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Abstract Firstly, we give a formula on the generalized Hamming weights of linear
codes constructed generically by defining sets. Secondly, by choosing properly the
defining set we obtain a class of cyclotomic linear codes and then present two alterna-
tive formulas for calculating their generalizedHammingweights. Lastly, we determine
their weight distributions and generalized Hamming weights partially. Especially, we
solve the generalized Hamming weights completely in one case.
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1 Introduction

Let q = pe for a prime p. Denote by FQ = Fqm the finite field with Q elements and
F

∗
qm the multiplicative group of Fqm .
IfC is a k-dimensional Fq -vector subspace of Fn

q , then it is called an [n, k, d] linear
code with length n and minimum Hamming distance d over Fq . Here the Hamming
distance d(x, y) between two codewords x, y ∈ C is defined as the numbers of
places in which x is different from y. And d = min{d(x, 0)|x ∈ C, x �= 0} since
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C is linear. Denote by Ai the number of codewords with Hamming weight i in C. If
|{i : Ai �= 0, 1 ≤ i ≤ n}| = t, then C is called a t-weight code. The readers are
referred to [12] for more details and general theory of linear codes.

A generic construction of linear code as below was proposed by Ding et al. [5,6].
Let D = {d1, d2, . . . , dn} be a subset of F∗

Q . Define a linear code CD of length n over
Fq as follows:

CD = {(TrQ/q(xd1),TrQ/q(xd2), . . . ,TrQ/q(xdn)
) : x ∈ FQ}, (1)

where TrQ/q is the standard trace map from FQ to Fq and D is called the defining set.
The method is used in a lot of references to get linear codes with a few weights [9,17,
23,24] by choosing properly defining sets.

For an [n, k, d] linear code C, we could extend Hamming weight to obtain the
concept of the generalized Hamming weight(GHW) dr (C)(0 < r ≤ k) (see [15,20]).
It is defined as follows. Denote by [C, r ]q the set of the r -dimensional Fq -vector
subspaces of C. For V ∈ [C, r ]q , let Supp(V ) be the set of positions i where there
exists a codeword x = (x1, x2, . . . , xn) ∈ V with xi �= 0. Then the r th generalized
Hamming weight(GHW) dr (C) of the linear code C is defined by

dr (C) = min{|Supp(V )| : V ∈ [C, r ]q},

and {di (C) : 1 ≤ i ≤ k} is defined to be the weight hierarchy of C. In particular, the
GHW d1(C) is just the usual minimum distance d. Since the classic results of Wei in
the paper [20] in 1991, many people researched into the generalized Hamming weight.
A survey on known results on this topic up to 1995 was done in [19]. Afterwards there
have been a number of studies on the generalized Hamming weight of some particular
families of codes [1–3,7,11,13,14,21,22]. It is worth mentioning that the recent work
in [22] gave a very instructive approach to calculating the GHWs of irreducible cyclic
codes. Generally, it is not easy to determine the weight hierarchy.

The rest of this paper is organized as follows: in Sect. 2, we review basic concepts
and results on Gauss sum and exponential sums which are needed in this paper; in
Sect. 3, we follow the work of Ding et al. [8,10] to construct a class of cyclotomic
linear codes and give general formulas on dr (C). Meanwhile, we determine their
weight distribution under certain conditions; in Sect. 4, we give the conclusion of this
paper.

2 Preliminaries

We assume that h is a positive divisor of Q−1 and 1 < h <
√
Q+1.And θ is a fixed

primitive element of FQ = Fqm . We start with the additive character. Let b ∈ FQ , the
mapping

χb(c) = ζ
TrQ/p(bc)
p for all c ∈ FQ,
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defines an additive character of FQ, where ζp = e
2π

√−1
p . Particularly, the character

χ1 is called the canonical additive character of FQ . The multiplicative characters of
FQ are defined by

ψ j (θ
k) = e2π

√−1 jk/(Q−1) for k = 0, 1, . . . , Q − 2, 0 ≤ j ≤ Q − 2.

For each additiveχ andmultiplicative characterψ,wedefine theGauss sumGQ(ψ, χ)

over FQ by

GQ(ψ, χ) =
∑

x∈F∗
Q

ψ(x)χ(x).

The reader can refer to [16] for more information about the explicit values of Gauss
sums.

For each α ∈ FQ, an exponential sum S(α) is defined as follows.

S(α) =
∑

x∈FQ

χ1(αx
h).

For an integer i, define

Ci =
{
θ i (θh) j : 0 ≤ j <

Q − 1

h

}
, ηi =

∑

x∈Ci

χ1(x).

It is easy to see Cu = Cv if and only if u ≡ v (mod h). These sets Ci and numbers
ηi are called the cyclotomic classes and Gaussian periods (see [4]) of order h in F∗

Q,

respectively. By definition, it is not hard to get S(θ i ) = hηi + 1.
The following lemma is about the explicit values of the exponential sum S(α). It

will be used later.

Lemma 1 ([18]) Assume m = 2lk, h|(qk + 1). Then for any α ∈ F
∗
Q,

S(α) =
{

(−1)l
√
Q, if α /∈ Ch0 ,

(−1)l−1(h − 1)
√
Q, if α ∈ Ch0 ,

where

h0 =
{

h
2 , if p > 2, l odd, and qk+1

h odd ,

0, otherwise .

Here we present three bounds on GHWs of linear codes. The reader may refer to the
literature [19] for them.

Lemma 2 Let C be a linear code over Fq with parameters [n,m]. For 1 ≤ r ≤ m,
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1. (Singleton type bound) r ≤ dr (C) ≤ n − m + r. And C is called an r-MDS code
if dr (C) = n − m + r.

2. (Griesmer-like bound)

dr (C) ≥
r−1∑

i=0

⌈
d1(C)

qi

⌉
.

3. (Plotkin-like bound)

dr (C) ≤
⌊
n(qr − 1)qm−r

qm − 1

⌋
.

3 Main results and proofs

First of all, we give a general formula for computing the GHWs of the linear code
defined by the generic method in (1) with the defining set D.

Theorem 1 For each r(1 ≤ r ≤ m), if the dimension of CD is m, then dr (CD) =
n − max{|D⋂

H | : H ∈ [FQ,m − r ]q}.
Proof The proof is similar to that of Theorem 6 in [22]. But for the convenience of
the reader, we provide the proof. Let φ be a mapping from FQ to Fn

q defined by

φ(x) = (TrQ/q(xd1),TrQ/q(xd2), . . . ,TrQ/q(xdn))

for each x ∈ FQ . Obviously, φ is an Fq -linear mapping and the image of φ is CD.

And φ is injective since the dimension of CD is m. For an r -dimension subspace
Ur ∈ [CD, r ]q , denote by Hr the pre-imageφ−1(Ur ) inFQ .Also Hr is an r -dimension
subspace of FQ . By definition, dr (CD) = n − max{N (Ur ) : Ur ∈ [CD, r ]q}, where

N (Ur ) = 
{i : 1 ≤ i ≤ n, ci = 0 for each c = (c1, c2, . . . , cn) ∈ Ur }
= 
{i : 1 ≤ i ≤ n,TrQ/q(βdi ) = 0 for each β ∈ Hr }.

Let {β1, β2, . . . , βr } be an Fq -basis of Hr . Then

N (Ur ) = 1

qr

n∑

i=1

∑

x1∈Fq
ζ
Trq/p(TrQ/q (β1di )x1)
p . . .

∑

xr∈Fq
ζ
Trq/p(TrQ/q (βr di )xr )
p

= 1

qr

n∑

i=1

∑

x1,...,xr∈Fq
ζ
TrQ/p(di (β1x1+···+βr xr ))
p

= 1

qr

n∑

i=1

∑

β∈Hr

ζ
TrQ/p(βdi )
p .
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Let H⊥ = {v ∈ FQ : TrQ/q(uv) = 0 for any u ∈ H}. It is called the dual of H.

We know that dimFq (H) + dimFq (H
⊥) = m.

For y ∈ FQ,

∑

β∈Hr

ζ
TrQ/p(βy)
p =

{ |Hr |, if y ∈ H⊥
r ,

0, otherwise .

By the above equation, we have

N (Ur ) = 1

qr
∑

y∈D ⋂
H⊥
r

|Hr | = |D
⋂

H⊥
r |.

So the desired result follows from the fact that there is a bijection between [FQ, r ]q
and [FQ,m − r ]q . We complete the proof.

From now on, we suppose h(q − 1) is also a divisor of Q − 1. In [10], C. Ding
and H. Niederreiter presented two classes of cyclotomic linear codes of order 3 and
determined their weight distributions. Inspired by their work, we construct linear codes
by choosing the defining set to be

D = {θ t1d1, . . . , θ t1dn0 , θ t2d1, . . . , θ t2dn0 , . . . , θ ts d1, . . . , θ ts dn0},

where di = θh(i−1), n0 = qm−1
h(q−1) , 0 ≤ t1 < t2 < · · · < ts ≤ h − 1, 1 ≤ s ≤ h. The

code CD is closely related to irreducible cyclic codes. Note that {d1, d2, . . . , dn0} is
a complete set of coset representatives of the quotient group C0/F

∗
q since h(q − 1)

divides Q − 1. If s = 1, t1 = 0, then CD is a linear code punctured from the code
CC0 (see [8]). Here CC0 is the code defined in (1) with the defining set D = C0. It is
known as the irreducible cyclic code. Thus we also call CD a cyclotomic linear code
since D has relation to the cyclotomic classes of order h in F∗

Q .

In addition to Theorem 1, we give alternative formulas for calculating the GHWs
of the cyclotomic linear code CD .

Theorem 2 For each r(1 ≤ r ≤ m), if dim(CD) = m, then dr (CD) = sn0 − Nr ,

where

1. Nr = s(qm−qr )
hqr (q−1) + 1

hqr (q−1) max{AHr : Hr ∈ [FQ, r ]q}, and
AHr = ∑s

j=1
∑h−1

λ=1
∑

β∈H∗
r

ϕλ(βθ t j )GQ(ϕλ), or

2. Nr = sn0
qr + 1

qr (q−1) max{∑h−1
i=0 |Hr

⋂
(
⋃s

j=1 Ci−t j )|ηi : Hr ∈ [FQ, r ]q}.

Proof 1. By definition, dr (CD) = sn0−Nr , Nr = max{N (Ur ) : Ur ∈ [CD, r ]q}. Let
{β1, β2, . . . , βr } be an Fq -basis of Hr .Here φ(Hr ) = Ur . See the proof of Theorem 1
for the definitions of N (Ur ) and φ. Set H∗

r = Hr\{0}. Then
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N (Ur ) = 1

qr
∑

ui∈D

⎛

⎝
∑

x1∈Fq
ζ
Trq/p(TrQ/q (β1ui )x1)
p

⎞

⎠ . . .

⎛

⎝
∑

xr∈Fq
ζ
Trq/p(TrQ/q (βr ui )xr )
p

⎞

⎠

= 1

qr
∑

β∈Hr

∑

ui∈D
ζ
TrQ/p(βui )
p = sn0

qr
+ 1

qr
∑

β∈H∗
r

∑

ui∈D
ζ
TrQ/p(βui )
p

= sn0
qr

+ 1

qr (q − 1)

∑

β∈H∗
r

∑

ui∈F∗
q D

ζ
TrQ/p(βui )
p ,

where F∗
q D = {xy|x ∈ F

∗
q , y ∈ D}. So

N (Ur ) = sn0
qr

+ 1

hqr (q − 1)

s∑

j=1

∑

β∈H∗
r

∑

x∈F∗
Q

ζ
TrQ/p(βx)
p

h−1∑

λ=0

ϕλ(θ−t j x)

= s(qm − qr )

hqr (q − 1)
+ 1

hqr (q − 1)

s∑

j=1

h−1∑

λ=1

∑

β∈H∗
r

∑

x∈F∗
Q

ζ
TrQ/p(βx)
p ϕλ(θ−t j x)

= s(qm − qr )

hqr (q − 1)
+ 1

hqr (q − 1)

s∑

j=1

h−1∑

λ=1

GQ(ϕλ)
∑

β∈H∗
r

ϕλ(θ t j β)

= s(qm − qr )

hqr (q − 1)
+ 1

hqr (q − 1)

s∑

j=1

h−1∑

λ=1

ϕλ(θ t j )GQ(ϕλ)
∑

β∈H∗
r

ϕλ(β).

For simplicity, we set AHr = ∑s
j=1

∑h−1
λ=1 ϕλ(θ t j )GQ(ϕλ)

∑
β∈H∗

r
ϕλ(β). So

N (Ur ) = s(qm − qr )

hqr (q − 1)
+ AHr

hqr (q − 1)
.

2. By the proof of Part 1, we have

N (Ur ) = sn0
qr

+ 1

qr (q − 1)

∑

β∈H∗
r

∑

u∈F∗
q D

ζ
TrQ/p(βu)
p

= sn0
qr

+ 1

qr (q − 1)

∑

β∈H∗
r

s∑

j=1

∑

u∈Ct j

ζ
TrQ/p(βu)
p

= sn0
qr

+ 1

qr (q − 1)

s∑

j=1

∑

β∈H∗
r

∑

u∈Ct j

χ1(βu).
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Table 1 The weight distribution
of the codes of Theorem 3

Weight w Multiplicity A

0 1
1
qh (sQ + (−1)l (h − s)

√
Q)

s(Q−1)
h

1
qh (sQ − s(−1)l

√
Q)

(h−s)(Q−1)
h

By definition, ηi = ∑
x∈Ci

χ1(x). So we have

s∑

j=1

∑

β∈H∗
r

∑

u∈Ct j

χ1(βu) =
h−1∑

i=0

s∑

j=1

|Hr

⋂
Ci−t j |ηi =

h−1∑

i=0

|Hr

⋂
⎛

⎝
s⋃

j=1

Ci−t j

⎞

⎠ |ηi .

Then the desired result follows and the proof is completed.

Remarks (1) If s = h, then CD is a [ qm−1
q−1 ,m, qm−1] code, the nonzero elements of

which all have weights qm−1. It is a simplex code. By Theorem 1 or Theorem 2(2),

it is easy to get dr (CD) = qm−qm−r

q−1 .

(2) By the construction of D, for any two elementsα andβ in D,we have ( α
β
)q−1 �= 1.

This means that α
β

/∈ F
∗
q . So max{|D⋂

H | : H ∈ [FQ, 1]q} = 1. By Theorem 1,

if dim(CD) = m, then dm−1(CD) = s(qm−1)
h(q−1) − 1. By the Singleton type bound in

Lemma 2, CD is an (m − 1)-MDS code [19] over Fq . Especially, if m = 2, then

the code CD is an [ s(q+1)
h , 2, s(q+1)

h − 1] MDS code [12] over Fq .

(3) Generally, it is difficult to establish linkage between the additive properties and
the multiplicative ones of a field. So Theorems 1 and 2 indicate that it is difficult to
give the explicit values of the generalized Hamming weights of CD in other cases.

Next under certain conditions, we give theweight distributions of the cyclotomic linear
codes CD in the following theorem.

Theorem 3 Assume m = 2lk and h|(qk + 1). Then the code CD is an [ s(Q−1)
h(q−1) ,m]

linear code over Fq with the weight distribution in Table 1. And the dual code C⊥
D
of

CD is an [ s(Q−1)
h(q−1) ,

s(Q−1)
h(q−1) − m, d⊥] linear code with minimum distance d⊥ ≥ 3.

Proof For x ∈ F
∗
q , let cx = (TrQ/q(xd))d∈D and w(cx ) denote the Hamming weight

of the codeword cx , then we have

w(cx ) = sn0 −
s∑

j=1

|{i : 1 ≤ i ≤ n0,TrQ/q(xθ
t j di ) = 0}|

= sn0 − 1

q

s∑

j=1

n0∑

i=1

∑

u∈Fq
ζ
Trq/p(uTrQ/q (xθ t j di ))
p
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= s(Q − 1)

hq
− 1

q

s∑

j=1

n0∑

i=1

∑

u∈F∗
q

χ1(uxθ
t j di )

= s(Q − 1)

hq
− 1

q

s∑

j=1

Q−1
h∑

k=1

χ1(xθ
t j+hk)

= s(Q − 1)

hq
− 1

qh

s∑

j=1

Q−1∑

k=1

χ1(xθ
t j+hk)

= s(Q − 1)

hq
− 1

qh

s∑

j=1

((S(xθ t j ) − 1)

= 1

qh
(s(Q − 1) + s −

s∑

j=1

S(xθ t j )).

By Lemma 1, we have

w(cx ) =
{

1
qh (s(Q − 1) + s + (−1)l(h − s)

√
Q), if one of xθ t j ∈ Ch0 ,

1
qh (s(Q − 1) + s − s(−1)l

√
Q), otherwise.

As for the parameters of the dual code, it is enough to prove d⊥ ≥ 3. It is easy to show
that any two elements in D are linearly independent over Fq . Then the desired results
follow and we complete the proof.

Example 1 Let (q,m, l, k, h, s) = (3, 4, 1, 2, 5, 3) and (t1, t2, t3) = (1, 2, 3). Then,
the corresponding codeCD has parameters [24, 4, 15],weight enumerator 1+48x15+
32x18 and its dual code has parameters [24, 20, 3].

Example 2 Let (q,m, l, k, h, s) = (5, 4, 2, 1, 6, 2) and (t1, t2) = (0, 1). Then, the
corresponding code CD has parameters [52, 4, 40], weight enumerator 1+ 416x40 +
208x45 and its dual code has parameters [52, 48, 3].

Corollary 1 Assume m = 2lk and h|(qk + 1). If (l, 2) = 1, then

dr (CD) =
⎧
⎨

⎩

s(qm−qm−r )+(s−h)q
m
2 −r

(qr−1)
h(q−1) , if 1 ≤ r ≤ m

2 ,

s(qm−1)−h(qm−r−1)
h(q−1) , if m

2 ≤ r ≤ m.

Proof By Lemma 1, we have ηi = (h−1)
√
Q−1

h if i = h0, otherwise ηi = −√
Q−1
h . So

by Theorem 2(2), we get
∑s

j=1
∑h−1

i=0 |Hr
⋂

Ci−t j |ηi
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=
s∑

j=1

h−1∑

i=0

|Hr

⋂
Ci−t j |

−√
Q − 1

h
+

s∑

j=1

|Hr

⋂
Ch0−t j |

(
ηh0 − −√

Q − 1

h

)

= s(qr − 1)
−√

Q − 1

h
+ √

Q
s∑

j=1

|Hr

⋂
Ch0−t j |.

If (l, 2) = 1, then Fqlk ⊂ C0. Notice that Ci = θ iC0 and θ i Hr is also an r -dimension
subspace. So we have

max

⎧
⎨

⎩
|Hr

⋂
⎛

⎝
s⋃

j=1

Ch0−t j

⎞

⎠ | : Hr ∈ [FQ, r ]q
⎫
⎬

⎭
= qr − 1

for each r with 1 ≤ r ≤ m
2 . By Theorem 2, we get the first part of the corollary.

If m
2 ≤ r ≤ m, then 0 ≤ m − r ≤ m

2 . So we know that there is an (m − r)-
dimensional subspace Hm−r ⊂ Fqlk ⊂ C0. Therefore, max{|(⋃s

j=1 Ct j )
⋂

H | : H ∈
[FQ,m − r ]q} = qm−r − 1. Note that F∗

q D = ⋃s
j=1 Ct j and

α
β

/∈ F
∗
q for any two

elements α and β in D. So |(⋃s
j=1 Ct j )

⋂
H | = (q − 1)|H ⋂

D| for any subspace

H. Therefore, max{|D⋂
H | : H ∈ [FQ,m − r ]q} = qm−r−1

q−1 . By Theorem 1, we get
the second part of this corollary. The proof is completed.

Example 3 For the code in Example 1, its weight hierarchy is d1 = 15, d2 = 20, d3 =
23, d4 = 24.

Corollary 2 Also assume m = 2lk and h|(qk +1). If l = 2ul ′ with u > 0, (l ′, 2) = 1,
and s < h, then

dr (CD) =
⎧
⎨

⎩

sq
m
2 −r

(qr−1)(q
m
2 −1)

h(q−1) , if 1 ≤ r ≤ l ′k,
s(qm−1)−h(qm−r−1)

h(q−1) , if m − l ′k ≤ r ≤ m.

Proof Also byLemma1,we haveηi = − (h−1)
√
Q+1

h if i = h0, otherwiseηi =
√
Q−1
h .

For an r -dimensional subspace Hr ,

h−1∑

i=0

|Hr

⋂
⎛

⎝
s⋃

j=1

Ci−t j

⎞

⎠ |ηi =
s∑

j=1

h−1∑

i=0

|Hr

⋂
Ci−t j |ηi

=
s∑

j=1

h−1∑

i=0

|Hr

⋂
Ci−t j |

√
Q − 1

h
+

s∑

j=1

|Hr

⋂
Ch0−t j |

(
ηh0 −

√
Q − 1

h

)

= s(qr − 1)

√
Q − 1

h
− √

Q
s∑

j=1

|Hr

⋂
Ch0−t j |.
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By assumption, we have Fql′k ⊂ C0. Notice that
⋃s

j=1 Ch0−t j �= D since s < h. So
for each r with 1 ≤ r ≤ l ′k, we have

min

⎧
⎨

⎩

∣
∣∣∣∣∣
Hr

⋂
⎛

⎝
s⋃

j=1

Ch0−t j

⎞

⎠

∣
∣∣∣∣∣
: Hr ∈ [FQ, r ]q

⎫
⎬

⎭
= 0.

Then the desired result of the first part follows directly from Theorem 2(2). For m −
l ′k ≤ r ≤ m, we know that there is an (m − r)-dimensional subspace Hm−r ⊂
Fql′k ⊂ C0. So max{|(⋃s

j=1 Ct j )
⋂

H | : H ∈ [FQ,m − r ]q} = qm−r − 1 and

max{|D⋂
H | : H ∈ [FQ,m − r ]q} = qm−r−1

q−1 . By Theorems 1 and 3, we get the
second part of this corollary. The proof is completed.

Example 4 For the code in Example 2, its weight hierarchy is d1 = 40, d2 = 48, d3 =
51, d4 = 52.

The above four examples have been verified by Magma.

4 Concluding remarks

In this paper, we gave a formula for computing the generalized Hamming weights of
linear code CD, which is constructed by the generic method proposed by Ding et al.
By choosing properly the defining set, we presented a class of cyclotomic linear codes
CD. We gave two alternative formulas about their generalized Hamming weights in
terms of Gauss sums and Gaussian periods. Under certain conditions, we solved the
weight distribution ofCD and proved that it is a two-weight linear code.We determined
completely the generalized Hamming weights of CD in one case.
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comments, which have helped improve the quality of the paper. I am also extremely grateful to the editors
for their careful considerations and kind help.
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