

ORIGINAL PAPER

Three-weight codes and near-bent functions from two-weight codes

J. Wolfmann¹

Received: 30 September 2016 / Revised: 8 March 2017 / Accepted: 6 June 2017 / Published online: 4 April 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract We introduce a construction of binary 3-weight codes and near-bent functions from 2-weight projective codes.

Keywords 2-weight codes · 3-weight codes · Near-bent functions

1 Introduction

In a recent paper [19] it is mentioned that linear codes with few weights have applications in secrete sharing, authentication codes, association schemes and strongly regular graphs. These codes were the topic of several recent papers [5,11,18,19].

On the other hand, bent functions and near-bent functions are boolean functions interesting for coding theory, cryptology and well-correlated binary sequences and were the topic of a lot of works (for instance see [1,4,6,10,12,14-16]).

In this paper we introduce in the binary case a construction of 3-weight codes from every 2-weight code, with one exception (in [19] such a construction is restricted to codes from quadratic bent functions).

Furthermore we deduce a construction of near-bent functions always from 2-weight binary codes.

The paper is organized as follows:

In Sect. 2 we recall classical definitions on boolean functions and binary linear codes and we specify the vocabulary used in the paper. Further more, a new definition is introduced in Sect. 2.3. Section 3 is devoted to 1-weight and 2-weight binary codes. Useful results and examples are given with references and sometimes proofs are given

☑ J. Wolfmann wolfmann@univ-tln.fr

¹ IMATH (IAA), Université de Toulon, CS 60584, 83041 Toulon Cedex 9, France

for sake of convenience. Section 4 contains the main result with its proof and examples. In Sect. 5 we deduce near-bent functions from special 2-weight codes.

2 Preliminaries

 \mathbb{F}_2 is the finite field of order 2 and an *m*-boolean function is a map from \mathbb{F}_2^m to \mathbb{F}_2 . As usual, in order to benefit from the properties of a finite field we identify the \mathbb{F}_2 -vector space \mathbb{F}_2^m with the finite field \mathbb{F}_{2^m} . We denote $\mathbb{F}_{2^k} \setminus \{0\}$ by $\mathbb{F}_{2^k}^*$.

The weight of a *m*-boolean function f is the number of x in \mathbb{F}_{2^m} such that f(x) = 1.

The Fourier transform (or Walsh transform) \hat{f} of an m-boolean function f is the map from \mathbb{F}_{2^m} into \mathbb{Z} defined by:

$$\hat{f}(v) = \sum_{x \in \mathbb{F}_{2^m}} (-1)^{f(x) + tr(vx)}$$

where tr is the trace of \mathbb{F}_{2^m} over \mathbb{F}_2 . $\hat{f}(v)$ is called the Fourier coefficient of f at the point of v.

Notation: If $e \in \mathbb{F}_{2^m}$ then $t_e(x) = tr(ex)$ where tr is the trace of \mathbb{F}_{2^m} . It is well-known and easy to prove that:

$$\hat{f}(0) = -2(2^{k-1} - n)$$
 and if $v \neq 0$, $\hat{f}(v) = -2(n - 2w_v)$

where *n* is the weight of *f* and w_v is the weight of $f * t_v$ where * is the product of boolean functions.

2.1 Bent and near-bent functions

A *m*-boolean function *F* is bent if all its Fourier coefficients are in $\{-2^{m/2}, 2^{m/2}\}$.

F is near-bent if all its Fourier coefficients are in $\{-2^{(m+1)/2}, 0, 2^{(m+1)/2}\}$.

Since the Fourier coefficients are in \mathbb{Z} , bent functions exist only when *m* is even and near-bent functions exist only when *m* is odd.

If m = 2t - 1 then F is a near-bent function if all its Fourier coefficients are in $\{-2^t, 0, 2^t\}$.

The distribution of the Fourier coefficients of a (2t - 1)-near bent function f is well known (see [1, Proposition 4]).

 $\begin{aligned} \hat{f}(v) &= 2^t & \text{number of } v: 2^{2t-3} + (-1)^{f(0)} 2^{t-2} \\ \hat{f}(v) &= 0 & \text{number of } v: 2^{2t-2} \\ \hat{f}(v) &= -2^t & \text{number of } v: 2^{2t-3} - (-1)^{f(0)} 2^{t-2}. \end{aligned}$

2.2 Binary linear codes

We assume that the reader is familiar with the classical definitions and results of the theory of algebraic coding (see [7,9]).

Recall first classical definitions.

Definition 1 Let *C* be a binary linear code of dimension *k* and length *n*. Let B_1 and B_2 respectively the number of words with weight 1 and the number of words with weight 2 in the orthogonal of *C*.

(1) *C* is said to be a projective code if $B_1 = 0$ and $B_2 = 0$.

(2) If $B_2 = 0$:

• A sub-set $E = \{e_1, e_2, \dots, e_n\}$ of \mathbb{F}_{2k}^* is said to be a support of C if

$$C = \{m_a = (tr(ae_1), tr(ae_2), \dots tr(ae_n)) \mid a \in \mathbb{F}_{2^k}\}$$

where *tr* is the trace of \mathbb{F}_{2^k} .

- If $m_a = (tr(ae_1), tr(ae_2), \dots tr(ae_n))$ is a word of C then the support of m_a is $supp(m_a) = \{e_i \mid tr(ae_i) = 1\}$.
- A defining function of C is a k-boolean function indicator of a support of C.

If G is a generator matrix of C then $B_2 = 0$ means that the columns of G are two by two distinct and $B_1 = 0$ means that there is no zero vector in the set of columns of G.

Example: Let *G* be a generator matrix of a binary linear code *C* with $B_2 = 0$: If \bar{c}_i is a column of *G* then let e_i be the element of $\mathbb{F}_{2^{2t}}$ such that \bar{c}_i is the system of components of e_i with respect to a given basis of $\mathbb{F}_{2^{2t}}$. Then the set $\{e_i\}_{i=1...N}$ is a support of *C*.

Example:

	1,	α^{24} ,	α^{28} ,	α^{22} ,	α^5 ,	α^{16} ,	α^{26}
	0,	1,	1,	1,	0,	1,	1
C –	0,	1,	0,	0,	0,	1,	0
G =	⁼ 0,	1,	1,	1,	1,	0,	1
	0,	1,	1,	0,	0,	1,	1
	1,	0,	0,	1,	1,	1,	1

With $\mathbb{F}_{2^5} = \mathbb{F}_2(\alpha)$ and $\alpha^5 + \alpha^2 + 1 = 0$, the support of *C* obtained by the columns of *G* is:

$$\{1, \alpha^5, \alpha^{16}, \alpha^{22}, \alpha^{24}, \alpha^{26}, \alpha^{28}\}$$

A defining function of *C* is:

$$tr(a^{6}x + a^{10}x^{3} + a^{13}x^{5} + a^{8}x^{7} + a^{27}x^{11} + a^{11}x^{15} + x^{31})$$

where tr is the trace of \mathbb{F}_{2^5} .

Remark 2 – Of course, a binary linear code with $B_2 = 0$ has several supports and several defining functions depending of the choice of the generator matrix and the choice of the basis of $\mathbb{F}_{2^{2t}}$. However all the supports are equivalent under the action of the linear group of \mathbb{F}_{2^k} .

- A binary projective linear code is completely determined by one of its defining functions and every boolean function f such that f(0) = 0 defines a binary projective linear code.

Definition 3 If *E* is a support of a binary projective code *C* of dimension *k* then the complement code of *C* is the code whose support is $\mathbb{F}_{2k}^* \setminus E$.

The proof of the next proposition is obvious.

Proposition 4 *The complement code of C is a projective code.*

The weights of a complement of C are the $2^{k-1} - w_i$ where the w_i are the weights of C.

2.3 Doubly restricted code

Now we introduce a new definition.

We restrict any binary projective code of dimension k to one of its k - 1 subspace defined by a word m and we restrict the new code to the support of m.

Definition 5 Let *C* be a binary linear code of dimension *k*. Let *m* be a word of *C*.

- The restricted code of C with respect to m is the complementary space of $\{0, m\}$ in C denoted by C_m .
- The doubly restricted code of C with respect to m is the restricted code of C_m to the support of m. It is denoted by \tilde{C}_m .

2.3.1 Generator matrices

 G, G_m, \tilde{G}_m are respectively generator matrix of C, C_m, \tilde{C}_m . The rows of G form a basis of C with m as first row.

$$G = \begin{pmatrix} m^{(1)}, & m^{(2)}, & m^{(3)}, & \dots & m^{(i)}, \dots & , m^{(n)} \\ \bar{v}_1, & \bar{v}_2, & \bar{v}_3, & \dots & \bar{v}_i, \dots & \bar{v}_n \end{pmatrix}$$

where $m = (m^{(1)}, m^{(2)}, m^{(3)}, \dots, m^{(i)}, \dots, m^{(n)})$ and \bar{v}_i stands for a binary column vector of length k - 1.

Deleting the first row of G we get a generator matrix of C_m .

$$G_m = (\bar{v}_1, \bar{v}_2, \bar{v}_3, \dots, \bar{v}_i, \dots, \bar{v}_n)$$

In order to obtain a generator matrix of \tilde{C}_m we restrict the columns of G_m to the support of m.

$$\tilde{G}_m = (\bar{v}_{i_1}, \bar{v}_{i_2} \dots \bar{v}_{i_w})$$

where $m^{(i_1)}, m^{(i_2)}, \dots, m^{(i_w)}$ are the non-zero components of m.

Example:

	(0	1	0	0	1	0	1	1	1	1	1	1	1	0	1	1	0	1	0	0	0
	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
C	0	1	0	0	0	0	1	0	0	0	1	0	1	1	1	0	1	1	0	0	0
G =	0	0	1	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0
	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	1	0	1	1	0
	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	1	0	1	1)
	/1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	1	0	0	0	0	1	0	0	0	1	0	1	1	1	0	1	1	0	0	0
$G_m =$	0	0	1	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1	1	0	0
	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0	1	1	0	1	1	0
	0	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	1	0	1	1)
	/1	1	1	1	0	0	0	0	0	0	0	0)									
	1	0	1	0	0	0	1	0	1	1	0	1									
$\tilde{G}_m =$	0	0	0	1	0	1	0	0	0	1	0	1									
	0	1	0	0	0	0	1	1	0	0	1	0									
	0	0	1	0	0	0	0	0	1	0	1	1)									

3 1-Weight and 2-weight codes

If $\mathcal{N} \in \mathbb{N} \setminus \{0\}$ then a code C is an \mathcal{N} -weight code if \mathcal{N} is the cardinality of the set of non-zero weights of C.

First recall the first three Pless identities which are the main tool to prove results in this section.

3.1 Pless identities

The Pless identities are well-known. We recall the first three identities in the binary case (see [8, Section II, page 50]).

Proposition 6 Let C be a binary linear code of length n, dimension k and with N weights $w_i, i = 1, 2, ..., N$.

 A_{w_i} is the number of words of C with weight w_i and B_i is the number of words of C with weight i in the orthogonal of C respectively.

Then:

- (1) $\sum_{i=1}^{N} A_{w_i} = 2^k 1.$ (2) $\sum_{i=1}^{N} w_i A_{w_i} = (n B_1)2^{k-1}.$ (3) $\sum_{i=1}^{N} w_i^2 A_{w_i} = \{n(n+1) 2nB_1 + 2B_2\}2^{k-2}.$

The following Proposition 7 and Corollary 8 are well known. Proposition 10 was already published in [13]. The proofs are given here for reader's convenience.

3.2 Binary 1-weight codes

Proposition 7 If C is a binary linear 1-weight code of length n dimension k with w as unique non-zero weight then there exists $\lambda \in \mathbb{N}$ such that:

$$n - B_1 = \lambda (2^k - 1)$$
 and $w = \lambda 2^{k-1}$.

Proof In this case the second Pless identity is:

$$(2^k - 1)w = (n - B_1)2^{k-1}$$

Since 2^{k-1} and $2^k - 1$ are coprime then 2^{k-1} divides w. We obtain $w = \lambda 2^{k-1}$ and consequently $n - B_1 = \lambda (2^k - 1)$.

Corollary 8 If C is a binary projective 1-weight code of length n dimension k with w as unique non-zero weight then:

$$n = 2^k - 1$$
 and $w = 2^{k-1}$

Proof The proof is obvious.

The following definition is classical.

Definition 9 (*Simplex code*) The previous result shows that a defining set of such a code is $\mathbb{F}_{2^k} \setminus \{0\}$. It is called a binary Simplex code of length $2^k - 1$

3.3 Binary 2-weight codes

For further use we need the following propositions.

Proposition 10 Let C be a binary 2-weight code of length n, dimension k and weight w_1 and w_2 .

- (a) Define $F(n, w_1, w_2, k) = n^2 [2(w_1 + w_2) 1]n + \frac{(2^k 1)w_1w_2}{2^{k-2}}$.
- (4) If C is a projective code then $F(n, w_1, w_2, k) = 0$.
- (b) Let A_{w_1} and A_{w_2} be respectively the numbers of words of weights w_1 and w_2 . Then:

(5)
$$A_{w_1} = \frac{(2^k - 1)w_2 - (n - B_1)2^{k-1}}{w_2 - w_1}$$

(6) $A_{w_2} = \frac{(n-B_1)2^{k-1} - (2^k-1)w_1}{w_2 - w_1}$ where B_1 is the number of words of weight 1 in the orthogonal of C.

Proof • Proof of (a):

Since *C* is projective then $B_1 = B_2 = 0$ and the first Pless identities are:

$$(1') A_{w_1} + A_{w_2} = 2^k - 1.$$

$$(2') \quad w_1 A_{w_1} + w_2 A_{w_2} = n 2^{k-1}.$$

(3') $w_1^2 A_{w_1} + w_2^2 A_{w_2} = n(n+1)2^{k-2}.$

Let consider the following polynomial over \mathbb{Z} :

$$(x - w_1)(x - w_2) = a_0 + a_1 x + x^2.$$

We know that $a_0 = w_1w_2$ and $a_1 = -(w_1 + w_2)$. The combination $a_0(1') + a_1(2') + (3)$ gives:

$$A_{w_1}(a_0 + a_1w_1 + w_1^2) + A_{w_2}(a_0 + a_1w_2 + w_2^2) = a_0(2^k - 1) + a_1n2^{k-1} + n(n+1)2^{k-2}.$$

From the definition of a_0 and a_1 : $a_0 + a_1w_1 + w_1^2 = a_0 + a_1w_2 + w_2^2 = 0$. And this leads to the expected result.

• Proof of (b):

The result is obtained by solving the linear system of identities (1') and (2').

The following lemma was proved by Delsarte.

Lemma 11 (Delsarte) If w_1 and w_2 are the weights of a binary projective 2-weight code then there exist $a \in \mathbb{N}^*$ and $r \in \mathbb{N}$ such that

$$w_1 = a2^r$$
 and $w_2 = (a+1)2^r$.

Proof See [3, Section 3, Corollary 2, page 53].

3.4 Semi-primitive code

Definition 12 Let *C* be an irreductible cyclic code of length *n* over \mathbb{F}_q with (n, q) = 1. Let \mathbb{F}_{q^k} be the splitting field of $x^n - 1$ over \mathbb{F}_q and let *d* such that $nd = q^k - 1$ and $d \ge 2$.

C is called a semi-primitive code if k = 2t and if there exists a divisor *r* of *t* such that $q^r \equiv -1 \mod d$.

Proposition 13 Let C be a semi-primitive code and let k, r, t, d be defined as above. The weight distribution of C is:

- n(d-1) words of weight $w_1 = (q-1)q^{t-1} \left| \frac{q^t \epsilon}{d} \right|$.
- *n* words of weight $w_2 = (q-1)q^{t-1}\left[\frac{q^t + \epsilon(d-1)}{d}\right]$.

where $\epsilon = (-1)^{\frac{l}{r}}$.

Proof See [2,9].

3.5 A special case

The first proposition below was proved in [17] and the second one seems to be new.

Proposition 14 If the support E of a binary projective code C of dimension k is the complement of a subspace S and if the dimension of S is s then:

(a) The length of C is $n = 2^k - 2^s$

(b) The weight distribution C is:

 $2^{k-s} - 1$ words of weight 2^{k-1} $2^k - 2^{k-s}$ words of weight $2^{k-1} - 2^{s-1}$.

Proof Let n be the length of C and let m_a be a word of C.

 $m_a = (tr(ae_1), tr(ae_2), \dots tr(ae_n)) \text{ with } a \in \mathbb{F}_{2^k}.$ $\bar{m}_a = (tr(a\bar{e}_1), tr(a\bar{e}_2) \dots tr(a\bar{e}_{2^{s-1}}) \text{ where } \{\bar{e}_1, \bar{e}_2, \dots \bar{e}_{2^{s-1}}\} = S.$

The concatenation of m_a and \bar{m}_a is a word of the Simplex code of length $2^k - 1$ whence its weight is 2^{k-1} .

- (1) If the hyperplane H_a of \mathbb{F}_{2^k} with equation tr(ax) = 0 contains S then the weight of \bar{m}_a is 0 and then the weight of m_a is $2^k 1$. There exist $2^{k-s} 1$ such hyperplanes.
- (2) If S is not in H_a then $H_a \cap S$ contains 2^{s-1} elements of S and the weight of m_a is $2^{k-1} 2^{s-1}$ and we have $2^k 2^{k-s}$ words of this type.

Proposition 15 If a projective code C of dimension k is a 2-weight code and if one of the weights is 2^{k-1} then a support of C is a complement of a subspace.

Proof Let *n* be the length of *C* and let \overline{C} be the complement of *C*. The length of \overline{C} is $\overline{n} = 2^k - 1 - n$.

If the weights of *C* are $w_1 = 2^{k-1}$ and w_2 then $w_2 < 2^{k-1}$ and the weights of \overline{C} are $2^{k-1} - w_1 = 0$ and $2^{k-1} - w_2$. Hence \overline{C} is a 1-weight code with weight $2^{k-1} - w_2$. Then \overline{C} is a 1-weight projective code and according to Corollary 8 there exists *r* such that $\overline{n} = 2^r - 1$ and $\mathbb{F}_{2^r} \setminus \{0\}$ is a defining set of \overline{C} . In other words *C* is the complement set of a subspace.

4 3-Weight codes from binary 2-weight codes

The next theorem is the main result of this work.

Notation:

- If E is a set then |E| denotes the cardinality of E.
- For $i = 1, 2 E_i$ is the set of words of weight w_i in C and A_i is the cardinality of E_i .
- E_i^m is the set of words of weight w_i in C_m and \mathcal{A}_i^m is the cardinality of E_i^m .
- B_1^m is the number of words of weight 1 in the orthogonal of C_m .

Remark 16 B_1^m is also the number of zero-vectors among the columns of a generator matrix of C_m . This number is independent of the choice of such a generator matrix.

We now use the generator matrix introduced in Sect. 2.3.1. Note that $\overline{0}$ is a column of G_m if and only if $\begin{pmatrix} 1 \\ \overline{0} \end{pmatrix}$ or $\begin{pmatrix} 0 \\ \overline{0} \end{pmatrix}$ is a column of G.

Because *C* is a projective code then $\begin{pmatrix} 0\\ \overline{0} \end{pmatrix}$ is not a column of *G* and $\begin{pmatrix} 1\\ \overline{0} \end{pmatrix}$ can be a column of *G* at most once. Conclusion:

 $\mathcal{R}_1: B_1^m = 0 \text{ or } B_1^m = 1.$

On the other hand, \bar{v}_{i_l} is a column of \tilde{G}_m if and only if $\begin{pmatrix} 1 \\ \bar{v}_{i_l} \end{pmatrix}$ is a column of G. Since C is projective then:

 \mathcal{R}_2 : The \bar{v}_{i_l} l = 1, 2, ..., w are distinct and $\bar{v}_{i_l} = \bar{0}$ at most once.

Theorem 17 Let C be a binary projective 2-weight code of dimension k with weights w_1 and w_2 . Let m be a word of C with weight w. Let E be a support of C.

If E is not the complement of a subspace then:

The doubly restricted code \tilde{C}_m of C is a projective three-weight code of length w and dimension k - 1 and the weights of \tilde{C}_m are:

$$\frac{1}{2} [w - (w_1 - w_2)], \quad \frac{1}{2} w, \quad \frac{1}{2} [w + (w_1 - w_2)].$$

Proof From the definition the weights of \tilde{C}_m are the cardinalities of the intersections of supp(m) with the supports of the words of C_m . In other words they are:

 $w(m_1 * m)$ where $m_1 \in E_1^m$ and $w(m_2 * m)$ where $m_2 \in E_2^m$.

Since $w(m_1 + m) = w(m_1) + w(m) - 2w(m_1 * m)$ and $w(m_2 + m) = w(m_2) + w(m) - 2w(m_2 * m)$, we have:

$$w(m_1 * m) = \frac{1}{2} [w(m_1) + w(m) - w(m_1 + m)] \text{ and similarly:}$$

$$w(m_2 * m) = \frac{1}{2} [w(m_2) + w(m) - w(m_2 + m)].$$

Consequently

- (a) If there exists $m_1 \in E_1^m$ such that $m_1 + m \in E_1$ then $w(m_1 * m) = \frac{1}{2}w(m)$.
- (b) If there exists $m_1 \in E_1^m$ such that $m_1 + m \in E_2$ then $w(m_1 * m) = \frac{1}{2}[w(m) + (w_1 - w_2)].$
- (c) If there exists $m_2 \in E_2^m$ such that $m_2 + m \in E_1$ then $w(m_2 * m) = \frac{1}{2}[w(m) - (w_1 - w_2)].$
- (d) If there exists $m_2 \in E_2^m$ such that $m_2 + m \in E_2$ then $w(m_2 * m) = \frac{1}{2}w(m).$

Conclusion: the weights of \tilde{C}_m belong to the set:

$$\left\{\frac{1}{2}[w-(w_1-w_2)],\frac{1}{2}w,\frac{1}{2}[w+(w_1-w_2)]\right\}.$$

We are now facing the problem to search if the cases (a), (b), (c), (d) effectively exist.

First remark, from the definition of C_m , that:

(*) $C = C_m + (m + C_m)$ and,

since *m* is not in C_m :

(**) $C_m \cap (m + C_m) = \emptyset$.

For $i, j \in \{1, 2\}$, define $E_{(i,j)}$ as the set of words with weight w_j in $(m + E_i^m)$.

Our task is to prove that, with one exception, properties (a), (b), (c), (d) are satisfied or, equivalently that $E_{(1,1)}$, $E_{(2,1)}$, $E_{(1,2)}$, $E_{(2,2)}$ are not empty.

Our strategy now is to examine what happen when such sets are not empty.

Step 1

Case 1 : $E_{(1,1)} = \emptyset$, $E_{(2,1)} = \emptyset$

In this case there is no word of weight w_1 in $m + C_m$. Therefore the words of weight w_1 in C are the elements of E_i^m and w if $w = w_1$. Thus:

 $\mathcal{A}_1 = \mathcal{A}_1^m + \epsilon$ with $\epsilon = 1$ if $w = w_1$ and $\epsilon = 0$ if $w = w_2$.

We find from (5) and (6) of Proposition 10:

$$(\Diamond) \quad (2^{k-1} - \epsilon)w_2 + \epsilon w_1 - (n - B_1^m) 2^{k-2} = 0.$$

- If $\epsilon = 0$ and $B_1^m = 0$:

(\diamond) gives $2w_1^{k-1} = n$ and with (4) of Proposition 10 we obtain $(2^k - 1)w_1 = (2w_1 - 1)2^{k-1}$. Since $2w_1 - 1 \neq 0$ and because $2^k - 1$ and 2^{k-1} are coprime then 2^{k-1} divides w_1 and thus $w_1 = \mu 2^{k-1}$. The case $\mu \ge 2$ is not possible since $w_1 \le 2^{k-1}$ and therefore $w_1 = 2^{k-1}$. According to Proposition 15, *E* is the complement of a subspace.

- If $\epsilon = 0$ and $B_1^m = 1$:

With (\diamondsuit) we have $2w_2 = n + 1$. Using (4) we have: $w_1(2^k - 1 - n) = 0$. If $2^k - 1 - n = 0$ then C is the simplex code (see Definition 9), which is not a 2 weight code. Hence $w_1 = 0$ which is not possible.

- If $\epsilon = 1$ and $B_1^m = 0$:

(
$$\diamond$$
) gives $2^{k-2}(2w_2 - n) = w_2 - w_1$.

Following Delsarte (Lemma 11) we know that the two weights are $a2^r$ and $(a + 1)2^r$. The previous result gives $2^{k-2} | 2w_2 - n \rangle |= 2^r$ that is $2^{k-2-r} | 2w_2 - n \rangle |= 1$. Then $2^{k-2-r} = 1$ and $| 2w_2 - n \rangle |= 1$. It comes r = k - 2. Because $a \ge 1$ then one of the weights is $(a + 1)2^{k-2}$ which is greater or equal than 2^{k-1} . Therefore, this weight is 2^{k-1} and then *C* is the complement of a subspace.

- If
$$\epsilon = 1$$
 and $B_1^m = 1$:

With the same method we find $2^{k-2}(2w_2 - n - 1) = w_2 - w_1$ and this leads to the same conclusion: a support of *C* is the complement of a subspace.

Finally, if *E* is not the complement of a subspace then $E_{(1,1)} = \emptyset$ and $E_{(2,1)} = \emptyset$ is not possible. Conclusion:

 (\mathcal{C}_1) If E is not the complement of a subspace then

 $E_{(1,1)} \neq \emptyset$ or $E_{(2,1)} \neq \emptyset$.

Case 2 : $E_{(1,1)} = \emptyset$, $E_{(2,1)} \neq \emptyset$

In this case:

 $\mathcal{A}_1 = \mathcal{A}_1^m + |E_{(2,1)}| + \epsilon$ with $\epsilon = 1$ if $w = w_1$ and $\epsilon = 0$ if $w = w_2$.

Since all the weights of $m + E_1^m$ are w_2 and $|m + E_1^m| = |E_1^m|$, then:

 $\mathcal{A}_2 = \mathcal{A}_1^m + |E_{(2,2)}| + \mu$ with $\mu = 1$ if $w = w_2$ and $\mu = 0$ if $w = w_1$.

We deduce: $A_1 + A_2 = 2A_1^m + |E_{(2,1)}| + |E_{(2,2)}| + 1$.

On the other hand $m + E_2^m = E_{(2,1)} \cup E_{(2,2)}$ and $E_{(2,1)} \cap E_{(2,2)} = \emptyset$ whence $|E_{(2,1)}| + |E_{(2,2)}| = |m + E_2^m| = |E_2^m| = \mathcal{A}_2^m$.

Finally:

 $\mathcal{A}_1 + \mathcal{A}_2 = \mathcal{A}_1^m + \mathcal{A}_1^m + \mathcal{A}_2^m + 1.$

We know that $A_1 + A_2 = 2^k - 1$ and $A_1^m + A_2^m = 2^{k-1} - 1$. This gives: $A_1^m = 2^{k-1} - 1$ and we conclude that C_m is a 1-weight code of dimension k - 1.

According to Proposition 7: $n - B_1^m = \lambda(2^{k-1} - 1)$ and $w_1 = \lambda 2^{k-2}$ with $\lambda \in \mathbb{N} \setminus \{0\}$.

The length of C_m is also the length of C and w_1 is a weight of C. Then $\lambda \ge 2$ is impossible since the length of a projective code of dimension k is at most $2^k - 1$ and a weight of such a code is at most 2^{k-1} .

The unique solution is $\lambda = 1$ and $n - B_1^m = 2^{k-1} - 1$, $w_1 = 2^{k-2}$.

- (I) From (4) we have: $F(n, w_1, w_2, k) = 0$.
- (i) If $B_1^m = 1$ then $n = 2^{k-1}$. With $w_1 = 2^{k-2}$ condition (1) gives $w_2 = 2^{k-1}$. Once again this proves that E is the complement of a subspace.
- Once again this proves that E is the complement of a subspace.
 (ii) If B₁^m = 0 then n = 2^{k-1} 1, w₁ = 2^{k-2} and (I) gives w₂ = 0 which is not possible.

Then if *E* is not the complement of a subspace then $E_{(1,1)} = \emptyset$ and $E_{(2,1)} \neq \emptyset$ is not possible. Conclusion:

 (\mathcal{C}_2) If *E* is not the complement of a subspace then

 $E_{(1,1)} \neq \emptyset$ or $E_{(2,1)} = \emptyset$.

Case 3 : $E_{(1,1)} \neq \emptyset$, $E_{(2,1)} = \emptyset$

Using the same method we find $A_2^m = 2^{k-1} - 1$ and thus:

 (\mathcal{C}_3) If *E* is not the complement of a subspace then

 $E_{(1,1)} = \emptyset$ or $E_{(2,1)} \neq \emptyset$.

Partial conclusion: Since $E_{(1,1)} \neq \emptyset$ or $E_{(2,1)} \neq \emptyset$ and because neither $(E_{(1,1)} = \emptyset)$ and $E_{(1,1)} \neq \emptyset$) nor $(E_{(1,1)} \neq \emptyset$ and $E_{(2,1)} = \emptyset$) are true, then:

 (C_4) If E is not the complement of a subspace then

 $E_{(1,1)} \neq \emptyset$ and $E_{(2,1)} \neq \emptyset$.

Step 2

Replacing $E_{(1,1)}$ and $E_{(2,1)}$ respectively by $E_{(1,2)}$ and $E_{(2,2)}$ and using the method of Step 1 we have a similar result:

 (\mathcal{C}_5) If *E* is not the complement of a subspace then

 $E_{(1,1)} \neq \emptyset$ and $E_{(2,1)} \neq \emptyset$.

General conclusion

(C) If E is not the complement of a subspace then $E_{(1,1)}$, $E_{(2,1)}$, $E_{(1,2)}$, $E_{(2,2)}$ are not empty.

This is the proof that (a), (b), (c), (d) are satisfied and thus the theorem is proved. \Box

Remark 18 The previous result is independent of the choice of *E* because, in one hand all support of *C* and in other hand all subspaces of a given dimension, are equivalent under the action of the linear group of \mathbb{F}_{2^k} .

4.1 Examples

Recall that the weights of \tilde{C}_m are:

$$\tilde{w}_1 = \frac{1}{2}[w - (w_1 - w_2)], \quad \tilde{w}_2 = \frac{1}{2}w, \quad \tilde{w}_3 = \frac{1}{2}[w + (w_1 - w_2)].$$

4.1.1 Semi-primitive code

The weights of C are $w_1 = 2^{t-1} \left(\frac{2^t - \epsilon}{d}\right)$ and $w_2 = 2^{t-1} \left(\frac{2^t + \epsilon(d-1)}{d}\right)$.

The weights of \tilde{C}_m are:

$$\tilde{w}_1 = \frac{1}{2}[w - (w_1 - w_2)], \quad \tilde{w}_2 = \frac{1}{2}w, \quad \tilde{w}_3 = \frac{1}{2}[w + (w_1 - w_2)].$$

With $w = w_1$ we find:

$$\tilde{w}_1 = 2^{t-2} \left(\frac{2^t + \epsilon(d-1)}{d} \right), \quad \tilde{w}_2 = 2^{t-2} \left(\frac{2^t - \epsilon}{d} \right),$$
$$\tilde{w}_3 = 2^{t-2} \left(\frac{2^t - \epsilon(d+1)}{d} \right).$$

Deringer

With $w = w_2$ we find:

$$\tilde{w}_1 = 2^{t-2} \left(\frac{2^t + \epsilon(2d-1)}{d} \right), \quad \tilde{w}_2 = 2^{t-2} \left(\frac{2^t + \epsilon(d-1)}{d} \right),$$
$$\tilde{w}_3 = 2^{t-2} \left(\frac{2^t - \epsilon}{d} \right).$$

4.1.2 Bent function code

If the support of a code *C* is the support of a bent function then it is well known (see [12]) that the dimension of *C* is 2*t* and the two weights of *C* are $w_1 = 2^{2t-2}$ and $w_2 = 2^{2t-2} - \epsilon 2^{t-1}$ where $\epsilon \in \{-1, +1\}$.

If
$$w = w_1$$
:
 $\tilde{w}_1 = 2^{2t-3} - \epsilon 2^{t-2}$, $\tilde{w}_2 = 2^{2t-3}$, $\tilde{w}_3 = 2^{2t-3} + \epsilon 2^{t-2}$.
If $w = w_2$:
 $\tilde{w}_1 = 2^{2t-3} - \epsilon 2^{t-1}$, $\tilde{w}_2 = 2^{2t-3} - \epsilon 2^{t-2}$, $\tilde{w}_3 = 2^{2t-3}$.

5 Near-bent functions from 2-weight code

Theorem 19 Let C be a binary projective linear 2-weight code of dimension 2t with weights w_1 and w_2 such that a support of C is not the complement of a subspace.

(a) If there exists a word m in C with weight $w = 2^{2t-2} - \eta 2^{t-1}$ with $\eta \in \{-1, 0, +1\}$ and

(b) If
$$|w_2 - w_1| = 2^{t-1}$$

then every defining function of the doubly restricted code \tilde{C}_m is a near-bent function.

Proof Note that the dimension of is 2t - 1 and the length of \tilde{C}_m is w which also is the weight of f. Then:

- If $w = 2^{2t-2} \eta 2^{t-1}$ then $\hat{f}(0) = 2(2^{2t-2} (2^{2t-2} \eta 2^{t-1})) = \eta 2^t$.
- If $w = 2^{2t-2}$ then $\hat{f}(0) = 2(2^{2t-2} 2^{2t-2}) = 0$.
- If $v \neq 0$ then $\hat{f}(v) = -2(n 2w_v)$.

If f is a defining function of \tilde{C}_m then n = w and for every v the w_v are the weights of \tilde{C}_m : $\frac{1}{2}[w - (w_1 - w_2)], \frac{1}{2}w, \frac{1}{2}[w + (w_1 - w_2)].$ With $|w_2 - w_1| = 2^{t-1}$:

$$\hat{f}(v) = -2[w - [w - (w_1 - w_2)] = 2^t$$

or

$$\hat{f}(v) = -2[w - [w]] = 0$$

or

$$\hat{f}(v) = -2[w - [w - (w_1 + w_2)] = +2^t.$$

5.1 Weight distribution

The defining function involved in the previous theorem is a three-valued boolean function. The distribution of a three-valued m-boolean function is given in [1, Proposition 4].

Assume that the hypotheses of Theorem 19 are satisfied for a code *C*. Using the link, which appears in the proof of the theorem, between the weights of \tilde{C}_m and the Fourier coefficients of *f*, and using [1, Proposition 4], we are able to determine the weight distribution of \tilde{C}_m .

Theorem 20 If C is a binary projective 2-weight code satisfying the hypothesis of Theorem 19 then the weight distribution of \tilde{C}_m is as follows. (iff stands for if an only if).

Weight	Number of words
$\frac{1}{2}[w - (w_1 - w_2)]$	$2^{2t-3} + 2^{t-2} - \theta \text{ with } \theta = 1 \text{ iff } \eta = 1$
$\frac{1}{2}w$	$2^{2t-2} - \gamma$ with $\gamma = 1$ iff $\eta = 0$
$\frac{1}{2}[w + (w_1 - w_2)]$	$2^{2t-3} - 2^{t-2} - \omega$ with $\omega = 1$ iff $\eta = -1$

Proof We just have to connect the weights of \tilde{C}_m with the Fourier coefficients of f as in the proof of Theorem 19, then use the coefficient distribution introduced in 2.1 and remark that $\hat{f}(0) = -2^t$ if $\eta = 1$, $\hat{f}(0) = 0$ if $\eta = 0$ and $\hat{f}(0) = 2^t$ if $\eta = -1$. \Box

5.2 Examples

5.2.1 Special semi-primitive code

Let us consider the binary cyclic code *C* of dimension 6 and length 21 with generator $g(x) = 1 + x^2 + x^5 + x^8 + x^9 + x^{12} + x^{14} + x^{15}$.

This is a semi-primitive code with t = 3, d = 3, r = 1, $\epsilon = -1$ the weights are $w_1 = 2^2(\frac{2^3+1}{3}) = 12$ and $w_2 = 2^2(\frac{2^3-2}{3}) = 8$.

Remark that $12 = 2^{2t-2} - 2^{t-1}$ whence part (a) of Theorem 19 holds. Then:

If *m* is a word of weight 12 in *C* and if *f* is a defining function of the doubly restricted code \tilde{C}_m of *C* then *f* is a near-bent function. This is the example of Sect. 2.3.1.

With $\mathbb{F}_{2^5} = \mathbb{F}_2(\alpha)$ and $\alpha^5 + \alpha^2 + 1 = 0$, the support of \tilde{C}_m obtained by the columns of \tilde{G}_m is:

$$E = \{0, 1, \alpha, \alpha^2, \alpha^6, \alpha^7, \alpha^8, \alpha^{18}, \alpha^{20}, \alpha^{21}, \alpha^{25}, \alpha^{30}\}\$$

A defining function of C, indicator of E is:

$$tr(1 + a^4x + a^{11}x^3 + a^{22}x^5 + a^{24}x^7 + a^{28}x^{11} + a^{17}x^{15})$$

where tr is the trace of \mathbb{F}_{2^5} .

It seems that this is the unique semi-primitive code satisfying the conditions of Theorem 19.

5.2.2 Bent function code

Theorem 21 Let C be a binary linear code such that a support of C is the support of a bent function. Let m be a word of C.

If f is a defining function of the doubly restricted code \tilde{C}_m then f is a near-bent function.

Proof It is well known (see [12]) that the dimension of *C* is 2*t* and the two weights of *C* are $w_1 = 2^{2t-2}$ and $w_2 = 2^{2t-2} - \epsilon 2^{t-1}$ where $\epsilon \in \{-1, +1\}$. And we have $w_1 - w_2 = \epsilon 2^{t-1}$. The conclusion comes directly from Theorem 19.

6 Conclusion

We have constructed binary 3-weight codes and near-bent functions from 3-weight codes. An open question now is to find new examples of near-bent functions obtained with Theorem 19.

References

- Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Trans. Inf. Theory. 49(8), 2004–2019 (2003)
- 2. Baumert, D., McEliece, R.J.: Weights of irreducible cyclic codes. Inf. Control 20, 158–175 (1972)
- 3. Delsarte, P.: Weights of linear codes and strongly regular normed spaces. Discrete Math. **3**, 47–64 (1972)
- 4. Dillon, J.F.: Elementary Hadamard difference sets. Ph.D. thesis, University of Maryland (1974)
- Ding, C., Li, C., Li, N., Zhou, Z.C.: Three-weight cyclic codes and their weight distributions. Discrete Math. 339, 415–427 (2016)
- Leander, G., McGuire, G.: Construction of bent functions from near-bent functions. J. Comb. Theory Ser. A 116(4), 960–970 (2009)
- Mac Williams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)
- Pless, V.: Power moment identities on weight distribution in error correcting codes. Inf. Control 6, 147–152 (1963)
- 9. Pless, V., Huffman, W.C. (eds.): Handbook of Coding Theory. Elsevier, Amsterdam (1998)
- 10. Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300-305 (1976)
- Tang, C., Li, N., Qi, Y.F., Zhou, Z.C., Helleseth, T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016)
- Wolfmann, J.: Bent functions and coding theory. In: Pott, A., Kumar, P.V., Helleseth, T., Jungnickel, D. (eds.) Difference Sets, Sequences and Their Correlation Properties, NATO Sciences Series, Series C, vol. 542, pp. 393–418. Kluwer, Dordrecht (1999)
- Wolfmann, J.: Are 2-weight projective cyclic codes irreducible? IEEE Trans. Inf. Theory 51(2), 733– 737 (2005)
- Wolfmann, J.: Cyclic code aspects of bent functions. In: Finite Fields: Theory and Applications, AMS Series "Contemporary Mathematics". vol. 518, pp. 363–384 (2010)
- 15. Wolfmann, J.: Special bent and near-bent functions. Adv. Math. Commun. 8(1), 21-33 (2014)
- Wolfmann, J.: From near-bent to bent: a special case. In: Topics in Finite Fields, AMS Series "Contemporary Mathematics" vol. 632, pp. 359–371 (2015)

- Wolfmann, J.: Codes Projectifs à deux poids, Caps complets et Ensembles de Différences. J. Comb. Theory Ser. A 23, 208–222 (1977)
- Zhang, D., Fan, C., Peng, D., Tang, X.: Complete weight enumerators of some linear codes from quadratic forms. Cryptogr. Commun. 9(1), 151–163 (2017)
- Zhou, Z., Li, N., Fan, C., Helleseth, T.: Linear code with two or three weights from quadratic bent functions. Des. Codes Cryptogr. 81(2), 283–295 (2016)