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Abstract Let m, e be positive integers, p a prime number, [F,» be a finite field of
p'" elements and R = IFm [u]/{(u®) which is a finite chain ring. For any v € R* and
positive integers k, n satisfying gcd(p, n) = 1, we prove that any (14wu)-constacyclic
code of length p¥n over R is monomially equivalent to a matrix-product code of a
nested sequence of pX cyclic codes with length n over R and a p* x pX matrix A ok
over IF,. Using the matrix-product structures, we give an iterative construction of every
(1 + wu)-constacyclic code by (1 + wu)-constacyclic codes of shorter lengths over R.

Keywords Repeated-root constacyclic code - Matrix-product code - Monomially
equivalent codes - Finite chain ring

Mathematics Subject Classification 94B15 - 94B05 - 11T71

1 Introduction

Algebraic coding theory deals with the design of error-correcting and error-detecting
codes for the reliable transmission of information across noisy channel. The class of
constacyclic codes play a very significant role in the theory of error-correcting codes.
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Let I" be a commutative finite chain ring with identity 1 # 0, and "™ be the
multiplicative group of invertible elements of I". For any a € I", we denote by (a)r,
or (a) for simplicity, the ideal of I" generated by a, i.e. (a)y =al’ ={ab | b € I'}.
For any ideal 7 of I", we will identify the element a + I of the residue class ring "/
witha (mod /) foranya € I'.

A code of length N over I" is a nonempty subset C of 'N ={(ag, ay,...,an—1) |
aj € I', j =0,1,...,N — 1}. Each element of C is called a codeword and the
number of codewords in C is denoted by |C|. The code C is said to be linear if C is a
I"-submodule of I'V. For any codeword ¢ = (cg, ¢1, ...,cn—1) € C, the Hamming
weight of ¢ is definedby wy (c) = [{j | ¢; # 0, 0 < j < N —1}|. Then the minimum
Hamming distance of alinear code C is equal to d (C) = min{wg(c) | ¢ # 0, ¢ € C}.
If M = |C|and d = dy(C), C is called an (N, M, d)-code over I". All codes in this
paper are assumed to be linear.

Let y € I'*. A linear code C of length N over I is called a y-constacyclic code

if (yen-1,co,c¢1,...,cny—2) € C for all (co,cy,...,cy—1) € C. Particularly, C is
called a negacyclic code if y = —1, and C is called a cyclic code if y = 1.
Forany a = (ag, ai, ...,an—1) € I'N,leta(x) =ag+ajx +---+ay_1xV"1 €

I'[x]/(x" — y). We will identify a with a(x) in this paper. It is well known that C is
a y-constacyclic code of length N over I" if and only if C is an ideal of the residue
class ring I'[x]/(x" — y). Let p be the characteristic of the residue class field of I".
If ged(p, N) = 1, C is called a simple-root constacyclic code while when p | N it is
called a repeated-root constacyclic code.

For any positive integer N, we denote [N) = {0, 1,..., N — 1} in this paper.
Let C1 and C> be codes of length N over I'. Recall that C; and C; are said to
be monomially equivalent if there exists a permutation o on the set [N) and fixed
elements rg, 71, ..., rNy_1 € I'* such that

Ca = {(roce)- r1Co(1)s - - - » IN—1Co(N—1)) | (co, €1, ..., en—1) € C1}

(cf. Huffman and Pless [13, Page 24]). Especially, C and C» are said to be permutation
equivalent whenry = ry = --- = ry—1 = 1 (cf.[13,Page 20]). Recall that a monomial
matrix over I" is a square matrix with exactly one invertible entry in each row and
column. Hence C; and C; are monomially equivalent if and only if there isan N x N
monomial matrix Q over I such that Q - C1 = {Q§ | £ € C1} = C; in which we
regard each & € Cy as an N x 1 column vector over [".

From now on, let m and e be positive integers, p a prime number, I ,» be a finite
field of p™ elements and denote

R=TFpn[ul/(u) =Fpm +uFpn + -+ u""Fpm @ =0).

It is known that R is a finite chain ring with subfield IF,m, u R is the unique maximal
ideal and e is the nilpotency index of u. All invertible elements of R are given by
ag+ayu—+--- +ae_1ue’1, ap #0, ap,ay,...,ae_1 € Fpm.

There are many research results on constacyclic codes over R, see [1], [5-10] and
[14] for examples. Let w € R*, k and n be positive integers satisfying gcd(p, n) = 1.
In this paper, we concentrate on (1 + wu)-constacyclic codes of length p*n over R,

@ Springer



Matrix-product structure of constacyclic codes over... 457

1.e. ideals of the residue class ring R[x]/(x phn _ (1 + wu)). Specifically, the algebraic
structures and properties of (1 4+ wy)-constacyclic codes of arbitrary length over an
arbitrary finite chain ring I” were given in [4], where w is a unitin I" and y generates
the unique maximal ideal of I".

Blackford [2] classified all negacyclic codes over the finite chain ring Z4 of even
length using a Discrete Fourier Transform approach. Using the concatenated structure
given by [2, Theorem 3], we know that each negacyclic code of length 2K, where n
is odd, is monomially equivalent to a sequence of 2X cyclic codes of length n over Z.

As —1 = 142 € Z4, negacyclic codes of even length over Zy4 is a special subclass
of the class of (1 + wy)-constacyclic codes with arbitrary length over an arbitrary
finite chain ring I". Now, we try to give a matrix-product structure for any (1 + wu)-
constacyclic code of length p¥n over R by us of the theory of finite chain rings. In
this paper, we denote

Ry := R[v]/ (" — (1 + ou)).

As R[x]/{(f) = R when f = x — 1, from Cao [4, Theorem 2.4] and Dinh et al. [10,
Section 4] we deduce the following lemma.

Lemma 1.1 Using the notations above, we have the following conclusions.

(i) v — 1is nilpotent in the ring Ry.
(ii) Rk is a commutative finite chain ring with maximal ideal (v — 1)Ry, and pke is
the nilpotency index of v — 1. Furthermore, uRy = (v — l)pk Rr.
(iii) Ri/(v — DRy = Fpm.
(iv) All p¥e + 1 distinct ideals of Ry, are given by

0)=@w—D"Re c w—DP'"Rec - C (w— DR C (v — )Ry = Ry

Moreover, the number of elements in (v — DRy is equal to |(v — DiRy| =
pm(l’k"”')for alli =0,1,..., pFe.

We will construct a precise isomorphism of rings from R[x] /(x/’k” — (1 4+ wu))
onto Ry[x]/(x" — 1), which induces a one-to-one correspondence between the set
of (1 4+ wu)-constacyclic codes of length p¥n over R onto the set of cyclic codes of
length n over Ry. By the theory of simple-root cyclic codes over finite chain rings (cf.
Norton et al. [15]), any cyclic code of length n over Ry can be determined uniquely
by a tower of pXe cyclic codes with length n over the finite field IF

(80(X)) € (g1(x)) € -+ S (gpre—1 (X)) S Fpm[x]/(x" = 1),

where go(x), g1(x), ..., gpke_l(x) are monic divisors of x”* — 1 in IF ,m [x] satisfying
gpkefl(x) | -+ ] g1(x) | go(x) | (x™ — 1). Then we give a direct description of a
monomially equivalence between a (1 4+ wu)-constacyclic code of length p*n over
R and a matrix-product code of a sequence of p* cyclic codes over R determined by
gs(x),s =0, l,...,pke— 1.
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In Sect. 2, we sketch the concept of matrix-product codes and structures of simple-
root cyclic codes over the finite chain ring Ry. In Sect. 3, we prove that any (1 +
wu)-constacyclic code of length p¥n over R is monomially equivalent to a matrix-
product code of a nested sequence of p* cyclic codes with length n over R. Using
this matrix-product structure, we give an iterative construction of every (1 + wu)-
constacyclic code by use of (1 + wu)-constacyclic codes of shorter lengths over R in
Sect. 4. In Sect. 5, we consider how to get the matrix-product structures of (1 + u)-
constacyclic codes of length 90 over R = F3 + uF3 u? =0).

2 Preliminaries

In this section, we sketch the concept of matrix-product codes and structures of simple-
root cyclic codes over the finite chain ring Ry.

Let R = Fpm[u]/(u¢). We follow the notation in [3, Definition 2.1] for definition
of matrix-product codes. Let A = [a;;] be an o x f matrix with entries in R and let
C1, ..., Cqy be codes of length n over R. The matrix-product code [Cy,...,Cq] - A

is the set of all matrix products [c1, ..., cy] - A defined by
all aln L..ooalp
any ann L. a2

[Cl,...,Ca]'A = [C19"'1CC{]
Ayl ag? <. Qap

= [ajic1 +azicy + - -+ + agicy, arpcy + axca + -+ - + agacy,

...,aiger taxger + ...+ agpcal

where ¢; € Cjisann x 1 column vector for 1 <i < «. Any codeword [c], ..., cq]- A
is an n x B matrix over R and we regard it as a codeword of length np by reading
the entries of the matrix in column-major order. A code C over R is a matrix-product
codeif C =[Cy,...,Cqy] - A for some codes Cy, ..., C, and a matrix A.

In the rest of this paper, we assume that A = [a;;]is an o x 8 matrix over Fm, i.e.
ajj € Fpm forall i, j. If the rows of A are linearly independent over F,m, A is called
a full-row-rank (FRR) matrix. Let A; be the matrix consisting of the first r rows of A.

Forl < j1 < j» <--- < j; < B, wedenote by A(j1, ja, ..., Jj:) thet x t submatrix
consisting of the columns ji, ja, ..., j; of A;. If every sub-matrix A(j1, j2, ..., Jji)
of A is non-singular for all ¥ = 1, ..., «, A is said to be non-singular by columns

(NSC) (cf. [3, Definition 3.1]).
As a natural generalization of [12, Theorem 1] and results in [16], by [11, Theo-
rem 3.1] we have the following properties of matrix-product codes.

Theorem 2.1 Let A be ana x B FRR matrix over IF ym, and C; be a linear (n, M;, d;)-
code over R for alli = 1, ..., a. Then the matrix-product code [C1, ..., Cq] - A is
a linear (np, [1;_, M;, d)-code over R where the minimum Hamming distance d
satisfies

d>$§:=min{éd; |i=1,...,a},
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where §; is the minimum distance of the linear code with length B over IF ,m generated
by the first i rows of the matrix A.
Moreover, when the matrix A is NSC, it holds that §; = B — i + 1. Furthermore,

if we assume that the codes C; form a nested sequence C1 2 Cy D --- D Cyq, then
d=3.

Then we consider cyclic codes of length n over the finite chain ring Ry =

R[v]/(vpk — (1 + wu)), i.e. ideals of the residue class ring Ri[x]/{(x" — 1). Let
o € Ri. By Lemma 1.1 and properties of finite chain rings, o has a unique (v — 1)-
expansion

pke—l
o= Z as(v—1)°, a; € Fpm, s:O,l,...,pke—l.
s=0

In this paper, we define 7 : Ry — F,m by
(o) =ag =a (mod v — 1), Ya € Ry.

Then 7 is a surjective homomorphism of rings from Ry onto Fpm. As uRy = (v —
l)l’k’Rk by Lemma 1.1(ii), there is an invertible element ¢ € ka such that u =
(v— l)l’ke, which implies 7(u) = 0. Hence forany 8 = bg+bju +- - 4 b,_utl e
R C Ry where by, by, ..., b1 € Fpm, we have

T(B) = bo = p (mod u). ey
It is clear that 7 can be extended to a surjective homomorphism of polynomial rings
from Ry[x] onto Fpm[x] by: D aix’ — > t(i)x', Yo € Ry. We still use t

to denote this homomorphism. Then t induces a surjective homomorphism of rings
from Ry[x]/(x" — 1) onto Fpm[x]/{x" — 1) in the natural way

n—1 n—1
T <Zaix’> = Zr(ai)x', Yoo, a, ..., 0,—1 € Ri.
i=0 i=0

Now, let C be a cyclic code of length n over Ry. For any integer 5,0 < s < pke -1,
define

C:(w—=1" = {akx) € Relx]/(x" = 1) | (v — Dier(x) € C}
which is an ideal of Ry[x]/(x" — 1) as well. It is clear that
C=C:-D)CC: -1 (C: -1, )
Denote

Torg(C) =1(C: (v —1)°) = {t(a(x)) |a(x) € (C: (v —1)*)}.
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Then Torg(C) is an ideal of the ring F,»[x]/{x" — 1), i.e. a cyclic code of length n
over [F,m, which is called the sth torsion code of C. Hence there is a unique monic
divisor g¢(x) of x" — 1 in IF,m[x] such that

Tory (C) = (g5(x)) = {b(x)gs(x) | deg(b(x)) < n — deg(gs(x)), b(x) € Fpm[x]},

where g (x) is the generator polynomial of the cyclic code Tor, (C). Hence | Torg (C)| =
pn—deg(gs (),

As gg(x) € Torg(C), we have (v — 1)*(gs(x) — (v — 1)bs(x)) € C for some
bs(x) € Ri[x]. Then by (v — l)pke = 0in Ry, it follows that

(0= 1°g 0" = (0= D (g0 = v = Dby (1))
= (- 1'(gs(x) = (v — Dby(x))

pke—s—l

S g @) - (0 — Dby I

t=0

This implies (v — I)ng(x)f’k"_x € C. As gcd(p,n) = 1, x" — 1 has no repeated
divisors in F,m[x]. This implies ged(x" — 1, gs(x)Pk"’S) = gs(x). Hence there
exist a(x), b(x) € Fpm[x] such that g;(x) = a(x)gs(x)Pk“*S + b)) —=1) =
a(x)gs ()P in Ri[x]/(x" — 1). Therefore, we have

=1 gx) =alx) -1 g el s=01,....pfe —1. (3)

This implies (v — 1)*Tor,(C) C C foralls =0, 1, ..., pke — 1. Moreover, by Eq. (2)
we have a tower of cyclic codes over IF jm:

TOr()(C) - Torl(c) c... C Torpke_l(c) - Fpm[x]/(x" — 1)

This implies that 8pke—1(X) [ -+ [ g1(x) | go(x) | (x" = 1) inFpm[x].

Now, let ¢(x) € C. Then t(c(x)) € Torg(C) = (go(x)). Hence there exists a
unique polynomial by(x) € F,m[x] satisfying deg(bo(x)) < n — deg(go(x)) such
that T (c(x)) = bo(x)go(x). By Eq. (3), it follows that b (x)go(x) € C. Hence c(x) —
bo(x)go(x) € C.

As t(c(x) — bo(x)go(x)) = t(c(x)) — bo(x)go(x) = 0, there exists aj(x) €
Rilx]/{(x™ — 1) such that (v — Deaj(x) = c(x) — bo(x)go(x) € C. This implies
ai(x) € (C: (v—1)),and so t(x;(x)) € Tor; (C).

By Tor (C) = (g1(x)), there exists a unique polynomial b (x) € I, [x] satisfying
deg(b1(x)) < n—deg(gi(x)) suchthat 7 (1 (x)) = b1(x)g1(x). Thenby Eq. (3), it fol-
lows that (v—1)b1 (x)g1(x) = b1(x)-(v—1)g1(x) € C.By (a1 (x)—b1(x)g1(x)) =0,
there exists ap(x) € Ri[x]/(x" — 1) such that (v — Dap(x) = a1(x) — b1(x)g1(x)
and

(0 — D’aa(x) = (v — D (x) = (v = Db () g1 (x) € C.
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This implies a2 (x) € (C : (v — 1)?), and so t(a2(x)) € Torz(C) = (g2 (x)).
As stated above, we have

c(x) = bp(x)go(x) + (v — Doy (x)
= bo(x)go(x) + (v — Dby (x)g1 (x) + (v — Daa(x),

where co(x) = bo(x)go(x) € Torg(C) and ¢ (x) = b1 (x)g|(x) € Tor;(C).
Let2 <s < pke — 2 and assume that there exist ¢; (x) € Tor; (C),i =0,1,...,s,
and a1 (x) € Ri[x]/{(x" — 1) such that

cx) =Y (=Dci(x)+©— D (x).

i=0

Then by (v — 1)i¢;(x) € (v —1)!Tor; (C) C C, it follows that (v — 1)t a1 (x) € C.
Thisimplies arg 1 (x) € (C: (v—1)**1),andso (g4 1(x)) € Torg;1(C) = (gs41(x)).
We denote cg4+1(x) = t(as41(x)). Then there exists as42(x) € Rilx]/(x" — 1)
such that o541(x) = c541(x) + (v — Dagy2(x), and hence (v — 1)s+1as+1(x) =
(v — Do (x) + (v — 1) o (x). Therefore,

s+1
c@x) =Y (—=De;(x) + (=D o).

i=0
By mathematical induction on s, we conclude the following theorem.

Theorem 2.2 Using the notations above, we have the following conclusions.
(i) Let C be a cyclic code of length n over Ry = R[v]/(vpk — (1 4+ wu)). Then each
codeword c(x) in C has a unique (v — 1)-adic expansion:
pre—1
c(x) = Z (v — D’cy(x), where cg(x) € Tory(C), Vs =0, 1, ..., pke — 1.
s=0

pke

k,_ 1
Hence |C| = 175" ITory (C)] = p"(Xi=y (n—des(as),
(ii) C is a cyclic code of length n over Ry if and only if there exists uniquely a tower

of pke cyclic codes with length n over Fym, Co € C; C --- C Cpke,], such

that Torg(C) = T(C : (v — 1)*) = Cy foralls =0, 1, ..., pke — 1. If the latter
conditions are satisfied, then

pre—1

c=P w-1c
s=0

= {2000, @ = Dg1(0, .o @ = D g (0)

pke—l
= < > - 1)A‘gs(x>>
Rilx]/(x"—1)

Rilxl/(x"=1)

s=0
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where gs(x) € Fpm[x] being the generator polynomial of the cyclic code Cy for
alls =0,1,..., pke — 1.

Remark For a complete description of simple-root cyclic codes over arbitrary com-
mutative finite chain rings, readers can refer to [15, Theorem 3.5] .

When k£ = 0, we have Rgp = R[v]/(v — (1 + wu)) = R satisfyingv — 1 = wu
oru=cw"! (v —1). Then from Lemma 1.1, Theorem 2.2 and Eq. (1), we deduce the
following corollary which will be used in the following sections.

Corollary 2.3 Using the notations above, we have the following conclusions.

(i) Let C be a cyclic code of length n over R = F ym[ul/(u®). Then each codeword
¢(x) in C has a unique u-adic expansion:

e—1
c(x) = Zuscs(x), where ¢ (x) € Tory(C) =1(C: u’), Vs =0,1,...,e — 1.
s=0

Hence |C) = 1‘[‘;;(1) |Tor, (C)| = pm(Zf;(')(n*deg(gx(X)))).

(ii) C is a cyclic code of length n over R if and only if there exists uniquely a tower
of e cyclic codes with length n over Fym, Co € C; C --- C C,_1, such that
Torg(C) = Cy foralls = 0,1, ..., e — 1. If the latter conditions are satisfied,
then C = @f;é u’Cy and |C| = ]_[::é |C;|. Furthermore, we have

e—1

¢ = (8006), ug1 (), ..., u " gey (1) = (Y w
000 ugr (¥). o g ) =D W)
5=0 RLx]/(x"=1)

where gg(x) € Fpm[x] being the generator polynomial of the cyclic code Cy for
alls =0,1,...,e— 1.

(iii) Let C and C' be cyclic codes of length n over R with Cs = Torg(C) and C; =
Tors(C') for all s. Then C C C' if and only if Cs C C; as ideals of the ring
Fpm[x]/{x" = 1) foralls =0,1,...,e— 1.

Proof We only need to prove (iii). If Cy C C; foralls =0,1,...,e—1,itis obvious
that C = B°Zyu’Cs € Pyu’C. =C'.

Conversely, let C € C'. Then (C : u*) € (C' : u*) for all 5. From this, by Tor,(C) =
7(C : u*)and Tors (C') = v(C’ : u®) wededuce that Cs; C C; foralls =0, 1,...,e—1.

O
3 Matrix-product structure of (1 + wu)-constacyclic codes over R
Denote [1n) x [pX) = {(j, 1) | j € [n), t € [pY)}. Then each integer i € [pFn) =
{0,1,..., pkn — 1} can be uniquely expressed as
i=j41tn were j=i(modn), jen), andt = — e [p"). (4
n

@ Springer



Matrix-product structure of constacyclic codes over... 463

In this paper, we adopt the following notations.

Notation 3.1 Let/ be the smallest positive integer such that p! > e. Since ged(p, n) =
1, there exists a unique integer n’, 1 < n’ < p**! — 1, such that

n'n =1 (mod p**). (5)

We write n’ = gp* +n”, where 0 < ¢ < p' —1and 1 < n” < p* — 1 satisfying
ged(p, n”) = 1. Then we define a transformation o on the set [ p*n) by

o(j+An)=j+n ()» — jn” (mod pk)) , Y(j, M) € [n) x [pk),
and denote
A = diag[1, (1 + wu)?, (1 + a)u)2q, (1 + wu)(n—l)q]

which is a diagonal matrix of order n with 1, (1 + wu)?, (1 + a)u)2‘1, L+
wu)® V4 e R* as its diagonal entries.

Lemma 3.2 (i) The transformation o is a permutation on the set [ p*n).
(ii) Let Ppkn be a matrix of order pkn defined by Ppkn = [¢;, j] where

€,j=1if j =0(@), and €; j = 0 othwise, for all 0 < i, j < pkn -1,

(r*ys
. ,—/‘ . . .
and set Mpk (n, w) = diag[A, ..., A]- Ppkn. Then Ppkn is a permutation matrix
and M i (n, ) is a monomial matrix over R of order pkn.

(iii) Define a transformation ® on the R-module RP' by

OF) =My w)-& V=

apknfl

Then © is an R-module automorphism on RP'". Let C be an R-submodule of
RP" and denote OC) =M,i(n,w)-C = {Mpk(n, w)-c|ceC}). Then ®(C)
and C are monomially equivalent linear codes of length p*n over R.

Proof (i) Forany (j, 1) € [n) x [p¥),lett = A — jn” (mod p*). Then by Equation

-

(4)and(j,t):(j,k)[(1) f :|,weseethatg:j+knr—>j+tn(V(j,A)e

[n) x [pk)) is a a permutation on the set [pkn).
(i) follows from (i) and Notation 3.1, and (iii) follows from (ii).
O
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First, we establish an explicit relationship between the set of all (1 + wu)-
constacyclic codes of length p*n over the finite chain ring R = Fpmlu]/(u®) and
the set of all cyclic codes of length n over the finite chain ring Ry.

Leta(x) € R[x]/(x/’k" — (1 + wu)). By Eq. (4), a(x) can be uniquely expressed
k__ .
asa(x) = Z?;(l) PP ! ajpmx! T, where ag, ay, ..., a,x,_; € R. We will identify
a(x) with the column vector [ag, a1, ..., @, 11" € RP*™ in this paper. By x/+1" =
x/ (x™)!, we can write a(x) as a product of matrices

a(x) =[Lox,x . x" My X (6)
where X = [l,x",xz”,...,x(pk_l)”]tr is the transpose of the 1 x pk matrix
ao aop+n cee Ao (pk—yn
a a ... a
[1, x", x2 ..., x(l’k’l)”] and My(x) = ”1. I+n . 1+(.P.k.—1)”
an—1 an—1+n RPN Cln_1+(pk_1)n

Set v = x" in Eq. (6). We obtain
a(x)=[1,x,x%,.. .,x"_l]Ma(x)V.

where V = [1, v, v, vpk_l]lr is the transpose of the 1 x pk matrix [1, v, v2,
e vf"k_l]. We define a map ¢ : R[x]/(xl’k” — (1 4+ ou)) > Ri/(x" —v) by

pax) =[1,x,x% ..., x"7"] (Ma)V) =0 +ayx + -+ + apyx"!

where[ag, @1, ..., @u1]1 = (Man)V)" € R} Thenfrom Ry = R[v](v?" —(1+wu))

and R[x]/(x”"" — (1 + ou)) = Rlx, v]/(v”" — (1 + wu), x" — v) as residue class
rings, we deduce the following conclusion.

Lemma 3.3 The map ¢ is an isomorphism of rings from R[x]/(xpk” — (1+wu)) onto
Ri/{(x™" —v).

By Notation 3.1, we have pl > e. From this, by vpk = xpk" =1l4+wuandu® =0
in R we deduce that

vpk+l =(1 —|—a)u)p1 =1 —|—a)p[upl =1 +a)p1up[_eue =1.

Then by Eq. (5), it follows that (v”/)" = 1" = v. Now, we define an automorphism
of the polynomial ring Ry [x] by ¥ (B(x)) = ,B(v”/x) (VB(x) € R[x]. Since ¥ (x" —
v) = (v”/x)" —v=v(x"—1)andv € ka , ¥ induces an ring isomorphism of residue
class rings from Ry [x]/(x" — v) onto Ri[x]/{(x" — 1):

a(x) > a@”x) =[1,x, ..., x" Ndiag(1,v", ..., )" Hlao, a1, . .., ctn_1]"
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forany a(x) = ag+arx +- - +o_1x" 1 € Ry[x]/(x" — v). We will still use ¥ to
denote this ring isomorphism. Hence ¥ (¢ (x)) = a(v" x) forall e (x) € Ry[x]/{(x" —
v). Then by Lemma 3.3, we conclude the following conclusion.

Lemma 3.4 Using the notations above, the map ¢ define by
Yo@a@) =[x, ..., x" diag(1, v", ..., 0" )" M)V

Va(x) € R[x]/(xpk" — (1 4+ wu))) is an isomorphism of rings from R[x]/(xpk” —
(14+wu)) onto Ri[x]/{x"* —1). Therefore, C is a (1 +wu)-constacyclic code of length
p*n over R if and only if ¥ (¢(C)) is a cyclic code of length n over Ry.

Then by Lemma 3.4 and Theorem 2.2, we give a matrix-product structure of any
(1 + wu)-constacyclic code of length p*n over R as follows.

Theorem 3.5 Using the notations above, let C be a (1 4+ wu)-constacyclic code of
length p“n over R, assume C = Y(9(C)) € Rylx]/(x" — 1) and Cs = Tory(C) <
Fpm[x]/{x" = 1) foralls =0,1, ..., pke — 1. Denote

e—1

Co=EPu'Cipry, S RIXI/(x" 1), p=0.1,....p" = 1.
i=0

(i) C, is a cyclic code of length n over R satisfying |C,| = ]_[f;é |Cipk 4| for all

p=0,1,. ..,pk — 1. Moreover, we have thathk_l 2...2(C 2.
(ii) ®(C) = Mpk(l’l, w)-C = [Cpk_l, Cpk_z, ...,C1,Col- Apk, where

o k _
A= (P =izt (P B ! (mod p)
J=1 )]s
<ij<p

k _
inwhichweset(l;_ 11 =0ifp* —i < j—1foralll <i,j < p*. Hence
C is monomially equivalent to [Cpk_l , Cpk_z, ...,C1,Col- Apk.

Proof (i) By Theorem 2.2, C; is acyclic code of length n over Fm,0 < s < pke -1,
and satisfies

CocCiS - CCp1 SCu C
C- - CChonpt S Clooppt1 S-S C

Thisimplies C, € Cpk+p c...C C(e_l)pk+p.From this and by Corollary 2.3(ii),
-1 i

we deduce that C, = ;g u' C; ey,

ideal of the ring R[x]/(x" — 1), satisfying |C,| = [T 1C;pe |-

is a cyclic code of length n over R, i.e. an

Let0 < p<p <e— 1. Then Cjpry, € Ciphy foralli =0,1,...,e — 1.
From this and by Corollary 2.3(iii), we deduce that C, € C,.
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(ii) As w € R*, for each integer i,0 < i < e — 1, (wu)" = o'u' can be uniquely
expressed as (wu)' = Zj;ll Aj ju’ for some A; ; € Fpm where A;; #0,Vj =

i,i+1,...,e— 1. Then we can write
1 1
wu u
(ow)? | =TUwithU =[1,u,u?, ..., u" " 1" =] u |, ()
(wu)e—l ue—l
A0,0 201 ... ADe—2 AO,e—1
0 A oo Ale— Ale—1
where T =| ... ... ... being an invertible e x e
0 0 v Ae—Z,e—Z )\e—2,e—l
0 0 . 0 Ae—1l,e—1

matrix over Fm (and R). By Theorem 2.2, we know that
C=vp(O)=Co®W—DCI&W—1)’Cr@&--&w—1"Cp,_,.

k__ .
Leta(x) = Z;’;(l) Zf’zo ! ajpmx!t" € C where ajiy € R, and assume c(x) =
Yo(a(x)) € C. Then for each integer s, 0 < s < pke — 1, there exists a unique
k
codeword ¢, (x) € Cy suchthatc(x) = Y74 (v—=1)*¢; (x). By (v— 1) = wu,

we have (v — 1)i?" = (wu)!, forall0 <i < e — 1. Hence

e—1 pF—1 pr—1 e—1
c@ =Y 3 - D" e, =Y -1 @i, ©)
i=0 p=0 p=0 i=0
in which
1
e—1 ' wu
D @u) €y () = [ep (), €ty () -y ety p (]| (0u)?
i=0 A
(wu)e™!
= [cp(x), cpryp(X), ooy Cphemtygp (DITU

by Equation (7). Let 0 < p < p* — 1. We denote the cartesian product of the e
cyclic codes C), Cpk+p, e, Cpk(e,al with length n over F ,m by S, i.e.

Sp=Cp X Cpiyp X Copiyy X X Cpi(e_iygp-

For any [cp(x), €pryp(X), .., Cphe—1y4p(X)] € Sy, we denote
(€ (). €, () €1y, O] = [Ep(), €ty (XD, o €ty p (OIT
where
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Cliphip () = 20,jCp(X) A1 jCph iy (X) + A2, jCopky p (X) 4o+ A i€k (X)

forall j =0,1,...,e—1.By C, € Cpk+p C Czpk+p c...cC it

= = “irt+p
follows that

(.x) (S C]pk+p’ V]7 0 =< J <e— 17
and hence [c;)(x), c;kﬂ)(x), . c’Pk(eial(x)] € S,. From this and by the

invertibility of the matrix 7', we deduce that the map defined by

E>&-T (V& =[cp(x), Cphyp(X), ooy Cpie—ny4p(X)] € Sp)

is a bijection on S,. This implies S, = {§ - T | £ € S,}. Using the notations
above, we have

e—1
Z(wu)ici,,k+p(x)
i=0
= [C;)(x), C;,k_,_p(x) C/zpk_Ho(x)v cees C/pk(e 1)+p(x)]U
— c/p(x) + uc (x) +u CZ[) +p(x) 4odule (e l)pk+p(x) €C,.
where

Co=Cr@uCpy, ®u*Cppiy, @+ ®u~"'Cpi(y_yyy, S RIxI/(x" —1).

Now, denote ép(x) = Ze_l(wu)ic k+p(x) eCyforallp=0,1,..., pk — 1.
Then c(x) = Zp -0 (v — 1)P&,(x). From this, by Eq. (8) and

. =i+l
PR =i pk—i _ pPr—r )\ \prei—jl -1
W=D =(=D+v = Y (j—1>( 1 v
j=1
foralli =1,2,..., pk, we deduce that
c(x) =[Lx, ... . x" M 1..... 6. AV, )

where &, is the unique n x 1 column vector over R satisfying

E,00) =[1,x,....,x" 1-&, 0<p<pt—1,
and V =[1,v, 0%, ..., vpk_l]tr. From now on, we will identify &, (x) with &, as
a codeword in the cyclic code C, over R of length n. By replacing v with x"

Eq. (9) we obtain

T(e() = [Lx, oo X" ey, E1L EIA i X (10)
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where X = [1, x", ... ,x(”k_l)"]“.
On the other hand, by Lemma 3.4 we have

c(x) = Yypa() = [1,x, ..., x" Ndiag(1,v", ..., @) HMuw V.
Replacing v with x"*, we obtain

me(x) = [1,x, ..., x" "diag(1, &™), >, ..., D)Mo X
=1, x1+n’n’ x2(1+n’n)’ o x(n—l)(l-l—n’n)]Ma(X)X

= ajygx!

. .y
— aj+tnx]+(t+jn )n.

j=0 t=0

By Notation 3.1, we have n’ = gp* +n”, where0 < g < p'! —land 1 <n” <
pk—1. By xP'n =1 + wu in the ring R[x]/(xpk” — (1 4+ wu)) it follows that

j+(t+jn)n ig-p*n j+(t+jn")n i j+(t+jn")n
ajsinx’ (t+jnn _ Jjq-p ajsinx’ (t+jn") =+ ou)lajiymx’ (t+jn"n

We denote A = ¢ + jn” (mod pX). Then A € [p¥) and r = A — jn” (mod p*).
By Notation 3.1 and Lemma 3.2, the map ¢ defined by o(j + An) = j +tn =
j+n(x—jn" (mod pX)) (V(j,») € [n) x [pX)) is a permutation on the set
[pKn). This implies

n—1 p/"—l
m(e@) =Y > (14 o) agjamx ™ =1 x, ... X" AMu 0 X
j=0 A=0
(11)
where A = diag[1, (1 + wu)?, (1 + wu)?, ..., (1 + wu)"~D4] and
Mo = [bj ] with bj ;. = ag(j4am. Y(j. 1) € [n) x [ph).
Now, from Egs. (10) and (11) we deduces that
A Moy = [Epi 1. 61, E0)A i, Va(x) € C.
In this paper, we regard A - Mu(x) and [Spk_l, .o & So]Apk as a column vector

of dimension p*n by reading the entries of the matrix in column-major order
respectively. According to this view, by Lemma 3.2 it follows that

Mpk(l’l,(,()) - laog, ai, .. .,apknfl]tr = [§pk71,...,§1, go]Apk,Va(x) eC.
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As stated above, we conclude that @ (C) = [Cpk,l, Cpk,z, ...,C1,Col - Ak
By Lemma 3.2(iii), C and the matrix-product code [C ST Ci1,Co]- A pk are
monomially equivalent codes over the finite chain ring R.

[}

From Lemma 3.2 and the proof of Theorem 3.5, we deduce the following corollary
which will be used in the next section.

Corollary 3.6 Let C C RP". Then Cis a (1 4+ wu)-constacyclic code of length p*n
over R if and only if there is a sequence of cyclic codes Cx_; 2 -+~ 2 Cy 2 Co over
R of length n such that

Mpk(n,a))~C = {Mpk(n,a))~c |ceC}= [Cpk,l,...,Cl,Co]-Apk,

where we regard each ¢ € C as a p*n x 1 column vector over R and each codeword
§=1[5p_1.---.61,60]Ak in [CPL], ...,C1,Col- Ayasa pkn x 1 column vector
over R by reading the entries of the matrix & in column-major order, respectively.

As ged(p,n) = 1, there are pairwise coprime monic irreducible polynomials

f100), fo(x), ..., fr(x) in Fpm|x] such that x* — 1 = fi(x) fa(x) ... fr(x).

Lemma 3.7 (cf. [4, Theorem 3.4]) Using the notations above, all (p*e + 1) distinct
(1 + wu)-constacyclic codes of length p*n over R are given by

Ciirinin) = (LT (2 ... f(0)7) € RIx]/(xP" = (1 + aou)),

whereQ < iy,ip, ..., I, < pke. Furthermore, the number of codewords in C;, j,.....i.)
is equal 1o |C i 1y....i)| = p"Eizi (Pre=indeg(fi()),

Finally, we determine the nested sequences of pk cyclic codes C pho1 2 2 CI 2
Co with length n over R in the matrix-product structure of a (1 + wu)-constacyclic
code C, i»,....i,) Over R with length pn.

Theorem 3.8 Using the notations above, let C = (f1(x)" fa(x)2 ... fr(x)r), 0 <
i1, i2, ..., i, < pLe, being a (1 + wu)-constacyclic code C of length p*n over R. For
each integer s, 0 < s < pke — 1, denote

&= [] £ eFmlxl

ir>s,1<t<r

Then C is monomially equivalent to [C

Ph—ls - ,C1,Col - Apk, where Apk is given by

Theorem 3.5 and for each integer p, 0 < p < p* — 1, C, is a cyclic code of length n
over R given by

CP = (gp(x)» Mgpk+p(x)» u2g2pk+p(x)v e ueilg(e—l)pkq—p(x))

= <gp(x) +ugpry,(x) + uzgzpkﬂ)(x) 4+ Me_lg(efl)pk+p(x)>'
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Proof Denote G(x) = fi(x)"! f2(x)2... f,(x)' € Fpm[x]. By Theorem 3.5, it is
suffices to prove that Cy = (g(x)) foralls =0, 1, ..., pke— 1.Let0 <s < pke— 1.
We first verify that

gs(x) € Cs = Tors (Y (p(C))) = 1 (Y (p(C)) : (v— 1)),

which is equivalent to that (v — 1)* (gs(x) + (v — Dw(x)) € ¥ (p(C)) for some
w(x) € Ri[x]/{x™ — 1). In the following, we denote

Ag={t|i;>s, 1 <t=<r}, By={t|i; <s, 1 <t <r}.
and set

hs(x) = l_[ fi(x), fs(x) - 1_[ £ ()i

teBy teAy

Then g,(x) = [leq, fi(x). and hy(x), fi(x) € Fpm[x] satisfying x" — 1 =

8s(X)hy(x), ged(gs(x), hs(x)) = ng(ﬁ(X), hg(x)) = 1.
As G(x) = ]—[teAXUBS fi(x)" and i; < s forallz € By, we have

@ = D'g@ =[] A []A©]] A =G

teAzUBg teAy teAs
where e(x) = HzeBJ ft(x)s_if € Fpm[x] € R[x]. This implies

(" = 1)'g,(x) fi(x) € (G(x)) = C. 12)

By gcd(f;(x), hs(x)) = 1, there ex/i\st a(x),b(x) € Fpm[x] such that a(x)ﬁ(x) +
b(x)hs(x) = 1. This implies a(x) fy(x) = 1 — b(x)hs(x). Then by Eq. (12) and
x" —1 = gs(x)hs(x), it follows that
(" = 1) g5 (x) — (" = ()
=" = D%g(x) — (" = 1)" - gs(x)hy(x) - b(x)
= (" = D'gs(x)(1 = b(x)hs(x))
= (" = 1)'gs(x) fs(x) -a(x) € C.

Replacing x” with v, by the definition of ¢ we obtain

W —1)°gs(x) — (v — D Mob(x))
= ¢ (" = 180 = " = b)) € 9(C).

This implies (v — 1)*gs(x) + (v — l)s'*‘loc(/x) € ¢(C), where a(x) = —p(b(x)) €
Ri[x]/{x" — v). Then we replace x with v" x, by the definition of » we have
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=1 g(0" x) + (v — )*Ta (v x)
=y (0= '8 + =1 am) € vip©)).

From this and by
(" x) = g (x +x(" = 1) = g (x + (v = DAX)) = g (x) + (v — DS (x)
for some 8(x) € Ri[x]/(x" — 1), where B(x) = x Z:l/:_ol v!, we deduce that

=1 g(0" x) + (v — )* o (v x)
= —1)*(g@) + @—18x) + - a@ )
= =D (g0 + 0 = DEE +a(”x)).

This implies gs(x) + (v — D(§(x) + a(v”/x)) € (W(p(C)) : (v—1)*), and hence
8 () =7 (8(0) + (v = DE) +a("'x)) € TW @O : (v = D) = C.
Therefore, (gs(x)) € C, as ideals of the ring Fpm[x]/(x" — 1) for all s =

0,1,...,pke—1. .
On the other hand, by x" — 1 = [[;_, fi(x) and G(x) = [[;_; fix)" =

pk e—1 .
I1 gs(x) it follows that

s=0
r pkefl
Y (pre—indeg(fi(x)) = pren —deg(G(x) = ) (n —deg(gs(x)). (13)
t=1 s=0

By Lemma 3.7, Theorem 2.2 and | (g, (x))| = p"*~4e&&s ™)) for all 5, we have

k
P Eia(he—indes (i) — €] = |y (0(C))] = ple_ll o
s=0
pke—l pke—l
b l_[ [(gs(x))| = H (pmyr—deees ()
s=0 $=0

From this and by Eq. (13), we deduce that Cy; = (g,(x)), i.e. gs(x) is the generator
polynomial of C; for all s.

Finally, let 0 < p < pk — 1. By Corollary 2.3(ii), it follows that C, =
@f;é MlCl'pk_,’_p = (gp(x) +ug iy ,(x) + uzgzpk+p(x) 4+ 4 ueflg,,k(e_l)ﬂ(x )
as ideals of R[x]/(x" — 1). O
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Remark As Cpk_l D ..~ D C; 2 Cp, by Theorem 2.1 the minimum Hamming
distance of the (1 + wu)-constacyclic code C of length p*n over R is equal to d =
min{;1d; |i =0,1,..., pk — 1}, where d; is the minimum Hamming distance of
the cyclic code C; of length n over R and §; 1 is the minimum distance of the linear
code £; 1 with length p¥ over F pm generated by the first i + 1 rows of the matrix
Apk, foralli =0,1,..., pk — 1. For each integer 1 < j < pk, it can be easily seen
that £; is exactly the cyclic code of length p~ over F,m generated by (x — l)pk_-/ .
Since a(x) + a(—x) (Ya(x) € Fpm [x]/(x”k — 1)) is a ring isomorphism and a
Hamming distance-preserving map from I m [x]/(xpk — 1) onto IFym [x]/(xpk + 1),
d; is equal to the minimum Hamming distance of the negacyclic code of length ¥

over [F,m generated by (x + l)pk_j . From this and by Dinh [9] Theorem 4.11, we
deduce that

(t 4 1)ps, if pkfs _ tpkfsfl < ] < pkfs _ tpkfsfl _i_pkfsfl _ 1’
where ]l <t <p-—landl <s <k—1;

Si=qv+1l  ifpt =yt << pt—ypt e p
where l <y <p—1;
1, if j = pk.

4 Iterative construction of (1 + wu)-constacyclic codes over R

Let A = [ajjli<i,j<m and B = [bg]1<s1<n be m x m and n X n matrices over
a commutative ring I", respectively. The Kronecker product of A and B is defined

annB apB ... auB
anB a»B ... ay,B
by A® B = [aijB]lgi,jgm = " where a,-jB =

amB aypB ... aumB

a,-jb“ aijb12 aijbln

aiib aiib ... ajib .. . .

o2 dijo o i, j =1,...,m.Itis known from linear algebra

aijbn1  ajjbpy ... aijbpn

thatif A, B, C, D are matrix of appropriate sizes, then (AQ B)  C = AQ (B® C)
and (A ® B)(C ® D) = (AC) ® (BD).
Using the notation in Theorem 3.5, we know that

i (PR
Ape = [ (=D : (mod p), Vk > 1.
J -1 1<i. j<pk
<i.j<p

Especially, A, = |:(—1)Pif+] (p B i )] (mod p), i.e.
J= ) hi<ij<p
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(_1)p—l (_1)p—2<2:; (_1)2<P;1>_<p1—])1_

(P2 (—1)P3<”:§ —<”I2> 10
A= P
(—r3 (—1)1’—4(2_4 1 0 0
~1 1 0 0 0
1 0 0 0 0

(mod p). As p is prime, by induction on j it follows that <f: ; ) # 0 (mod p), i.e.

<f : i) € ]F;m, for all integers i, j satisfying i + j < p + 1. Moreover, by [17,
Proposition 1 and Lemma 3] we know the following conclusions.

Lemma 4.1 (i) The matrix A, is an NSC matrix over IF pm.
(i) App = Ap @ Api-1 = [(—1)pij+1 <j’ a i) Apk1:| (mod p) for any
B I<i,j<p
integer k > 2.
Every (1 + wu)-constacyclic code of length p*n over R = Fpm[ul/(u®) can be
constructed recursively from (1 + wu)-constacyclic codes of length p*~'n over R by
the following theorem.

Theorem 4.2 Let C be a (1 + wu)-constacyclic code of length p*n over R. Then
there exist (1 + wu)-constacyclic codes CP~D ... . CD O of length p*~'n over
R satisfying cr-bho...och o CO such that C is monomially equivalent to
the following matrix-product code over R

-1 1 0
[cr=b,...,cV c9. 4,

Specifically, if C = (fi(x)"" f2(x)2 ... f(x)r) as an ideal ofR[x]/(xpk” —(14owu)),
where 0 < iy,i2,...,i, < pke, then

e—1 pF1-1
cW) — <1‘[ H 1‘[ f,(x)> (14)

A=0 1=0 j,>apk4jpk=l41, 1<t<r R[x]/(xpk_l"*(leru))

forall j =0,1,..., p— 1. Furthermore, the minimum Hamming distance of C is
equal to min{pd(p_l), (p — l)d(p_z), e, 2d(1),d(0)} where d) is the minimum
Hamming distance of CY) forall j =0,1,...,p — 1.

Proof Let C be a (1 + wu)-constacyclic code of length p*n over R. By Theorem 3.5
and Lemma 4.1(ii), there are pk cyclic codes Dpk_ 1, > D1, Dy of length n over
R satisfying Dk _; 2 -+ 2 Dy 2 Dy such that C is monomially equivalent to the
following matrix-product code
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[D Dy, Dol - A

pk_l,...,

= [D(pfl)pk71+pk7]*1’ ey D(p*l)pk7]+l’ D(pfl)pkfl ey ,Dpk’lfl’

-» D1, Dol - [(—l)p_l_x_t <p _1S> Apk—li| (mod p)
r= 1<s.t<p

—1 1 0
=rD ... DD, DY1.4,,

where DV) = [Djpk Ly ph-1 I,Djpk Ly ph=1 2,...,7) k=141, D ph— 1]- A _1 for all
j=0,1,..., p — 1. By Theorem 3.5, D) is m0n0m1ally equlvalent toa (1 + wu)-

constacyclic code CcW of length pk_ln over R forall j = 0,1,...,p — 1. Then

by Corollary 3.6 and Notation 3.1, there is a fixed p*~'n x p*~'n monomial matrix

M -1 (n, w) over R such that M i1 (n, ) - C9) = D) for all j. This implies

D=V, DV, DY) 4,
=[My-1(n,w)-CPV L Myi(n,w) - €V Myuoi(n, 0) - €0 4,

= Iy ® My (n.) - (IC" 70, ... €D, c®)- 4,

in which we regard [C?~D, ..., ¢, c©]. Apasa p*n x 1 column vector over
R by reading the entries of the matrix in column-major order, and /), is the identity
matrix of order p. Since

Ip®Mpk71(n,a)) dlag(M w1 (n, ), . k- 1(n, w))

isa pkn X pkn monomial matrix over R, [D®P~D, ... DM, D(O)] - A is monomially
equivalent to [CP~D ... ¢V Cc©®]. A, Moreover, by
Djpi-tyy 2 Dippotyg. Vi jos, p—12j>i>0,5=01,... p""—1
we conclude that DY) 2 D@ This implies CY) 2 C® forall0 <i < j < p — 1.
Since C = (fi(x)" o(x)2 ... f,(x)") which is an ideal of R[x]/(x?" —
(1 + wu)), in the matrix-product code [Dpk_l, ..., Dy, Dg] - Apk we have D, =
(gp(x), Ug 4 (X), uzgzpk+p(x), ce u"’_lg(e_l)phrp(x)) C R[x]/{(x" — 1) for all
p =0,1,..., p* — 1. By Theorem 3.8, we see that gs(x) = []; ., 1<r=r filx) €
Foulx], 0 < s < pke — 1, satisfying fi(0)" (02 ... (o) = [12257" g5 (x)
k_
= Hp ! i:}) Gupkin(¥). Let 0 < j < p — 1. Using Theorem 3.8 for the code
DU = [Djpk Iy phe I,D k=14 pk=1_p, . ..,Djpk—l+l,Djpk—l] . Apk—l,‘We deduce
that D) is monomially equlvalent to the (1 + wu)-constacyclic code C/) of length

p*~1n over R generated by the following polynomial

PFl—1e—1 e—1 pF1-1
w=TI Meppwo=T1TT Tl 5o
=0 A=0 2=0 =0 i >apk4jpk=14, 1<t<r
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Hence CU) = (GU)(x)) as ideals of R[x1/(x”" " — (1 + wu)).
Finally, the conclusion for minimum Hamming distance of C follows from Theo-
rem 2.1 and Lemma 4.1(i) immediately. m]

Remark Letk = 0. As ged(p,n) = 1 and (1 +a)u)Pl =1byp! > eandu® =0in R,
there is uniquely n € R* such that n” = 1 4+ wu. This implies (nx)" = (1 + wu)x".
Hence the map t : a(x) — a(nx) (Ya(x) € R[x]/(x" — 1)) is an isomorphism of
rings from R[x]/(x" — 1) onto R[x]/{x" — (1 + wu)). Therefore, C is a (1 + wu)-
constacyclic code of length n over R if and only if there is a unique cyclic code D
of length n over R such that 7(D) = C. Obviously, D and t(D) are monomially
equivalent codes over R.

5 An example

In this section, we explain the main results of the paper by considering (1 + u)-
constacyclic codes of length 90 over R = F3 + ulF3 (4% = 0). In this case, we have
p=3m=1e=2k=2,0o=1¢€ R*andn = 10.

Using Notation 3.1, by 3! > e we have I = 1, p**! = 32+1 =27, and n’ = 19
satisfying 1 < n’ < 26andn’n = 190 = 1 (mod 27). Obviously, n’ = gp* +n" where
p*¥ =9, =2and n” = 1. Hence the permutation o on the set [90) = {0, 1, ..., 89}
is defined by

o(j +101) = j + 10(A — j mod 9),
forall0 < j <9and 0 < A < 8. Precisely, we have

(01 23456 7 8910111213141516171819
©=1081726354453627189 10 1 8273 64 55 46 37 28 19

20212223242526272829...80 81 82 83 83 85 86 87 88 &9
2011 2 83746556473829...8071625344352617 8 89/

By (14 u)? = 1+ 2u, it follows that A = diag[1, 1 4+ 2u, (1 +2u)?, ..., (1 +2u)°].
As (1 +u)’ =1, we have

14 2u

A= O where £2 = l—i—ul
2

Let Pyy = [€;,j] be the 90 x 90 permutation matrix defined by: ¢; ; = 1if j = 0(7),
and ¢; ; = 0 othwise, for all 0 < i, j < 89, and set

9
r—";
Mo(10, 1) = diag[4, ..., A]- Py.
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By Lemma 3.2, we see that My (10, 1) is a 90 x 90 monomial matrix over R, and

aop ag
ol “ Hh=mao, )| “ |, VaeR, i=0,1,...,89.
asgog asgg

defines an R-module automorphism on R°C. By Corollary 3.6, we know that C is
a (1 + u)-constacyclic code of length 90 over R if and only if there is a sequence
C3 D --- 2 (1 2 Cy of cyclic codes of length 10 over R such that

O(C) ={O(c) | c e C}=1[Cg,C7,Cs,Cs,C5,C4,C3,Cr, C1, Col - Ag.

Obviously, we have that x'0 — 1 = f;(x) 2(x) f3(x) fa(x) where f1(x) = x + 1,
folx) =x42, f3(x) = x*+x34+x2+x+1and fa(x) = X423 4242041 being
irreducible polynomials in F3[x]. By Lemma 3.7, the number of (1 + u)-constacyclic
codes with length 90 over R is (3% - 2 + 1)* = 130321 and all these codes are given
by:

Ciyinaizig) = <f1 () f2(x)2 f3(x)"3 f4(x)i4>

RIx]/(x%0—(14u))
where 0 < iy, i2,i3,i4 < 18. The number of codewords in C;, j,.i3,iy) 1S equal to
|C(l1 s l4)| _ 3(18 11)+(18 i2)+4(18—i3)+4(18—iy) __ 3180 (l]+12+4l3+4l4)

Now, we consider C = C(7,2,18,15) = (f1 @) fr(x) f3(x)18f4(x)15). In this case,
(i1, i, i3, i4) = (7,2, 18, 15), and hence |C| = 3180-(7+2+418+4-15) _ 339,

Using the notations of Theorem 3.8, we have g;(x) = I—[it>s’15,§4 fi(x) € F3[x]
foralls =0, 1,..., 17. Specifically, we have

go() = g1(x) = f1(x) fo(x) f3(x) fa(x) = x'0 —

g2(x) = g3(x) = ga(x) = g5(x) = ge(x) = f1(x) f3(x)

fa(x) =+ T+t P+ 1,

g7(x) = gg(x) = go(x) = gio(x) = g11(x) = g12(x) = g13(x) = g14(x)
= 0 fax) =¥+ 20+ 1t 2+ 1,

g15(x) = gi6(x) = g17(x) = f3(x).

e By Theorem 3.5, we have that © (C) = [Cs, C7, Cq, Cs, C4, C3, Ca, C1, Cpl- Ag and
C is monomially equivalent to the matrix-product code [Cs, ..., C1, Cp] - Ag, where
each C, is a cyclic code of length 10 over R given by

Cs = C7 = (g8(x) +ugo+s(x)) = (f3(x) fa(x) + uf3(x)),

Co = (g6(x) + ugor6(x)) = (f1(x) f3(x) fa(x) + uf3(x)),

Cs =C4 =C3 = Ca = (g5(x) +ugoss(x)) = (f1(x) f3(x) fa(x) + uf3(x) fa(x)),
C1 = Co = (g1(x) + ugot1(x)) = (uf3(x) fa(x))
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Az A3 Az 1 1 1
and Ag = A3 ® A3 = | 2A3 A3 O (mod3)with A3 =2 1 0 |.Letd;
A3 0 O 1 0 O

be the minimum Hamming distance of the cyclic code C; with length 10 over R. Then
dg=d7=2,ds =2,dp =d3 =dy =ds =5andd; =dp =5.

e By Theorem 4.2, C is monomially equivalent to the matrix-product code
[CPD, cD cO]. A3 where CV) = (G(j)(x)) is a (1 4+ u)-constacyclic code of
length 30 over R, i.e. an ideal of the ring R[x]/(x3® — (1 4 u)), generated by the
polynomial G (x) = [Li=o1 ]_[12:0 [1i,=0343)+1, 1<1<a J1(x) € F3lx]. Specifically,
we have

Pw= T[] ro [ ro ] £

i >6, 1<tr<4 i>7, 1<t<4 i >8, 1<t<4
[] ro I f®» J] s®
i;>15, 1<t<4 ip>16, 1<r<4 ip>17, 1<t<4
= A A f(x) - 00 fa(x) - (0 fax) - f(x)°
= fi(x) (00 fa(x)?,
V= J] o I s ] £
ip>3, 1<t<4 ir>4, 1<t<4 ii>5, 1<t<4
[T ro I r» J] s
ip>12, 1<t<4 i;>13, 1<r<4 i>14, 1<t<4
= (f1(x) () fa(0))? - (f5(0) fa(x))?
= i)} 0 fa(x)°,
Om= ] s J] @ J] £
ir>0, 1<r<4 ii>1, 1<tr<4 i >2, 1<t<4
[T r» J] o J] A
i;>9, 1<t<4 i;>10, 1<r<4 ip>11, 1<t<4

= (i) L) HE) L) FiE) HE) fax) - () fax)?
= f1(x)? £ ()0 fa(0)°.

Hence C@ = (f1(x) f3(0)®fa(x)?), €V = (fi(x)? 3(0)° fa(x)®) and CO =
(1) ()2 f3(x)® f4(x)®). By Lemma 3.7, we have |C?| = 360-(1+4-6+4-3) _
323’ |C(l)| — 360—(3+4~6+4~6) — 39’ |C(0)| — 360—(3+2+4-6+4-6) — 37. MOI'COVCI', from
the proof of Theorem 4.2 we deduce the following conclusions:
e C@ is monomially equivalent to [Cg, C7, Cs] - A3.
e C is monomially equivalent to [Cs, Cs4, C3] - As.
e C® is monomially equivalent to [C2, C1, Co] - A3.
Let d) be the minimum Hamming distance of C) for j = 0, 1, 2. Since A3
is NSC, by Theorems 4.2 and 2.1 it follows that d® = min{3dg, 2d7, ds} = 2,
dV = min{3ds, 2ds, d3} = 5 and d© = min{3d>, 2d;, dy} = 5.
By Theorem 2.1, the minimum Hamming distance of C = C(7,2,18,15) is equal to
d = min{3d?®,2dWV, 4O} = 5.
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6 Conclusion

For any positive integers m, e and a prime number p, denote R = IFm [u]/(u®) which
isafinite chainring. Letw € R*, k and n be positive integers satisfying gcd(p, n) = 1.
We prove that any (1 4 wu)-constacyclic code of length p*n over R is monomially
equivalent to a matrix-product code of a nested sequence of p* cyclic codes with length
n over R and a p¥ x pk matrix A pr over I, Then we give an iterative construction of
every (1 + wu)-constacyclic code by (1 + wu)-constacyclic codes of shorter lengths
over R. The next work is to rediscover new properties for minimum distance of the
codes by use of their matrix-product structures.
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