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Abstract We introduce a construction of binary 3-weight codes and near-bent func-
tions from 2-weight projective codes.

Keywords 2-weight codes · 3-weight codes · Near-bent functions

1 Introduction

In a recent paper [19] it is mentioned that linear codes with few weights have applica-
tions in secrete sharing, authentication codes, association schemes and strongly regular
graphs. These codes were the topic of several recent papers [5,11,18,19].

On the other hand, bent functions and near-bent functions are boolean functions
interesting for coding theory, cryptology and well-correlated binary sequences and
were the topic of a lot of works (for instance see [1,4,6,10,12,14–16]).

In this paper we introduce in the binary case a construction of 3-weight codes from
every 2-weight code, with one exception (in [19] such a construction is restricted to
codes from quadratic bent functions).

Furthermore we deduce a construction of near-bent functions always from 2-weight
binary codes.

The paper is organized as follows:
In Sect. 2 we recall classical definitions on boolean functions and binary linear

codes and we specify the vocabulary used in the paper. Further more, a new definition
is introduced in Sect. 2.3. Section 3 is devoted to 1-weight and 2-weight binary codes.
Useful results and examples are given with references and sometimes proofs are given
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514 J. Wolfmann

for sake of convenience. Section 4 contains themain result with its proof and examples.
In Sect. 5 we deduce near-bent functions from special 2-weight codes.

2 Preliminaries

F2 is the finite field of order 2 and an m-boolean function is a map from F
m
2 to F2. As

usual, in order to benefit from the properties of a finite field we identify the F2-vector
space F

m
2 with the finite field F2m . We denote F2k�{0} by F

∗
2k
.

Theweight of am-boolean function f is the number of x inF2m such that f (x) = 1.
The Fourier transform (or Walsh transform) f̂ of an m-boolean function f is the

map from F2m into Z defined by:

f̂ (v) = ∑
x∈F2m (−1) f (x)+tr(vx)

where tr is the trace of F2m over F2. f̂ (v) is called the Fourier coefficient of f at the
point of v.

Notation: If e ∈ F2m then te(x) = tr(ex) where tr is the trace of F2m .
It is well-known and easy to prove that:

f̂ (0) = −2(2k−1 − n) and if v �= 0, f̂ (v) = −2(n − 2wv)

where n is the weight of f and wv is the weight of f ∗ tv where ∗ is the product of
boolean functions.

2.1 Bent and near-bent functions

A m-boolean function F is bent if all its Fourier coefficients are in {−2m/2, 2m/2}.
F is near-bent if all its Fourier coefficients are in {−2(m+1)/2, 0, 2(m+1)/2}.
Since the Fourier coefficients are in Z, bent functions exist only when m is even

and near-bent functions exist only when m is odd.
If m = 2t − 1 then F is a near-bent function if all its Fourier coefficients are in

{−2t , 0, 2t }.
The distribution of the Fourier coefficients of a (2t − 1)-near bent function f is

well known (see [1, Proposition 4]).

f̂ (v) = 2t number of v: 22t−3 + (−1) f (0)2t−2

f̂ (v) = 0 number of v: 22t−2

f̂ (v) = −2t number of v: 22t−3 − (−1) f (0)2t−2.

2.2 Binary linear codes

We assume that the reader is familiar with the classical definitions and results of the
theory of algebraic coding (see [7,9]).

Recall first classical definitions.
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Definition 1 Let C be a binary linear code of dimension k and length n. Let B1 and
B2 respectively the number of words with weight 1 and the number of words with
weight 2 in the orthogonal of C .

(1) C is said to be a projective code if B1 = 0 and B2 = 0.
(2) If B2 = 0:

• A sub-set E = {e1, e2, . . . , en} of F
∗
2k

is said to be a support of C if

C = {ma = (tr(ae1), tr(ae2), . . . tr(aen)) | a ∈ F2k }

where tr is the trace of F2k .
• If ma = (tr(ae1), tr(ae2), . . . tr(aen)) is a word of C then the support of ma is
supp(ma)={ei | tr(aei ) = 1}.

• A defining function of C is a k-boolean function indicator of a support of C .

If G is a generator matrix of C then B2 = 0 means that the columns of G are two
by two distinct and B1 = 0 means that there is no zero vector in the set of columns of
G.

Example: Let G be a generator matrix of a binary linear code C with B2 = 0: If
c̄i is a column of G then let ei be the element of F22t such that c̄i is the system of
components of ei with respect to a given basis of F22t . Then the set {ei }i=1...N is a
support of C .

Example:

G =

1, α24, α28, α22, α5, α16, α26

0, 1, 1, 1, 0, 1, 1
0, 1, 0, 0, 0, 1, 0
0, 1, 1, 1, 1, 0, 1
0, 1, 1, 0, 0, 1, 1
1, 0, 0, 1, 1, 1, 1

With F25 = F2(α) and α5 + α2 + 1 = 0, the support of C obtained by the columns of
G is:

{1, α5, α16, α22, α24, α26, α28}.

A defining function of C is:

tr(a6x + a10x3 + a13x5 + a8x7 + a27x11 + a11x15 + x31)

where tr is the trace of F25 .

Remark 2 – Of course, a binary linear code with B2 = 0 has several supports and
several defining functions depending of the choice of the generator matrix and
the choice of the basis of F22t . However all the supports are equivalent under the
action of the linear group of F2k .
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– A binary projective linear code is completely determined by one of its defining
functions and every boolean function f such that f (0) = 0 defines a binary
projective linear code.

Definition 3 If E is a support of a binary projective code C of dimension k then the
complement code of C is the code whose support is F

∗
2k

�E .

The proof of the next proposition is obvious.

Proposition 4 The complement code of C is a projective code.
The weights of a complement of C are the 2k−1 − wi where the wi are the weights

of C.

2.3 Doubly restricted code

Now we introduce a new definition.
We restrict any binary projective code of dimension k to one of its k − 1 subspace

defined by a word m and we restrict the new code to the support of m.

Definition 5 Let C be a binary linear code of dimension k. Let m be a word of C .

• The restricted code of C with respect to m is the complementary space of {0,m}
in C denoted by Cm .

• The doubly restricted code of C with respect to m is the restricted code of Cm to
the support of m. It is denoted by C̃m .

2.3.1 Generator matrices

G, Gm , G̃m are respectively generator matrix of C , Cm , C̃m . The rows of G form a
basis of C with m as first row.

G =
(
m(1), m(2), m(3), . . . . . . m(i), . . . ,m(n)

v̄1, v̄2, v̄3, . . . . . . v̄i , . . . v̄n

)

wherem = (m(1),m(2),m(3), . . . . . .m(i), . . . ,m(n)) and v̄i stands for a binary column
vector of length k − 1.

Deleting the first row of G we get a generator matrix of Cm .

Gm = (v̄1, v̄2, v̄3, . . . . . . . . . v̄i , . . . , v̄n)

In order to obtain a generator matrix of C̃m we restrict the columns of Gm to the
support of m.

G̃m = (v̄i1 , v̄i2 . . . v̄iw)

where m(i1),m(i2), . . .m(iw) are the non-zero components of m.
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Example:

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0
0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0
0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Gm =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0
0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0
0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎠

G̃m =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 1 1 0 1
0 0 0 1 0 1 0 0 0 1 0 1
0 1 0 0 0 0 1 1 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 1

⎞

⎟
⎟
⎟
⎟
⎠

3 1-Weight and 2-weight codes

IfN ∈ N�{0} then a code C is anN -weight code ifN is the cardinality of the set of
non-zero weights of C .

First recall the first three Pless identities which are the main tool to prove results in
this section.

3.1 Pless identities

The Pless identities are well-known. We recall the first three identities in the binary
case (see [8, Section II, page 50]).

Proposition 6 Let C be a binary linear code of length n, dimension k and with N
weights wi , i = 1, 2, . . . , N.
Awi is the number of words of C with weight wi and Bi is the number of words of C
with weight i in the orthogonal of C respectively.

Then:

(1)
∑N

i=1 Awi = 2k − 1.
(2)

∑N
i=1 wi Awi = (n − B1)2k−1.

(3)
∑N

i=1 w2
i Awi = {n(n + 1) − 2nB1 + 2B2}2k−2.

The following Proposition 7 and Corollary 8 are well known. Proposition 10 was
already published in [13]. The proofs are given here for reader’s convenience.
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3.2 Binary 1-weight codes

Proposition 7 If C is a binary linear 1-weight code of length n dimension k with w

as unique non-zero weight then there exists λ ∈ N such that:

n − B1 = λ(2k − 1) and w = λ2k−1.

Proof In this case the second Pless identity is:

(2k − 1)w = (n − B1)2
k−1.

Since 2k−1 and 2k − 1 are coprime then 2k−1 divides w.
We obtain w = λ2k−1 and consequently n − B1 = λ(2k − 1). ��

Corollary 8 If C is a binary projective 1-weight code of length n dimension k with w

as unique non-zero weight then:

n = 2k − 1 and w = 2k−1.

Proof The proof is obvious. ��
The following definition is classical.

Definition 9 (Simplex code) The previous result shows that a defining set of such a
code is F2k�{0}. It is called a binary Simplex code of length 2k − 1

3.3 Binary 2-weight codes

For further use we need the following propositions.

Proposition 10 Let C be a binary 2-weight code of length n, dimension k and weight
w1 and w2.

(a) Define F(n, w1, w2, k) = n2 − [2(w1 + w2) − 1]n+ (2k−1)w1w2
2k−2 .

(4) If C is a projective code then F(n, w1, w2, k) = 0.
(b) Let Aw1 and Aw2 be respectively the numbers of words of weights w1 and w2.

Then:
(5) Aw1 = (2k−1)w2−(n−B1)2k−1

w2−w1

(6) Aw2 = (n−B1)2k−1−(2k−1)w1
w2−w1

where B1 is the number of words of weight 1 in the orthogonal of C.

Proof • Proof of (a):
Since C is projective then B1 = B2 = 0 and the first Pless identities are:

(1′) Aw1 + Aw2 = 2k − 1.

(2′) w1Aw1 + w2Aw2 = n2k−1.
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(3′) w2
1Aw1 + w2

2Aw2 = n(n + 1)2k−2.

Let consider the following polynomial over Z:

(x − w1)(x − w2) = a0 + a1x + x2.

We know that a0 = w1w2 and a1 = −(w1 + w2).
The combination a0(1′) + a1(2′) + (3) gives:

Aw1(a0 + a1w1 + w2
1) + Aw2(a0 + a1w2 + w2

2) = a0(2
k − 1) + a1n2

k−1

+ n(n + 1)2k−2.

From the definition of a0 and a1: a0 + a1w1 + w2
1 = a0 + a1w2 + w2

2 = 0.
And this leads to the expected result.

• Proof of (b):

The result is obtained by solving the linear system of identities (1′) and (2′). ��

The following lemma was proved by Delsarte.

Lemma 11 (Delsarte) If w1 and w2 are the weights of a binary projective 2-weight
code then there exist a ∈ N

∗ and r ∈ N such that

w1 = a2r and w2 = (a + 1)2r .

Proof See [3, Section 3, Corollary 2, page 53]. ��

3.4 Semi-primitive code

Definition 12 LetC be an irreductible cyclic code of length n overFq with (n, q) = 1.
Let Fqk be the splitting field of xn − 1 over Fq and let d such that nd = qk − 1 and
d ≥ 2.

C is called a semi-primitive code if k = 2t and if there exists a divisor r of t such
that qr ≡ −1mod d.

Proposition 13 Let C be a semi-primitive code and let k, r, t, d be defined as above.
The weight distribution of C is:

• n(d − 1) words of weight w1 = (q − 1)qt−1
[
qt−ε
d

]
.

• n words of weight w2 = (q − 1)qt−1
[
qt+ε(d−1)

d

]
.

where ε = (−1)
t
r .

Proof See [2,9]. ��
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3.5 A special case

The first proposition below was proved in [17] and the second one seems to be new.

Proposition 14 If the support E of a binary projective code C of dimension k is the
complement of a subspace S and if the dimension of S is s then:

(a) The length of C is n = 2k − 2s

(b) The weight distribution C is:

2k−s − 1 words of weight 2k−1

2k − 2k−s words of weight 2k−1 − 2s−1.

Proof Let n be the length of C and let ma be a word of C .

ma = (tr(ae1), tr(ae2), . . . tr(aen)) with a ∈ F2k .
m̄a = (tr(aē1), tr(aē2) . . . tr(aē2s−1) where {ē1, ē2, . . . ē2s−1} = S.

The concatenation of ma and m̄a is a word of the Simplex code of length 2k − 1
whence its weight is 2k−1.

(1) If the hyperplane Ha ofF2k with equation tr(ax) = 0 contains S then theweight of
m̄a is 0 and then the weight ofma is 2k −1. There exist 2k−s −1 such hyperplanes.

(2) If S is not in Ha then Ha ∩ S contains 2s−1 elements of S and the weight of ma

is 2k−1 − 2s−1 and we have 2k − 2k−s words of this type.

��
Proposition 15 If a projective code C of dimension k is a 2-weight code and if one
of the weights is 2k−1 then a support of C is a complement of a subspace.

Proof Let n be the length of C and let C̄ be the complement of C . The length of C̄ is
n̄ = 2k − 1 − n.

If the weights ofC arew1 = 2k−1 andw2 thenw2 < 2k−1 and the weights of C̄ are
2k−1 − w1 = 0 and 2k−1 − w2. Hence C̄ is a 1-weight code with weight 2k−1 − w2.
Then C̄ is a 1-weight projective code and according to Corollary 8 there exists r such
that n̄ = 2r −1 and F2r �{0} is a defining set of C̄ . In other wordsC is the complement
set of a subspace. ��

4 3-Weight codes from binary 2-weight codes

The next theorem is the main result of this work.
Notation:

– If E is a set then | E | denotes the cardinality of E.
– For i = 1, 2 Ei is the set of words of weight wi in C and Ai is the cardinality of

Ei .
– Em

i is the set of words of weight wi in Cm and Am
i is the cardinality of Em

i .
– Bm

1 is the number of words of weight 1 in the orthogonal of Cm .
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Remark 16 Bm
1 is also the number of zero-vectors among the columns of a generator

matrix of Cm . This number is independent of the choice of such a generator matrix.
We now use the generator matrix introduced in Sect. 2.3.1. Note that 0̄ is a column

of Gm if and only if
(1
0̄

)
or

(0
0̄

)
is a column of G.

Because C is a projective code then
(0
0̄

)
is not a column of G and

(1
0̄

)
can be a

column of G at most once. Conclusion:

R1: Bm
1 = 0 or Bm

1 = 1.

On the other hand, v̄il is a column of G̃m if and only if
( 1
v̄il

)
is a column of G. Since

C is projective then:

R2: The v̄il l = 1, 2, . . . w are distinct and v̄il = 0̄ at most once.

Theorem 17 Let C be a binary projective 2-weight code of dimension k with weights
w1 and w2. Let m be a word of C with weight w. Let E be a support of C.

If E is not the complement of a subspace then:
The doubly restricted code C̃m of C is a projective three-weight code of length w

and dimension k − 1 and the weights of C̃m are:

1

2
[w − (w1 − w2)] ,

1

2
w,

1

2
[w + (w1 − w2)] .

Proof From the definition the weights of C̃m are the cardinalities of the intersections
of supp(m) with the supports of the words of Cm . In other words they are:

w(m1 ∗ m) where m1 ∈ Em
1 and w(m2 ∗ m) where m2 ∈ Em

2 .

Since w(m1 + m) = w(m1) + w(m) − 2w(m1 ∗ m) and w(m2 + m) = w(m2) +
w(m) − 2w(m2 ∗ m), we have:

w(m1 ∗ m) = 1
2 [w(m1) + w(m) − w(m1 + m)] and similarly:

w(m2 ∗ m) = 1
2 [w(m2) + w(m) − w(m2 + m)].

Consequently

(a) If there exists m1 ∈ Em
1 such that m1 + m ∈ E1 then

w(m1 ∗ m) = 1
2w(m).

(b) If there exists m1 ∈ Em
1 such that m1 + m ∈ E2 then

w(m1 ∗ m) = 1
2 [w(m) + (w1 − w2)].

(c) If there exists m2 ∈ Em
2 such that m2 + m ∈ E1 then

w(m2 ∗ m) = 1
2 [w(m) − (w1 − w2)].

(d) If there exists m2 ∈ Em
2 such that m2 + m ∈ E2 then

w(m2 ∗ m) = 1
2w(m).

Conclusion: the weights of C̃m belong to the set:

{
1

2
[w − (w1 − w2)], 1

2
w,

1

2
[w + (w1 − w2)

}

.
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We are now facing the problem to search if the cases (a), (b), (c), (d) effectively
exist.

First remark, from the definition of Cm , that:

(∗) C = Cm + (m + Cm) and,

since m is not in Cm :

(∗∗) Cm ∩ (m + Cm) = ∅.
For i, j ∈ {1, 2}, define E(i, j) as the set of words with weight w j in (m + Em

i ).
Our task is to prove that, with one exception, properties (a), (b), (c), (d) are satisfied

or, equivalently that E(1,1), E(2,1), E(1,2), E(2,2) are not empty.

Our strategy now is to examine what happen when such sets are not empty.

Step 1

Case 1 : E(1,1) = ∅, E(2,1) = ∅

In this case there is no word of weight w1 in m + Cm . Therefore the words of weight
w1 in C are the elements of Em

i and w if w = w1. Thus:

A1 = Am
1 + ε with ε = 1 if w = w1 and ε = 0 if w = w2.

We find from (5) and (6) of Proposition 10:

(♦) (2k−1 − ε)w2 + εw1 − (
n − Bm

1

)
2k−2 = 0.

– If ε = 0 and Bm
1 = 0:

(♦) gives 2w2 = n and with (4) of Proposition 10 we obtain (2k − 1)w1 =
(2w1 − 1)2k−1. Since 2w1 − 1 �= 0 and because 2k − 1 and 2k−1 are coprime
then 2k−1 divides w1 and thus w1 = μ2k−1. The case μ ≥ 2 is not possible since
w1 ≤ 2k−1 and therefore w1 = 2k−1. According to Proposition 15, E is the
complement of a subspace.

– If ε = 0 and Bm
1 = 1:

With (♦) we have 2w2 = n + 1. Using (4) we have: w1(2k − 1 − n) = 0. If
2k − 1 − n = 0 then C is the simplex code (see Definition 9), which is not a 2
weight code. Hence w1 = 0 which is not possible.

– If ε = 1 and Bm
1 = 0:

(♦) gives 2k−2(2w2 − n) = w2 − w1.
Following Delsarte (Lemma 11) we know that the two weights are a2r and (a +
1)2r . The previous result gives 2k−2 | 2w2−n) |= 2r that is 2k−2−r | 2w2−n) |=
1. Then 2k−2−r = 1 and | 2w2 −n) |= 1. It comes r = k−2. Because a ≥ 1 then
one of the weights is (a + 1)2k−2 which is greater or equal than 2k−1. Therefore,
this weight is 2k−1 and then C is the complement of a subspace.

– If ε = 1 and Bm
1 = 1:

With the same method we find 2k−2(2w2 − n − 1) = w2 −w1 and this leads to the
same conclusion: a support of C is the complement of a subspace.

Finally, if E is not the complement of a subspace then E(1,1) = ∅ and E(2,1) = ∅
is not possible. Conclusion:
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(C1) If E is not the complement of a subspace then

E(1,1) �= ∅ or E(2,1) �= ∅.
Case 2 :E(1,1) = ∅, E(2,1) �= ∅

In this case:

A1 = Am
1 + | E(2,1) | +ε with ε = 1 if w = w1 and ε = 0 if w = w2.

Since all the weights of m + Em
1 are w2 and | m + Em

1 |=| Em
1 |, then:

A2 = Am
1 + | E(2,2) | +μ with μ = 1 if w = w2 and μ = 0 if w = w1.

We deduce: A1 + A2 = 2Am
1 + | E(2,1) | + | E(2,2) | +1.

On the other hand m + Em
2 = E(2,1) ∪ E(2,2) and E(2,1) ∩ E(2,2) = ∅ whence

| E(2,1) | + | E(2,2) |=| m + Em
2 |=| Em

2 |= Am
2 .

Finally:

A1 + A2 = Am
1 + Am

1 + Am
2 + 1.

We know thatA1+A2 = 2k−1 andAm
1 +Am

2 = 2k−1−1. This gives:Am
1 = 2k−1−1

and we conclude that Cm is a 1-weight code of dimension k − 1.
According to Proposition 7: n − Bm

1 = λ(2k−1 − 1) and w1 = λ2k−2 with λ ∈
N�{0}.

The length of Cm is also the length of C and w1 is a weight of C . Then λ ≥ 2 is
impossible since the length of a projective code of dimension k is at most 2k − 1 and
a weight of such a code is at most 2k−1.

The unique solution is λ = 1 and n − Bm
1 = 2k−1 − 1, w1 = 2k−2.

(I) From (4) we have: F(n, w1, w2, k) = 0.
(i) If Bm

1 = 1 then n = 2k−1. With w1 = 2k−2 condition (I ) gives w2 = 2k−1.
Once again this proves that E is the complement of a subspace.

(ii) If Bm
1 = 0 then n = 2k−1 − 1, w1 = 2k−2 and (I ) gives w2 = 0 which is not

possible.

Then if E is not the complement of a subspace then E(1,1) = ∅ and E(2,1) �= ∅ is
not possible. Conclusion:

(C2) If E is not the complement of a subspace then

E(1,1) �= ∅ or E(2,1) = ∅.
Case 3 :E(1,1) �= ∅, E(2,1) = ∅

Using the same method we find Am
2 = 2k−1 − 1 and thus:

(C3) If E is not the complement of a subspace then

E(1,1) = ∅ or E(2,1) �= ∅.
Partial conclusion: Since E(1,1) �= ∅ or E(2,1) �= ∅ and because neither (E(1,1) = ∅
and E(1,1) �= ∅) nor (E(1,1) �= ∅ and E(2,1) = ∅) are true, then:
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(C4) If E is not the complement of a subspace then

E(1,1) �= ∅ and E(2,1) �= ∅.
Step 2

Replacing E(1,1) and E(2,1) respectively by E(1,2) and E(2,2) and using the method of
Step 1 we have a similar result:

(C5) If E is not the complement of a subspace then

E(1,1) �= ∅ and E(2,1) �= ∅.
General conclusion

(C) If E is not the complement of a subspace then E(1,1), E(2,1), E(1,2), E(2,2) are
not empty.

This is the proof that (a), (b), (c), (d) are satisfied and thus the theorem is proved. ��

Remark 18 The previous result is independent of the choice of E because, in one hand
all support of C and in other hand all subspaces of a given dimension, are equivalent
under the action of the linear group of F2k .

4.1 Examples

Recall that the weights of C̃m are:

w̃1 = 1

2
[w − (w1 − w2)], w̃2 = 1

2
w, w̃3 = 1

2
[w + (w1 − w2)].

4.1.1 Semi-primitive code

The weights of C are w1 = 2t−1
(
2t−ε
d

)
and w2 = 2t−1

(
2t+ε(d−1)

d

)
.

The weights of C̃m are:

w̃1 = 1

2
[w − (w1 − w2)], w̃2 = 1

2
w, w̃3 = 1

2
[w + (w1 − w2)].

With w = w1 we find:

w̃1 = 2t−2
(
2t + ε(d − 1)

d

)

, w̃2 = 2t−2
(
2t − ε

d

)

,

w̃3 = 2t−2
(
2t − ε(d + 1)

d

)

.
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With w = w2 we find:

w̃1 = 2t−2
(
2t + ε(2d − 1)

d

)

, w̃2 = 2t−2
(
2t + ε(d − 1)

d

)

,

w̃3 = 2t−2
(
2t − ε

d

)

.

4.1.2 Bent function code

If the support of a code C is the support of a bent function then it is well known (see
[12]) that the dimension of C is 2t and the two weights of C are w1 = 22t−2 and
w2 = 22t−2 − ε2t−1 where ε ∈ {−1,+1}.

If w = w1:

w̃1 = 22t−3 − ε2t−2, w̃2 = 22t−3, w̃3 = 22t−3 + ε2t−2.

If w = w2:

w̃1 = 22t−3 − ε2t−1, w̃2 = 22t−3 − ε2t−2, w̃3 = 22t−3.

5 Near-bent functions from 2-weight code

Theorem 19 Let C be a binary projective linear 2-weight code of dimension 2t with
weights w1 and w2 such that a support of C is not the complement of a subspace.

(a) If there exists awordm inC withweightw = 22t−2−η2t−1 withη ∈ {−1, 0, +1}
and

(b) If | w2 − w1 |= 2t−1

then every defining function of the doubly restricted code C̃m is a near-bent function.

Proof Note that the dimension of is 2t − 1 and the length of C̃m is w which also is
the weight of f . Then:

• If w = 22t−2 − η2t−1 then f̂ (0) = 2(22t−2 − (22t−2 − η2t−1)) = η2t .
• If w = 22t−2 then f̂ (0) = 2(22t−2 − 22t−2) = 0.
• If v �= 0 then f̂ (v) = −2(n − 2wv).

If f is a defining function of C̃m then n = w and for every v the wv are the weights
of C̃m : 1

2 [w − (w1 − w2)], 1
2w, 1

2 [w + (w1 − w2)].
With | w2 − w1 |= 2t−1:

f̂ (v) = −2[w − [w − (w1 − w2)] = 2t

or

f̂ (v) = −2[w − [w]] = 0

or

f̂ (v) = −2[w − [w − (w1 + w2)] = +2t .

��
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5.1 Weight distribution

The defining function involved in the previous theorem is a three-valued boolean func-
tion. The distribution of a three-valued m-boolean function is given in [1, Proposition
4].

Assume that the hypotheses of Theorem 19 are satisfied for a code C . Using the
link, which appears in the proof of the theorem, between the weights of C̃m and the
Fourier coefficients of f , and using [1, Proposition 4], we are able to determine the
weight distribution of C̃m .

Theorem 20 If C is a binary projective 2-weight code satisfying the hypothesis of
Theorem 19 then the weight distribution of C̃m is as follows. (iff stands for if an only
if).

Weight Number of words

1
2 [w − (w1 − w2)] 22t−3 + 2t−2 − θ with θ = 1 iff η = 1
1
2w 22t−2 − γ with γ = 1 iff η = 0
1
2 [w + (w1 − w2)] 22t−3 − 2t−2 − ω with ω = 1 iff η = −1

Proof We just have to connect the weights of C̃m with the Fourier coefficients of f
as in the proof of Theorem 19, then use the coefficient distribution introduced in 2.1
and remark that f̂ (0) = −2t if η = 1, f̂ (0) = 0 if η = 0 and f̂ (0) = 2t if η = −1. ��

5.2 Examples

5.2.1 Special semi-primitive code

Let us consider the binary cyclic code C of dimension 6 and length 21 with generator
g(x) = 1 + x2 + x5 + x8 + x9 + x12 + x14 + x15.

This is a semi-primitive code with t = 3, d = 3, r = 1, ε = −1 the weights are
w1 = 22( 2

3+1
3 ) = 12 and w2 = 22( 2

3−2
3 ) = 8.

Remark that 12 = 22t−2 − 2t−1 whence part (a) of Theorem 19 holds. Then:
If m is a word of weight 12 in C and if f is a defining function of the doubly

restricted code C̃m of C then f is a near-bent function. This is the example of Sect.
2.3.1.

With F25 = F2(α) and α5+α2+1 = 0, the support of C̃m obtained by the columns
of G̃m is:

E = {0, 1, α, α2, α6, α7, α8, α18, α20, α21, α25, α30}
A defining function of C , indicator of E is:

tr(1 + a4x + a11x3 + a22x5 + a24x7 + a28x11 + a17x15)
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where tr is the trace of F25 .
It seems that this is the unique semi-primitive code satisfying the conditions of

Theorem 19.

5.2.2 Bent function code

Theorem 21 Let C be a binary linear code such that a support of C is the support of
a bent function. Let m be a word of C.

If f is a defining function of the doubly restricted code C̃m then f is a near-bent
function.

Proof It is well known (see [12]) that the dimension of C is 2t and the two weights
of C are w1 = 22t−2 and w2 = 22t−2 − ε2t−1 where ε ∈ {−1,+1}. And we have
w1 − w2 = ε2t−1. The conclusion comes directly from Theorem 19. ��

6 Conclusion

We have constructed binary 3-weight codes and near-bent functions from 3-weight
codes. An open question now is to find new examples of near-bent functions obtained
with Theorem 19.
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