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Abstract We introduce a construction of binary 3-weight codes and near-bent func-
tions from 2-weight projective codes.
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1 Introduction

In a recent paper [19] it is mentioned that linear codes with few weights have applica-
tions in secrete sharing, authentication codes, association schemes and strongly regular
graphs. These codes were the topic of several recent papers [5,11,18,19].

On the other hand, bent functions and near-bent functions are boolean functions
interesting for coding theory, cryptology and well-correlated binary sequences and
were the topic of a lot of works (for instance see [1,4,6,10,12,14-16]).

In this paper we introduce in the binary case a construction of 3-weight codes from
every 2-weight code, with one exception (in [19] such a construction is restricted to
codes from quadratic bent functions).

Furthermore we deduce a construction of near-bent functions always from 2-weight
binary codes.

The paper is organized as follows:

In Sect. 2 we recall classical definitions on boolean functions and binary linear
codes and we specify the vocabulary used in the paper. Further more, a new definition
is introduced in Sect. 2.3. Section 3 is devoted to 1-weight and 2-weight binary codes.
Useful results and examples are given with references and sometimes proofs are given
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for sake of convenience. Section 4 contains the main result with its proof and examples.
In Sect. 5 we deduce near-bent functions from special 2-weight codes.

2 Preliminaries

I3 is the finite field of order 2 and an m-boolean function is a map from 7' to 5. As
usual, in order to benefit from the properties of a finite field we identify the [F»-vector
space 5" with the finite field F». We denote Fy ~{0} by F7,.
The weight of a m-boolean function f is the number of x in [Fo» such that f(x) = 1.
The Fourier transform (or Walsh transform) f of an m-boolean function f is the
map from Fp» into Z defined by:

f) =Y cp,, (—DI O Hren

where ¢r is the trace of Fom over F. f (v) is called the Fourier coefficient of f at the
point of v.

Notation: If e € Fpm then 7,(x) = tr(ex) where tr is the trace of Fom.
It is well-known and easy to prove that:

F0)=—-202"—n) and ifv£0, f(v) =—-2(n—2w,)

where n is the weight of f and w, is the weight of f * #, where * is the product of
boolean functions.

2.1 Bent and near-bent functions

A m-boolean function F is bent if all its Fourier coefficients are in {—2"/2, 2/2}.

F is near-bent if all its Fourier coefficients are in {—2"+1D/2 o, 20m+1/2)

Since the Fourier coefficients are in Z, bent functions exist only when m is even
and near-bent functions exist only when m is odd.

If m = 2t — 1 then F is a near-bent function if all its Fourier coefficients are in
{=21, 0, 2'}.

The distribution of the Fourier coefficients of a (2t — 1)-near bent function f is
well known (see [1, Proposition 4]).

f(v)=2"  number of v: 2273 4 (—1)/ @212
fw)=0 number of v: 22/~2 ‘
f(v) = =2' number of v: 2273 — (—1)/ @212,

2.2 Binary linear codes
We assume that the reader is familiar with the classical definitions and results of the

theory of algebraic coding (see [7,9]).
Recall first classical definitions.
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Definition 1 Let C be a binary linear code of dimension k and length n. Let B] and
B> respectively the number of words with weight 1 and the number of words with
weight 2 in the orthogonal of C.

(1) C is said to be a projective code if By = 0 and B, = 0.
(2) If B, =0:

e Asub-set E ={ej,ep,...,e,}0f ]F;k is said to be a support of C if
C ={m, = (tr(aeyr), tr(aey), ...tr(ae,)) | a € Fy}

where ¢ is the trace of Fyx.

o If m, = (tr(aey), tr(aes), ...tr(ae,)) is a word of C then the support of m, is
supp(mg)={e; | tr(ae;) = 1}.

e A defining function of C is a k-boolean function indicator of a support of C.

If G is a generator matrix of C then B, = 0 means that the columns of G are two
by two distinct and B; = 0 means that there is no zero vector in the set of columns of
G.

Example: Let G be a generator matrix of a binary linear code C with By = 0: If
¢i is a column of G then let ¢; be the element of [F,2 such that ¢; is the system of
components of e; with respect to a given basis of Fy2:. Then the set {e;}i=1.. n is a
support of C.

Example:
1 0[24 (x28 (122 (:(5 alf) 0[26
0, 1, 1, 1, 0, 1, 1
0, 1, 0, 0, 0, 1, 0
=0, L L L L 0 I
0, 1, 1, 0, 0, I, 1
1, 0, 0 1 1 1 1

)

’

With Fys = F(«) and o +a? + 1 = 0, the support of C obtained by the columns of
G is:

{1’0[5’ a16, a22, Ot24,0{26, aZS}‘

A defining function of C is:

tr(a6x+a10x3+a13x5~|—a8x7+a27x“—i—a“xls—i—x?’l)

where 7 is the trace of [Fys.
Remark 2 — Of course, a binary linear code with By = 0 has several supports and
several defining functions depending of the choice of the generator matrix and

the choice of the basis of [F,>.. However all the supports are equivalent under the
action of the linear group of Fox.
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— A binary projective linear code is completely determined by one of its defining
functions and every boolean function f such that f(0) = 0O defines a binary
projective linear code.

Definition 3 If E is a support of a binary projective code C of dimension k then the
complement code of C is the code whose support is sz NE.

The proof of the next proposition is obvious.

Proposition 4 The complement code of C is a projective code.
The weights of a complement of C are the 2~1 — w; where the w; are the weights
of C.

2.3 Doubly restricted code

Now we introduce a new definition.
We restrict any binary projective code of dimension & to one of its k — 1 subspace
defined by a word m and we restrict the new code to the support of m.

Definition 5 Let C be a binary linear code of dimension k. Let m be a word of C.

e The restricted code of C with respect to m is the complementary space of {0, m}
in C denoted by C,,.

e The doubly restricted code of C with respect to m is the restricted code of Cy, to
the support of m. It is denoted by Cpn.

2.3.1 Generator matrices

G, Gy, Gm are respectively generator matrix of C, C,, C~‘m The rows of G form a
basis of C with m as first row.

G— mD, m@ o, m®, .. m®
—\ 9, v, 17 Vi, ono Up
where m = (m(l), m® m® . m@, . m(")) and v; stands for a binary column

vector of length k — 1.
Deleting the first row of G we get a generator matrix of C,,.

G = (D1, U2y 03y« e nveen Bivers )

In order to obtain a generator matrix of C‘m we restrict the columns of G,, to the
support of m.

G = (Ui, Uiy ... V)
where m@, m@) ;v are the non-zero components of m.
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Example:
010010111111101101000
111111110000000000000

c_|0to0001000101 11011000
0011010101 00001001100
000011000011 00011011°0
0010001000001 101010T1°1
11111111000000000O0O0GO00O0
0100001000101 11011000

Gn=1001101010100001001100
000011000011000110110
0010001000001 101010T1°1
111100000000
1010001071101

Gn=l0001010001°071
010000110010
001000001011

3 1-Weight and 2-weight codes

If N € N~ {0} then a code C is an N -weight code if AV is the cardinality of the set of
non-zero weights of C.

First recall the first three Pless identities which are the main tool to prove results in
this section.

3.1 Pless identities

The Pless identities are well-known. We recall the first three identities in the binary
case (see [8, Section II, page 50]).

Proposition 6 Let C be a binary linear code of length n, dimension k and with N
weights wi, i =1,2,..., N.
Ay, is the number of words of C with weight w; and B; is the number of words of C
with weight i in the orthogonal of C respectively.

Then:

2) YN wiAy, = (n— B2kl
3) YN, w?Ay, = {n(n+1) —2nB; + 2B)2k 2.

The following Proposition 7 and Corollary 8 are well known. Proposition 10 was
already published in [13]. The proofs are given here for reader’s convenience.
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3.2 Binary 1-weight codes

Proposition 7 If C is a binary linear 1-weight code of length n dimension k with w
as unique non-zero weight then there exists . € N such that:

n— B = A(Zk —1) and w= a2k
Proof In this case the second Pless identity is:
Q2 = DHw = (n — B)2K .
Since 2! and 2% — 1 are coprime then 2¥~! divides w.
We obtain w = 225! and consequently n — B = A (2% — 1). O

Corollary 8 If C is a binary projective 1-weight code of length n dimension k with w
as unique non-zero weight then:

n=2-1 and w=2"

Proof The proof is obvious. O

The following definition is classical.

Definition 9 (Simplex code) The previous result shows that a defining set of such a
code is T~ {0}. It is called a binary Simplex code of length 2% — 1

3.3 Binary 2-weight codes

For further use we need the following propositions.

Proposition 10 Let C be a binary 2-weight code of length n, dimension k and weight
w1 and ws.

k
(a) Define F(n, wy, wa, k) = n? — [2(w; + wa) — 1]n+ (2_211#
(4) If C is a projective code then F(n, wi, wa, k) = 0.
(b) Let Ay, and Ay, be respectively the numbers of words of weights w| and w».
Then:
(5) Ay, = F=Dw—(—5)
1

wy—wi
_ k=1 nk
6 v, = o2
where By is the number of words of weight 1 in the orthogonal of C.

Proof e Proof of (a):
Since C is projective then By = By = 0 and the first Pless identities are:

(1) Ay, + Ay, =2F—1.

) wiAy, + wrA,, =n2kL
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() wiAy, +wiAy, =n(n+ 1)282,
Let consider the following polynomial over Z:
x—w))x —wy) =ag+aix +x2.
We know that ag = wiw», and a; = — (w1 + wy).

The combination ag(1") + a1 (2') + (3) gives:

Ay, (@0 + arwy + wh) + Ay, (a0 + ajwy + w3) = ap(2F — 1) + ayn2k~!
+n(n + 1)252,

From the definition of ag and a;: ag + ajwi + w% =ag+ajwy + w% =0.
And this leads to the expected result.
e Proof of (b):

The result is obtained by solving the linear system of identities (1”) and (2'). O

The following lemma was proved by Delsarte.

Lemma 11 (Delsarte) If w; and wy are the weights of a binary projective 2-weight
code then there exist a € N* and r € N such that

w) = a2 and wr = (a + 1)2".

Proof See [3, Section 3, Corollary 2, page 53]. O

3.4 Semi-primitive code

Definition 12 Let C be an irreductible cyclic code of length n over F, with (n, g) = 1.
Let F« be the splitting field of x" — 1 over Fy and let d such that nd = gF —1and
d>2.

C is called a semi-primitive code if k = 2¢ and if there exists a divisor r of ¢ such
that " = —1mod d.

Proposition 13 Let C be a semi-primitive code and let k, r, t, d be defined as above.
The weight distribution of C is:

e n(d — 1) words of weight wy = (g — 1)q"'™! [qtd__e]'

e 1 words of weight wy = (¢ — 1)g'~! [%‘i_l)].
where € = (—1)5.
Proof See [2,9]. O
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520 J. Wolfmann

3.5 A special case

The first proposition below was proved in [17] and the second one seems to be new.

Proposition 14 If the support E of a binary projective code C of dimension k is the
complement of a subspace S and if the dimension of S is s then:

(a) The length of C isn = 2k —2°
(b) The weight distribution C is:

25=S — 1 words of weight 2k=1
2K — 2= words of weight 2k=1 — 251,

Proof Let n be the length of C and let m, be a word of C.

mgq = (tr(aey), tr(aez), ...tr(ae,)) witha € Fa.
mg = (tr(aey), tr(aey)...tr(aexs—1) where {ej,ep,...es_1}=S.

The concatenation of m, and 7, is a word of the Simplex code of length 2¥ — 1
whence its weight is 251,

(1) Ifthehyperplane H, of F5« with equation¢r(ax) = O contains S then the weight of
g is 0 and then the weight of m,, is 25 — 1. There exist 2% — 1 such hyperplanes.

(2) If Sis not in H, then H, N S contains 2°~! elements of S and the weight of m,
is 281 — 25—1 and we have 2X — 255 words of this type.

]

Proposition 15 If a projective code C of dimension k is a 2-weight code and if one
of the weights is 25~ then a support of C is a complement of a subspace.

Proof Let n be the length of C and let C be the complement of C. The length of C is
i=2—1-n.

If the weights of C are wy = 2k=1 and ws then wy < 25! and the weights of C are
2k=1 _ w1 = 0 and 2k=1 _ wy. Hence C is a 1-weight code with weight k=1 _ wo.
Then C is a 1-weight projective code and according to Corollary 8 there exists r such
that 7 = 2" — 1 and F»r ~.{0} is a defining set of C. In other words C is the complement
set of a subspace. O

4 3-Weight codes from binary 2-weight codes

The next theorem is the main result of this work.
Notation:

If Eis a set then | E | denotes the cardinality of E.

Fori = 1,2 E; is the set of words of weight w; in C and A4; is the cardinality of
E;.

E" is the set of words of weight w; in Cy, and A}" is the cardinality of E}".

— B{" is the number of words of weight 1 in the orthogonal of Cy,.
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Remark 16 By" is also the number of zero-vectors among the columns of a generator
matrix of Cy,. This number is independent of the choice of such a generator matrix.
We now use the generator matrix introduced in Sect. 2.3.1. Note that O is a column

of G, if and only if ((l)) or (8) is a column of G.

Because C is a projective code then (J) is not a column of G and () can be a

0
column of G at most once. Conclusion:
Ri: B =0or B" = 1.

On the other hand, v;, is a column of Gm if and only if (171 ) is a column of G. Since
1

C is projective then:

Ro: Thev; I =1,2,... w are distinct and v;, = 0 at most once.

Theorem 17 Let C be a binary projective 2-weight code of dimension k with weights
w1 and wy. Let m be a word of C with weight w. Let E be a support of C.

If E is not the complement of a subspace then:

The doubly restricted code Cpn of C is a projective three-weight code of length w
and dimension k — 1 and the weights of Cy, are:

1 1 1
E[w— (wr —wy2)], T §[w+(w1 —w2)].

Proof From the definition the weights of C,, are the cardinalities of the intersections
of supp(m) with the supports of the words of C,,. In other words they are:

w(my * m) where my € EY' and w(my * m) where my € E3'.

Since w(mi +m) = w(imy) + w(im) — 2w(m * m) and w(my +m) = w(mo) +
w(m) — 2w (my * m), we have:

w(my *m) = %[w(ml) + w(m) — w(m; 4+ m)] and similarly:
wmy xm) = [w(mz) + w(m) — w(my + m)].

Consequently

(a) If there exists m € E;" such that m; +m € E; then
w(my *m) = %w(m).

(b) If there exists m| € E" such that m +m € E then
wimy xm) = 3[w(m) + (wy — wa)].

(c) If there exists my € E7' such that my +m € Ej then
w(my xm) = [w(m) — (wi — wy)].

(d) If there exists mp € E7' such that mp +m € E; then
w(my xm) = %w(m).

Conclusion: the weights of Cn belong to the set:

1 1 1
{E[w — (w1 —wy)], T E[w + (wy — wz)}.
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We are now facing the problem to search if the cases (a), (b), (c), (d) effectively
exist.
First remark, from the definition of C,,, that:

(x) C=Cp+ (m+ Cp) and,
since m is not in Cp,:
(xx) CpN(m+Cyp) =0.
Fori, j € {1, 2}, define E(; ;) as the set of words with weight w; in (m + E[").
Our task is to prove that, with one exception, properties (a), (b), (c), (d) are satisfied
or, equivalently that £ 1), £ 1), E1,2), E(2,2) are not empty.

Our strategy now is to examine what happen when such sets are not empty.

Step 1

Casel: Eq =9, Eoqn=9

In this case there is no word of weight w; in m + C,,. Therefore the words of weight
wy in C are the elements of E!" and w if w = w;. Thus:

A=Al +ewithe = lifw =wjande = 0if w = ws.
We find from (5) and (6) of Proposition 10:
Q) @' —ewy+ew — (n—By")2F2=0.

- Ife =0and B" =0:
(Q) gives 2wy = n and with (4) of Proposition 10 we obtain 2k — Hw; =
Qw; — 1)2"_1. Since 2w; — 1 # 0 and because 2k _ 1 and 2! are coprime
then 28—! divides w; and thus w; = ,qu_l. The case i > 2 is not possible since
wy < 2k=1 and therefore w] = 2k=1 According to Proposition 15, E is the
complement of a subspace.

- Ife=0and B = 1:
With () we have 2wy = n + 1. Using (4) we have: wi—1—n) =0.1If
2¥ — 1 —n = 0 then C is the simplex code (see Definition 9), which is not a 2
weight code. Hence w; = 0 which is not possible.

- Ife =1and Bf' = 0:
(0) gives 25=2Qwy — n) = wy — wy.
Following Delsarte (Lemma 11) we know that the two weights are a2” and (a +
1)2". The previous result gives 2572 | 2wy —n) |= 2" thatis 287277 | 2w, —n) |=
1. Then 2¥=2=" = 1 and | 2wy —n) |= 1. It comes r = k — 2. Because a > 1 then
one of the weights is (a + 1)25=2 which is greater or equal than 2€~!. Therefore,
this weight is 2! and then C is the complement of a subspace.

- Ife=1and By =1:

With the same method we find 2¥~2(2w, —n — 1) = ws — w) and this leads to the
same conclusion: a support of C is the complement of a subspace.

Finally, if E is not the complement of a subspace then E(,1) = ¥ and Ep,1) =¥
is not possible. Conclusion:
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(Cy) If E is not the complement of a subspace then

Eqn #WorEqy) # 0.
Case2 :Eq1) =9, EQ1 #Y

In this case:

A=A+ 1 Epy | +€ withe =1lifw=wjande =0if w = w,.

Since all the weights of m + E{* are w; and | m + EJ' |=| EY' |, then:

Ay = AT+ Ep |+ withp =1if w =wrand p = 0if w = w;.

We deduce: A + Ay =2A7+ | Eoy | + | E@) | +1.

On the other hand m + E;" = Ep1y)UE@py2 and Ep 1y N Ep2 = ¥ whence
| E@y |+ 1 E@o |=Ilm+ EY |=| Ey |= AY.

Finally:

A+ Ay = AT+ AT + AT+ 1.

We know that A; +.4, = 2K —1 and Al + AT = 2k=1_1. This gives: Al = 2k=1_1
and we conclude that C,, is a 1-weight code of dimension k — 1.

According to Proposition 7: n — BI" = 12! — 1) and w = 22872 with A €
N~ {0}.

The length of C,, is also the length of C and w; is a weight of C. Then A > 2 is
impossible since the length of a projective code of dimension k is at most 2¢ — 1 and
a weight of such a code is at most 2€~!

The unique solutionis A = 1 and n — B} = 2k=1 — 1, w; = 2k=2,

(I) From (4) we have: F(n, wy, wa, k) = 0.

(i) If B = 1 then n = 2K=1. With w; = 2¢=2 condition (1) gives wy = 21
Once again this proves that E is the complement of a subspace.

(i) If B™ = 0thenn = 251 — 1, w; = 2¥=2 and (I) gives wp = 0 which is not
possible.

Then if E is not the complement of a subspace then E(,1) = ¥ and E¢,1) # @ is
not possible. Conclusion:

(Cp) If E is not the complement of a subspace then
E(l,l) 75 # or E(2,1) = .
Case3:Eq1) #9, Egiy=9

Using the same method we find A% = 2¥=1 — 1 and thus:
(C3) If E is not the complement of a subspace then
Eqn=9¥ or Ep1 #0.
Partial conclusion: Since E(1,1y 7# ¥ or E(21) # ¥ and because neither (E(j,1) = ¢

and E,1) # Y) nor (E(1,1) # ¥ and E 2 1) = ) are true, then:

@ Springer



524 J. Wolfmann

(C4) If E is not the complement of a subspace then
Eay # ¢ and Eo 1y # A.

Step 2

Replacing E(1,1y and E(2 1) respectively by E(j ) and E(2 7y and using the method of
Step 1 we have a similar result:

(Cs) If E is not the complement of a subspace then
E(l,l) 75 ¢ and E(2,1) 75 @.

General conclusion

(C) If E is not the complement of a subspace then E(1,1), E@,1y, E1,2), E,2) are
not empty.

This is the proof that (a), (b), (c), (d) are satisfied and thus the theorem is proved. O
Remark 18 The previous result is independent of the choice of E because, in one hand

all support of C and in other hand all subspaces of a given dimension, are equivalent
under the action of the linear group of Fyx.

4.1 Examples

Recall that the weights of C,, are:
= —1[ — (w1 — w)] = —1 = —1[ (w; — wy)]
w w w wy)], w w, w w4+ (w wy)].
1 > 1 2 2 > 3 3 1 2

4.1.1 Semi-primitive code

The weights of C are w; = 2/~! <2td—_é> and wy = 27! (W)
The weights of C,, are:

1 1 1
wy = E[w —(wy —wy)], w2 = Tt w3 = E[w + (w1 — wo)].

With w = wj we find:

o —1 2 —
W = 2'2 (&) . Wy =22 <_6) .
d d

2 1
by = 212 (—Efld + )) .
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With w = w, we find:

t _ t _
By = 212 (2 +6(§d 1))’ By = 212 <2 +€C(id 1)>’

by — 512 <2’ —e> -
d

4.1.2 Bent function code

If the support of a code C is the support of a bent function then it is well known (see
[12]) that the dimension of C is 2 and the two weights of C are w; = 2%~2 and
wy =222 — 2!~ where € € {—1, +1}.

Ifw=w:

W) = 22t—3 _ €2t_2, Wy = 22[—37 w?’ — 22[—3 + 62.[_2.
If w= w;:

wl — 22t—3 _ €2t_1, 71)2 — 221—3 _ €2t—2’ 11)3 — 22t—3.

5 Near-bent functions from 2-weight code

Theorem 19 Let C be a binary projective linear 2-weight code of dimension 2t with
weights w1 and wy such that a support of C is not the complement of a subspace.

(a) Ifthere exists awordm in C withweight w = 22=2—n2'"Vwithn € {—1, 0, +1}
and
(b) If | wy —wy |=2"""

then every defining function of the doubly restricted code Cn is a near-bent function.

Proof Note that the dimension of is 2¢ — 1 and the length of C 'm 1S w which also is
the weight of f. Then:

o Ifw=2%"2—n2"lthen f(0) =2(2%2 — 2¥~2 — n2'~1)) = n2".
o If w =2%"2then f(0) =2(2% % —2%2) = 0.
o If v # O then f(v) = —2(n — 2w,).

If f is a defining function of C,n then n = w and for every v the w, are the weights
of Cput 3w — (w1 — w)], Jw, 3w + (wi — wy)].
With | wy — wy |= 271

f) = =2[w—[w— (w; —w)] =2
or
f) = —2[w —[w]] =0
or
F) = =2[w — [w — (wy +wy)] = +2".
O
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5.1 Weight distribution

The defining function involved in the previous theorem is a three-valued boolean func-
tion. The distribution of a three-valued m-boolean function is given in [1, Proposition
4].

Assume that the hypotheses of Theorem 19 are satisfied for a code C. Using the
link, which appears in the proof of the theorem, between the weights of C,, and the
Fourier coefficients of f, and using [1, Proposition 4], we are able to determine the
weight distribution of C m -

Theorem 20 If C is a binary projective 2-weight code satisfying the hypothesis of
Theorem 19 then the weight distribution of Cy, is as follows. (iff stands for if an only

if).

Weight Number of words

Flw — (wy — wy)] 2213 1 212 _ g withg = 1iffnp =1
fw 22=2 _y withy = 1iffn =0
3w + (wy — wy)] 2203 _01=2 _ gy withew = 1iff = —1

Proof We just have to connect the weights of C,, with the Fourier coefficients of f
as in the proof ofATheorem 19, then use the coefficient diStI'ibl}tiOIl introduced in 2.1
and remark that f(0) = —2"ifn =1, f(0) =0ifn =0and f(0) =2"ifn=—1.0

5.2 Examples
5.2.1 Special semi-primitive code

Let us consider the binary cyclic code C of dimension 6 and length 21 with generator
g0) =14+ x2 4 x5 + x84 x9 4 x12 4 x4 4 415,

This is a semi-primitive code with t =3, d =3, r = 1, € = —1 the weights are
wi =222 = 12and wy = 22(E52) =8,

Remark that 12 = 2%~2 — 2/~! whence part (a) of Theorem 19 holds. Then:

If m is a word of weight 12 in C and if f is a defining function of the doubly
restricted code C,, of C then f is a near-bent function. This is the example of Sect.
2.3.1.

With Fps = () and o’ +a?+1 = 0, the support of C,,, obtained by the columns
of G, is:

E=1{0,1,a, O[2, Ol6, O{7, aS,al8’ 0120, Ol21, 0525, 0130}

A defining function of C, indicator of E is:

tr(l +a4x+a11x3 +a22x5+a24x7 +a28x11 +a17x15)
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where tr is the trace of [F5s.
It seems that this is the unique semi-primitive code satisfying the conditions of
Theorem 19.

5.2.2 Bent function code

Theorem 21 Let C be a binary linear code such that a support of C is the support of
a bent function. Let m be a word of C.

If f is a defining function of the doubly restricted code C, then f is a near-bent
function.

Proof 1t is well known (see [12]) that the dimension of C is 2¢ and the two weights
of C are w; = 222 and wy = 222 — ¢2'~! where € € {—1, +1}. And we have
wi — wy = €21, The conclusion comes directly from Theorem 19. O

6 Conclusion

We have constructed binary 3-weight codes and near-bent functions from 3-weight
codes. An open question now is to find new examples of near-bent functions obtained
with Theorem 19.
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