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Abstract In the past decades, linear codes with a few weights have been extensively
studied for their applications in space communication, data storage and cryptography
etc. We construct several classes of binary linear codes and determine their weight
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1 Introduction

Throughout this paper, let q = 2m for a positive integer m. Let Fq denote the finite
field with q elements and g be a generator of F∗

q = Fq\{0}.
Let Fn

2 denote the vector space of all n-tuples over the binary field F2. A binary
code C of length n is a subset of Fn

2. Usually, the vectors in C are called codewords of
C . For any codewords x and y in C , the Hamming distance d(x, y) is defined as the
number of coordinates in which x and y differ. The minimum distance of a code C is
the smallest distance between distinct codewords. An [n, k, d] binary linear code C is
defined as a k-dimensional subspace of Fn

2 with minimum (Hamming) distance d.

For a codeword c ∈ C , the (Hamming) weight wt (c) is the number of nonzero
coordinates in c. We use Ai to denote the number of codewords of weight i inC . Then
(1, A1, . . . , An) is called the weight distribution of C, and the weight enumerator is
defined as the polynomial 1 + A1x + A2x2 + · · · + Anxn . If the number of nonzero
Ai (1 ≤ i ≤ n) equals t , then C is called a t-weight code. The reader is referred to
[23] for the general theory of linear codes.

Theweight distribution is an important research topic in coding theory, as it contains
crucial information for computing the probability of error correction and detection. A
great deal of researchers are devoted to constructing and determining specific linear
codes [6,15,17,26,29,30,33]. The weight distribution of Reed–Solomon codes was
determinedbyBlake [1] andKith [24].A surveyof theHammingweights of irreducible
cyclic codes was given byDing andYang in [16]. Theweight distributions of reducible
cyclic codes can be found in [13,19–21,25,35].

Recently, in [9,14], Ding proposed a generic construction of linear codes as follows.
Let D = {d1, d2, . . . , dn} ⊆ F

∗
q and Tr denote the absolute trace function from Fq

onto its prime subfield Fp. A linear code CD of length n can be constructed by

CD = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x ∈ Fq}.

Here and hereafter D is called the defining set ofCD . Thismethod has beenwidely used
in the literature to acquire linear codes with a few weights [8,10–12,18,31,32,34,37–
39].

Choosing the defining set D is an important and interesting problem. Several kinds
of defining setswere discussed in [9]. For example, D can optionally be the preimage of
quadratic forms overFq for odd characteristic p [33,34]. Using the theory of quadratic
forms, the authors of [33,34] determined the weight distributions.

Motivated by the work in [9] and [10], for a subset D of F∗
q , we can construct a

class of linear codes CD by the image (multiset) of D under a function f over Fq .

Namely, we define CD as

CD = {
(Tr (x f (d)))d∈D : x ∈ Fq

}
. (1)

In the paper, we choose f (x) = x2
h+1, where h < m is a positive factor of m. Note

that f is a quadratic form over Fq .
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Several classes of binary linear codes and their weight enumerators 95

Table 1 The weight distribution
of the codes of Theorem 1

Weight w Multiplicity A

0 1

2m−2 2m − 1 − 2m−h

2m−2 − 2
m+h−4

2 2m−h−1 + (−1)a2
m−h−2

2

2m−2 + 2
m+h−4

2 2m−h−1 − (−1)a2
m−h−2

2

Table 2 The weight distribution
of the codes of Corollary 1

Weight w Multiplicity A

0 1

2m−1 1

2m−2 2m+1 − 2 − 2m−h+1

2m−2 − 2
m+h−4

2 2m−h

2m−2 + 2
m+h−4

2 2m−h

Generally speaking, the theory and results of quadratic forms on a finite field with
an odd characteristic cannot be easily extended to those of quadratic forms on a finite
field with characteristic 2. We shall employ exponential sums to investigate the weight
distributions of the following two classes of binary linear codes CD with

D = Da = {x ∈ F
∗
q : Tr(x) = a}, a ∈ F2, (2)

D = F
∗
q . (3)

Naturally, a generalization of the code CD is defined as

C
′
D =

{(
Tr

(
xd2

h+1 + u
))

d∈D : u ∈ F2, x ∈ Fq

}
. (4)

The weight distributions of linear codes CDa andC
′
Da

are then settled and the main
results are listed as follows.

Theorem 1 Let m/h be odd. Then, the code CDa of (2) is a [2m−1−1+a,m] binary
linear code with the weight distribution in Table 1.

Corollary 1 Let m/h be odd. Then, the code C
′
D1

defined in (4) is a [2m−1,m + 1]
binary linear code with the weight distribution in Table 2.

Corollary 2 Let m/h be odd. Then, the code C
′
D0

defined in (4) is a [2m−1−1,m+1]
binary linear code with the weight distribution in Table 3.

The above theorem presents the parameters ofCDa (a = 0, 1) for the case in which
m/h ≡ 1 (mod 2). Next, we assume m/h is even and m = 2e for a positive integer
e > 1. In this case, the parameters of CDa (a = 0, 1) are given in the two theorems
below.
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96 F. Li et al.

Table 3 The weight distribution
of the codes of Corollary 2

Weight w Multiplicity A

0 1

2m−1 − 1 1

2m−2 2m − 1 − 2m−h

2m−2 − 1 2m − 1 − 2m−h

2m−2 − 2
m+h−4

2 2m−h−1 + 2
m−h−2

2

2m−2 + 2
m+h−4

2 − 1 2m−h−1 + 2
m−h−2

2

2m−2 + 2
m+h−4

2 2m−h−1 − 2
m−h−2

2

2m−2 − 2
m+h−4

2 − 1 2m−h−1 − 2
m−h−2

2

Table 4 The weight distribution of the codes of Theorem 2

Weight w Multiplicity A

0 1

2m−2 + (−1)
e
h 2e+h−1 2m−2h−1−1−(−1)

e
h 2e−h−1

2h+1

2m−2 + (−1)
e
h 2e+h−2 (2h − 1)2m−2h

2m−2 2m−1 − (−1)
e
h (2h − 1)(2m−2h−1 + 2e−h−1)

2m−2 − (−1)
e
h 2e−1 2m−1(2h+2−2h−1)−2h+(−1)

e
h 2e−1(2h+2e−2e−2h )

2h+1

Theorem 2 Let m/h be even and m/h > 2. Then, the code CD0 of (2) is a [2m−1 −
1,m] binary linear code with the weight distribution in Table 4.

Corollary 3 Letm/h be even. Then, the codeC
′
D0

defined in (4) is a [2m−1−1,m+1]
binary linear code with the weight distribution in Table 5.

Theorem 3 Let m/h be even and m/h > 2. Then, the code CD1 of (2) is a [2m−1,m]
binary linear code with the weight distribution in Table 6.

Corollary 4 Let m/h be even. Then, the code C
′
D1

defined in (4) is a [2m−1,m + 1]
binary linear code with the weight distribution in Table 7.

Let D = F
∗
q . If m/h is odd, then gcd

(
2h + 1, 2m − 1

) = 1 (Lemma 2.1, [5]). So

f (x) = x2
h+1 is a permutation polynomial over F∗

q . It is well known that |{x ∈ F
∗
q :

Tr(αx) = 0}| = 2m−1 − 1 for every α ∈ F
∗
q . Therefore, we have that CD of (3) is

a constant-weight linear code with parameters [2m − 1,m, 2m − 2m−1]. It is optimal
by the Griesmer bound (Chapter 2, [23]) in this case. If m/h > 2 is even, the code
CD is a two-weight binary linear code, and the weight distribution of CD is given in
Theorem 4 below.
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Several classes of binary linear codes and their weight enumerators 97

Table 5 The weight distribution of the codes of Corollary 3

Weight w Multiplicity A

0 1

2m−1 − 1 1

2m−2 + (−1)
e
h 2e+h−1 2m−2h−1−1−(−1)

e
h 2e−h−1

2h+1

2m−2 − (−1)
e
h 2e+h−1 − 1 2m−2h−1−1−(−1)

e
h 2e−h−1

2h+1

2m−2 + (−1)
e
h 2e+h−2 (2h − 1)2m−2h

2m−2 − (−1)
e
h 2e+h−2 − 1 (2h − 1)2m−2h

2m−2 2m−1 − (−1)
e
h (2h − 1)(2m−2h−1 + 2e−h−1)

2m−2 − 1 2m−1 − (−1)
e
h (2h − 1)(2m−2h−1 + 2e−h−1)

2m−2 − (−1)
e
h 2e−1 2m−1(2h+2−2h−1)−2h+(−1)

e
h 2e−1(2h+2e−2e−2h )

2h+1

2m−2 + (−1)
e
h 2e−1 − 1 2m−1(2h+2−2h−1)−2h+(−1)

e
h 2e−1(2h+2e−2e−2h )

2h+1

Table 6 The weight distribution of the codes of Theorem 3

Weight w Multiplicity A

0 1

2m−2 + (−1)
e
h 2e+h−1 2m−2h−1+(−1)

e
h 2e−h−1

2h+1

2m−2 + (−1)
e
h 2e+h−2 (2h − 1)2m−2h

2m−2 2m−1 − 1 + (−1)
e
h 2e−h−1(2h − 1) − (2h − 1)2m−2h−1

2m−2 − (−1)
e
h 2e−1 (2e−(−1)

e
h )2e+h−1

2h+1

Theorem 4 Let m/h > 2 be even and D = F
∗
q . Then the code CD of (3) is a

[2m − 1,m] binary linear code with the weight distribution in Table 8.
Ifm/h is even, we know gcd(2h +1, 2m −1) = 2h +1, i.e., 2h +1 | 2m −1. Hence

f (x) = x2
h+1 is a (2h + 1)-to-1 function over F∗

q in the case that m/h ≡ 0 (mod 2).

This implies that a binary code can be punctured from the code CD in Theorem 4.
Let D = {x2h+1 : x ∈ F

∗
q} and

CD = {
(Tr(xd))d∈D : x ∈ Fq

}
. (5)

Then the parameters ofCD can easily be derived from those of the codeCD in Theorem
4, and are given in the following corollary.

Corollary 5 Let m/h > 2 be even. Then the code CD is a [(2m − 1)/(2h + 1),m]
binary linear code with the weight distribution in Table 9.
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Table 7 The weight distribution of the codes of Corollary 4

Weight w Multiplicity A

0 1

2m−1 1

2m−2 + (−1)
e
h 2e+h−1 2m−2h−1+(−1)

e
h 2e−h−1

2h+1

2m−2 − (−1)
e
h 2e+h−1 2m−2h−1+(−1)

e
h 2e−h−1

2h+1

2m−2 + (−1)
e
h 2e+h−2 (2h − 1)2m−2h

2m−2 − (−1)
e
h 2e+h−2 (2h − 1)2m−2h

2m−2 2m − 2 + (−1)
e
h 2e−h(2h − 1) − (2h − 1)2m−2h

2m−2 − (−1)
e
h 2e−1 (2e−(−1)

e
h )2e+h−1

2h+1

2m−2 + (−1)
e
h 2e−1 (2e−(−1)

e
h )2e+h−1

2h+1

Table 8 The weight distribution
of the codes of Theorem 4

Weight w Multiplicity A

0 1

2m−1 − (−1)
e
h 2e−1 (2m−1)2h

2h+1

2m−1 + (−1)
e
h 2e+h−1 2m−1

2h+1

Table 9 The weight distribution
of the codes of Corollary 5

Weight w Multiplicity A

0 1

2m−1−(−1)
e
h 2e−1

2h+1
(2m−1)2h

2h+1

2m−1+(−1)
e
h 2e+h−1

2h+1
2m−1
2h+1

Example 1 Let (m, h) = (5, 1). A Magma program shows that CD0 has parameters
[15, 5, 6] and weight enumerator 1+ 10x6 + 15x8 + 6x10, while CD1 has parameters
[16, 5, 6] and weight enumerator 1 + 6x6 + 15x8 + 10x10, which both agree with
Theorem1.HereCD0 is almost optimal since the optimal one has parameters [15, 5, 7].

Example 2 If (m, h) = (6, 1), a Magma program shows that CD0 has parameters
[31, 6, 8] and weight enumerator 1+3x8+16x12+26x16+18x20. If (m, h) = (8, 2),
aMagma program shows thatCD0 has parameters [127, 8, 56] and weight enumerator
1 + 108x56 + 98x64 + 48x80 + x96. Therefore, our experimental results here agree
with Theorem 2. Note that the code CD0 with parameters [31, 6, 8] is far from being
optimal, since an optimal [31, 6] code has minimum distance 15. And the code CD1

123



Several classes of binary linear codes and their weight enumerators 99

with parameters [127, 8, 56] is close to an optimal code, since an optimal [127, 8]
code has minimum distance 63.

Example 3 If (m, h) = (6, 1), a Magma program shows that CD1 has parameters
[32, 6, 8] and weight enumerator 1+2x8+16x12+21x16+24x20. If (m, h) = (8, 2),
aMagma program shows thatCD1 has parameters [128, 8, 56] and weight enumerator
1 + 96x56 + 109x64 + 48x80 + 2x96. Therefore, our experimental results here agree
with Theorem 3.

Example 4 If (m, h) = (8, 1), a Magma program shows that CD has parameters
[255, 8, 120] and weight enumerator 1 + 170x120 + 85x144. If (m, h) = (8, 2), a
Magma program shows that CD has parameters [255, 8, 120] and weight enumerator
1 + 204x120 + 51x160. Therefore, our experimental results here agree with Theorem
4. Here the codeCD in Corollary 5 in the two specific cases has parameters [85, 8, 40]
and [51, 8, 24], respectively, both of which are optimal due to the Griesmer bound.

2 Preliminaries

In this section, we present some results on exponential sums, which will be needed in
calculating the weight distributions of the codes of (2).

An additive character of Fq is a group homomorphism χ from
(
Fq ,+

)
into the

multiplicative group of complex numbers of absolute value 1, i.e., χ(g1 + g2) =
χ(g1)χ(g2) for all g1, g2 ∈ Fq . Each additive character over Fq can be given by

χb(c) = (−1)Tr(bc) for all c ∈ Fq ,

for some b ∈ Fq . The additive character χ0 is called trivial, whereas other characters
χb with b ∈ F

∗
q are called nontrivial. Among the additive characters of Fq , we have

the canonical additive character χ1 defined by χ1(c) = (−1)Tr(c) for all c ∈ Fq . See
[27] for more information about characters over finite fields.

Define the exponential sum

Sh(a, b) =
∑

x∈Fq
χ1

(
ax2

h+1 + bx
)

,

where a ∈ F
∗
q , b ∈ Fq , and h is a proper positive divisor of m. In general, to evaluate

an exponential sum over a finite field is challenging. So far it has been determined
only in certain special cases [2–5,20,22]. The following lemmas present the values of
Sh(a, b).

Lemma 1 (Theorem 4.1, [5]) If m/h is odd, then
∑

x∈Fq χ1

(
ax2

h+1
)

= 0 for each

a ∈ F
∗
q .

Lemma 2 (Theorem 4.2, [5]) Let b ∈ F
∗
q and suppose m/h is odd. Then, Sh(a, b) =

Sh(1, bc−1), where c ∈ F
∗
q is the unique element satisfying c2

h+1 = a. Further, we
have
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100 F. Li et al.

Sh(1, b) =
{
0, if Trh(b) �= 1,

±2
m+h
2 , if Trh(b) = 1,

where and hereafter Trh is the trace function from Fq to F2h .

Lemma 3 (Theorem 5.2, [5]) Let m/h be even and m = 2e for some integer e. Then,

Sh(a, 0) =
{

(−1)
e
h 2e, if a �= gt (2

h+1) for any integer t,

−(−1)
e
h 2e+h, if a = gt (2

h+1) for some integer t,

where g is a generator of F∗
q .

Lemma 4 (Theorem 5.3, [5]) Let b ∈ F
∗
q and suppose m/h is even such that m = 2e

for some integer e. Let f (x) = a2
h
x2

2h + ax ∈ Fq [x]. There are two cases.
1. If a �= gt

(
2h+1

)
for any integer t, then f is a permutation polynomial of Fq . Let

x0 be the unique element satisfying f (x) = b2
h

. Then,

Sh(a, b) = (−1)
e
h 2eχ1

(
ax2

h+1
0

)
.

2. If a = gt
(
2h+1

)
, then Sh(a, b) = 0 unless the equation f (x) = b2

h

is solvable. If
the equation is solvable, with solution x0 say, then,

Sh(a, b) =
⎧
⎨

⎩

−(−1)
e
h 2e+hχ1

(
ax2

h+1
0

)
, if Trh(a) = 0,

(−1)
e
h 2eχ1

(
ax2

h+1
0

)
, if Trh(a) �= 0.

Lemma 5 (Theorem 3.1, [5]) Let g be a primitive element of Fq . For any a ∈ F
∗
q ,

consider the equation a2
h
x2

2h + ax = 0 over Fq .

1. If m/h is odd, then there are 2h solutions to this equation for any choice of a ∈ F
∗
q .

2. If m/h is even, then there are two possible cases. If a = gt (2
h+1) for some t, then

there are 22h solutions to this equation. If a �= gt (2
h+1) for any t, then there exists

one solution only, x = 0.

3 Proofs

We follow the notation from Sect. 2 above. In this section, we determine the length of
the code CDa (a = 0, 1) of (2) and provide a formula for the weight of a codeword cb
(b ∈ F

∗
q) in CDa (a = 0, 1). We also provide the proofs of the presented theorems. As

for the corollaries, it is not difficult to prove them via their corresponding theorems,
thus we omit the details.
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Several classes of binary linear codes and their weight enumerators 101

By the definition of Da (a = 0, 1), we know

|Da | =
{
2m−1 − 1, if a = 0,
2m−1, if a = 1.

We define N (a, b) = {x ∈ Fq : Tr(x) = a and Tr(bx2
h+1) = 0}, and denote

by wt (cb) the Hamming weight of the codeword cb with b ∈ F
∗
q of the code CDa

(a = 0, 1). It can be easily checked that

wt (cb) = 2m−1 − |N (a, b)|. (6)

In terms of exponential sums, for b ∈ F
∗
q , we have

|N (a, b)| = 2−2
∑

x∈Fq

(∑

y∈F2
(−1)yTr(x)−ya

) (∑

z∈F2
(−1)

zTr
(
bx2

h+1
))

= 2−2
∑

x∈Fq

(
1 + (−1)Tr(x)−a

) (
1 + (−1)

Tr
(
bx2

h+1
))

= 2m−2 + 2−2
∑

x∈Fq (−1)
Tr

(
bx2

h+1
)

+ 2−2
∑

x∈Fq (−1)
Tr

(
x+bx2

h+1
)
−a

= 2m−2 + 2−2 (
Sh(b, 0) + (−1)a Sh(b, 1)

)
. (6′)

Based on the above discussion, the weight distribution of CDa can be determined
by using the value distribution of Sh(b, c) with b ∈ F

∗
q and c ∈ F2. By the lemmas

presented in Sect. 2, we are ready to compute the weight distributions of the codes
CDa (a = 0, 1).

Proof of Theorem 1 We present only the proof for CD0 , since the proof for the case
in which a = 1 is similar. By Lemma 1, we have Sh(b, 0) = 0 for b ∈ F

∗
q . It follows

from Lemma 2 that

Sh(b, 1) = Sh
(
1, c−1

)
=

{
0, if Trh

(
c−1

) �= 1,

±2
m+h
2 , if Trh

(
c−1

) = 1,
(7)

where b ∈ F
∗
q and c2

h+1 = b. We get

|N (0, b)| ∈
{
2m−2, 2m−2 − 2

m+h−4
2 , 2m−2 + 2

m+h−4
2

}
.

Hence, the weight wt (cb) of the codeword cb (b ∈ F
∗
q) in CD0 satisfies

wt (cb) ∈
{
2m−2, 2m−2 ± 2

m+h−4
2

}
.

Suppose w1 = 2m−2 − 2
m+h−4

2 , w2 = 2m−2, w3 = 2m−2 + 2
m+h−4

2 . Note that ifm/h
is odd, then gcd

(
2h + 1, 2m − 1

) = 1. This means that when b ranges over F∗
q , the
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102 F. Li et al.

element c with c2
h+1 = b takes on each element of F∗

q exactly once. Hence, we obtain

∣∣∣
{
c ∈ F

∗
q : Trh

(
c−1

)
�= 1, c2

h+1 = b and b ∈ F
∗
q

}∣∣∣

= 2m − 1 −
∣∣∣
{
c ∈ F∗

q : Trh
(
c−1

)
= 1, c2

h+1 = b and b ∈ F
∗
q

}∣∣∣

= 2m − 2m−h − 1,

i.e., Aw2 = 2m − 2m−h − 1. (Please see the definition of Ai in the second paragraph
of page 2.) The first two Pless Power Moments (Page 260, [23]) yield the following
two equations:

{
Aw1 + Aw2 + Aw3 = 2m − 1,
w1Aw1 + w2Aw2 + w3Aw3 = n2m−1.

(8)

Here n = 2m−1 − 1. Solving the system of equations (8), we get Theorem 1. And we
complete the proof. 	


Next, we assume m/h ≡ 0 (mod 2), m = 2e, and g is a generator of F∗
q . In order

to give a proof of Theorem 2, we need the following auxiliary lemma. This lemma
can be found in equation (10) in [10].

Lemma 6 Let T0 =
{
x ∈ Fq : Tr

(
x2

h+1
)

= 0
}
and T1 = Fq\T0. If m/h is even

with m = 2e, then |T0| = 2m−1 − (−1)
e
h 2e+h−1 and |T1| = 2m−1 + (−1)

e
h 2e+h−1.

Proof of Theorem 2 For b ∈ F
∗
q , if b �= gt

(
2h+1

)
for any integer t , then by Lemma 3,

we have Sh(b, 0) = (−1)
e
h 2e, and by Lemma 4, we get

Sh(b, 1) = (−1)
e
h 2eχ1

(
bx2

h+1
0

)
,

where x0 satisfies b2
h
x2

2h

0 + bx0 = 1.

If b = gt
(
2h+1

)
for some integer t, then by Lemma 3, we obtain

Sh(b, 0) = −(−1)
e
h 2e+h .

Assume c = gt , then b = c2
h+1 and it follows from Lemma 2 that Sh(b, 1) =

Sh
(
1, c−1

)
. For the above c ∈ F

∗
q , let fc(x) = x2

2h + x − (
c−1

)2h
. If fc(x) has no

root in F∗
q , by Lemma 4, we obtain Sh(b, 1) = Sh(1, c−1) = 0. Note that Trh(1) = 0,

since m/h is even. If fc(x) has a root x0 in F∗
q , by Lemma 4, we get

Sh(b, 1) = Sh(1, c
−1) = −(−1)

e
h 2e+hχ1

(
x2

h+1
0

)
.
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Several classes of binary linear codes and their weight enumerators 103

By Equations (6) and (6′), we know that for b ∈ F
∗
q , wt (cb) belongs to the set

{
2m−2 + (−1)

e
h 2e+h−1, 2e−2(2e + (−1)

e
h 2h), 2m−2, 2m−2 − (−1)

e
h 2e−1

}
.

Define w1 = 2m−2 + (−1)
e
h 2e+h−1, w2 = 2e−2(2e + (−1)

e
h 2h), w3 =

2m−2, w4 = 2m−2 − (−1)
e
h 2e−1.

The next step is to determine the number Awi of codewords with weight wi . If
fc(x) = 0 (for some c ∈ Fq) is solvable in Fq , by Lemma 5, there are 22h solutions
of this equation over Fq . Since gcd(2h, 2m − 1) = 1, it can be easily checked that{
x0 ∈ Fq : x22h0 + x0 = (c−1)2

h
, c ∈ Fq

}
= Fq . Hence we get

∣∣∣
{
c ∈ F

∗
q : x22h + x = (c−1)2

h
is solvable in Fq

}∣∣∣ = 2m−2h − 1,

and
∣∣∣
{
c ∈ F

∗
q : x22h + x = (c−1)2

h
has no root in Fq

}∣∣∣ = 2m − 2m−2h .

Since x2
h+1 is a (2h + 1)-to-1 function on Fq , there are 2m−2m−2h

2h+1
elements b

(b = c2
h+1 ∈ F

∗
q ) such that Sh(b, 1) = 0, i.e., Aw2 = 2m−2m−2h

2h+1
. It follows from

Lemmas 4 and 6 that

∣∣∣
{
c ∈ F

∗
q : Sh(1, c−1) = (−1)

e
h 2e+h

}∣∣∣ = 2m−1 + (−1)
e
h 2e+h−1

22h
.

Then we have

∣∣∣
{
b ∈ F

∗
q : b = c2

h+1 and Sh(b, 1) = (−1)
e
h 2e+h

}∣∣∣ = 2m−1 + (−1)
e
h 2e+h−1

22h(2h + 1)
.

Therefore, Aw1 = 2m−2h−1−1−(−1)
e
h 2e−h−1

2h+1
. By the Pless Power Moments (Page 260,

[23]), we obtain the following two equations:

{
Aw1 + Aw2 + Aw3 + Aw4 = 2m − 1,
w1Aw1 + w2Aw2 + w3Aw3 + w4Aw4 = 2m−1(2m−1 − 1).

(9)

The solutions to the set of equations in (9) yield the weight distribution presented in
Table 4. The proof of Theorem 2 is completed. 	


We omit a proof for Theorem 3, since it is similar to that of Theorem 2. By the
proof of Theorem 2, it is also straightforward to prove Theorem 4. So the proof for
Theorem 4 is left to the reader.

4 Concluding remarks

In this paper, we presented several classes of binary linear codes with a fewweights. A
number of linear codes with at most five weights were discussed in [7,8,11,12,38,39].
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Further, some interesting binary linear codes constructed by a similar method were
presented in [10,28,30]. The binary codes presented in our paper were rather different
than the above due to the following three reasons:

1. Most differently, the binary codes in our paper were defined by CD =
{(Tr(x f (d)))d∈D : x ∈ Fq}, where f (d) = d2

h+1, whereas f (d) = d was
used in [10,28,30].

2. We selected the defining sets using a different approach, thereby causing the codes
in our paper to have different lengths.

3. The binary linear codes in our paper were constructed with new parameters and
have at most nine weights, whereas the binary codes in [10,28,30] have two or
three weights.

It should be remarked that the parameters of the binary linear codesCD0 in Theorem
1 are the same as those in Theorem 1 in [10]. By Magma, we found the code CD0 to
be equivalent to that in Theorem 1 of [10] for (m, h) = (3, 1). But for (m, h) = (5, 1)
and (7, 1), they are not equivalent. It is open whether the two classes of codes are
equivalent or not. The reader is invited to attack this problem.

A polynomial of the form

f (x) =
m−1∑

i=0

m−1∑

j=0

ai j x
2i+2 j

, ai j ∈ Fq

is called a quadratic form over F2m . It should be interesting to settle the parameters
and weight distribution of CD if we replace x2

h+1 with more general quadratic forms.
Denote the minimum and maximum nonzero weights of a linear code C over Fp

by wmin and wmax, respectively. By the results in [36], if the code C satisfies the
inequality

wmin

wmax
>

p − 1

p
,

thenC can be employed to construct secret sharing schemeswith interesting properties.
Let m > h + 2. Then, for the codes in Theorem 1, we have

wmin

wmax
= 2m−2 − 2

m+h−4
2

2m−2 + 2
m+h−4

2

>
1

2
.

If (m, h) �= (4, 1) or (6, 1), then for the codes in Theorems 2 and 3, it can be easily
checked that

wmin

wmax
>

1

2
.

This conclusion is also true for Theorem 4 and Corollary 5.
Hence, the binary linear codes presented in Theorems 1–4 and Corollary 5 are

suitable for constructing secret sharing schemes in many cases.
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