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Abstract In this paper, several classes of two-weight or three-weight linear codes
over Fp from quadratic or non-quadratic functions are constructed and their weight
distributions are determined. From the constructed codes, we obtain some optimal
linear codes with respect to the Singleton bound and the Griesmer bound. These two-
or three-weight linear codes may have applications in secret sharing, authentication
codes, association schemes and strongly regular graphs.
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1 Introduction

Let Fpm be a finite field of size pm , where p is an odd prime. An [n, k] linear code C
overFp is a k-dimensional linear subspace ofF

n
p. The Hammingweight of a codeword

(c0, c1, . . . , cn−1) in C is the number of nonzero ci for 0 ≤ i ≤ n−1. Let Ai denote the
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number of nonzero codewords with Hammingweight i in C. The weight enumerator of
C is defined by 1+A1z+· · ·+Anzn . The sequence (1, A1, . . . , An) is called theweight
distribution of C. The weight distribution of a code not only gives the error correcting
ability of the code, but also allows the computation of the error probability of error
detection and correction [17]. Therefore, the research of the weight distribution of a
linear code is important in both theory and applications.

Let Tr denote the trace function from Fpm to Fp. From a subset D =
{d1, d2, . . . , dn} ⊂ Fpm , Ding et al. defined a generic class of linear codes of length
n = |D| over Fp as

CD = {
(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) | x ∈ Fpm

}
. (1)

Here D is called the defining set of CD . This construction is generic in the sense that
many classes of known codes could be produced by selecting the defining set D.

As far as we know, this technique was first employed in [3,4] for obtaining good
linear codes. Recently, Ding in [5,6] studied linear codes whose defining sets were
chosen from some specific classes of 2-designs or (pre)images of certain Boolean
functions. In the past three years, many authors worked on this topic. The reader is
referred to [5–8,14–16,19,21–23,25–28] and the references therein.

Let f be a polynomial over Fpm . Define

D f =
{
x ∈ F

∗
pm |Tr( f (x)) = 0

}
.

Using D f as a defining set, Zhang et al. in [26] showed the complete weight enumer-
ators of a class of linear codes from a general quadratic polynomial f (x) over Fpm .
From [26] we know that the parameters of the linear code CD f depend on the rank and
determinant of the quadratic form Tr( f ), which are difficult to determine in general.

In fact, from the point of view of geometry, the weight distribution of CD f is
connected to the size of the intersection of the set D f and the hyperplane Ha =
{x |Tr(ax) = 0}. If f is a DO polynomial, then D f is a quadric. When the quadric
and hyperplane have the same size, Games in [13] determined the intersection sizes
and their corresponding frequencies. In this paper, we will present a class of linear
codes from binomial quadratic polynomials over Fpm and determine their weight
distributions explicitly by the application of the theory of quadratic forms over finite
fields. Second, motivated by the idea of [29,30], we study a class of linear codes CD f

from f = x� for � satisfying some congruence conditions and derive their weight
distributions by converting the exponential sum related to non-quadratic forms to that
related to quadratic forms. From the constructed codes, we obtain some optimal linear
codes with respect to the Griesmer bound and the Singleton bound.

The remainder of this paper is organized as follows. Section 2 gives some pre-
liminaries on quadratic forms over finite fields. In Sect. 3 we present the weight
distributions of a class of linear codes from some special DO polynomials. Section 4
determines the weight distributions of a class of linear codes from some non-quadratic
functions. Finally, Sect. 5 concludes this paper.
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2 Preliminaries

Let p be an oddprime andFpm be afinite field of size pm . A polynomial f (x) ∈ Fpm [x]
called a DO polynomial was defined in [11] with the following shape:

f (x) =
m−1∑

i, j=0

ai j x
pi+p j

, ai j ∈ Fpm .

It is clear that f (x) is also a homogeneous quadratic polynomial. A function
Q(x1, x2, . . . , xm) from F

m
p to Fp is called a quadratic form if it is a homogenous

polynomial of degree two as follows:

Q(x1, x2, . . . , xm) =
∑

1≤i≤ j≤m

ai j xi x j , ai j ∈ Fp.

We fix a basis {α1, α2, . . . , αm} of Fpm over Fp and identify x = ∑m
i=1 xiαi with the

vector (x1, x2, . . . , xm) ∈ F
m
p , then Tr( f (x)) is a quadratic form in the coordinates of

F
m
p . Moreover, every quadratic form Q(x) from Fpm to Fp can be represented as

Q(x) = Tr ( f (x)) ,

where f (x) is a DO polynomial defined above. The rank of the quadratic form Q(x)
is defined as the codimension of Fp-vector space

V = {z ∈ Fpm | Q(x + z) − Q(x) − Q(z) = 0, for all z ∈ Fpm },

which is denoted by rank(Q). Then |V | = pm−rank(Q).
For a quadratic form Q(x)withm variables overFp , there exists a symmetricmatrix

A such that Q(x) = X AX ′, where X = (x1, x2, . . . , xm) ∈ F
m
p and X ′ denotes the

transpose of X . The determinant det(Q) of Q(x) is defined to be the determinant of A,
and Q(x) is nondegenerate if det(Q) �= 0. It is known that there exists a nonsingular
matrix T such that T AT ′ is a diagonal matrix [18]. Making a nonsingular linear
substitution X = YT with Y = (y1, y2, . . . , ym), we have

Q(x) = YT AT ′Y ′ =
r∑

i=1

ai y
2
i , ai ∈ Fp,

where r(≤ m) is the rank of Q(x). The following lemma gives a general result on an
exponential sum of a quadratic function from Fpm to Fp.

Lemma 1 (see Theorems 5.15 and 5.33 of [18]) Let Q(x) be a quadratic function
from Fpm to Fp with rank r , and η be the quadratic multiplicative character of Fp.
Then

∑

x∈Fpm

ωQ(x)
p = η(Δ)δp,r p

m− r
2 ,
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where ωp is a pth primitive root of unity, and Δ is the determinant of Q(x), and

δp,r = (−1)
r(p−1)2

8 . Moreover, for any z ∈ F
∗
p,

∑

x∈Fpm

ωzQ(x)
p = ηr (z)η(Δ)δp,r p

m− r
2 .

It is well known that the parameters of an [n, k, d] linear code C over Fp satisfy

d ≤ n − k + 1, (2)

and

n ≥
k−1∑

i=0

⌈
d

pi

⌉
, (3)

where 	x
 denotes the smallest integer, which is larger than or equal to x . If the equality
in (2) holds, then C is called an optimal code with respect to the Singleton bound. If
the equality in (3) holds, then C is called an optimal code with respect to the Griesmer
bound.

Two linear codes C and C′ of length n overFpm are equivalent (see Sect. 1 of Chapter
2 in [20]) if there exist n permutationsπ0, π1, . . . , πn−1 of the pm elements inFpm and
a permutation σ of the n coordinate positions such that if (c0, c1, . . . , cn−1) ∈ C, then
σ(π0(c0), π1(c1), . . . , πn−1(cn−1)) ∈ C′. That is to say, let G and G ′ be generator
matrices of C and C′ respectively. The codes C and C′ are equivalent if there exists a
monomial matrix M such that G ′ = GM , where M is a square matrix such that in
every row (and in every column) there is exactly one nonzero element in Fpm .

In order to discuss the existence of the solutions for two congruence equations in
Sect. 4, we need the following well known facts.

Lemma 2 Let φ, ϕ, μ be three nonzero elements in Fpm . Then for any congruence
equation φx ≡ ϕ (mod μ), the equation has solutions if and only if gcd(φ, μ) | ϕ.
Moreover, the number of solutions is gcd(φ, μ).

Lemma 3 Let h, g be two positive integers. Then

gcd(ph + 1, pg − 1) =

⎧
⎪⎨

⎪⎩

pgcd(h,g) + 1, if
g

gcd(h, g)
is even,

2, if
g

gcd(h, g)
is odd.

3 Linear codes from DO polynomials

Let Fpm be a finite field with pm elements, where p is an odd prime andm is a positive
integer. Let Tr denote the trace function from Fpm toFp. Let f (x) be a DO polynomial
over Fpm . Recall that

D f = {x ∈ F
∗
pm |Tr( f (x)) = 0} = {d1, d2, . . . , dn} ⊂ F

∗
pm .
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Table 1 Weight distribution of
CD f for an odd r

Hamming weight Frequency

0 1

(p − 1)pm−2 pm − pr + pr−1 − 1

(p − 1)(pm−2 + p
2m−r−3

2 )
p−1
2 (pr−1 − p

r−1
2 )

(p − 1)(pm−2 − p
2m−r−3

2 )
p−1
2 (pr−1 + p

r−1
2 )

Table 2 Weight distribution of CD f for an even r

Hamming weight Frequency

0 1

(p − 1)pm−2 + ε(p − 1)2 p
2m−4−r

2 pm − pr

(p − 1)pm−2 pr−1 + ε(p − 1)p
r−2
2 − 1

(p − 1)(pm−2 + εp
2m−r−2

2 ) (p − 1)(pr−1 − εp
r−2
2 )

From this set, we obtain a linear code proposed in [8] as follows:

CD f = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) | x ∈ Fpm }. (4)

From [10,26], we can get the following lemmas.

Lemma 4 Let CD f be the linear code defined in (4) and n be the length of the code-
words in CD f . Let r be the rank of the quadratic form Q(x) = Tr( f (x)) and its
determinant be denoted by Δ. Then

n =
{
pm−1 − 1, if r is odd,
pm−1 − 1 + (p − 1)η(Δ)δp,r pm−1− r

2 , if r is even,

where η is the quadratic character of Fp and δp,r is defined in Lemma 1.

Lemma 5 Let f be a DO polynomial over Fpm and Tr( f ) be a quadratic form with
rank r . Let CD f be the linear code defined in (4).

(1) If r is odd, then CD f is a [pm−1 − 1,m, (p− 1)(pm−2 − p
2m−r−3

2 )] code with the
weight distribution in Table 1.

(2) If r is even, then CD f is a [pm−1 − 1+ ε(p− 1)p
2m−r−2

2 ,m] code with the weight
distribution in Table 2, where ε = η(Δ)δp,r , Δ is the determinant of Tr( f ), η is
the quadratic character of Fp, and δp,r is defined in Lemma 1.

It is observed that the Hamming weight of each codeword in the code CD f has a
common divisor p − 1. This indicates that CD f may be punctured into a shorter one
whose weight distribution is derived from that of the original code. To this end, we
define a equivalence relation in the set D f as follows. For β, γ ∈ D f , we say that β
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Table 3 Weight distribution of
CD̄ f

for an odd r
Hamming weight Frequency

0 1

pm−2 pm − pr + pr−1 − 1

pm−2 + p
2m−r−3

2 p−1
2 (pr−1 − p

r−1
2 )

pm−2 − p
2m−r−3

2 p−1
2 (pr−1 + p

r−1
2 )

Table 4 Weight distribution of CD̄ f
for an even r

Hamming weight Frequency

0 1

pm−2 + ε(p − 1)p
2m−4−r

2 pm − pr

pm−2 pr−1 + ε(p − 1)p
r−2
2 − 1

pm−2 + εp
2m−r−2

2 (p − 1)(pr−1 − εp
r−2
2 )

is equivalent to γ if and only if there exists a ∈ F
∗
p such that β = aγ . The elements

chosen from each equivalent class in D f consist of a set D̄ f . It is obvious that

D f = F
∗
p D̄ f = {ab : a ∈ F

∗
p, b ∈ D̄ f }. (5)

Then CD̄ f
is a punctured version of CD f , whose parameters are given in the following

proposition.

Proposition 1 Let f be a DO polynomial over Fpm and r be the rank of quadratic
form Tr( f ). Let CD̄ f

be the linear code defined above, where D̄ f is defined in (5).

(1) If r is odd, then CD̄ f
is a [ pm−1−1

p−1 ,m, pm−2 − p
2m−r−3

2 ] code with the weight
distribution in Table 3.

(2) If r is even, then CD̄ f
is a [ pm−1−1

p−1 +εp
2m−r−2

2 ,m] codewith theweight distribution
in Table 4, where ε = η(Δ)δp,r , Δ is the determinant of Tr( f ), η is the quadratic
character of Fp and δp,r is defined in Lemma 1.

From the weight distribution of CD̄ f
above, we obtain some optimal linear codes

with respect to the Singleton bound or the Griesmer bound as follows.

Corollary 1 Let f be a DO polynomial over Fpm and r be the rank of quadratic form
Tr( f ). Let CD̄ f

be the linear code defined above.

(1) If r = m = 3, then CD̄ f
is a [p + 1, 3, p − 1] code. This code is optimal with

respect to the Singleton bound and the Griesmer bound.
(2) If r = m = 4, and the determinant of Tr( f ) is a non-square element in F

∗
p,

then CD̄ f
is a [p2 + 1, 4, p2 − p] code. This code is optimal with respect to the

Griesmer bound.
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Several classes of linear codes and their weight… 81

Proof When r = m = 3, from Proposition 1 we know that the length n of CD̄ f
is

p + 1, the dimension k of CD̄ f
is 3, and the minimal distance d is p − 1. It is easy

to verify that these parameters of the code CD̄ f
satisfy the equality in (2) and (3),

respectively. Therefore, CD̄ f
is optimal with respect to the Singleton bound and the

Griesmer bound. The proof of case (2) is similar, and we omit the details here. �

Remark 1 Section 5 of Chapter 11 in [20] has proved that there exist [p + 1, 3, p −
1] (cyclic) MDS codes. Corollary 1 only provides a class of MDS code with this
parameters by trace representations.

It is well known that an [n, k] linear code is called projective if no two columns
of a generator matrix G are linearly dependent, i.e., if the columns of G are pairwise
different points in a projective (k−1)-dimensional space. A strong regular graph with
parameters (v, K , λ, μ) is a finite simple graph with v vertices which is regular of
degree K , and any two distinct vertices have λ common neighbours if they are adjacent
and μ common neighbours if they are non-adjacent. There are strong connections
between projective two-weight codes and strong regular graphs.

Let q be a power of a prime and Fq be a finite field with q elements. In 1985,
Calderbank and Kantor [9] showed that if an [n, k] linear code with weights w1 and
w2 over Fq is a projective two-weight code, then we can obtain a strong regular graph
with the following parameters (Corollary 3.7 in [2]),

v = qk, K = n(q − 1),

λ = K 2 + 3K − q(w1 + w2) − Kq(w1 + w2) + q2w1w2,

μ = q2w1w2

qk
= K 2 + K − kq(w1 + w2) + q2w1w2.

In 2006, Bouyukliev et al. [1] showed that a two-weight code [q2 + 1, 4, q2 − q]
with weights w1 = q2 − q and w2 = q2 is a projective two-weight code. Hence,
from the code in Corollary 1, we can obtain a strong regular graph with parameters
(p4, p3 − p2 + p − 1, p − 2, p2 − p).

Example 1 (1) Let p = 3 andm = 3. Let f (x) = x2, x4, x10−x6−x2 or x10+x6−x2.
Then the code CD̄ f

has parameters [4, 3, 2] and the weight enumerator 1 + 12x2 +
8x3 + 6x4. This code is an MDS code and is optimal with respect to the Griesmer
bound.

(2) Let p = 7 andm = 4. Let f (x) = x50 or α11x8+α20x2, where α is a primitive
element of F74 . Then the code CD̄ f

has parameters [50, 4, 42] and weight enumerator

1 + 2100x42 + 300x49. This code is optimal with respect to the Griesmer bound.

3.1 A class of linear codes from some special DO polynomials

From Proposition 1, in order to determine the parameters of the linear code CD̄ f
, we

need to know the rank and determinant of the quadratic form Tr( f ), and they are
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Table 5 Weight distribution of
CD̄ f

for an odd m
Hamming weight Frequency

0 1

pm−2 pm−1 − 1

pm−2 + p
m−3
2 p−1

2 (pm−1 − p
m−1
2 )

pm−2 − p
m−3
2 p−1

2 (pm−1 + p
m−1
2 )

Table 6 Weight distribution of CD̄ f

Hamming weight Frequency

0 1

pm−2 pm−1 + (−1)
m

2v+1 (p − 1)p
m−2
2 − 1

pm−2 + (−1)
m

2v+1 p
m−2
2 (p − 1)(pm−1 − (−1)

m
2v+1 p

m−2
2 )

difficult to determine in general. In this subsection, we present a class of linear codes
from binomial polynomials and determine their weight distributions explicitly.

Proposition 2 Let ν2(·) denote the 2-adic order function. Let i and j be positive
integers with i > j . Let f (x) = x pi+1 + x p j+1 ∈ Fpm [x] and CD̄ f

be the linear code
defined above.

(1) If m is odd, then CD̄ f
is a [ pm−1−1

p−1 ,m, pm−2 − p
m−3
2 ] code with the weight

distribution in Table 5.
(2) If v = ν2(i) = ν2( j) < ν2(m) and ν2(m) ≤ min{ν2(i − j), ν2(i + j)}, then CD̄ f

is a [ pm−1−1
p−1 + (−1)

m
2v+1 p

m−2
2 ,m] code with the weight distribution in Table 6.

(3) Let v = ν2(i) = ν2( j) and d = gcd(i + j,m). If v < ν2(m) and ν2(i + j) <

ν2(m) ≤ ν2(i − j), then CD̄ f
is a [ pm−1−1

p−1 + (−1)
m−d
2v+1 p

m+d−2
2 ,m] code with the

weight distribution in Table 7.
(4) Let v = ν2(i) = ν2( j) and d = gcd(i − j,m). If v < ν2(m) and ν2(i − j) <

ν2(m) ≤ ν2(i + j), then CD̄ f
is a [ pm−1−1

p−1 + (−1)
m−d
2v+1 p

m+d−2
2 ,m] code with the

weight distribution in Table 7.

In order to prove Proposition 2, we need the following lemma.

Lemma 6 (see Theorem 7.3 of [12]) Let ν2(·) denote the 2-adic order function. Let
f ∈ Fpm [x] be a DO polynomial given in Proposition 2 with ν2(i) = ν2( j) < ν2(m).
Then

η(Δ) =
⎧
⎨

⎩
(−1)

(
1
4 (p−1)2+1

)
r
2 , v = 0,

(−1)
r

2v+1 , v > 0,

where v = ν2(i), Δ and r are the determinant and the rank of Tr( f ), respectively.
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Table 7 Weight distribution of CD̄ f

Hamming weight Frequency

0 1

pm−2 + (−1)
m−d
2v+1 (p − 1)p

m+d−4
2 pm − pm−d

pm−2 pm−d−1 + (−1)
m−d
2v+1 (p − 1)p

m−d−2
2 − 1

pm−2 + (−1)
m−d
2v+1 p

m+d−2
2 (p − 1)(pm−d−1 − (−1)

m−d
2v+1 p

m−d−2
2 )

Proof of Proposition 2 It is known that the weight distribution of CD̄ f
is related to the

determinant and rank of Tr( f ), and they have a connection given in Lemma 6. So, we
may obtain the weight distribution of CD̄ f

if we can determine the rank of Tr( f ).
Note that the rank of Tr( f ) equals the codimension of Fp- vector space

{
x ∈ Fpm |Tr( f (x + y) − f (x) − f (y)) = Tr(yL(x)) = 0, for all y ∈ Fpm

}
,

where
L(x) = x p2i + x pi+ j + x pi− j + x . (6)

So, the rank of Tr( f ) is equal to the codimension of the null space of L(x).
Cases (1) and (2): From (6) we have

(x pi− j + x)p
i+ j + (x pi− j + x) = 0. (7)

Set z = x pi− j + x . (7) is reduced to

z p
i+ j + z = 0. (8)

Obviously, z = 0 is a solution of (8). If z �= 0, then we obtain z p
i+ j−1 = −1. Let α be

a primitive element ofFpm and z = αs for some positive integer s. Then z p
i+ j−1 = −1

is reduced to

α(pi+ j−1)s = α
pm−1

2 ,

which is equivalent to

(pi+ j − 1)s ≡ pm − 1

2
(mod pm − 1). (9)

In Cases (1) and (2), it is easy to see that gcd(pi+ j − 1, pm − 1) �
pm−1
2 since

ν2(m) ≤ ν2(i + j). By Lemma 2, (9) has no solution for s. It follows that (8) has only
one solution z = 0. Similarly, one can verify that x pi− j + x = 0 has also only one
solution x = 0 since ν2(m) ≤ ν2(i − j). That is to say, the rank of Tr( f ) is m. In
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the case of m being odd, from Table 3 we get the weight distribution of CD̄ f
, which is

given in Table 5. In the case of ν2(m) > 0, from Lemma 6 we have

ε = η(Δ)δp,m =
⎧
⎨

⎩
(−1)

(
1
4 (p−1)2+1

)
m
2 (−1)

(p−1)2m
8 , v = 0

(−1)
m

2v+1 (−1)
(p−1)2m

8 , v > 0

= (−1)
m

2v+1 .

Substituting this ε and r = m into Table 4, we get Table 6.
Case (3): From (6) we get

(x pi+ j + x)p
i− j + (x pi+ j + x) = 0. (10)

Set y = x pi+ j + x . (10) is reduced to

y p
i− j + y = 0. (11)

Then using similar techniques as we prove the number of solutions in (8), we obtain
that (11) has only one solution y = 0, and x pi+ j + x = 0 has pd solutions since
ν2(i + j) < ν2(m) ≤ ν2(i − j), where d = gcd(i + j,m). So, the rank of Tr( f ) is
equal to m − d. In this case, from Lemma 6 we have

ε = η(Δ)δp,m−d =
⎧
⎨

⎩
(−1)

(
1
4 (p−1)2+1

)
m−d
2 (−1)

(p−1)2(m−d)
8 , v = 0

(−1)
m−d
2v+1 (−1)

(p−1)2(m−d)
8 , v > 0

= (−1)
m−d
2v+1 .

Substituting this ε and r = m − d into Table 4, we get Table 7.
The proof of Case (4) is similar to that of Case (3). �


Example 2 (1) Let p = 3,m = 3 and f (x) = x10 + x4 or x28 + x4. Then the code
CD̄ f

has parameters [4, 3, 2] and the weight enumerator 1+ 12x2 + 8x3 + 6x4. This
code is an MDS code and optimal with respect to the Griesmer bound.

(2) Let p = 3,m = 6 and f (x) = x28 + x4. Then the code CD̄ f
has parameters

[224, 6, 72] and the weight enumerator 1 + 504x72 + 224x81.
(3) Let p = 3,m = 12 and f (x) = x3

9+1 + x4 or x3
7+1 + x4. Then the code CD̄ f

has parameters [87844, 12, 58320] or [82012, 12, 52488] and the weight enumerators
1 + 39528x58320 + 472392x58563 + 19520x59049 or 1 + 504x52488 + 224x59049 +
472392x54675, respectively.
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4 Linear codes from f = x� for � satisfying some congruence conditions

Let Fpm be a finite field of size pm , where m is odd and p is an odd prime with p ≡ 3
(mod 4). Let � be an even integer satisfying one of the following conditions:

• (pk + 1)� ≡ pm + 1

2
(mod pm − 1);

• pm + 1

2
� ≡ pk + 1 (mod pm − 1),

(12)

where k is a nonnegative integer. Next, we show that there exists an even integer
satisfying one of congruence equations in (12). Since m is odd, by Lemma 3 we
have 2 = gcd(pk + 1, pm − 1) | pm+1

2 and 2 = gcd( pm+1
2 , pm − 1) | pk + 1.

Then the congruence equations in (12) have solutions for any integer k by Lemma 2.
On the other hand, let b be an integer satisfying the first congruence equation. Then
(pk + 1)(b + pm−1

2 ) ≡ (pk + 1)b ≡ pm+1
2 (mod pm − 1). Similarly, if an integer b

satisfies the second congruence equation, then pm+1
2 (b + pm−1

2 ) ≡ pm+1
2 b ≡ pk + 1

(mod pm−1). These show that if an integer b satisfies one of the congruence equations
in (12), then b + pm−1

2 satisfies the corresponding congruence equation. Since p ≡ 3

(mod 4) and m is odd, the number pm−1
2 is odd. Hence, there exists an even integer

satisfying each congruence equation in (12).
In this section, we will investigate the weight distribution of a linear code defined

by
CD f = {

(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) | x ∈ Fpm
}
, (13)

where the defining set D f is as follows:

D f = {x ∈ F
∗
pm |Tr(x�) = 0} = {d1, d2, . . . , dn}.

The following lemma presents the length of the linear code CD f .

Lemma 7 Let p be an odd prime with p ≡ 3 (mod 4). Let m be an odd number and
� be an even number satisfying one of the conditions in (12). Let CD f be the linear
code defined in (13). Then the length of the codewords in CD f is pm−1 − 1.

Proof Weonly prove the case of � satisfying the first condition of (12), i.e., (pk+1)� ≡
pm+1
2 (mod pm − 1), and the proof of the case of � satisfying the second condition

of (12) is similar.
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Let SQ and NSQ denote the set of all square elements and non-square elements in
F

∗
pm , respectively. Let n be the length of a codeword in CD f .

n = �{x ∈ F
∗
pm |Tr(x�) = 0} = pm − 1

p
+ 1

p

∑

u∈F∗
p

∑

x∈F∗
pm

ωuTr(x�)
p

= pm − 1

p
+ 1

p

∑

u∈F∗
p

⎛

⎝
∑

x∈SQ
ωuTr(x�)
p +

∑

x∈NSQ
ωuTr(x�)
p

⎞

⎠

= pm − 1

p
+ 1

2p

∑

u∈F∗
p

∑

x∈F∗
pm

(
ωuTr(x�(pk+1))
p + ωuTr((−1)�x�(pk+1))

p

)

= pm − 1

p
+ 1

p

∑

u∈F∗
p

∑

x∈F∗
pm

ω
uTr

(
x
pm+1

2

)

p ,

(14)

where in the fourth equality, we used the fact that {x pk+1 | x ∈ F
∗
pm } = {x2 | x ∈ F

∗
pm }

since gcd(pk + 1, pm − 1) = 2.
It is easy to see that gcd( pm+1

2 , pm − 1) = 2 since p ≡ 3 (mod 4) and m is odd.

So, {x pm+1
2 | x ∈ F

∗
pm } = {x2 | x ∈ F

∗
pm }. From Lemma 1, we have

n = pm − 1

p
+ 1

p

∑

u∈F∗
p

∑

x∈F∗
pm

ωuTr(x2)
p

= pm−1 − 1 + 1

p

∑

u∈F∗
p

ηm(u)
∑

x∈F∗
pm

ωTr(x2)
p

= pm−1 − 1.

�

To determine the weight distribution of CD f , we need to show the value distribution

of the set
N�(b) = �{x ∈ Fpm |Tr(x� + bx) = 0}

for b running over F
∗
pm . To this end, we will investigate the relation of the value

distribution between N�(b) and the following two sets

Nk(b, 1) = �{x ∈ Fpm |Tr
(
bx pk+1 + x

)
= 0}

and

Nk(1, b) = �{x ∈ Fpm |Tr
(
x pk+1 + bx

)
= 0}

for b running through F
∗
pm .
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Lemma 8 Let p be a prime with p ≡ 3 (mod 4). Let m be an odd number and � be
an even number satisfying one of the conditions in (12). When b runs over F

∗
pm , the

sets N�(b), Nk(b, 1) and Nk(1, b) have the same value distribution as follows:

⎧
⎪⎪⎨

⎪⎪⎩

pm−1, pm−1 − 1 times,

pm−1 − p
m−1
2 ,

p−1
2

(
pm−1 − p

m−1
2

)
times,

pm−1 + p
m−1
2 ,

p−1
2

(
pm−1 + p

m−1
2

)
times.

(15)

Proof Let SQ and NSQ denote all square elements and non-square elements in F
∗
pm ,

respectively. It is easy to verify that {x pk+1 | x ∈ Fpm } = {x2 | x ∈ Fpm } for m being
odd. If � satisfies the first condition of (12), then

N�(b) =�
{
x ∈ Fpm |Tr(x� + bx) = 0

}

=1 + �
{
x ∈ SQ |Tr(x� + bx) = 0

}
+ �

{
x ∈ NSQ |Tr(x� + bx) = 0

}

=1 + 1

2
�

{
x ∈ F

∗
pm |Tr

(
x

pm+1
2 + bx pk+1

)
= 0

}

+ 1

2
�

{
x ∈ F

∗
pm |Tr

(
(−1)�x

pm+1
2 − bx (pk+1)

)
= 0

}
.

Observe that x
pm+1

2 = x or −x for x in SQ or NSQ, respectively. Since � is even and
m is odd, we have

N�(b) =1 + 1

2
�
{
x ∈ SQ |Tr

(
x + bx pk+1

)
= 0

}

+ 1

2
�
{
x ∈ NSQ |Tr

(
−x + bx pk+1

)
= 0

}

+1

2
�
{
x ∈ SQ |Tr

(
x − bx pk+1

)
= 0

}

+ 1

2
�
{
x ∈ NSQ |Tr

(
−x − bx pk+1

)
= 0

}

=1 + 1

2
�
{
x ∈ F

∗
pm |Tr

(
x + bx pk+1

)
= 0

}

+ 1

2
�
{
x ∈ F

∗
pm |Tr

(
x − bx pk+1

)
= 0

}

=1

2
�
{
x ∈ Fpm |Tr

(
x + bx pk+1

)
= 0

}

+ 1

2
�
{
x ∈ Fpm |Tr

(
−x − b(−x)p

k+1
)

= 0
}

=�
{
x ∈ Fpm |Tr

(
bx pk+1 + x

)
= 0

}

=Nk(b, 1).

(16)
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Table 8 Weight distribution of
CD f

Hamming weight Frequency

0 1

(p − 1)pm−2 pm−1 − 1

(p − 1)(pm−2 + p
m−3
2 )

p−1
2 (pm−1 − p

m−1
2 )

(p − 1)(pm−2 − p
m−3
2 )

p−1
2 (pm−1 + p

m−1
2 )

This shows that the sets N�(b) and Nk(b, 1) have the same value distribution for b
running over F

∗
pm . Similarly, if � satisfies the second condition of (12), then the sets

N�(b) and Nk(1, b) have the same value distribution for b running over F
∗
pm .

Next, we show that the sets Nk(1, b) and Nk(b, 1) have the same value distribution
given in (15). Let

N (a, c) = �{x ∈ Fpm |Tr(ax pk+1 + cx) = 0}.

Note that m is odd, by Theorem 2 in [24], for a, c running over F
∗
pm , the set N (a, c)

has the following value distribution,

⎧
⎪⎪⎨

⎪⎪⎩

pm−1 + p
m−1
2 ,

p−1
2 (pm − 1)

(
pm−1 + p

m−1
2

)
times,

pm−1, (pm − 1)(pm−1 − 1) times,

pm−1 − p
m−1
2 ,

p−1
2 (pm − 1)

(
pm−1 − p

m−1
2

)
times.

(17)

For a fixed a ∈ F
∗
pm , if a is a square element in F

∗
pm , then there exists β ∈ Fpm such

that a = β pk+1, and

N (a, c) = �{x ∈ Fpm |Tr(x pk+1 + cβ−1x) = 0}. (18)

If a is a non-square element in F
∗
pm , then there exists β ∈ Fpm such that −a = β pk+1,

and
N (a, c) = �{x ∈ Fpm |Tr(x pk+1 − cβ−1x) = 0}. (19)

From (18) and (19), we know that for a fixed a ∈ F
∗
pm and c running over F

∗
pm , N (a, c)

has the same value distribution as that of Nk(1, b) for b running overF
∗
pm . Hence, from

(17) we obtain that Nk(1, b) has the value distribution given in (15) for b running over
F

∗
pm . Similarly, Nk(b, 1) has the value distribution given in (15) for b running over

F
∗
pm . By (16), the result follows. �

Now, we give the weight distribution of the linear code CD f defined in (13).

Theorem 1 Let p be an odd prime with p ≡ 3 (mod 4). Let m be an odd number
and � be an even number satisfying one of the conditions in (12). Then CD f in (13) is

a [pm−1 − 1,m, (p− 1)(pm−2 − p
m−3
2 )] code with the weight distribution in Table 8.
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Proof Weonly prove the case of � satisfying the first condition of (12), i.e., (pk+1)� ≡
pm+1
2 (mod pm − 1), and the proof of the second case is similar.
LetCD f be the linear code defined in (13), and its length n is determined inLemma7.

For b ∈ F
∗
pm , a codeword in CD f is

cb = (Tr(bd1),Tr(bd2), . . . ,Tr(bdn)),

where d1, d2, . . . , dn are the elements of D f . Its Hamming weight is as follows:

wt (cb) = pm−1 − 1 − �{x ∈ F
∗
pm |Tr(x�) = 0 and Tr(bx) = 0}

= pm−1 − 1

p2
∑

x∈Fpm

∑

y∈Fp

ω
yTr(x�)
p

∑

z∈Fp

ωzTr(bx)
p .

Since
∑

x∈Fpm

∑
y∈Fp

ω
yTr(x�)
p = pm and

∑
x∈Fpm

∑
z∈Fp

ω
zTr(bx)
p = 0, then

wt (cb) = (p − 1)pm−2 − 1

p2
∑

x∈Fpm

∑

y∈F∗
p

ω
yTr(x�)
p

∑

z∈F∗
p

ωzTr(bx)
p .

Set z = uy. It is clear that when (y, z) runs through F
∗
pm × F

∗
pm , (u, y) also runs

through F
∗
pm × F

∗
pm . It is easy to verify that Nk(b, 1) = Nk(ub, 1) for any u ∈ F

∗
p.

We have

wt (cb) = (p − 1)pm−2 − 1

p2
∑

y∈F∗
p

∑

u∈F∗
p

∑

x∈Fpm

ω
yTr(x�+ubx)
p

= 2(p − 1)pm−2 − 1

p2
∑

u∈F∗
p

∑

x∈Fpm

∑

y∈Fp

ω
yTr(x�+ubx)
p

= 2(p − 1)pm−2 − 1

p

∑

u∈F∗
p

�{x ∈ Fpm |Tr(x� + ubx) = 0}

= 2(p − 1)pm−2 − 1

p

∑

u∈F∗
p

�{x ∈ Fpm |Tr(ubx pk+1 + x) = 0}

= (p − 1)

p
(2pm−1 − Nk(b, 1))

= (p − 1)

p
(2pm−1 − N�(b)).

(20)

By Lemma 8 and (20), we get the weight distribution of CD f . From the fact that
wt (cb) > 0 for any b ∈ F

∗
pm , we deduce that the dimension of CD f is m. �


Remark 2 When k = 0, it is easy to see that � = 2 is a solution of the second
congruence equation in (12). So, in this case, the linear codes in Theorem 1 and those
in [8] are the same.
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One can verify that when p = m = 3, � = 10 is a solution of the first and the second
congruence equation in (12) for the case k = 1 and k = 2, respectively. Magma shows
that when p = m = 3, the linear code in [8] has a generator matrix

G1 =
⎛

⎝
1 0 0 1 2 0 0 2
0 1 0 2 0 2 0 1
0 0 1 1 0 0 2 2

⎞

⎠ .

Accordingly, when p = m = 3 and � = 10, the linear code in Theorem 1 has a
generator matrix

G2 =
⎛

⎝
1 0 0 1 2 0 0 2
0 1 0 1 0 2 0 2
0 0 1 1 0 0 2 2

⎞

⎠ .

From the connection between linear transformations and multiplication of monomial
matrices, we have that there is no monomial matrix M in F33 such that G2 = G1M .
This means that there exists � in (12) such that the linear codes in Theorem 1 and those
in [8] are not equivalent.

Let D̄ f be a defining set as in (5). The weight distribution of the punctured version
of CD f is as follows.

Proposition 3 Let p be an odd prime with p ≡ 3 (mod 4). Let m be an odd number
and � be an even number satisfying one of the conditions in (12). Then CD̄ f

is a

[ pm−1−1
p−1 ,m, pm−2 − p

m−3
2 ] code with the weight distribution in Table 5.

From the weight distribution of CD̄ f
above, we have the following corollary.

Corollary 2 Let CD̄ f
be the linear code defined above. If m = 3, then CD̄ f

is a
[p + 1, 3, p − 1] code. This code is optimal with respect to the Singleton bound and
the Griesmer bound.

Example 3 (1) Let p = 3 and m = 3. Let � = 4 or 10. Then the code CD̄ f
has

parameters [4, 3, 2] and the weight enumerator 1 + 12x2 + 8x3 + 6x4. This code is
optimal with respect to the Griesmer bound and the Singleton bound.

(2) Let p = 7 and m = 3. Let � = 8 or 278. Then the code CD̄ f
has parameters

[8, 3, 6] and the weight enumerator 1+ 126x6 + 48x7 + 168x8. This code is optimal
with respect to the Griesmer bound and the Singleton bound.

5 Concluding remarks

In this paper, we presented several classes of linear codeswith two or threeweights and
determined their weight distributions. From the punctured version of the constructed
linear codes, we obtained some optimal linear codes with respect to the Singleton
bound or the Griesmer bound.

Letwmin andwmax denote the minimum and maximum nonzero weights of a linear
code C. Ding and Ding in [8] showed that if the linear code C with wmin/wmax >
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(p − 1)/p, then the secret sharing scheme based on the dual code C⊥ has the nice
access structure. Using similar techniques as in [8], one can verify that when m ≥ 12
and r ≥ 6, the codes constructed in the paper satisfywmin/wmax > (p−1)/p. It then
follows that the dual codes C⊥

D f
and C⊥̄

D f
can be employed to obtain secret sharing

schemes with interesting access structures.
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