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Abstract Let m, e be positive integers, p a prime number, Fpm be a finite field of
pm elements and R = Fpm [u]/〈ue〉 which is a finite chain ring. For any ω ∈ R× and
positive integers k, n satisfyinggcd(p, n) = 1,weprove that any (1+ωu)-constacyclic
code of length pkn over R is monomially equivalent to a matrix-product code of a
nested sequence of pk cyclic codes with length n over R and a pk × pk matrix Apk

overFp . Using thematrix-product structures, we give an iterative construction of every
(1+ωu)-constacyclic code by (1+ωu)-constacyclic codes of shorter lengths over R.
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equivalent codes · Finite chain ring
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1 Introduction

Algebraic coding theory deals with the design of error-correcting and error-detecting
codes for the reliable transmission of information across noisy channel. The class of
constacyclic codes play a very significant role in the theory of error-correcting codes.
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Let Γ be a commutative finite chain ring with identity 1 �= 0, and Γ × be the
multiplicative group of invertible elements of Γ . For any a ∈ Γ , we denote by 〈a〉Γ ,
or 〈a〉 for simplicity, the ideal of Γ generated by a, i.e. 〈a〉Γ = aΓ = {ab | b ∈ Γ }.
For any ideal I of Γ , we will identify the element a + I of the residue class ring Γ/I
with a (mod I ) for any a ∈ Γ .

A code of length N over Γ is a nonempty subset C of Γ N = {(a0, a1, . . ., aN−1) |
a j ∈ Γ, j = 0, 1, . . . , N − 1}. Each element of C is called a codeword and the
number of codewords in C is denoted by |C|. The code C is said to be linear if C is a
Γ -submodule of Γ N . For any codeword c = (c0, c1, . . . , cN−1) ∈ C, the Hamming
weight of c is defined by wH (c) = |{ j | c j �= 0, 0 ≤ j ≤ N −1}|. Then theminimum
Hamming distance of a linear code C is equal to dH (C) = min{wH (c) | c �= 0, c ∈ C}.
If M = |C| and d = dH (C), C is called an (N , M, d)-code over Γ . All codes in this
paper are assumed to be linear.

Let γ ∈ Γ ×. A linear code C of length N over Γ is called a γ -constacyclic code
if (γ cN−1, c0, c1, . . . , cN−2) ∈ C for all (c0, c1, . . . , cN−1) ∈ C. Particularly, C is
called a negacyclic code if γ = −1, and C is called a cyclic code if γ = 1.

For any a = (a0, a1, . . . , aN−1) ∈ Γ N , let a(x) = a0 + a1x + · · · + aN−1xN−1 ∈
Γ [x]/〈xN − γ 〉. We will identify a with a(x) in this paper. It is well known that C is
a γ -constacyclic code of length N over Γ if and only if C is an ideal of the residue
class ring Γ [x]/〈xN − γ 〉. Let p be the characteristic of the residue class field of Γ .
If gcd(p, N ) = 1, C is called a simple-root constacyclic code while when p | N it is
called a repeated-root constacyclic code.

For any positive integer N , we denote [N ) = {0, 1, . . . , N − 1} in this paper.
Let C1 and C2 be codes of length N over Γ . Recall that C1 and C2 are said to
be monomially equivalent if there exists a permutation � on the set [N ) and fixed
elements r0, r1, . . . , rN−1 ∈ Γ × such that

C2 = {(r0c�(0), r1c�(1), . . . , rN−1c�(N−1)) | (c0, c1, . . . , cN−1) ∈ C1}

(cf. Huffman and Pless [13, Page 24]). Especially,C1 andC2 are said to be permutation
equivalentwhen r0 = r1 = · · · = rN−1 = 1 (cf. [13, Page 20]). Recall that amonomial
matrix over Γ is a square matrix with exactly one invertible entry in each row and
column. Hence C1 and C2 are monomially equivalent if and only if there is an N × N
monomial matrix Q over Γ such that Q · C1 = {Qξ | ξ ∈ C1} = C2 in which we
regard each ξ ∈ C1 as an N × 1 column vector over Γ .

From now on, let m and e be positive integers, p a prime number, Fpm be a finite
field of pm elements and denote

R = Fpm [u]/〈ue〉 = Fpm + uFpm + · · · + ue−1
Fpm (ue = 0).

It is known that R is a finite chain ring with subfield Fpm , uR is the unique maximal
ideal and e is the nilpotency index of u. All invertible elements of R are given by
a0 + a1u + · · · + ae−1ue−1, a0 �= 0, a0, a1, . . . , ae−1 ∈ Fpm .

There are many research results on constacyclic codes over R, see [1], [5–10] and
[14] for examples. Let ω ∈ R×, k and n be positive integers satisfying gcd(p, n) = 1.
In this paper, we concentrate on (1 + ωu)-constacyclic codes of length pkn over R,
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Matrix-product structure of constacyclic codes over… 457

i.e. ideals of the residue class ring R[x]/〈x pkn − (1+ωu)〉. Specifically, the algebraic
structures and properties of (1 + wγ )-constacyclic codes of arbitrary length over an
arbitrary finite chain ring Γ were given in [4], where w is a unit in Γ and γ generates
the unique maximal ideal of Γ .

Blackford [2] classified all negacyclic codes over the finite chain ring Z4 of even
length using a Discrete Fourier Transform approach. Using the concatenated structure
given by [2, Theorem 3], we know that each negacyclic code of length 2kn, where n
is odd, is monomially equivalent to a sequence of 2k cyclic codes of length n over Z4.

As −1 = 1+ 2 ∈ Z4, negacyclic codes of even length over Z4 is a special subclass
of the class of (1 + wγ )-constacyclic codes with arbitrary length over an arbitrary
finite chain ring Γ . Now, we try to give a matrix-product structure for any (1 + ωu)-
constacyclic code of length pkn over R by us of the theory of finite chain rings. In
this paper, we denote

Rk := R[v]/〈v pk − (1 + ωu)〉.

As R[x]/〈 f 〉 = R when f = x − 1, from Cao [4, Theorem 2.4] and Dinh et al. [10,
Section 4] we deduce the following lemma.

Lemma 1.1 Using the notations above, we have the following conclusions.

(i) v − 1 is nilpotent in the ringRk .
(ii) Rk is a commutative finite chain ring with maximal ideal (v − 1)Rk , and pke is

the nilpotency index of v − 1. Furthermore, uRk = (v − 1)p
kRk .

(iii) Rk/(v − 1)Rk ∼= Fpm .
(iv) All pke + 1 distinct ideals of Rk are given by

{0} = (v − 1)p
keRk ⊂ (v − 1)p

ke−1Rk ⊂ · · · ⊂ (v − 1)Rk ⊂ (v − 1)0Rk = Rk .

Moreover, the number of elements in (v − 1)iRk is equal to |(v − 1)iRk | =
pm(pke−i) for all i = 0, 1, . . . , pke.

We will construct a precise isomorphism of rings from R[x]/〈x pkn − (1 + ωu)〉
onto Rk[x]/〈xn − 1〉, which induces a one-to-one correspondence between the set
of (1 + ωu)-constacyclic codes of length pkn over R onto the set of cyclic codes of
length n overRk . By the theory of simple-root cyclic codes over finite chain rings (cf.
Norton et al. [15]), any cyclic code of length n over Rk can be determined uniquely
by a tower of pke cyclic codes with length n over the finite field Fpm

〈g0(x)〉 ⊆ 〈g1(x)〉 ⊆ · · · ⊆ 〈gpke−1(x)〉 ⊆ Fpm [x]/〈xn − 1〉,

where g0(x), g1(x), . . . , gpke−1(x) are monic divisors of xn − 1 in Fpm [x] satisfying
gpke−1(x) | · · · | g1(x) | g0(x) | (xn − 1). Then we give a direct description of a
monomially equivalence between a (1 + ωu)-constacyclic code of length pkn over
R and a matrix-product code of a sequence of pk cyclic codes over R determined by
gs(x), s = 0, 1, . . . , pke − 1.
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458 Y. Cao et al.

In Sect. 2, we sketch the concept of matrix-product codes and structures of simple-
root cyclic codes over the finite chain ring Rk . In Sect. 3, we prove that any (1 +
ωu)-constacyclic code of length pkn over R is monomially equivalent to a matrix-
product code of a nested sequence of pk cyclic codes with length n over R. Using
this matrix-product structure, we give an iterative construction of every (1 + ωu)-
constacyclic code by use of (1+ ωu)-constacyclic codes of shorter lengths over R in
Sect. 4. In Sect. 5, we consider how to get the matrix-product structures of (1 + u)-
constacyclic codes of length 90 over R = F3 + uF3 (u2 = 0).

2 Preliminaries

In this section, we sketch the concept ofmatrix-product codes and structures of simple-
root cyclic codes over the finite chain ringRk .

Let R = Fpm [u]/〈ue〉. We follow the notation in [3, Definition 2.1] for definition
of matrix-product codes. Let A = [ai j ] be an α × β matrix with entries in R and let
C1, . . . ,Cα be codes of length n over R. The matrix-product code [C1, . . . ,Cα] · A
is the set of all matrix products [c1, . . . , cα] · A defined by

[c1, . . . , cα] · A = [c1, . . . , cα]

⎡
⎢⎢⎢⎣

a11 a12 . . . a1β
a21 a22 . . . a2β
...

...
...

...

aα1 aα2 . . . aαβ

⎤
⎥⎥⎥⎦

= [a11c1 + a21c2 + · · · + aα1cα, a12c1 + a22c2 + · · · + aα2cα,

. . . , a1βc1 + a2βc2 + . . . + aαβcα]

where ci ∈ Ci is an n×1 column vector for 1 ≤ i ≤ α. Any codeword [c1, . . . , cα] · A
is an n × β matrix over R and we regard it as a codeword of length nβ by reading
the entries of the matrix in column-major order. A code C over R is a matrix-product
code if C = [C1, . . . ,Cα] · A for some codes C1, . . . ,Cα and a matrix A.

In the rest of this paper, we assume that A = [ai j ] is an α ×β matrix over Fpm , i.e.
ai j ∈ Fpm for all i, j . If the rows of A are linearly independent over Fpm , A is called
a full-row-rank (FRR) matrix. Let At be the matrix consisting of the first t rows of A.
For 1 ≤ j1 < j2 < · · · < jt ≤ β, we denote by A( j1, j2, . . . , jt ) the t × t submatrix
consisting of the columns j1, j2, . . . , jt of At . If every sub-matrix A( j1, j2, . . . , jt )
of A is non-singular for all t = 1, . . . , α, A is said to be non-singular by columns
(NSC) (cf. [3, Definition 3.1]).

As a natural generalization of [12, Theorem 1] and results in [16], by [11, Theo-
rem 3.1] we have the following properties of matrix-product codes.

Theorem 2.1 Let A be an α×β FRRmatrix over Fpm , and Ci be a linear (n, Mi , di )-
code over R for all i = 1, . . . , α. Then the matrix-product code [C1, . . . ,Cα] · A is
a linear (nβ,

∏α
i=1 Mi , d)-code over R where the minimum Hamming distance d

satisfies

d ≥ δ := min{δi di | i = 1, . . . , α},
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where δi is the minimum distance of the linear code with length β over Fpm generated
by the first i rows of the matrix A.

Moreover, when the matrix A is NSC, it holds that δi = β − i + 1. Furthermore,
if we assume that the codes Ci form a nested sequence C1 ⊇ C2 ⊇ · · · ⊇ Cα , then
d = δ.

Then we consider cyclic codes of length n over the finite chain ring Rk =
R[v]/〈v pk − (1 + ωu)〉, i.e. ideals of the residue class ring Rk[x]/〈xn − 1〉. Let
α ∈ Rk . By Lemma 1.1 and properties of finite chain rings, α has a unique (v − 1)-
expansion

α =
pke−1∑
s=0

as(v − 1)s, as ∈ Fpm , s = 0, 1, . . . , pke − 1.

In this paper, we define τ : Rk → Fpm by

τ(α) = a0 = α (mod v − 1), ∀α ∈ Rk .

Then τ is a surjective homomorphism of rings from Rk onto Fpm . As uRk = (v −
1)p

kRk by Lemma 1.1(ii), there is an invertible element ε ∈ R×
k such that u =

(v −1)p
k
ε, which implies τ(u) = 0. Hence for any β = b0 +b1u+· · ·+be−1ue−1 ∈

R ⊆ Rk where b0, b1, . . . , be−1 ∈ Fpm , we have

τ(β) = b0 = β (mod u). (1)

It is clear that τ can be extended to a surjective homomorphism of polynomial rings
from Rk[x] onto Fpm [x] by:

∑
αi x i �→ ∑

τ(αi )xi , ∀αi ∈ Rk . We still use τ

to denote this homomorphism. Then τ induces a surjective homomorphism of rings
fromRk[x]/〈xn − 1〉 onto Fpm [x]/〈xn − 1〉 in the natural way

τ

(
n−1∑
i=0

αi x
i

)
=

n−1∑
i=0

τ(αi )x
i , ∀α0, α1, . . . , αn−1 ∈ Rk .

Now, let C be a cyclic code of length n overRk . For any integer s, 0 ≤ s ≤ pke−1,
define

(C : (v − 1)s) = {
α(x) ∈ Rk[x]/〈xn − 1〉 | (v − 1)sα(x) ∈ C}

which is an ideal of Rk[x]/〈xn − 1〉 as well. It is clear that

C = (C : (v − 1)0) ⊆ (C : (v − 1)) ⊆ · · · (C : (v − 1)p
ke−1). (2)

Denote

Tors(C) = τ(C : (v − 1)s) = {τ(α(x)) | α(x) ∈ (C : (v − 1)s)}.
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Then Tors(C) is an ideal of the ring Fpm [x]/〈xn − 1〉, i.e. a cyclic code of length n
over Fpm , which is called the sth torsion code of C. Hence there is a unique monic
divisor gs(x) of xn − 1 in Fpm [x] such that

Tors(C) = 〈gs(x)〉 = {b(x)gs(x) | deg(b(x)) < n − deg(gs(x)), b(x) ∈ Fpm [x]},

where gs(x) is the generator polynomial of the cyclic code Tors(C). Hence |Tors(C)| =
pm(n−deg(gs (x))).

As gs(x) ∈ Tors(C), we have (v − 1)s(gs(x) − (v − 1)bs(x)) ∈ C for some
bs(x) ∈ Rk[x]. Then by (v − 1)p

ke = 0 inRk , it follows that

(v − 1)sgs(x)
pke−s = (v − 1)s

(
gs(x)

pke−s − (v − 1)p
ke−sbs(x)

pke−s
)

= (v − 1)s(gs(x) − (v − 1)bs(x))

·
⎛
⎝

pke−s−1∑
t=0

gs(x)
t · ((v − 1)bs(x))

pke−s−1−t

⎞
⎠ .

This implies (v − 1)sgs(x)p
ke−s ∈ C. As gcd(p, n) = 1, xn − 1 has no repeated

divisors in Fpm [x]. This implies gcd(xn − 1, gs(x)p
ke−s) = gs(x). Hence there

exist a(x), b(x) ∈ Fpm [x] such that gs(x) = a(x)gs(x)p
ke−s + b(x)(xn − 1) =

a(x)gs(x)p
ke−s inRk[x]/〈xn − 1〉. Therefore, we have

(v − 1)sgs(x) = a(x) · (v − 1)sgs(x)
pke−s ∈ C, s = 0, 1, . . . , pke − 1. (3)

This implies (v − 1)sTors(C) ⊆ C for all s = 0, 1, . . . , pke− 1. Moreover, by Eq. (2)
we have a tower of cyclic codes over Fpm :

Tor0(C) ⊆ Tor1(C) ⊆ · · · ⊆ Tor pke−1(C) ⊆ Fpm [x]/〈xn − 1〉.

This implies that gpke−1(x) | · · · | g1(x) | g0(x) | (xn − 1) in Fpm [x].
Now, let c(x) ∈ C. Then τ(c(x)) ∈ Tor0(C) = 〈g0(x)〉. Hence there exists a

unique polynomial b0(x) ∈ Fpm [x] satisfying deg(b0(x)) < n − deg(g0(x)) such
that τ(c(x)) = b0(x)g0(x). By Eq. (3), it follows that b0(x)g0(x) ∈ C. Hence c(x) −
b0(x)g0(x) ∈ C.

As τ(c(x) − b0(x)g0(x)) = τ(c(x)) − b0(x)g0(x) = 0, there exists α1(x) ∈
Rk[x]/〈xn − 1〉 such that (v − 1)α1(x) = c(x) − b0(x)g0(x) ∈ C. This implies
α1(x) ∈ (C : (v − 1)), and so τ(α1(x)) ∈ Tor1(C).

By Tor1(C) = 〈g1(x)〉, there exists a unique polynomial b1(x) ∈ Fpm [x] satisfying
deg(b1(x)) < n−deg(g1(x)) such that τ(α1(x)) = b1(x)g1(x). Then byEq. (3), it fol-
lows that (v−1)b1(x)g1(x) = b1(x)·(v−1)g1(x) ∈ C. By τ(α1(x)−b1(x)g1(x)) = 0,
there exists α2(x) ∈ Rk[x]/〈xn − 1〉 such that (v − 1)α2(x) = α1(x) − b1(x)g1(x)
and

(v − 1)2α2(x) = (v − 1)α1(x) − (v − 1)b1(x)g1(x) ∈ C.
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Matrix-product structure of constacyclic codes over… 461

This implies α2(x) ∈ (C : (v − 1)2), and so τ(α2(x)) ∈ Tor2(C) = 〈g2(x)〉.
As stated above, we have

c(x) = b0(x)g0(x) + (v − 1)α1(x)

= b0(x)g0(x) + (v − 1)b1(x)g1(x) + (v − 1)2α2(x),

where c0(x) = b0(x)g0(x) ∈ Tor0(C) and c1(x) = b1(x)g1(x) ∈ Tor1(C).
Let 2 ≤ s ≤ pke − 2 and assume that there exist ci (x) ∈ Tori (C), i = 0, 1, . . . , s,

and αs+1(x) ∈ Rk[x]/〈xn − 1〉 such that

c(x) =
s∑

i=0

(v − 1)i ci (x) + (v − 1)s+1αs+1(x).

Then by (v − 1)i ci (x) ∈ (v − 1)iTori (C) ⊆ C, it follows that (v − 1)s+1αs+1(x) ∈ C.
This impliesαs+1(x) ∈ (C : (v−1)s+1), and so τ(αs+1(x)) ∈ Tors+1(C) = 〈gs+1(x)〉.
We denote cs+1(x) = τ(αs+1(x)). Then there exists αs+2(x) ∈ Rk[x]/〈xn − 1〉
such that αs+1(x) = cs+1(x) + (v − 1)αs+2(x), and hence (v − 1)s+1αs+1(x) =
(v − 1)s+1cs+1(x) + (v − 1)s+2αs+2(x). Therefore,

c(x) =
s+1∑
i=0

(v − 1)i ci (x) + (v − 1)s+2αs+2(x).

By mathematical induction on s, we conclude the following theorem.

Theorem 2.2 Using the notations above, we have the following conclusions.

(i) Let C be a cyclic code of length n overRk = R[v]/〈v pk − (1+ ωu)〉. Then each
codeword c(x) in C has a unique (v − 1)-adic expansion:

c(x) =
pke−1∑
s=0

(v − 1)scs(x), where cs(x) ∈ Tors(C), ∀s = 0, 1, . . . , pke − 1.

Hence |C| = ∏pke−1
s=0 |Tors(C)| = pm(

∑pk e−1
s=0 (n−deg(gs (x)))).

(ii) C is a cyclic code of length n overRk if and only if there exists uniquely a tower
of pke cyclic codes with length n over Fpm , C0 ⊆ C1 ⊆ · · · ⊆ Cpke−1, such

that Tors(C) = τ(C : (v − 1)s) = Cs for all s = 0, 1, . . . , pke − 1. If the latter
conditions are satisfied, then

C =
pke−1⊕
s=0

(v − 1)sCs

=
〈
g0(x), (v − 1)g1(x), . . . , (v − 1)p

kegpke−1(x)
〉
Rk [x]/〈xn−1〉

=
〈pke−1∑

s=0

(v − 1)sgs(x)

〉

Rk [x]/〈xn−1〉
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where gs(x) ∈ Fpm [x] being the generator polynomial of the cyclic code Cs for
all s = 0, 1, . . . , pke − 1.

Remark For a complete description of simple-root cyclic codes over arbitrary com-
mutative finite chain rings, readers can refer to [15, Theorem 3.5] .

When k = 0, we have R0 = R[v]/〈v − (1 + ωu)〉 = R satisfying v − 1 = ωu
or u = ω−1(v − 1). Then from Lemma 1.1, Theorem 2.2 and Eq. (1), we deduce the
following corollary which will be used in the following sections.

Corollary 2.3 Using the notations above, we have the following conclusions.

(i) Let C be a cyclic code of length n over R = Fpm [u]/〈ue〉. Then each codeword
c(x) in C has a unique u-adic expansion:

c(x) =
e−1∑
s=0

uscs(x), where cs(x) ∈ Tors(C) = τ(C : us), ∀s = 0, 1, . . . , e − 1.

Hence |C| = ∏e−1
s=0 |Tors(C)| = pm(

∑e−1
s=0(n−deg(gs (x)))).

(ii) C is a cyclic code of length n over R if and only if there exists uniquely a tower
of e cyclic codes with length n over Fpm , C0 ⊆ C1 ⊆ · · · ⊆ Ce−1, such that
Tors(C) = Cs for all s = 0, 1, . . . , e − 1. If the latter conditions are satisfied,
then C = ⊕e−1

s=0 u
sCs and |C| = ∏e−1

i=0 |Ci |. Furthermore, we have

C =
〈
g0(x), ug1(x), . . . , u

e−1ge−1(x)
〉
R[x]/〈xn−1〉 =

〈
e−1∑
s=0

usgs(x)

〉

R[x]/〈xn−1〉

where gs(x) ∈ Fpm [x] being the generator polynomial of the cyclic code Cs for
all s = 0, 1, . . . , e − 1.

(iii) Let C and C′ be cyclic codes of length n over R with Cs = Tors(C) and C ′
s =

Tors(C′) for all s. Then C ⊆ C′ if and only if Cs ⊆ C ′
s as ideals of the ring

Fpm [x]/〈xn − 1〉 for all s = 0, 1, . . . , e − 1.

Proof We only need to prove (iii). If Cs ⊆ C ′
s for all s = 0, 1, . . . , e−1, it is obvious

that C = ⊕e−1
s=0 u

sCs ⊆ ⊕e−1
s=0 u

sC ′
s = C′.

Conversely, let C ⊆ C′. Then (C : us) ⊆ (C′ : us) for all s. From this, by Tors(C) =
τ(C : us) andTors(C′) = τ(C′ : us)wededuce thatCs ⊆ C ′

s for all s = 0, 1, . . . , e−1.
��

3 Matrix-product structure of (1 + ωu)-constacyclic codes over R

Denote [n) × [pk) = {( j, t) | j ∈ [n), t ∈ [pk)}. Then each integer i ∈ [pkn) =
{0, 1, . . . , pkn − 1} can be uniquely expressed as

i = j + tn, were j ≡ i (mod n), j ∈ [n), and t = i − j

n
∈ [pk). (4)

123



Matrix-product structure of constacyclic codes over… 463

In this paper, we adopt the following notations.

Notation 3.1 Let l be the smallest positive integer such that pl ≥ e. Since gcd(p, n) =
1, there exists a unique integer n′, 1 ≤ n′ ≤ pk+l − 1, such that

n′n ≡ 1 (mod pk+l). (5)

We write n′ = qpk + n′′, where 0 ≤ q ≤ pl − 1 and 1 ≤ n′′ ≤ pk − 1 satisfying
gcd(p, n′′) = 1. Then we define a transformation � on the set [pkn) by

�( j + λn) = j + n
(
λ − jn′′ (mod pk)

)
, ∀( j, λ) ∈ [n) × [pk),

and denote

Λ = diag[1, (1 + ωu)q , (1 + ωu)2q , . . . , (1 + ωu)(n−1)q ]

which is a diagonal matrix of order n with 1, (1 + ωu)q , (1 + ωu)2q , . . . , (1 +
ωu)(n−1)q ∈ R× as its diagonal entries.

Lemma 3.2 (i) The transformation � is a permutation on the set [pkn).
(ii) Let Ppkn be a matrix of order pkn defined by Ppkn = [εi, j ] where

εi, j = 1 if j = �(i), and εi, j = 0 othwise, for all 0 ≤ i, j ≤ pkn − 1,

and set Mpk (n, ω) = diag[
(pk ),s︷ ︸︸ ︷

Λ, . . . ,Λ] · Ppkn. Then Ppkn is a permutation matrix

and Mpk (n, ω) is a monomial matrix over R of order pkn.

(iii) Define a transformation Θ on the R-module R pkn by

Θ(ξ) = Mpk (n, ω) · ξ, ∀ξ =

⎡
⎢⎢⎣

a0
a1
. . .

apkn−1

⎤
⎥⎥⎦ ∈ Rpkn .

Then Θ is an R-module automorphism on Rpkn. Let C be an R-submodule of
R pkn and denote Θ(C) = Mpk (n, ω) ·C = {Mpk (n, ω) · c | c ∈ C}. Then Θ(C)

and C are monomially equivalent linear codes of length pkn over R.

Proof (i) For any ( j, λ) ∈ [n) × [pk), let t = λ − jn′′ (mod pk). Then by Equation

(4) and ( j, t) = ( j, λ)

[
1 −n′′
0 1

]
, we see that � : j + λn �→ j + tn (∀( j, λ) ∈

[n) × [pk)) is a a permutation on the set [pkn).
(ii) follows from (i) and Notation 3.1, and (iii) follows from (ii).

��
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First, we establish an explicit relationship between the set of all (1 + ωu)-
constacyclic codes of length pkn over the finite chain ring R = Fpm [u]/〈ue〉 and
the set of all cyclic codes of length n over the finite chain ringRk .

Let a(x) ∈ R[x]/〈x pkn − (1 + ωu)〉. By Eq. (4), a(x) can be uniquely expressed

as a(x) = ∑n−1
j=0

∑pk−1
t=0 a j+tnx j+tn , where a0, a1, . . . , apkn−1 ∈ R. We will identify

a(x) with the column vector [a0, a1, . . . , apkn−1]tr ∈ Rpkn in this paper. By x j+tn =
x j (xn)t , we can write a(x) as a product of matrices

a(x) = [1, x, x2, . . . , xn−1]Ma(x)X (6)

where X = [1, xn, x2n, . . . , x (pk−1)n]tr is the transpose of the 1 × pk matrix

[1, xn, x2n, . . . , x (pk−1)n] and Ma(x) =

⎡
⎢⎢⎣

a0 a0+n . . . a0+(pk−1)n
a1 a1+n . . . a1+(pk−1)n
. . . . . . . . . . . .

an−1 an−1+n . . . an−1+(pk−1)n

⎤
⎥⎥⎦.

Set v = xn in Eq. (6). We obtain

a(x) = [1, x, x2, . . . , xn−1]Ma(x)V .

where V = [1, v, v2, . . . , v pk−1]tr is the transpose of the 1 × pk matrix [1, v, v2,
. . . , v pk−1]. We define a map ϕ : R[x]/〈x pkn − (1 + ωu)〉 → Rk/〈xn − v〉 by

ϕ(a(x)) = [1, x, x2, . . . , xn−1] (Ma(x)V
) = α0 + α1x + · · · + αn−1x

n−1

where [α0, α1, . . . , αn−1] = (
Ma(x)V

)tr ∈ Rn
k . Then fromRk = R[v]〈v pk−(1+ωu)〉

and R[x]/〈x pkn − (1 + ωu)〉 = R[x, v]/〈v pk − (1 + ωu), xn − v〉 as residue class
rings, we deduce the following conclusion.

Lemma 3.3 The map ϕ is an isomorphism of rings from R[x]/〈x pkn −(1+ωu)〉 onto
Rk/〈xn − v〉.

By Notation 3.1, we have pl ≥ e. From this, by v pk = x pkn = 1+ ωu and ue = 0
inRk we deduce that

v pk+l = (1 + ωu)p
l = 1 + ωpl u pl = 1 + ωpl u pl−eue = 1.

Then by Eq. (5), it follows that (vn
′
)n = vn

′n = v. Now, we define an automorphism
of the polynomial ringRk[x] byψ(β(x)) = β(vn

′
x) (∀β(x) ∈ Rk[x]). Sinceψ(xn −

v) = (vn
′
x)n −v = v(xn −1) and v ∈ R×

k ,ψ induces an ring isomorphism of residue
class rings from Rk[x]/〈xn − v〉 onto Rk[x]/〈xn − 1〉:

α(x) �→ α(vn
′
x) = [1, x, . . . , xn−1]diag(1, vn′

, . . . , (vn
′
)n−1)[α0, α1, . . . , αn−1]tr
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for any α(x) = α0 + α1x + · · · + αn−1xn−1 ∈ Rk[x]/〈xn − v〉. We will still use ψ to
denote this ring isomorphism. Henceψ(α(x)) = α(vn

′
x) for all α(x) ∈ Rk[x]/〈xn −

v〉. Then by Lemma 3.3, we conclude the following conclusion.

Lemma 3.4 Using the notations above, the map ψϕ define by

ψϕ(a(x)) = [1, x, . . . , xn−1]diag(1, vn′
, . . . , (vn

′
)n−1)Ma(x)V

(∀a(x) ∈ R[x]/〈x pkn − (1 + ωu)〉) is an isomorphism of rings from R[x]/〈x pkn −
(1+ωu)〉 ontoRk[x]/〈xn −1〉. Therefore, C is a (1+ωu)-constacyclic code of length
pkn over R if and only if ψ(ϕ(C)) is a cyclic code of length n overRk .

Then by Lemma 3.4 and Theorem 2.2, we give a matrix-product structure of any
(1 + ωu)-constacyclic code of length pkn over R as follows.

Theorem 3.5 Using the notations above, let C be a (1 + ωu)-constacyclic code of
length pkn over R, assume C = ψ(ϕ(C)) ⊆ Rk[x]/〈xn − 1〉 and Cs = Tors(C) ⊆
Fpm [x]/〈xn − 1〉 for all s = 0, 1, . . . , pke − 1. Denote

Cρ =
e−1⊕
i=0

uiCipk+ρ ⊆ R[x]/〈xn − 1〉, ρ = 0, 1, . . . , pk − 1.

(i) Cρ is a cyclic code of length n over R satisfying |Cρ | = ∏e−1
i=0 |Cipk+ρ | for all

ρ = 0, 1, . . . , pk − 1. Moreover, we have that Cpk−1 ⊇ · · · ⊇ C1 ⊇ C0.
(ii) Θ(C) = Mpk (n, ω) · C = [Cpk−1, Cpk−2, . . . , C1, C0] · Apk , where

Apk =
[
(−1)p

k−i− j+1
(
pk − i
j − 1

)]

1≤i, j≤pk
(mod p)

in which we set

(
pk − i
j − 1

)
= 0 if pk − i < j − 1 for all 1 ≤ i, j ≤ pk. Hence

C is monomially equivalent to [Cpk−1, Cpk−2, . . . , C1, C0] · Apk .

Proof (i) By Theorem 2.2,Cs is a cyclic code of length n over Fpm , 0 ≤ s ≤ pke−1,
and satisfies

C0 ⊆ C1 ⊆ · · · ⊆ Cpk−1 ⊆ Cpk ⊆ Cpk+1 ⊆ · · · ⊆ C2pk−1

⊆ · · · ⊆ C(e−1)pk ⊆ C(e−1)pk+1 ⊆ · · · ⊆ Cepk−1.

This impliesCρ ⊆ Cpk+ρ ⊆ · · · ⊆ C(e−1)pk+ρ . From this and byCorollary 2.3(ii),

we deduce that Cρ = ⊕e−1
i=0 u

iCipk+ρ is a cyclic code of length n over R, i.e. an

ideal of the ring R[x]/〈xn − 1〉, satisfying |Cρ | = ∏e−1
i=0 |Cipk+ρ |.

Let 0 ≤ ρ < ρ′ ≤ e − 1. Then Cipk+ρ ⊆ Cipk+ρ′ for all i = 0, 1, . . . , e − 1.
From this and by Corollary 2.3(iii), we deduce that Cρ ⊆ Cρ′ .
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(ii) As ω ∈ R×, for each integer i , 0 ≤ i ≤ e − 1, (ωu)i = ωi ui can be uniquely
expressed as (ωu)i = ∑e−1

j=i λi, j u j for some λi, j ∈ Fpm where λi,i �= 0, ∀ j =
i, i + 1, . . . , e − 1. Then we can write⎡

⎢⎢⎢⎢⎣

1
ωu

(ωu)2

. . .

(ωu)e−1

⎤
⎥⎥⎥⎥⎦

= TU with U = [1, u, u2, . . . , ue−1]tr =

⎡
⎢⎢⎢⎢⎣

1
u
u2

. . .

ue−1

⎤
⎥⎥⎥⎥⎦

, (7)

where T =

⎡
⎢⎢⎢⎢⎣

λ0,0 λ0,1 . . . λ0,e−2 λ0,e−1
0 λ1,1 . . . λ1,e−2 λ1,e−1
. . . . . . . . . . . . . . .

0 0 . . . λe−2,e−2 λe−2,e−1
0 0 . . . 0 λe−1,e−1

⎤
⎥⎥⎥⎥⎦
being an invertible e× e

matrix over Fpm (and R). By Theorem 2.2, we know that

C = ψϕ(C) = C0 ⊕ (v − 1)C1 ⊕ (v − 1)2C2 ⊕ · · · ⊕ (v − 1)p
ke−1Cpke−1.

Let a(x) = ∑n−1
j=0

∑pk−1
t=0 a j+tn x j+tn ∈ C where a j+tn ∈ R, and assume c(x) =

ψϕ(a(x)) ∈ C. Then for each integer s, 0 ≤ s ≤ pke − 1, there exists a unique

codeword cs(x) ∈ Cs such that c(x) = ∑pke−1
s=0 (v−1)scs(x). By (v−1)p

k = ωu,

we have (v − 1)i p
k = (ωu)i , for all 0 ≤ i ≤ e − 1. Hence

c(x) =
e−1∑
i=0

pk−1∑
ρ=0

(v − 1)i p
k+ρcipk+ρ(x) =

pk−1∑
ρ=0

(v − 1)ρ
e−1∑
i=0

(ωu)i cipk+ρ(x) (8)

in which

e−1∑
i=0

(ωu)i cipk+ρ(x) = [cρ(x), cpk+ρ(x), . . . , cpk (e−1)+ρ(x)]

⎡
⎢⎢⎢⎢⎣

1
ωu

(ωu)2

. . .

(ωu)e−1

⎤
⎥⎥⎥⎥⎦

= [cρ(x), cpk+ρ(x), . . . , cpk (e−1)+ρ(x)]TU

by Equation (7). Let 0 ≤ ρ ≤ pk − 1. We denote the cartesian product of the e
cyclic codes Cρ,Cpk+ρ, . . . ,Cpk (e−1)+ρ with length n over Fpm by Sρ , i.e.

Sρ = Cρ × Cpk+ρ × C2pk+ρ × · · · × Cpk (e−1)+ρ.

For any [cρ(x), cpk+ρ(x), . . . , cpk (e−1)+ρ(x)] ∈ Sρ , we denote

[c′
ρ(x), c′

pk+ρ
(x), . . . , c′

pk (e−1)+ρ
(x)] = [cρ(x), cpk+ρ(x), . . . , cpk (e−1)+ρ(x)]T

where
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c′
j pk+ρ

(x) = λ0, j cρ(x) + λ1, j cpk+ρ(x) + λ2, j c2pk+ρ(x) + · · · + λ j, j c jpk+ρ(x)

for all j = 0, 1, . . . , e − 1. By Cρ ⊆ Cpk+ρ ⊆ C2pk+ρ ⊆ · · · ⊆ C jpk+ρ , it
follows that

c′
j pk+ρ

(x) ∈ C jpk+ρ, ∀ j, 0 ≤ j ≤ e − 1,

and hence [c′
ρ(x), c′

pk+ρ
(x), . . . , c′

pk (e−1)+ρ
(x)] ∈ Sρ . From this and by the

invertibility of the matrix T , we deduce that the map defined by

ξ �→ ξ · T (∀ξ = [cρ(x), cpk+ρ(x), . . . , cpk (e−1)+ρ(x)] ∈ Sρ)

is a bijection on Sρ . This implies Sρ = {ξ · T | ξ ∈ Sρ}. Using the notations
above, we have

e−1∑
i=0

(ωu)i cipk+ρ(x)

= [c′
ρ(x), c′

pk+ρ
(x), c′

2pk+ρ
(x), . . . , c′

pk (e−1)+ρ
(x)]U

= c′
ρ(x) + uc′

pk+ρ
(x) + u2c′

2pk+ρ
(x) + · · · + ue−1c′

(e−1)pk+ρ
(x) ∈ Cρ,

where

Cρ = Cρ ⊕ uCpk+ρ ⊕ u2C2pk+ρ ⊕ · · · ⊕ ue−1Cpk (e−1)+ρ ⊆ R[x]/〈xn − 1〉.

Now, denote ξρ(x) = ∑e−1
i=0 (ωu)i cipk+ρ(x) ∈ Cρ for all ρ = 0, 1, . . . , pk − 1.

Then c(x) = ∑pk−1
ρ=0 (v − 1)ρξρ(x). From this, by Eq. (8) and

(v − 1)p
k−i = ((−1) + v)p

k−i =
pk−i+1∑
j=1

(
pk − i
j − 1

)
(−1)p

k−i− j+1v j−1

for all i = 1, 2, . . . , pk , we deduce that

c(x) = [1, x, . . . , xn−1][ξpk−1, . . . , ξ1, ξ0]Apk V, (9)

where ξρ is the unique n × 1 column vector over R satisfying

ξρ(x) = [1, x, . . . , xn−1] · ξρ, 0 ≤ ρ ≤ pk − 1,

and V = [1, v, v2, . . . , v pk−1]tr . From now on, we will identify ξρ(x) with ξρ as
a codeword in the cyclic code Cρ over R of length n. By replacing v with xn in
Eq. (9) we obtain

π(c(x)) = [1, x, . . . , xn−1][ξpk−1, . . . , ξ1, ξ0]Apk X (10)
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where X = [1, xn, . . . , x (pk−1)n]tr .

On the other hand, by Lemma 3.4 we have

c(x) = ψϕ(a(x)) = [1, x, . . . , xn−1]diag(1, vn′
, . . . , (vn

′
)n−1)Ma(x)V .

Replacing v with xn , we obtain

π(c(x)) = [1, x, . . . , xn−1]diag(1, (xn)n′
, (xn)2n

′
, . . . , (xn)(n−1)n′

)Ma(x)X

= [1, x1+n′n, x2(1+n′n), . . . , x (n−1)(1+n′n)]Ma(x)X

=
n−1∑
j=0

pk−1∑
t=0

a j+tnx
j (1+n′n)+tn

=
n−1∑
j=0

pk−1∑
t=0

a j+tnx
j+(t+ jn′)n .

By Notation 3.1, we have n′ = qpk + n′′, where 0 ≤ q ≤ pl − 1 and 1 ≤ n′′ ≤
pk − 1. By x pkn = 1 + ωu in the ring R[x]/〈x pkn − (1 + ωu)〉 it follows that

a j+tn x
j+(t+ jn′)n = x jq·pkna j+tn x

j+(t+ jn′′)n = (1 + ωu) jqa j+tnx
j+(t+ jn′′)n .

We denote λ = t + jn′′ (mod pk). Then λ ∈ [pk) and t = λ − jn′′ (mod pk).
By Notation 3.1 and Lemma 3.2, the map � defined by �( j + λn) = j + tn =
j + n

(
λ − jn′′ (mod pk)

)
(∀( j, λ) ∈ [n) × [pk)) is a permutation on the set

[pkn). This implies

π(c(x)) =
n−1∑
j=0

pk−1∑
λ=0

(1 + ωu) jqa�( j+λn)x
j+λn = [1, x, . . . , xn−1]ΛM̃a(x)X

(11)
where Λ = diag[1, (1 + ωu)q , (1 + ωu)2q , . . . , (1 + ωu)(n−1)q ] and

M̃a(x) = [b j,λ] with b j,λ = a�( j+λn), ∀( j, λ) ∈ [n) × [pk).

Now, from Eqs. (10) and (11) we deduces that

Λ · M̃a(x) = [ξpk−1, . . . , ξ1, ξ0]Apk , ∀a(x) ∈ C.

In this paper, we regard Λ · M̃a(x) and [ξpk−1, . . . , ξ1, ξ0]Apk as a column vector
of dimension pkn by reading the entries of the matrix in column-major order
respectively. According to this view, by Lemma 3.2 it follows that

Mpk (n, ω) · [a0, a1, . . . , apkn−1]tr = [ξpk−1, . . . , ξ1, ξ0]Apk ,∀a(x) ∈ C.
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As stated above, we conclude that Θ(C) = [Cpk−1, Cpk−2, . . . , C1, C0] · Apk .
By Lemma 3.2(iii), C and the matrix-product code [Cpk−1, . . . , C1, C0] · Apk are
monomially equivalent codes over the finite chain ring R.

��
From Lemma 3.2 and the proof of Theorem 3.5, we deduce the following corollary

which will be used in the next section.

Corollary 3.6 Let C ⊆ Rpkn. Then C is a (1+ ωu)-constacyclic code of length pkn
over R if and only if there is a sequence of cyclic codes Cpk−1 ⊇ · · · ⊇ C1 ⊇ C0 over
R of length n such that

Mpk (n, ω) · C := {Mpk (n, ω) · c | c ∈ C} = [Cpk−1, . . . , C1, C0] · Apk ,

where we regard each c ∈ C as a pkn × 1 column vector over R and each codeword
ξ = [ξpk−1, . . . , ξ1, ξ0]Apk in [Cpk−1, . . . , C1, C0] · Apk as a pkn × 1 column vector
over R by reading the entries of the matrix ξ in column-major order, respectively.

As gcd(p, n) = 1, there are pairwise coprime monic irreducible polynomials
f1(x), f2(x), . . . , fr (x) in Fpm [x] such that xn − 1 = f1(x) f2(x) . . . fr (x).

Lemma 3.7 (cf. [4, Theorem 3.4]) Using the notations above, all (pke+ 1)r distinct
(1 + ωu)-constacyclic codes of length pkn over R are given by

C(i1,i2,...,ir ) = 〈 f1(x)i1 f2(x)i2 . . . fr (x)
ir 〉 ⊆ R[x]/〈x pkn − (1 + ωu)〉,

where 0 ≤ i1, i2, . . . , ir ≤ pke. Furthermore, the number of codewords in C(i1,i2,...,ir )

is equal to |C(i1,i2,...,ir )| = pm(
∑r

t=1(p
ke−it )deg( ft (x))).

Finally, we determine the nested sequences of pk cyclic codes Cpk−1 ⊇ · · · ⊇ C1 ⊇
C0 with length n over R in the matrix-product structure of a (1 + ωu)-constacyclic
code C(i1,i2,...,ir ) over R with length pkn.

Theorem 3.8 Using the notations above, let C = 〈 f1(x)i1 f2(x)i2 . . . fr (x)ir 〉, 0 ≤
i1, i2, . . . , ir ≤ pke, being a (1+ ωu)-constacyclic code C of length pkn over R. For
each integer s, 0 ≤ s ≤ pke − 1, denote

gs(x) =
∏

it>s,1≤t≤r

ft (x) ∈ Fpm [x].

Then C is monomially equivalent to [Cpk−1, . . . , C1, C0] · Apk , where Apk is given by

Theorem 3.5 and for each integer ρ, 0 ≤ ρ ≤ pk − 1, Cρ is a cyclic code of length n
over R given by

Cρ =
〈
gρ(x), ugpk+ρ(x), u2g2pk+ρ(x), . . . , ue−1g(e−1)pk+ρ(x)

〉

=
〈
gρ(x) + ugpk+ρ(x) + u2g2pk+ρ(x) + · · · + ue−1g(e−1)pk+ρ(x)

〉
.
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Proof Denote G(x) = f1(x)i1 f2(x)i2 . . . fr (x)ir ∈ Fpm [x]. By Theorem 3.5, it is
suffices to prove thatCs = 〈gs(x)〉 for all s = 0, 1, . . . , pke−1. Let 0 ≤ s ≤ pke−1.
We first verify that

gs(x) ∈ Cs = Tors(ψ(ϕ(C))) = τ(ψ(ϕ(C)) : (v − 1)s),

which is equivalent to that (v − 1)s (gs(x) + (v − 1)w(x)) ∈ ψ(ϕ(C)) for some
w(x) ∈ Rk[x]/〈xn − 1〉. In the following, we denote

As = {t | it > s, 1 ≤ t ≤ r}, Bs = {t | it ≤ s, 1 ≤ t ≤ r}.

and set

hs(x) =
∏
t∈Bs

ft (x), f̂s(x) =
∏
t∈As

ft (x)
it−s−1.

Then gs(x) = ∏
t∈As

ft (x), and hs(x), f̂s(x) ∈ Fpm [x] satisfying xn − 1 =
gs(x)hs(x), gcd(gs(x), hs(x)) = gcd( f̂s(x), hs(x)) = 1.

As G(x) = ∏
t∈As∪Bs ft (x)it and it ≤ s for all t ∈ Bs , we have

(xn − 1)sgs(x) f̂s(x) =
∏

t∈As∪Bs

ft (x)
s
∏
t∈As

ft (x)
∏
t∈As

ft (x)
it−s−1 = ε(x)G(x)

where ε(x) = ∏
t∈Bs ft (x)s−it ∈ Fpm [x] ⊆ R[x]. This implies

(xn − 1)sgs(x) f̂s(x) ∈ 〈G(x)〉 = C. (12)

By gcd( f̂s(x), hs(x)) = 1, there exist a(x), b(x) ∈ Fpm [x] such that a(x) f̂s(x) +
b(x)hs(x) = 1. This implies a(x) f̂s(x) = 1 − b(x)hs(x). Then by Eq. (12) and
xn − 1 = gs(x)hs(x), it follows that

(xn − 1)sgs(x) − (xn − 1)s+1b(x)

= (xn − 1)sgs(x) − (xn − 1)s · gs(x)hs(x) · b(x)
= (xn − 1)sgs(x)(1 − b(x)hs(x))

= (xn − 1)sgs(x) f̂s(x) · a(x) ∈ C.

Replacing xn with v, by the definition of ϕ we obtain

(v − 1)sgs(x) − (v − 1)s+1ϕ(b(x))

= ϕ
(
(xn − 1)sgs(x) − (xn − 1)s+1b(x)

)
∈ ϕ(C).

This implies (v − 1)sgs(x) + (v − 1)s+1α(x) ∈ ϕ(C), where α(x) = −ϕ(b(x)) ∈
Rk[x]/〈xn − v〉. Then we replace x with vn

′
x , by the definition of ψ we have
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(v − 1)sgs(v
n′
x) + (v − 1)s+1α(vn

′
x)

= ψ
(
(v − 1)sgs(x) + (v − 1)s+1α(x)

)
∈ ψ(ϕ(C)).

From this and by

gs(v
n′
x) = gs(x + x(vn

′ − 1)) = gs(x + (v − 1)β(x)) = gs(x) + (v − 1)δ(x)

for some δ(x) ∈ Rk[x]/〈xn − 1〉, where β(x) = x
∑n′−1

i=0 vi , we deduce that

(v − 1)sgs(v
n′
x) + (v − 1)s+1α(vn

′
x)

= (v − 1)s (gs(x) + (v − 1)δ(x)) + (v − 1)s+1α(vn
′
x)

= (v − 1)s
(
gs(x) + (v − 1)(δ(x) + α(vn

′
x))

)
.

This implies gs(x) + (v − 1)(δ(x) + α(vn
′
x)) ∈ (ψ(ϕ(C)) : (v − 1)s), and hence

gs(x) = τ
(
gs(x) + (v − 1)(δ(x) + α(vn

′
x))

)
∈ τ(ψ(ϕ(C)) : (v − 1)s) = Cs .

Therefore, 〈gs(x)〉 ⊆ Cs as ideals of the ring Fpm [x]/〈xn − 1〉 for all s =
0, 1, . . . , pke − 1.

On the other hand, by xn − 1 = ∏r
t=1 ft (x) and G(x) = ∏r

t=1 ft (x)it =∏pke−1
s=0 gs(x) it follows that

r∑
t=1

(pke − it )deg( ft (x)) = pken − deg(G(x)) =
pke−1∑
s=0

(n − deg(gs(x))). (13)

By Lemma 3.7, Theorem 2.2 and |〈gs(x)〉| = pm(n−deg(gs (x))) for all s, we have

pm(
∑r

t=1(p
ke−it )deg( ft (x))) = |C | = |ψ(ϕ(C))| =

pke−1∏
s=0

|Cs |

≥
pke−1∏
s=0

|〈gs(x)〉| =
pke−1∏
s=0

(pm)n−deg(gs (x)).

From this and by Eq. (13), we deduce that Cs = 〈gs(x)〉, i.e. gs(x) is the generator
polynomial of Cs for all s.

Finally, let 0 ≤ ρ ≤ pk − 1. By Corollary 2.3(ii), it follows that Cρ =⊕e−1
i=0 u

iCipk+ρ = 〈gρ(x) + ugpk+ρ(x) + u2g2pk+ρ(x) + · · · + ue−1gpk(e−1)+ρ(x)〉
as ideals of R[x]/〈xn − 1〉. ��
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Remark As Cpk−1 ⊇ · · · ⊇ C1 ⊇ C0, by Theorem 2.1 the minimum Hamming
distance of the (1 + ωu)-constacyclic code C of length pkn over R is equal to d =
min{δi+1di | i = 0, 1, . . . , pk − 1}, where di is the minimum Hamming distance of
the cyclic code Ci of length n over R and δi+1 is the minimum distance of the linear
code Li+1 with length pk over Fpm generated by the first i + 1 rows of the matrix
Apk , for all i = 0, 1, . . . , pk − 1. For each integer 1 ≤ j ≤ pk , it can be easily seen

that L j is exactly the cyclic code of length pk over Fpm generated by (x − 1)p
k− j .

Since a(x) �→ a(−x) (∀a(x) ∈ Fpm [x]/〈x pk − 1〉) is a ring isomorphism and a

Hamming distance-preserving map from Fpm [x]/〈x pk − 1〉 onto Fpm [x]/〈x pk + 1〉,
δ j is equal to the minimum Hamming distance of the negacyclic code of length pk

over Fpm generated by (x + 1)p
k− j . From this and by Dinh [9] Theorem 4.11, we

deduce that

δ j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(t + 1)ps, if pk−s − tpk−s−1 ≤ j ≤ pk−s − tpk−s−1 + pk−s−1 − 1,
where 1 ≤ t ≤ p − 1 and 1 ≤ s ≤ k − 1;

γ + 1, if pk − γ pk−1 ≤ j ≤ pk − γ pk−1 + pk−1 − 1,
where 1 ≤ γ ≤ p − 1;

1, if j = pk .

4 Iterative construction of (1 + ωu)-constacyclic codes over R

Let A = [ai j ]1≤i, j≤m and B = [bst ]1≤s,t≤n be m × m and n × n matrices over
a commutative ring Γ , respectively. The Kronecker product of A and B is defined

by A ⊗ B = [ai j B]1≤i, j≤m =

⎡
⎢⎢⎣
a11B a12B . . . a1mB
a21B a22B . . . a2mB
. . . . . . . . . . . .

am1B am2B . . . ammB

⎤
⎥⎥⎦ where ai j B =

⎡
⎢⎢⎣
ai j b11 ai j b12 . . . ai j b1n
ai j b21 ai j b22 . . . ai j b2n
. . . . . . . . . . . .

ai j bn1 ai j bn2 . . . ai j bnn

⎤
⎥⎥⎦ , i, j = 1, . . . ,m. It is known from linear algebra

that if A, B,C, D are matrix of appropriate sizes, then (A⊗ B) ⊗C = A⊗ (B ⊗C)

and (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).
Using the notation in Theorem 3.5, we know that

Apk =
[
(−1)p

k−i− j+1
(
pk − i
j − 1

)]

1≤i, j≤pk
(mod p), ∀k ≥ 1.

Especially, Ap =
[
(−1)p−i− j+1

(
p − i
j − 1

)]

1≤i, j≤p
(mod p), i.e.
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Ap =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)p−1 (−1)p−2
(
p − 1
p − 2

)
. . . (−1)2

(
p − 1
2

)
−
(
p − 1
1

)
1

(−1)p−2 (−1)p−3
(
p − 2
p − 3

)
. . . −

(
p − 2
1

)
1 0

(−1)p−3 (−1)p−4
(
p − 3
p − 4

)
. . . 1 0 0

−1 1 . . . 0 0 0
1 0 . . . 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(mod p). As p is prime, by induction on j it follows that

(
p − i
j − 1

)
�≡ 0 (mod p), i.e.

(
p − i
j − 1

)
∈ F

×
pm , for all integers i, j satisfying i + j ≤ p + 1. Moreover, by [17,

Proposition 1 and Lemma 3] we know the following conclusions.

Lemma 4.1 (i) The matrix Ap is an NSC matrix over Fpm .

(ii) Apk = Ap ⊗ Apk−1 =
[
(−1)p−i− j+1

(
p − i
j − 1

)
Apk−1

]

1≤i, j≤p
(mod p) for any

integer k ≥ 2.
Every (1 + ωu)-constacyclic code of length pkn over R = Fpm [u]/〈ue〉 can be

constructed recursively from (1+ ωu)-constacyclic codes of length pk−1n over R by
the following theorem.

Theorem 4.2 Let C be a (1 + ωu)-constacyclic code of length pkn over R. Then
there exist (1 + ωu)-constacyclic codes C (p−1), . . . ,C (1),C (0) of length pk−1n over
R satisfying C (p−1) ⊇ · · · ⊇ C (1) ⊇ C (0) such that C is monomially equivalent to
the following matrix-product code over R

[C (p−1), . . . ,C (1),C (0)] · Ap.

Specifically, if C = 〈 f1(x)i1 f2(x)i2 . . . fr (x)ir 〉 as an ideal of R[x]/〈x pkn−(1+ωu)〉,
where 0 ≤ i1, i2, . . . , ir ≤ pke, then

C ( j) =
〈
e−1∏
λ=0

pk−1−1∏
l=0

∏

it>λpk+ j pk−1+l, 1≤t≤r

ft (x)

〉

R[x]/〈x pk−1n−(1+ωu)〉
(14)

for all j = 0, 1, . . . , p − 1. Furthermore, the minimum Hamming distance of C is
equal to min{pd(p−1), (p − 1)d(p−2), . . . , 2d(1), d(0)} where d( j) is the minimum
Hamming distance of C ( j) for all j = 0, 1, . . . , p − 1.

Proof Let C be a (1+ ωu)-constacyclic code of length pkn over R. By Theorem 3.5
and Lemma 4.1(ii), there are pk cyclic codes Dpk−1, · · · ,D1,D0 of length n over
R satisfying Dpk−1 ⊇ · · · ⊇ D1 ⊇ D0 such that C is monomially equivalent to the
following matrix-product code
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[Dpk−1, . . . ,D1,D0] · Apk

= [D(p−1)pk−1+pk−1−1, . . . ,D(p−1)pk−1+1,D(p−1)pk−1 , . . . ,Dpk−1−1,

. . . ,D1,D0] ·
[
(−1)p−1−s−t

(
p − s
t − 1

)
Apk−1

]

1≤s,t≤p
(mod p)

= [D(p−1), . . . ,D(1),D(0)] · Ap,

whereD( j) = [D j pk−1+pk−1−1,D j pk−1+pk−1−2, . . . ,D j pk−1+1,D j pk−1 ] · Apk−1 for all
j = 0, 1, . . . , p − 1. By Theorem 3.5, D( j) is monomially equivalent to a (1 + ωu)-
constacyclic code C ( j) of length pk−1n over R for all j = 0, 1, . . . , p − 1. Then
by Corollary 3.6 and Notation 3.1, there is a fixed pk−1n × pk−1n monomial matrix
Mpk−1(n, ω) over R such that Mpk−1(n, ω) · C ( j) = D( j) for all j . This implies

[D(p−1), . . . ,D(1),D(0)] · Ap

= [Mpk−1(n, ω) · C (p−1), . . . , Mpk−1(n, ω) · C (1), Mpk−1(n, ω) · C (0)] · Ap

= (
Ip ⊗ Mpk−1(n, ω)

) ·
(
[C (p−1), . . . ,C (1),C (0)] · Ap

)

in which we regard [C (p−1), . . . ,C (1),C (0)] · Ap as a pkn × 1 column vector over
R by reading the entries of the matrix in column-major order, and Ip is the identity
matrix of order p. Since

Ip ⊗ Mpk−1(n, ω) = diag(Mpk−1(n, ω), . . . , Mpk−1(n, ω))

is a pkn× pkn monomial matrix over R, [D(p−1), . . . ,D(1),D(0)] · Ap is monomially
equivalent to [C (p−1), . . . ,C (1),C (0)] · Ap. Moreover, by

D j pk−1+s ⊇ Di pk−1+s, ∀i, j, s, p − 1 ≥ j > i ≥ 0, s = 0, 1, . . . , pk−1 − 1

we conclude that D( j) ⊇ D(i). This implies C ( j) ⊇ C (i) for all 0 ≤ i ≤ j ≤ p − 1.
Since C = 〈 f1(x)i1 f2(x)i2 . . . fr (x)ir 〉 which is an ideal of R[x]/〈x pkn −

(1 + ωu)〉, in the matrix-product code [Dpk−1, . . . ,D1,D0] · Apk we have Dρ =〈
gρ(x), ugpk+ρ(x), u2g2pk+ρ(x), . . . , ue−1g(e−1)pk+ρ(x)

〉 ⊆ R[x]/〈xn − 1〉 for all
ρ = 0, 1, . . . , pk − 1. By Theorem 3.8, we see that gs(x) = ∏

it>s,1≤t≤r ft (x) ∈
Fpm [x], 0 ≤ s ≤ pke − 1, satisfying f1(x)i1 f2(x)i2 . . . fr (x)ir = ∏pke−1

s=0 gs(x)

= ∏pk−1
η=0

∏e−1
λ=0 gλpk+η(x). Let 0 ≤ j ≤ p − 1. Using Theorem 3.8 for the code

D( j) = [D j pk−1+pk−1−1,D j pk−1+pk−1−2, . . . ,D j pk−1+1,D j pk−1 ] · Apk−1 , we deduce
that D( j) is monomially equivalent to the (1 + ωu)-constacyclic code C ( j) of length
pk−1n over R generated by the following polynomial

G( j)(x) =
pk−1−1∏
l=0

e−1∏
λ=0

gλpk+ j pk−1+l(x) =
e−1∏
λ=0

pk−1−1∏
l=0

∏

it>λpk+ j pk−1+l, 1≤t≤r

ft (x).

123



Matrix-product structure of constacyclic codes over… 475

Hence C ( j) = 〈G( j)(x)〉 as ideals of R[x]/〈x pk−1n − (1 + ωu)〉.
Finally, the conclusion for minimum Hamming distance of C follows from Theo-

rem 2.1 and Lemma 4.1(i) immediately. ��

Remark Let k = 0. As gcd(p, n) = 1 and (1+ωu)p
l = 1 by pl ≥ e and ue = 0 in R,

there is uniquely η ∈ R× such that ηn = 1 + ωu. This implies (ηx)n = (1 + ωu)xn .
Hence the map τ : a(x) �→ a(ηx) (∀a(x) ∈ R[x]/〈xn − 1〉) is an isomorphism of
rings from R[x]/〈xn − 1〉 onto R[x]/〈xn − (1 + ωu)〉. Therefore, C is a (1 + ωu)-
constacyclic code of length n over R if and only if there is a unique cyclic code D
of length n over R such that τ(D) = C . Obviously, D and τ(D) are monomially
equivalent codes over R.

5 An example

In this section, we explain the main results of the paper by considering (1 + u)-
constacyclic codes of length 90 over R = F3 + uF3 (u2 = 0). In this case, we have
p = 3, m = 1, e = 2, k = 2, ω = 1 ∈ R× and n = 10.

Using Notation 3.1, by 31 > e we have l = 1, pk+l = 32+1 = 27, and n′ = 19
satisfying 1 ≤ n′ ≤ 26 and n′n = 190 ≡ 1 (mod 27). Obviously, n′ = qpk +n′′ where
pk = 9, q = 2 and n′′ = 1. Hence the permutation � on the set [90) = {0, 1, . . . , 89}
is defined by

�( j + 10λ) = j + 10(λ − j mod 9),

for all 0 ≤ j ≤ 9 and 0 ≤ λ ≤ 8. Precisely, we have

� =
(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 81 72 63 54 45 36 27 18 9 10 1 82 73 64 55 46 37 28 19

20 21 22 23 24 25 26 27 28 29 . . . 80 81 82 83 83 85 86 87 88 89
20 11 2 83 74 65 56 47 38 29 . . . 80 71 62 53 44 35 26 17 8 89

)
.

By (1+ u)2 = 1+ 2u, it follows that Λ = diag[1, 1+ 2u, (1+ 2u)2, . . . , (1+ 2u)9].
As (1 + u)3 = 1, we have

Λ =

⎡
⎢⎢⎣
1

Ω

Ω

Ω

⎤
⎥⎥⎦ where Ω =

⎡
⎣
1 + 2u

1 + u
1

⎤
⎦ .

Let P90 = [εi, j ] be the 90 × 90 permutation matrix defined by: εi, j = 1 if j = �(i),
and εi, j = 0 othwise, for all 0 ≤ i, j ≤ 89, and set

M9(10, 1) = diag[
9,s︷ ︸︸ ︷

Λ, . . . ,Λ] · P90.
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By Lemma 3.2, we see that M9(10, 1) is a 90 × 90 monomial matrix over R, and

Θ(

⎡
⎢⎢⎣

a0
a1
. . .

a89

⎤
⎥⎥⎦) = M9(10, 1)

⎡
⎢⎢⎣

a0
a1
. . .

a89

⎤
⎥⎥⎦ , ∀ai ∈ R, i = 0, 1, . . . , 89.

defines an R-module automorphism on R90. By Corollary 3.6, we know that C is
a (1 + u)-constacyclic code of length 90 over R if and only if there is a sequence
C8 ⊇ · · · ⊇ C1 ⊇ C0 of cyclic codes of length 10 over R such that

Θ(C) = {Θ(c) | c ∈ C} = [C8, C7, C6, C5, C5, C4, C3, C2, C1, C0] · A9.

Obviously, we have that x10 − 1 = f1(x) f2(x) f3(x) f4(x) where f1(x) = x + 1,
f2(x) = x+2, f3(x) = x4+x3+x2+x+1 and f4(x) = x4+2x3+x2+2x+1 being
irreducible polynomials in F3[x]. By Lemma 3.7, the number of (1+ u)-constacyclic
codes with length 90 over R is (32 · 2 + 1)4 = 130321 and all these codes are given
by:

C(i1,i2,i3,i4) =
〈
f1(x)

i1 f2(x)
i2 f3(x)

i3 f4(x)
i4
〉
R[x]/〈x90−(1+u)〉

where 0 ≤ i1, i2, i3, i4 ≤ 18. The number of codewords in C(i1,i2,i3,i4) is equal to
|C(i1,i2,i3,i4)| = 3(18−i1)+(18−i2)+4(18−i3)+4(18−i4) = 3180−(i1+i2+4i3+4i4).

Now, we consider C = C(7,2,18,15) = 〈 f1(x)7 f2(x)2 f3(x)18 f4(x)15〉. In this case,
(i1, i2, i3, i4) = (7, 2, 18, 15), and hence |C | = 3180−(7+2+4·18+4·15) = 339.

Using the notations of Theorem 3.8, we have gs(x) = ∏
it>s,1≤t≤4 ft (x) ∈ F3[x]

for all s = 0, 1, . . . , 17. Specifically, we have

g0(x) = g1(x) = f1(x) f2(x) f3(x) f4(x) = x10 − 1,

g2(x) = g3(x) = g4(x) = g5(x) = g6(x) = f1(x) f3(x)

f4(x) = x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1,

g7(x) = g8(x) = g9(x) = g10(x) = g11(x) = g12(x) = g13(x) = g14(x)

= f3(x) f4(x) = x8 + x6 + x4 + x2 + 1,

g15(x) = g16(x) = g17(x) = f3(x).

•ByTheorem 3.5, we have thatΘ(C) = [C8, C7, C6, C5, C4, C3, C2, C1, C0]·A9 and
C is monomially equivalent to the matrix-product code [C8, . . . , C1, C0] · A9, where
each Cρ is a cyclic code of length 10 over R given by

C8 = C7 = 〈g8(x) + ug9+8(x)〉 = 〈 f3(x) f4(x) + u f3(x)〉,
C6 = 〈g6(x) + ug9+6(x)〉 = 〈 f1(x) f3(x) f4(x) + u f3(x)〉,
C5 = C4 = C3 = C2 = 〈g5(x) + ug9+5(x)〉 = 〈 f1(x) f3(x) f4(x) + u f3(x) f4(x)〉,
C1 = C0 = 〈g1(x) + ug9+1(x)〉 = 〈u f3(x) f4(x)〉
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and A9 = A3 ⊗ A3 =
⎡
⎣

A3 A3 A3
2A3 A3 0
A3 0 0

⎤
⎦ (mod 3) with A3 =

⎡
⎣
1 1 1
2 1 0
1 0 0

⎤
⎦. Let di

be the minimum Hamming distance of the cyclic code Ci with length 10 over R. Then
d8 = d7 = 2, d6 = 2, d2 = d3 = d4 = d5 = 5 and d1 = d0 = 5.

• By Theorem 4.2, C is monomially equivalent to the matrix-product code
[C (2),C (1),C (0)] · A3 where C ( j) = 〈G( j)(x)〉 is a (1 + u)-constacyclic code of
length 30 over R, i.e. an ideal of the ring R[x]/〈x30 − (1 + u)〉, generated by the
polynomial G( j)(x) = ∏

λ=0,1
∏2

l=0
∏

it>9λ+3 j+l, 1≤t≤4 ft (x) ∈ F3[x]. Specifically,
we have

G(2)(x) =
∏

it>6, 1≤t≤4

ft (x)
∏

it>7, 1≤t≤4

ft (x)
∏

it>8, 1≤t≤4

ft (x)

·
∏

it>15, 1≤t≤4

ft (x)
∏

it>16, 1≤t≤4

ft (x)
∏

it>17, 1≤t≤4

ft (x)

= f1(x) f3(x) f4(x) · f3(x) f4(x) · f3(x) f4(x) · f3(x)
3

= f1(x) f3(x)
6 f4(x)

3,

G(1)(x) =
∏

it>3, 1≤t≤4

ft (x)
∏

it>4, 1≤t≤4

ft (x)
∏

it>5, 1≤t≤4

ft (x)

·
∏

it>12, 1≤t≤4

ft (x)
∏

it>13, 1≤t≤4

ft (x)
∏

it>14, 1≤t≤4

ft (x)

= ( f1(x) f3(x) f4(x))
3 · ( f3(x) f4(x))

3

= f1(x)
3 f3(x)

6 f4(x)
6,

G(0)(x) =
∏

it>0, 1≤t≤4

ft (x)
∏

it>1, 1≤t≤4

ft (x)
∏

it>2, 1≤t≤4

ft (x)

·
∏

it>9, 1≤t≤4

ft (x)
∏

it>10, 1≤t≤4

ft (x)
∏

it>11, 1≤t≤4

ft (x)

= ( f1(x) f2(x) f3(x) f4(x))
2 · f1(x) f3(x) f4(x) · ( f3(x) f4(x))

3

= f1(x)
3 f2(x)

2 f3(x)
6 f4(x)

6.

Hence C (2) = 〈 f1(x) f3(x)6 f4(x)3〉, C (1) = 〈 f1(x)3 f3(x)6 f4(x)6〉 and C (0) =
〈 f1(x)3 f2(x)2 f3(x)6 f4(x)6〉. By Lemma 3.7, we have |C (2)| = 360−(1+4·6+4·3) =
323, |C (1)| = 360−(3+4·6+4·6) = 39, |C (0)| = 360−(3+2+4·6+4·6) = 37. Moreover, from
the proof of Theorem 4.2 we deduce the following conclusions:

• C (2) is monomially equivalent to [C8, C7, C6] · A3.
• C (1) is monomially equivalent to [C5, C4, C3] · A3.
• C (0) is monomially equivalent to [C2, C1, C0] · A3.

Let d( j) be the minimum Hamming distance of C ( j) for j = 0, 1, 2. Since A3
is NSC, by Theorems 4.2 and 2.1 it follows that d(2) = min{3d8, 2d7, d6} = 2,
d(1) = min{3d5, 2d4, d3} = 5 and d(0) = min{3d2, 2d1, d0} = 5.

By Theorem 2.1, the minimum Hamming distance of C = C(7,2,18,15) is equal to
d = min{3d(2), 2d(1), d(0)} = 5.
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6 Conclusion

For any positive integers m, e and a prime number p, denote R = Fpm [u]/〈ue〉 which
is a finite chain ring. Letω ∈ R×, k and n be positive integers satisfying gcd(p, n) = 1.
We prove that any (1 + ωu)-constacyclic code of length pkn over R is monomially
equivalent to amatrix-product code of a nested sequence of pk cyclic codeswith length
n over R and a pk × pk matrix Apk over Fp. Then we give an iterative construction of
every (1 + ωu)-constacyclic code by (1 + ωu)-constacyclic codes of shorter lengths
over R. The next work is to rediscover new properties for minimum distance of the
codes by use of their matrix-product structures.
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