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Abstract This paper considers two classes of p-ary functions studied by Li et al.
(IEEE Trans Inf Theory 59(3):1818–1831, 2013). The first class of p-ary functions is
of the form

f (x) = Trn1

(
axl(q−1) + bx

(
l+ q+1

2

)
(q−1)

)
+ εx

q2−1
2 .

Another class of p-ary functions is of the form

f (x) =
{∑q−1

i=0 Trn1 (ax (ri+s)(q−1)) + εx
q2−1
2 , x �= 0,

f (0), x = 0.

We generalize Li et al.’s results, give necessary conditions for two classes of bent
functions, and present more explicit characterization of these regular bent functions
for different cases.
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1 Introduction

Introduced by Rothaus, Boolean bent functions as functions from F
n
2 or F2n to F2 have

important applications in cryptography [2], coding theory [3,6,8] and sequences [21].
As a class of Boolean functions with maximal Hamming distance to the set of all affine
functions, bent functions can be used to construct highly nonlinear cryptographic func-
tions and attract much attention. Many research papers focus on the characterization
and construction of monomial bent functions, binomial bent functions and quadratic
bent functions [1,4,5,7,9,16,19,20,22–24]. Boolean bent functions were generalized
to the notation of functions over an arbitrary finite field in [15]. It is elusive to com-
pletely classify bent functions. The characterization of bent functions over finite fields
of odd characteristic is more complicated than that of Boolean bent functions. Several
results can be found in [11,12].

Let p be an odd prime and m be an integer. Let n = 2m and q = pm . Let Trn1 (·)
be the trace function from Fq2 to Fp. Helleseth and Kholosha [10] studied monomial
functions of the form

fa,r (x) = Trn1 (axr(q−1)),

where a ∈ Fq2 and gcd(r, q + 1) = 1. They proved that fa,r (x) is bent if and only if
the Kloosterman sum Km(aq+1) on Fpm is zero.

Jia et al. [13] considered binomial functions of the form

fa,b,r (x) = Trn1 (axr(q−1)) + bx
q2−1
2 , a ∈ Fq2 , b ∈ Fp,

where gcd(r, q + 1) = 1. By Kloosterman sums, they presented the characterization
of bentness for fa,b,r . For p = 3 or q ≡ 3 mod 4, they proved that fa,b,r is bent
if and only if Km(a) = 1 − 1

cos( 2πbp )
. Zheng et al. [25] generalized Jia et al.’s result

to the case q ≡ 1 mod 4, i.e., fa,b,r is bent if and only if Km(a) = 1 − 1
cos( 2πbp )

.

Further, when q ≡ 7 mod 8, r is even and gcd( r2 , q + 1) = 1, Zheng et al. proved

that fa,b,r (x) = Trn1 (axr(q−1)) + bx
q2−1
2 (a ∈ Fq2 , b ∈ Fp) is not bent.

Li et al. [17] considered trinomial functions of the form

f (x) = Trn1

(
axl(q−1) + bx

(
l+ q+1

2

)
(q−1)

)
+ εx

q2−1
2 , (1)

where a, b ∈ Fq2 and ε ∈ Fp. When gcd(l, q + 1) = 1, they presented the relation
between the bentness of f (x) andKloosterman sums Km((a+b)q+1),Km((a−b)q+1)

for different a + b and a − b. Further, they considered another class of functions with
multiple terms of the form

f (x) =
{∑q−1

i=0 Trn1 (ax (ri+s)(q−1)) + εx
q2−1
2 , x �= 0,

f (0), x = 0,
(2)
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where a ∈ Fq2 ,ε ∈ Fp. When gcd(r, q + 1) = 1 and gcd(s − r, q + 1) = 1, they
used Kloosterman sums to characterize regular bent function f (x) for different −a.

Based on results of Li et al. [17], this paper considers bent functions defined in
(1) and (2), studies parameters of these bent functions, and presents more results of
the characterization of bent functions in (1) and (2) for more explicit parameters.
For bent functions defined in (1), Li et al. [17] gave the characterization for the case
gcd(l, q + 1) = 1. We have some necessary conditions for these bent functions:
gcd(l, q +1) = 1, or, gcd(l, q +1) = 2 and q ≡ 1 mod 4. When p ≥ 5, gcd(l, q +
1) = 1 and a − b, a + b are quadratic residues, p-ary functions defined in (1) are
not bent. Further, we present explicit characterization of bentness for these functions
defined in (1) for the case gcd(l, q + 1) = 1 and the case gcd(l, q + 1) = 2, q ≡ 1
mod 4. For bent functions defined in (2), Li et al. [17] gave the characterization for
the case gcd(r, q + 1) = 1. We study their bentness for cases gcd(r, q + 1) = 1 and
gcd(r, q + 1) = 2. When p ≥ 5 and ε = 0, f (x) is not bent. When ε �= 0, we give
necessary conditions for regular bent functions andpresent the characterizationof these
bent functions for the case gcd(s − r, q + 1) = 1 and the case gcd(s − r, q + 1) =
2, q ≡ 1 mod 4. Our work generalizes results of Li et al. [17] and Zheng et al.
[25].

This paper is organized as follows: Sect. 2 introduces some notations and results
on exponential sums. Section 3 considers two classes of regular bent functions, gives
necessary conditions for these regular bent functions, and characterizes these regular
bent functions for different cases. Section 4 makes a conclusion.

2 Preliminaries

2.1 Regular bent functions

Throughout this paper, let p be an odd prime,m, n be positive integers and n = 2m. Let
Fpn be a finite field with pn elements and F

∗
pn be the multiplicative group composed

of all nonzero elements in Fpn . Let k|n and Trnk be the trace function from Fpn to Fpk

T rnk (x) = x + x pk + · · · + x pn−k
.

Let q = pm . For any x ∈ F
∗
q2
, there exists a unique factorization x = y∗ξ i , where y ∈

F
∗
q , ξ is a primitive element of Fq2 and 0 ≤ i ≤ q. LetU = {ξ0, ξ (q−1), . . . , ξ (q−1)q},

U0 = U 2 = {u2 : u ∈ U } and U1 = U\U0. Sets of quadratic residues and quadratic
non-residues in F

∗
q2

are defined as C0 = {x2 : x ∈ F
∗
q2

}, C1 = {ξ x2 : x ∈ F
∗
q2

} respec-
tively. Then F

∗
q2

= C0
⋃ C1 and C0

⋂ C1 = ∅. Define C+
0 = {x ∈ C0 : Trm1 (x

pm+1
2 ) �=

0}.
A p-ary function is a map from Fpn to Fp. TheWalsh transform of a p-ary function

f (x) over Fpn is defined by
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W f (λ) =
∑
x∈Fpn

w f (x)−Trn1 (λx),

where w = e2π
√−1/p and λ ∈ Fpn .

A p-ary function f (x) is called a p-ary bent function if |W f (λ)|2 = pn for any
λ ∈ Fpn . A p-ary bent function f (x) is regular if there exists some p-ary function
f ∗(λ) satisfying W f (λ) = p

n
2 w f ∗(λ) for any λ ∈ Fpn . The function f ∗(λ) is called

the dual of f (x). The dual of a p-ary bent function is also bent.
Let f (x) be a p-ary function with Dillon exponents of the form

f (x) =
{∑q−1

i=0 Trn1 (ai xi(q−1)) + bx
q2−1
2 , x �= 0,

f (0), x = 0,
(3)

where n = 2m, q = pm , ai ∈ Fpn , and b ∈ Fp. The characterization of bentness for
f (x) is given in the following lemma [17, Theorem 1].

Lemma 1 Let f (x) be a p-ary function defined in (3). Then f (x) is bent if and only
if Λ f = w f (0), where

Λ f =
∑
u∈U

w
∑q−1

i=0 Trn1 (ai uq−1)+bu
q+1
2

.

Further, if f (x) is bent, then it is also regular bent.

2.2 Exponential sums

For a ∈ Fq , the Kloosterman sum Km(a) of a [14,18] is defined by

Km(a) =
∑
x∈Fq

w
Trm1

(
ax+ 1

x

)
,

where 1
0 = 0 for x = 0. Since Km(a) = ∑

x∈Fq w−Trm1 (ax+ 1
x ) = Km(a), then Km(a)

is a real number. Some notations are defined below.

I =
⎧⎨
⎩

(−1)
3m
2 p

m
2

2 , p ≡ 3 mod 4;
(−1)m p

m
2

2 , otherwise.

Q(a) = 2Trm1

(
a

pm+1
2

)
, a ∈ C0;

R(a) = 1 − Km(a pm+1)

2
, a ∈ Fq2 .

Obviously, if q ≡ 1 mod 4, then I is a real number. If q ≡ 3 mod 4, then I is a
pure imaginary number.
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The following result on exponential sums is useful [13, Lemma 7].

Proposition 1 Let a ∈ F
∗
q2
. Let Si (a) = ∑

u∈Ui
wTrn1 (au)(i = 0, 1). Then,

S0(a) =
∑
u∈U0

wTrn1 (au) =
{
R(a) + I (wQ(a) − w−Q(a)), a ∈ C+

0 ,

R(a), otherwise,

and

S1(a) =
∑
u∈U1

wTrn1 (au) =
{
R(a) − I (wQ(a) − w−Q(a)), a ∈ C+

0 ,

R(a), otherwise.

Remark If a ∈ C0\C+
0 , then we have Q(a) = 0. Hence, Proposition 1 still holds if

C+
0 is replaced by C0. From Proposition 1, we have Si (a) = ∑

u∈Ui
wTrn1 (au) is an

imaginary number if and only if q ≡ 1 mod 4 and a ∈ C+
0 .

Some results on Si (a) are given below.

Proposition 2 Let q ≡ 1 mod 4, a ∈ C0, and Ni
j (a) = #{v ∈ Ui : Trm1

(
a

q+1
2 (v +

1
v
)
)

= j}(i = 0, 1). Then,

N i
j (a) ≡

⎧⎨
⎩
0 mod 2, j �= Trm1

(
2(−1)i a

q+1
2

)
,

1 mod 2, j = Trm1

(
2(−1)i a

q+1
2

)
.

Further, If a
q2−1
4 = 1, then Si (a) = ∑p−1

i=0 Ni
j (a)w j . If a

q2−1
4 = −1, then Si (a) =∑p−1

i=0 Ni+1
j (a)w j .

Proof Note that a = a
q+1
2 · a− q−1

2 . Since a ∈ C0, then a
q+1
2 ∈ Fq and a− q−1

2 ∈ U .
We have

Si (a) =
∑
v∈Ui

wTrn1 (av) =
∑
v∈Ui

w
Trn1

(
a
q+1
2 ·a− q−1

2 v

)
.

If a
q2−1
4 = 1, then a− q−1

2 ∈ U0. Hence,

Si (a) =
∑
v∈Ui

w
Trn1

(
a
q+1
2 v

)
=

∑
v∈Ui

w
Trm1

(
a
q+1
2

(
v+ 1

v

))
=

p−1∑
i=0

Ni
j (a)w j ,

where Ni
j (a) = #{v ∈ Ui : Trm1 (a

q+1
2 (v + 1

v
)) = j}. If v �= ±1, then both v and

1
v
lie in {v ∈ Ui : Trm1 (a

q+1
2 (v + 1

v
)) = j} and v �= 1

v
. Since q ≡ 1 mod 4, then
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−1 ∈ U1, (−1)i ∈ Ui , and (−1)i+1 /∈ Ui . Hence, we have Ni
Trm1 (2(−1)i a(q+1)/2)

(a) is

odd and Ni
j (a) is even for j �= Trm1 (2(−1)i a

q+1
2 ).

If a
q2−1
4 = −1, then a− q−1

2 ∈ U1 and

Si (a) =
∑

v∈Ui+1

w
Trn1

(
a
q+1
2 v

)
=

∑
v∈Ui+1

w
Trm1

(
a
q+1
2

(
v+ 1

v

))
=

p−1∑
i=0

Ni+1
j (a)w j ,

where Ni+1
j (a) = #{v ∈ Ui+1 : Trm1 (a

q+1
2 (v + 1

v
)) = j}.

Hence, this proposition follows. 
�
Remark From Proposition 2, for q ≡ 1 mod 4 and any a ∈ C0, there exist non-
negative integers c j satisfying Si (a) = c0 + c1w + · · · + cp−1w

p−1 and #{i : 2 �

ci , i = 0, 1, . . . , p − 1} = 1.

From a similar proof as that of Proposition 2, we have the following proposition.

Proposition 3 Let q ≡ 3 mod 4, a ∈ C0, and Ni
j (a) = #{v ∈ Ui : Trm1 (a

q+1
2 (v +

1
v
)) = j}. Then, Si (a) = ∑p−1

i=0 Ni
j (a)w j and N 1

j (a) ≡ 0 mod 2. Further, if a ∈ C+
0 ,

then

N 0
j (a) ≡

⎧⎨
⎩
0 mod 2, j �= ±Trm1

(
2a

q+1
2

)
,

1 mod 2, j = ±Trm1

(
2a

q+1
2

)
.

If a ∈ C0\C+
0 , then N 0

j (a) ≡ 0 mod 2.

Further, we can have the following lemma.

Lemma 2 Let a ∈ F
∗
q2

and N j = #{u ∈ U : Trn1 (au) = j}, then ∑
u∈U wTrn1 (au) =∑p−1

i=0 Niw
i . Further, If a /∈ C+

0 , then all Ni are even. If a ∈ C+
0 , then

Ni ≡
⎧⎨
⎩
0 mod 2, i �= ±Trn1

(
a

q+1
2

)
,

1 mod 2, i = ±Trn1

(
a

q+1
2

)
.

The following two lemmas are useful to obtain our results.

Lemma 3 Let p be an odd prime, and c′
0, . . . , c

′
p−1 be integers such that p > #{i ∈

{0, . . . , p − 1} : c′
i �= 0} and

∑p−1
i=0 c′

i ∈ {1,−1}. Then, for any integers ci (i =
0, . . . , p − 1) and positive integer d > 1,

d

⎛
⎝p−1∑

i=0

ciw
i

⎞
⎠ �=

p−1∑
i=0

c′
iw

i .
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Proof Suppose that d(
∑p−1

i=0 ciwi ) = ∑p−1
i=0 c′

iw
i . Then,

∑p−1
i=0 (dci−c′

i )w
i = 0. The

minimal polynomial of w over the rational field is w p−1 + w p−2 + · · · + w + 1 = 0.
Thus, we have

dc0 − c′
0 = · · · = dcp−1 − c′

p−1.

Since p > #{i ∈ {0, . . . , p − 1} : c′
i �= 0}, there exists i0 ∈ {0, . . . , p − 1} such that

c′
i0

= 0. Thus, d|c′
i for any i ∈ {0, . . . , p − 1}. As a result, d|∑p−1

i=0 c′
i = ±1, which

conflicts with d > 1. It completes the proof. 
�
Lemma 4 Let p be an odd prime, and c0, c′

0, . . . , cp−1, c′
p−1 be integers such that∑p−1

i=0 ci ≡ 0 (mod 2) and
∑p−1

i=0 c′
i ≡ 1 (mod 2). If p > #{i ∈ {0, . . . , p − 1} :

ci ≡ 1 (mod 2)} + #{i ∈ {0, . . . , p − 1} : c′
i ≡ 1 (mod 2)}, then ∑p−1

i=0 ciwi �=∑p−1
i=0 c′

iw
i .

Proof Suppose that
∑p−1

i=0 ciwi = ∑p−1
i=0 c′

iw
i . Then,

∑p−1
i=0 (ci − c′

i )w
i = 0. The

minimal polynomial of w over the rational field is w p−1 + w p−2 + · · · + w + 1 = 0.
Thus, we have

c0 − c′
0 = · · · = cp−1 − c′

p−1.

Since p > #{i ∈ {0, . . . , p − 1} : ci ≡ 1 (mod 2)} + #{i ∈ {0, . . . , p − 1} : c′
i ≡ 1

(mod 2)}, there exists i0 ∈ {0, . . . , p − 1} such that ci0 ≡ c′
i0

≡ 0 (mod 2). Thus,

ci − c′
i ≡ 0 (mod 2) for any i ∈ {0, . . . , p−1}. As a result, ∑p−1

i=0 ci −∑p−1
i=0 c′

i ≡ 0

(mod 2), which conflicts with
∑p−1

i=0 ci ≡ 0 (mod 2) and
∑p−1

i=0 c′
i ≡ 1 (mod 2). It

completes the proof. 
�
Proposition 4 Let p ≥ 5. Then for any ε ∈ Fp, and δ, θ ∈ C0,wεS0(δ)+w−εS1(θ) �=
1.

Proof We first consider the case q ≡ 1 mod 4. From Proposition 2, there exist non-
negative integers c j (δ), c j (θ) ( j = 0, 1, . . . , p − 1) such that

wεS0(δ) =
p−1∑
j=0

c j (δ)w
j , w−εS1(θ) =

p−1∑
j=0

c j (θ)w j .

Further, the number of odd c j (δ)( j = 0, 1, . . . , p − 1) is one, and the number of

odd c j (θ)( j = 0, 1, . . . , p − 1) is also one. Then,
∑p−1

j=0 (c j (δ) + c j (θ)) is even and
#{ j ∈ {0, . . . , p − 1} : c j (δ) + c j (θ) ≡ 1 (mod 2)} ≤ 2. By Lemma 4, wεS0(δ) +
w−εS1(θ) �= 1.

If q ≡ 3 mod 4, from Proposition 3, there exist non-negative integers c j (δ), c j (θ)

( j = 0, 1, . . . , p − 1) such that

wεS0(δ) =
p−1∑
j=0

c j (δ)w
j , w−εS1(θ) =

p−1∑
j=0

c j (θ)w j .
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Further, the number of odd c j (δ)( j = 0, 1, . . . , p − 1) is 0 or 2, and c j (θ)( j =
0, 1, . . . , p − 1) are even. Thus, we have

∑p−1
j=0 (c j (δ) + c j (θ)) = 0 mod 2 and

#{ j ∈ {0, . . . , p − 1} : c j (δ) + c j (θ) ≡ 1 (mod 2)} ≤ 2. By Lemma 4, wεS0(δ) +
w−εS1(θ) �= 1.

Hence, this proposition follows. 
�
Remark Further, we have wεS0(δ) + w−εS0(θ) �= 1. Proposition 4 can be used to
prove the nonexistence of some class of bent functions.

3 Characterization of two classes of regular bent functions

In this section, we will consider two classes of p-ary functions in [17], generalize Li
et al.’s work, and make more explicit characterization for bentness of these functions.

3.1 The first class of regular bent functions

The first class of p-ary functions is of the form

f (x) = Trn1

(
axl(q−1) + bx

(
l+ q+1

2

)
(q−1)

)
+ εx

q2−1
2 , (4)

where n = 2m, q = pm , a, b ∈ Fq2 , and ε ∈ Fp.
The case gcd(l, q + 1) = 1 is studied in [17]. We will consider more general cases

for these functions.

Theorem 1 Let f (x) be defined in (4). If f (x) is bent, then gcd(l, q + 1) = 1, or,
gcd(l, q + 1) = 2 and q ≡ 1 mod 4.

Proof We first prove that if f (x) is bent, then gcd(l, q+1
2 ) = 1. Suppose that

gcd(l, q+1
2 ) = d > 1. Then

Λ f =
∑
u∈U

w
Trn1

((
a+bu

q+1
2

)
ul

)
+εu

q+1
2

= wε
∑
v∈U0

wTrn1 ((a+b)vl ) + w−ε
∑
v∈U1

wTrn1 ((a−b)vl )

= d

⎛
⎜⎝wε

∑
v∈Ud

0

wTrn1 ((a+b)v) + w−ε
∑
v∈Ud

1

wTrn1 ((a−b)v)

⎞
⎟⎠,

where Ud
i = {vd : v ∈ Ui }. From Lemma 1,

Λ f = d

⎛
⎜⎝wε

∑
v∈Ud

0

wTrn1 ((a+b)v) + w−ε
∑
v∈Ud

1

wTrn1 ((a−b)v)

⎞
⎟⎠ = w f (0).
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From Lemma 3, d = gcd(l, q+1
2 ) = 1, i.e., gcd(l, q + 1) = 1 or 2. Further, from

gcd(l, q + 1) = 2, q ≡ 1 mod 4. Thus, this theorem follows. 
�
When b = 0 and ε �= 0, Zheng et al. proved in Theorem 3 in [25] that when q ≡ 3

mod 8 and gcd(l, q + 1) = 2, f (x) is not bent. They left the nonexistence of bent
function f (x) as an open problem when q ≡ 7 mod 8. From Theorem 1, f (x) in the
case q ≡ 7 mod 8 is not bent. Li et al. [17] studied the characterization of regular
bentness of f (x) for the case gcd(l, q + 1) = 1.

Theorem 2 Let p ≥ 5 and f (x) be a p-ary function defined in (4). Let gcd(l, q+1) =
1, δ = a + b, θ = a − b, and δ, θ ∈ C0. Then f (x) is not bent.

Proof From [17], f (x) is bent if and only if wεS0(δ) + w−εS1(θ) = 1. From Propo-
sition 4, this theorem follows. 
�

From Theorem 2, if δ, θ ∈ C0, then f (x) is not bent. Hence, we have the following
corollary, which is a straightforward result of Theorem 9 of Li et al. [17].
Corollary 1 Let p ≥ 5, and f (x) be a p-ary function defined in (4). Then f (x) is
regular bent if and only if

wεKm (δq+1) + w−εKm (θq+1) =

⎧⎪⎪⎨
⎪⎪⎩
4I

√−1wε sin 2πQ(δ)
p + 2 cos 2πε

p − 2, δ ∈ C0, θ /∈ C0,
−4I

√−1w−ε sin 2πQ(θ)
p + 2 cos 2πε

p − 2, δ /∈ C0, θ ∈ C0,
2 cos 2πε

p − 2, δ /∈ C0, θ /∈ C0.

We will study the characterization of regular bent functions for the case gcd(l, q +
1) = 2 and q ≡ 1 mod 4 in Theorem 1.
Theorem 3 Let p ≥ 5, q ≡ 1 mod 4, and f (x) be a p-ary function defined in (4).
Let gcd(l, q + 1) = 2, δ = a + b, and θ = a − b. Then, f (x) is regular bent if and
only if

wεKm (δq+1) + w−εKm (θq+1) =

⎧⎪⎪⎨
⎪⎪⎩
4I

√−1wε sin 2πQ(δ)
p + 2 cos 2πε

p − 2, δ ∈ C0, θ /∈ C0,
4I

√−1w−ε sin 2πQ(θ)
p + 2 cos 2πε

p − 2, δ /∈ C0, θ ∈ C0,
2 cos 2πε

p − 2, δ /∈ C0, θ /∈ C0.

Proof We have

Λ f = wε
∑
v∈U0

wTrn1 ((a+b)vl ) + w−ε
∑
v∈U1

wTrn1 ((a−b)vl ).

Since gcd(l, q + 1) = 2 and q ≡ 1 mod 4, then gcd(l, q+1
2 ) = 1 and l is even.

Further, v 
−→ vl is a permutation of U0 and also a bijection from U1 to U0. Hence,

Λ f = wε
∑
v∈U0

wTrn1 ((a+b)v) + w−ε
∑
v∈U0

wTrn1 ((a−b)v).

From Lemma 1, f (x) is regular bent if and only if

wεS0(δ) + w−εS0(θ) = w f (0) = 1.

If δ, θ ∈ C0, then from the remark after Proposition 4, f (x) is not bent. From Propo-
sition 1, this theorem can be obtained. 
�
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3.2 The second class of regular bent functions

The second class of p-ary functions is of the form

f (x) =
{∑q−1

i=0 Trn1 (ax (ri+s)(q−1)) + εx
q2−1
2 , x �= 0,

f (0), x = 0,
(5)

where n = 2m, q = pm , a ∈ Fq2 , and ε ∈ Fp.
For simplicity, we first consider f (x) for the case ε = 0. When gcd(r, q + 1) = 1

or 2, the following theorem gives the nonexistence of bent f (x).

Theorem 4 Let p ≥ 7 and f (x) be a p-ary function defined in (5). Let ε = 0 and
gcd(r, q + 1) = 1 or 2. Then f (x) is not bent.

Proof Suppose that f (x) is bent. We first prove that gcd(s − r, q + 1) = 1.
(1) gcd(r, q + 1) = 1: If u ∈ U , then

q−1∑
i=0

uri+s =
{

−us−r , u �= 1,

0, u = 1.

We have

Λ f =
∑
u∈U

w
∑q−1

i=0 Trn1 (auri+s )

= 1 +
∑

u∈U\{1}
wTrn1 (−aus−r )

= 1 − w−Trn1 (a) +
∑
u∈U

wTrn1 (−aus−r )

= 1 − w−Trn1 (a) + d
∑
u∈Ud

wTrn1 (−au),

where d = gcd(s − r, q + 1) and Ud = {ud : u ∈ U }. Since f (x) is bent, from
Lemma 1, we have

d
∑
u∈Ud

wTrn1 (−au) = −1 + wTrn1 (−a) + w f (0).

There exist integers ci , c′
i (i = 0, 1, . . . , p − 1) such that

d
∑
u∈Ud

wTrn1 (−au) =
p−1∑
i=0

ciw
i , − 1 + wTrn1 (a) + w f (0) =

p−1∑
i=0

c′
iw

i .

By Lemma 3, we have d = 1 = gcd(s − r, q + 1) = 1.
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(2) gcd(r, q+1) = 2: Froma similar discussion,we also have gcd(s−r, q+1) = 1.
From Case (1) and Case (2), we have gcd(s − r, q + 1) = d = 1. Note that

Λ f =
∑
u∈U

w
∑q−1

i=0 Trn1 (auri+s )

= 2 +
∑

u∈U\{±1}
wTrn1 (−aus−r )

= 2 − w−Trn1 (a) − w−Trn1 (a(−1)s−r ) +
∑
u∈U

wTrn1 (−aus−r )

= 2 − w−Trn1 (a) − w−Trn1 (a(−1)s−r ) + d
∑
u∈Ud

wTrn1 (−au).

Note that
∑

u∈U wTrn1 (−a(−u)) = ∑
u∈U wTrn1 (−au) and

∑
u∈U wTrn1 (−au) is a real

number. From Lemma 1, we have

∑
u∈U

wTrn1 (au) = −1 + wTrn1 (a) + w−Trn1 (a).

From Lemma 2, there exist integers ci (i = 0, 1, . . . , p − 1) such that

∑
u∈U

wTrn1 (au) =
p−1∑
i=0

ciw
i ,

where
∑p−1

i=0 ci ≡ 0 mod 2 and #{i ∈ {0, . . . , p − 1} : ci ≡ 1 (mod 2)} ≤ 2. By
Lemma 4,

∑
u∈U wTrn1 (au) �= −1+wTrn1 (a) +w−Trn1 (a). Hence, this theorem follows.


�
In Theorem 10, Li et al. [17] gave the necessary and sufficient conditions of bent f (x)
for the case ε = 0 and gcd(r, q+1) = 1. Theorem 4 demonstrates that these functions
are not bent.

We will consider the case ε �= 0 and study the bentness of f (x). The following
proposition gives necessary conditions of bent function f (x) in the case gcd(r, q +
1) = 1 or 2.

Proposition 5 Let p ≥ 7 and f (x) be a p-ary bent function defined in (5). Let ε �= 0
and gcd(r, q + 1) = 1 or 2. Then, gcd(s − r, q + 1) = 1, or, gcd(s − r, q + 1) = 2
and q ≡ 1 mod 4.

Proof If u ∈ U , then

q−1∑
i=0

uri+s =
{

−us−r , ad �= 1,

0, ad = 1,
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where d = gcd(r, q + 1). We have

Λ f =
∑
u∈U

w
∑q−1

i=0 Trn1 (auri+s )+εu
q+1
2

=
∑

u∈{u∈U :ud=1}
wεu

q+1
2 +

∑
u∈U\{u:ud=1}

w
Trn1 (−aus−r )+εu

q+1
2

=
∑

u∈{u∈U :ud=1}
wεu

q+1
2 −

∑
u∈{u∈U :ud=1}

w
Trn1 (−aus−r )+εu

q+1
2 +

∑
u∈U

w
Trn1 (−aus−r )+εu

q+1
2

=
∑

u∈{u∈U :ud=1}
wεu

q+1
2 −

∑
u∈{u∈U :ud=1}

w
Trn1 (−aus−r )+εu

q+1
2 + e

∑
u∈Ue

w
Trn1

(
−au

s−r
e

)
+εu

q+1
2e

,

where e = gcd(s − r, q+1
2 ). From Lemma 1, f (x) is bent if and only if

e
∑
u∈Ue

w
Trn1

(
−au

s−r
e

)
+εu

q+1
2e = −

∑
u∈{u∈U :ud=1}

wεu
q+1
2 +

∑
u∈{u∈U :ud=1}

wTrn1 (−aus−r )+εu
q+1
2 + w f (0).

From #{u ∈ U : ud = 1} ≤ d ≤ 2 and Lemma 3, e = 1, i.e., gcd(s − r, q+1
2 ) = 1.

Hence, gcd(s − r, q + 1) = 1 or gcd(s − r, q + 1) = 2, q ≡ 1 mod 4. 
�
We will present the characterization of bentness of f (x) for different values of

gcd(r, q + 1) and gcd(s − r, q + 1).

Theorem 5 Let f (x) be a p-ary function defined in (5) and ε �= 0.
(1) If p ≥ 7, gcd(r, q+1) = 1 and gcd(r−s, q+1) = 1, then f (x) is regular bent if

and only if−a /∈ C0 and Km(aq+1) = 1− ρ

cos 2πε
p
, whereρ = w f (0)−wε+w−Trn1 (a)+ε .

(2) If p ≥ 7, q ≡ 1 mod 4, gcd(r, q + 1) = 1 and gcd(s − r, q + 1) = 2,
then f (x) is regular bent if and only if a /∈ C0 and Km(aq+1) = 1 − ρ

cos 2πε
p
, where

ρ = −wε + wTrn1 (−a)+ε + w f (0).
(3) If p ≥ 11, gcd(r, q + 1) = 2, and gcd(s − r, q + 1) = 1, then f (x) is

regular bent if and only if −a /∈ C0 and Km(aq+1) = 1 − ρ

cos 2πε
p
, where ρ =

−wε − wε(−1)
q+1
2 + wTrn1 (−a)+ε + wTrn1 (a)+ε(−1)

q+1
2 + w f (0).

(4) If p ≥ 11, q ≡ 1 mod 4, gcd(r, q + 1) = 2, and gcd(s − r, q + 1) = 2,
then f (x) is regular bent if and only if a /∈ C0 and Km(aq+1) = 1 − ρ

cos 2πε
p
, where

ρ = −wε − w−ε + wTrn1 (−a)+ε + wTrn1 (−a)−ε + w f (0).

Proof (1) From Theorem 11 in [17], f (x) is regular bent if and only if

wεS0(−a) + w−εS1(−a) = w f (0) − wε + w−Trn1 (a)+ε .

Suppose −a ∈ C0. From Propositions 2 and 3, there exist integers ci (i =
0, 1, . . . , p−1) such thatwεS0(−a)+w−εS1(−a) = ∑p−1

i=0 ciwi , where the number
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of odd ci is 0 or 2. By Lemma 4,

wεS0(−a) + w−εS1(−a) �= w f (0) − wε + w−Trn1 (a)+ε,

i.e., f (x) is not bent. From Theorem 11 in [17], this result can be obtained.
(2) From Proposition 5, f (x) is bent if and only if

∑
u∈U

wTrn1 (−aus−r )+εu
q+1
2 = −wε + wTrn1 (−a)+ε + w f (0).

Since q ≡ 1 mod 4 and gcd(s − r, q + 1) = 2, then u 
→ us−r is a permutation of
U0 and also a bijection from U1 to U0. We have

∑
u∈U

wTrn1 (−aus−r )+εu
q+1
2 = wε

∑
u∈U0

wTrn1 (−av) + w−ε
∑
u∈U0

wTrn1 (−av)

= (wε + wε)
∑
u∈U0

wTrn1 (−av)

= (wε + wε)
∑
u∈U1

wTrn1 (av) (−1 ∈ U1).

Hence, f (x) is regular bent if and only if

(wε + w−ε)
∑
u∈U1

wTrn1 (av) = −wε + wTrn1 (−a)+ε + w f (0).

From a similar discussion as (1), we have a /∈ C0. When a /∈ C0, from Proposition 1,

∑
u∈U1

wTrn1 (av) = 1 − Km(aq+1)

2
.

Hence, this result follows.
(3) Note that f (x) is bent if and only if

∑
u∈U

wTrn1 (−aus−r )+εu
q+1
2 = −wε − wε(−1)

q+1
2 + wTrn1 (−a)+ε

+ wTrn1 (a)+ε(−1)
q+1
2 + w f (0).

Since gcd(s − r, q + 1) = 1, then u 
→ us−r is a permutation of U0 and also a
permutation of U1. We have

∑
u∈U

wTrn1 (−aus−r )+εu
q+1
2 =wε

∑
u∈U0

wTrn1 (−av) + w−ε
∑
u∈U1

wTrn1 (−av).
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Hence, f (x) is regular bent if and only if

wε
∑
u∈U0

wTrn1 (−av) + w−ε
∑
u∈U1

wTrn1 (−av) = −wε − wε(−1)
q+1
2

+ wTrn1 (−a)+ε + wTrn1 (a)+ε(−1)
q+1
2 + w f (0).

Froma similar discussion as (1),wehave−a /∈ C0.When−a /∈ C0, fromProposition 1,

∑
u∈U0

wTrn1 (−av) =
∑
u∈U1

wTrn1 (−av) = 1 − Km(aq+1)

2
.

Hence, this result follows.
(4) Note that f (x) is bent if and only if

∑
u∈U

wTrn1 (−aus−r )+εu
q+1
2 = −wε − w−ε + wTrn1 (−a)+ε + wTrn1 (−a)−ε + w f (0).

Since q ≡ 1 mod 4 and gcd(s − r, q + 1) = 2, then u 
→ us−r is a permutation of
U0 and also a bijection from U1 to U0. We have

∑
u∈U

wTrn1 (−aus−r )+εu
q+1
2 = wε

∑
u∈U0

wTrn1 (−av) + w−ε
∑
u∈U0

wTrn1 (−av)

= (wε + w−ε)
∑
u∈U1

wTrn1 (av) (−1 ∈ U1).

Hence, f (x) is regular bent if and only if

(wε + w−ε)
∑
u∈U1

wTrn1 (av) = −wε − w−ε + wTrn1 (−a)+ε + wTrn1 (−a)−ε + w f (0).

From a similar discussion as (1), we have a /∈ C0. When a /∈ C0, from Proposition 1,

∑
u∈U1

wTrn1 (av) = 1 − Km(aq+1)

2
.

Hence, this result follows. 
�

Remark Theorem 5 is a generalization of Theorem 11 in [17]. Note that there is a
minor error in Theorem 11 in [17], where ρ = w f (0) − wε + w−Trn1 (a) should be
ρ = w f (0) − wε + w−Trn1 (a)+ε .
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4 Conclusion

This paper studies two classes of p-ary regular bent functions introduced by Li et al.
[17]. The first class of p-ary functions is defined by

f (x) = Trn1

(
axl(q−1) + bx

(
l+ q+1

2

)
(q−1)

)
+ εx

q2−1
2 ,

where a, b ∈ Fq2 . We prove that when gcd(l, q +1) = 1 and both a+b and a−b are
quadratic residues, f (x) is not bent. Further, we present the characterization of these
regular bent functions for the case gcd(l, q + 1) = 1 and the case gcd(l, q + 1) = 2
and q ≡ 1 mod 4. The second class of p-ary functions is defined by

f (x) =
{∑q−1

i=0 Trn1
(
ax (ri+s)(q−1)

) + εx
q2−1
2 , x �= 0,

f (0), x = 0,

where a ∈ Fq2 and ε ∈ Fp. When p ≥ 7 and ε = 0, f (x) is not bent. Further,
we present the concrete characterization for these functions for different values of
gcd(r, q + 1) and gcd(s − r, q + 1). Our work generalizes results in [17].
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