—2h—1_1_(_1)%2e—h—1
Therefore, Ay, = X . By the Pless Power Moments (Page 260,

[23]), we obtain the following two equations:

{Aw1+sz+Aw3+AW4=2’"—l,

9
Wi Ay, + wWrAy, + w3Ay, +wady, =271 1), ®)

The solutions to the set of equations in (9) yield the weight distribution presented in
Table 4. The proof of Theorem 2 is completed. O

We omit a proof for Theorem 3, since it is similar to that of Theorem 2. By the
proof of Theorem 2, it is also straightforward to prove Theorem 4. So the proof for
Theorem 4 is left to the reader.

4 Concluding remarks

In this paper, we presented several classes of binary linear codes with a few weights. A
number of linear codes with at most five weights were discussed in [7,8,11,12,38,39].
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104 F. Lietal.

Further, some interesting binary linear codes constructed by a similar method were
presented in [10,28,30]. The binary codes presented in our paper were rather different
than the above due to the following three reasons:

1. Most differently, the binary codes in our paper were defined by Cp =
{(Tr(xf(d))aep : x € Fy}, where f(d) = d2h+1, whereas f(d) = d was
used in [10,28,30].

2. We selected the defining sets using a different approach, thereby causing the codes
in our paper to have different lengths.

3. The binary linear codes in our paper were constructed with new parameters and
have at most nine weights, whereas the binary codes in [10,28,30] have two or
three weights.

It should be remarked that the parameters of the binary linear codes C p, in Theorem

1 are the same as those in Theorem 1 in [10]. By Magma, we found the code EDO to

be equivalent to that in Theorem 1 of [10] for (m, h) = (3, 1). But for (m, h) = (5, 1)
and (7, 1), they are not equivalent. It is open whether the two classes of codes are
equivalent or not. The reader is invited to attack this problem.

A polynomial of the form

m—1m—1

f(x) = Z Z aijx2i+2j’ aij S Fq

i=0 j=0

is called a quadratic form over [Fom. It should be interesting to settle the parameters

and weight distribution of C p if we replace x2"+1 with more general quadratic forms.

Denote the minimum and maximum nonzero weights of a linear code C over F),
by wmin and wmax, respectively. By the results in [36], if the code C satisfies the
inequality

Wmin p—1
— > —
Wmax P

’

then C can be employed to construct secret sharing schemes with interesting properties.
Let m > h + 2. Then, for the codes in Theorem 1, we have
h—4
Wmin om=2 2m+2
= m+§l —4

N =

Wmax om=2 4 2

If m, h) # (4, 1) or (6, 1), then for the codes in Theorems 2 and 3, it can be easily
checked that

Wmin 1
>

Wmax 2

This conclusion is also true for Theorem 4 and Corollary 5.
Hence, the binary linear codes presented in Theorems 1-4 and Corollary 5 are
suitable for constructing secret sharing schemes in many cases.
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