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Abstract
We generalize to higher dimensions the notions of optical orthogonal codes.We estab-
lish upper bounds on the capacity of general n-dimensional OOCs, and on ideal codes
(codes with zero off-peak autocorrelation). The bounds are based on the Johnson
bound, and subsume bounds in the literature. We also present two new constructions
of ideal codes; one furnishes an infinite family of optimal codes for each dimen-
sion n ≥ 2, and another which provides an asymptotically optimal family for each
dimension n ≥ 2. The constructions presented are based on certain point-sets in finite
projective spaces of dimension k over GF(q) denoted PG(k, q).

Keywords Optical orthogonal code · Johnson bound · OOC · Constant weight
codes · Singer group

1 Introduction

A (1-dimensional) (N , w, λa, λc) optical orthogonal code (OOC) is a family of binary
sequences (codewords) of length N , and constant Hamming weight w satisfying the
following two conditions:

• (off-peak auto-correlation property) for any codeword c = (c0, c1, . . . , cN−1) and

for any integer 1 ≤ t ≤ N − 1, we have
∑N−1

i=1
ci ci+t ≤ λa ,

• (cross-correlation property) for any two distinct codewords c, c′ and for any integer
0 ≤ t ≤ N − 1, we have

∑N−1

i=0
ci c

′
i+t ≤ λc,

where each subscript is reduced modulo N .
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374 T. L. Alderson

An (N , w, λa, λc) OOC with λa = λc is denoted an (N , w, λ) OOC. The number
of codewords is the size, or capacity of the code. For fixed values of N , w, λa and
λc, the largest capacity of an (N , w, λa, λc)-OOC, C , is denoted �(N , w, λa, λc),
or �(C). An (N , w, λa, λc)-OOC with capacity �(N , w, λa, λc) is said to be
optimal.

A family of (N , w, λa, λc) OOCs is called asymptotically optimal if

lim
N→∞

|C |
�(C)

= 1. (1)

Since the work of Salehi et al. [23,24], OOCs have been employed within optical
code division multiple access (OCDMA) networks. OCDMA networks are widely
employed due to their strong performance with multiple users. They are ideally suited
for bursty, asynchronous, concurrent traffic. In applications, optimal OOCs facilitate
the largest possible number of asynchronous users to transmit information efficiently
and reliably. In order to maintain low correlation values the code length must increase
quite rapidly with the number of users, reducing bandwidth utilization.

The 1-DOOCs spread the input data bits only in the time domain. Technologies such
as wavelength-division-multiplexing (WDM) and dense-WDM enable the spreading
of codewords in both space and time [21], or in wave-length and time [15]. Hence,
codewords may be considered as � × T (0, 1)-matrices. These codes are referred
to in the literature as multiwavelength, or multiple-wavelength, or wavelength-time
hopping, or 2-dimensional OOCs (2-D OOCs).

This addition of another dimension allows codeswith off-peak autocorrelation zero,
thereby improving the OCDMA performance in comparison with 1-D OCDMA. For
optimal constructions of 2-DOOCs see [7,13,17], and for asymptotically optimal con-
structions see [18,19,28–30]. Later, a third dimension was added which gave a further
increase in the performance of the codes [2,11]. In 3-D OCDMA the optical pulses are
spread in three domains, space, wave-length, and time. These 3-dimensional codes are
referred to as space/wavelength/time spreading codes, or 3-D OOC. In [8], coherent
fibre-optic communication systems are discussed, whereby both quadratures and both
polarizations of the electromagnetic field are used, resulting in a four-dimensional
signal space.

In the present work we bridge these developments to the next stage, introducing
constructions and bounds on n-dimensional OOCs, for all n ≥ 1. In Sect. 2 we
introduce n-dimensional OOCs. We develop some upper bounds on these codes based
on the Johnson Bound. We also develop bounds on higher dimensional ideal codes
(λa = 0). In Sect. 3 we establish methods by which lower dimensional OOCs can
produce higher dimensional codes. In particular we provide conditions under which
(asymptotic) optimality ismaintainedwhen transforming to higher dimensional codes.
In Sect. 4 we present two constructions of new infinite families of ideal codes; one
optimal, and another which is asymptotically optimal.
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2 n-D OOCs and bounds

2.1 n-D OOCs

Denote by (�1×�2 · · ·×�n−1×T , w, λa, λc) an n dimensional Optical Orthogonal
Code (n-DOOC)with constantweightw, i’th spreading length�i , 1 ≤ i ≤ n − 1, and
time-spreading length T . Each codewordmay be considered as an n-dimensional�1×
�2 · · · × �n−1 × T binary array. The off-peak autocorrelation, and cross correlation
of an (�1 × �2 · · · × �n−1 × T , w, λa, λc) n-D OOC have the following properties.

• (off-peak auto-correlation property) for any codeword A = (ai1,i2,...,in ) and for
any integer 1 ≤ t ≤ T − 1, we have∑�1−1

i1=0

∑�2−1

i2=0
· · ·

∑�n−1−1

in−1=0

∑T−1

in=1
ai1,i2,...,in ai1,i2,...,in+t ≤ λa ,

• (cross-correlation property) for any two distinct codewords A = (ai1,i2,...,in ), B =
(bi1,i2,...,in ) and for any integer 0 ≤ t ≤ T − 1, we have∑�1−1

i1=0

∑�2−1

i2=0
· · ·

∑�n−1−1

in−1=0

∑T−1

in=1
ai1,i2,...,in bi1,i2,...,in+t ≤ λc,

where each subscript is reduced modulo T . In the case that λa = λc, C is denoted an
(�1 × �2 · · · × �n−1 × T , w, λ) OOC.

We note that taking all but t −1 of the �i ’s to be 1 results in a t-dimensional OOC.
With practical applications in mind we shall take minimal correlation values to be
most desirable. Codes satisfying λa = 0 will be said to be ideal.

As it is of interest to construct codes with maximal capacity, we now discuss some
upper bounds on the capacity of codes.

2.2 Bounds

We shall require the following notation. By an (N , w, λ)m+1-code, we denote a
(conventional) code of length N , with constant weight w, and maximum Hamming
correlation (the number of non-zero agreements between the two codewords) of λ

over an alphabet of sizem + 1. We assume with no loss of generality that the alphabet
contains zero. For binary codes (m = 1) the subscript 2 is typically dropped. Let
A(N , w, λ)m+1 denote the maximum capacity of an (N , w, λ)m+1-code. In [2], the
following bound is established.

Theorem 2.1 ([2], Generalized Johnson Bound)

A(N , w, λ)m+1 ≤
⌊
mN

w

⌊
m(N − 1)

w − 1

⌊
· · ·

⌊
m(N − λ)

w − λ

⌋⌋
· · ·

⌋
. (2)

If w2 > mNλ then

A(N , w, λ)m+1 ≤ min

{
mN ,

⌊
mN (w − λ)

w2 − mNλ

⌋}
. (3)
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We note that the first bound (2) may also be found in [18]. As observed in [9], given
a 1-D (N , w, λ)-OOC, C„ the collection of codewords, along with each of the N − 1
distinct non-trivial cyclic shifts of codewords comprise a binary (N , w, λ) code with
capacity N |C |. Applying the bound (2) with m = 1 we immediately obtain

�(N , w, λ) ≤ J (N , w, λ) =
⌊
1

w

⌊
N − 1

w − 1

⌊
N − 2

w − 2

⌊
· · ·

⌊
N − λ

w − λ

⌋⌋
· · ·

⌋
(4)

:= � f (N , w, λ)� . (5)

To obtain bounds on higher dimensional OOCs, we observe that by choosing any
fixed linear ordering of the array entries, each codeword from a (�1×�2 · · ·×�n−1×
T , w, λ) n-D OOC, C , can be viewed as a binary constant weight (w) code of length
N = �1�2 · · · �n−1T . Moreover, by including the T distinct cyclic shifts of each
codeword we obtain a corresponding constant weight binary code of size T · |C |. It
follows that

|C | ≤
⌊
A(N , w, λ)

T

⌋
(6)

From the Eq. (6) and Theorem 2.1 we obtain the following bounds for n-D OOCs.

Theorem 2.2 (Johnson Bound for n-D OOCs) If C is an (�1 × �2 · · · × �n−1 ×
T , w, λ) OOC, then

�(C) ≤ J (�1 × �2 · · · × �n−1 × T , w, λ) (7)

=
⌊

N

Tw

⌊
N − 1

w − 1

⌊
· · ·

⌊
N − λ

w − λ

⌋⌋
· · ·

⌋
(8)

:= � f (�1 × �2 · · · × �n−1 × T , w, λ)� , (9)

where N = �1�2 · · · �n−1T . If w2 > Nλ then

�(C) ≤ min

{
N

T
,

⌊
N
T (w − λ)

w2 − Nλ

⌋}
. (10)

We note that the bounds in Theorem 2.2 subsume the Johnson type bounds on 1, 2,
and 3-dimensional codes, such as those found in [7,9,20]. Moreover, we can see from
the theorem, that in a certain sense, maximum capacity is more intrinsically linked to
the time spreading length than to the other dimensions.

Corollary 2.3 If N = �1 ·�2 · · ·�s−1 ·T = �′
1 ·�′

2 · · ·�′
t−1 ·T where s, t ≥ 1 then

J (�1 × · · · × �s−1 × T , w, λ) = J (�′
1 × · · · × �′

t−1 × T , w, λ) (11)

Some easy arithmetic gives the following.
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Lemma 2.4 If N = �1 · �2 · · ·�n−1 · T , then
N

T
· J (N , w, λ) ≤ J (�1 × · · · × �n−1 × T , w, λ) (12)

≤ N

T
· J (N , w, λ) + N

T
− 1 (13)

In particular, if f (N , w, λ)− J (N , w, λ) < T
N (such as the case in which f (N , w, λ)

is integral) then

N

T
· J (N , w, λ) = J (�1 × · · · × �n−1 × T , w, λ). (14)

Corollary 2.5 Let N = �1 · �2 · · · �n−1 · T where T = �n · T ′. If f (�1 × · · · ×
�n−1 × T , w, λ) − J (�1 × · · · × �n−1 × T , w, λ) < 1

�n
, then

�n · J (�1 × · · · × �n−1 × T , w, λ) = J (�1 × · · · × �n−1�n × T ′, w, λ) (15)

= J (�1 × · · · × �n−1 × �n × T ′, w, λ).

(16)

Generalizing the approach in [2] for 3-dimensional OOCs, observe that an n-D
OOC C with λa = 0 can be viewed as a constant weight (w) code of length N

T =
�1�2 · · ·�n−1 over an alphabet of size T + 1 containing zero. By including the T
distinct cyclic shifts of each codeword we obtain a corresponding constant weight
code of size T · |C |.

It follows that

|C | ≤
⌊
A( NT , w, λ)T+1

T

⌋
. (17)

From Theorem 2.1 and the Eq. (17) we obtain the following bound for ideal n-D
OOCs.

Theorem 2.6 (Johnson Bound for Ideal n-D OOC) Let C be an (�1 × · × �n−1 ×
T , w, 0, λc) OOC, then

�(C) ≤ J (I deal)

=
⌊

N

Tw

⌊
N − T

w − 1

⌊
N − 2T

w − 2

⌊
· · ·

⌊
N − λT

w − λc

⌋⌋
· · ·

⌋
(18)

where N = �1 · �2 · · · �n−1 · T . In particular, if C has (maximal) weight w = N
T ,

then �(C) ≤ T λ.

Note that the bound (18) is tight in certain cases, see e.g. the codes constructed in
[17].
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Fig. 1 Sections of a 3-D, � × S × T (= �1 × �2 × T ) codeword: b a 1-section; c a 2-section; d a
(1,2)-section

2.3 Ideal codes and sections

Suppose A is a codeword from an n-dimensional (�1×�2×·×�n−1×T , w, λa, λc)

OOC. For any fixed i , 1 ≤ i ≤ n−1, a�i plane of Amay be considered as an (n−1)-
dimensional array. Such a plane is called a �i section, or an i-section of A.

For i 	= j , the intersection of an i-section and a j-section is a section of degree 2,
denoted an (i, j)-section. A section of degree t ≥ 3 is defined in the analogous way,
denoted an (i1, i1, . . . , it )-section. See Fig. 1.

One way to ensure an n-D OOC is ideal, is to restrict the code to having at most
one pulse per i -section, for some fixed i . Such a code is said to be AMOPS(i). For
2-D OOCs these are commonly called At Most One Pulse Per Wavelength (AMOPW )
codes [7,13,17]. For 3-D codes these are commonly called At-Most-One-Pulse-per-
Plane (AMOPP) codes [6,25–27].

If an n-D OOC, C , is restricted to having at most one pulse per (i1, i2, . . . , i j )-
section, where 1 ≤ j ≤ n − 1, then C will be ideal. Such a code is said to have at
most one pulse per section of degree j, and is denoted an AMOPS(i1, i2, . . . , i j ) code.
If such a code has exactly one pulse per (i1, i2, . . . , i j )-section, then it is said to have
a single pulse per section of degree j, and is denoted an SPS(i1, i2, . . . , i j ) code. An
ideal n-dimensional OOC is necessarily AMOPS(1, 2, . . . , n − 1).

Anapproach entirely similar to that inSect. 2.2 shows that anAMOPS(i1, i2, . . . , i j )
corresponds to a constant weight 1-dimensional code of length m = �i1 · �i2 · · · �i j

over an alphabet of size N
m +1 (containing zero). Consequently,we obtain the following

bounds on AMOPS codes.
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Theorem 2.7 (Johnson Bound for AMOPS codes) Let C be an (ideal) (�1 × · ×
�n−1 × T , w, 0, λ)-AMOPS(i1, i2, . . . , i j ) OOC, where j ≥ 1 then

�(C) ≤ J (AMOPS)

=
⌊

N

Tw

⌊
N

(
1 − 1

M

)

w − 1

⌊
N

(
1 − 2

M

)

w − 2

⌊
· · ·

⌊
N

(
1 − λ

M

)

w − λ

⌋⌋
· · ·

⌋

≤ J (I deal) (19)

where N = �1 · �2 · · · �n−1 · T , and M = �i1 · �i2 · · ·�i j . In the extremal case

where w = M, the bound (19) simplifies to
Nλ+1

T Mλ+1 .

In particular, if C is an (�1 × · × �n−1 × T , w, 0, λ)-AMOPS(i) OOC, then

�(C) ≤
⎢⎢⎢⎣ N

Tw

⎢⎢⎢⎣
N

(
1 − 1

�i

)

w − 1

⎢⎢⎢⎣
N

(
1 − 2

�i

)

w − 2

⎢⎢⎢⎣· · ·
⎢⎢⎢⎣
N

(
1 − λ

�i

)

w − λ

⎥⎥⎥⎦

⎥⎥⎥⎦ · · ·
⎥⎥⎥⎦ (20)

where N = �1 · �2 · · · �n−1 · T . In the extremal case where w = �i , the bound (20)
simplifies to T λ

∏
j 	=i

�λ+1
j .

The bound (19) is tight in certain cases, see e.g. the codes constructed in [2,7,12–
14,25]. We also note that the bound (19) reduces to the bound in Theorem 2.6 when
j = n − 1.

3 Iterative constructions of optimal n-D OOCs

SupposeC is a (�×T , w, λa, λc) 2-DOOCwhere� = �1 ·�2. Each codeword inC
can be considered as a � × T array. Let X ∈ C where X = (xi, j ). We may construct
a corresponding 3-D �1 × �2 × T codeword Yx = (yi, j,k), 0 ≤ i < �1, 0 ≤ j <

�2, 0 ≤ k < T , where

yi, j,k = ci+ j�1,k . (21)

It is readily verified that C ′ = {Yx | x ∈ C} is a (�1 × �2 × T , w, λa, λc) 3-D
OOC with |C ′| = |C |. Inductively we arrive at the following.

Lemma 3.1 Let � = �1 · �2 · · · �s−1 be a positive integral factorisation. There
exists an (� × T , w, λa, λc) 2-D OOC with capacity M if and only if there exists an
(�1 × �2 · · · × �s−1 × T , w, λa, λc) s-D OOC with capacity M.

An n-D OOC meeting any of the Johnson-type bounds established in the previous
sections is referred to as a J-optimal code. With reference to Lemma 3.1 along with
Corollary 2.3 we observe that a higher dimensional OOC with time spreading length
T , obtained from a J-optimal lower dimensionalOOCby factoring the�i ’swill always
be J-optimal. For example, each of the optimal codes in Table 1 give rise to optimal
codes of dimension 4 or more.
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Table 1 Some J-optimal ideal (�1×�2×T ) 3-DOOCs that give rise to J-optimal ideal codes of dimension
n > 3. Unless stated otherwise, λc = 1

p a prime, q a prime power, θ(k, q) = qk+1−1
q−1

Conditions Type References

w = �1 ≤ p for all p dividing �2T SPS(1) [12]

w = q + 1 = �1, �2 = q > 3, T = p > q SPS(1) [14]

w = 4 = �1 ≤ �2 = q, T ≥ 2 SPS(1) [14]

w = 3 = �1, �2 and T have the same parity SPS(1) [25]

w = 3, �T (S − 1) even, �T (S − 1)S ≡ 0 mod
3, and S ≡ 0, 1 mod 4 if T ≡ 2 mod 4 and �

is odd.

AMOPS(1) [25]

w = �1�2 ≤ p for all p dividing T Ideal [12]

w = q, �ST = qk − 1, T = q − 1 Ideal [2]

w = q2, �S = q2 + 1, T = q + 1, λc = q − 1 Ideal [2]

On the other hand, a J-optimal n-D OOC may correspond to an s-D OOC with
s < n that is strictly asymptotically optimal. For example, from the bound (19), we
see that a J-optimal (5 × 5 × 5, 5, 0, 1)-AMOPS(1) OOC has capacity 125, whereas
a J-optimal (25 × 5, 5, 0, 1)-AMOPS(1) OOC has capacity 150.

Corollary 3.2 Let � = �1 · �2 · · ·�n−1 be a positive integral factorisation.

1. If there exists a (resp. asymptotically) J-optimal (�×T , w, λa, λc) 2-DOOC then
there exists a (resp. asymptotically) J-optimal (�1×�2 · · ·×�n−1×T , w, λa, λc)

n-D OOC.
2. If there exists a (resp. asymptotically) J-optimal (�1 × �2 · · · × �n−1 ×

T , w, λa, λc) n-D OOC, then there exists a (� × T , w, λa, λc) 2-D OOC which
is at least asymptotically J-optimal.

Theorem 3.3 Let C be an (�1 × �2 × · · · × �n−1 × T , w, λa, λc) n-D OOC, n ≥ 1.
For any positive integral factorization T = T1 · T2, there exists an (T1�1 × �2 ×
· · · × �n−1 × T2, w, λ′

a, λ
′
c) n-D OOC, C ′ with λ′

a ≤ λa, λ′
c ≤ max{λa, λc}, and

|C ′| = T1 · |C |.
Proof For n = 1, 2 see Theorems 3 and 5 in [5]. The result then follows from
Lemma 3.1. �

There are many constructions of optimal 1-dimensional OOCs. From the Theo-
rem 3.3 we see that in some cases optimal 1-dimensional OOCs give optimal n-D
OOCs.

Corollary 3.4 Let C be an (N , w, λ) OOC with N = �1 · �2 · · · �n−1 · T .
1. If C is J-optimal and f (N , w, λ) − J (N , w, λ) < T

N , then a J-optimal ((�1 ×
�2 × · · · × �n−1 × T , w, λ) n-D OOC exists.

2. If C is a member of a J-optimal (or asymptotically J-optimal) family then a fam-
ily of (�1 × �2 × · · · × �n−1 × T , w, λ) n-D OOCs exists which is (at least)
asymptotically optimal.
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Proof Follows from Theorem 3.3, (taking n = 1), Lemma 2.4, and the bounds in
Theorem 2.2. �

In [9], by considering orbits of lines in finite projective spaces, it is shown that

for any prime power q, an infinite family of J-optimal ( q
k+1−1

q−1 , q + 1, 1) OOCs exits.

From Corollary 3.4 we now see that for any positive integral factorisation qk+1−1

q−1 =
�1 · �2 · · · �n−1 · T , an optimal (�1 × �2 × · · · × �n−1 × T , q + 1, 1) n-D OOC
exists.

For dimensions n > 1, we may also construct new optimal codes from others.

Corollary 3.5 Let C be an (�1×�2×· · ·×�n−1×T , w, λ) n-DOOCwith T = T1 ·T2
a positive integral factorisation.

1. If C is J-optimal and f (�1 × �2 × · · · × �n−1 × T , w, λ) − J (�1 × �2 × · · · ×
�n−1 × T , w, λ) < 1

T1
(in particular, if f (�1 × �2 × · · · × �n−1 × T , w, λ) is

integral), then a J-optimal (T1�1 ×�2 ×· · ·×�n−1 × T2, w, λ,w, λ) n-D OOC
exists.

2. If C is a member of a J-optimal family, or an asymptotically J-optimal family then
a family of (T1�1 × �2 × · · · × �n−1 × T2, w, λ) n-D OOCs exists which is (at
least) asymptotically optimal.

Proof Follows from Theorem 3.3, Corollary 2.5, and the bounds in Theorem 2.2. �

4 New optimal and asymptotically optimal codes

4.1 Preliminaries

Our techniques will rely heavily on the properties of finite projective and affine spaces.
Such techniques have been used successfuly in the construction of infinite families of
optimal OOCs of one dimension, [1,3,4,9,16], two dimensions [5,7], and three dimen-
sions [2,6]. We start with a brief overview of the necessary concepts. By PG(k, q)

we denote the classical (or Desarguesian) finite projective geometry of dimension k
and order q. PG(k, q) may be modeled with the affine (vector) space AG(k + 1, q)

of dimension k + 1 over the finite field GF(q). Under this model, points of PG(k, q)

correspond to 1-dimensional subspaces of AG(k, q), projective lines correspond to
2-dimensional affine subspaces, and so on. A d-flat � in PG(k, q) is a subspace iso-
morphic to PG(d, q); if d = k−1, the subspace� is called a hyperplane. Elementary
counting shows that the number of d-flats in PG(k, q) is given by the Gaussian coef-
ficient

[
k + 1
d + 1

]

q
= (qk+1 − 1)(qk+1 − q) · · · (qk+1 − qd)

(qd+1 − 1)(qd+1 − q) · · · (qd+1 − qd)
. (22)

In particular, the number of points of PG(k, q) is given by θ(k, q) = qk+1−1
q−1 . We

will use θ(k) to represent this number when q is understood to be the order of the
field. Further, we shall denote by L(k) the number of lines in PG(k, q) .
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A Singer group of PG(k, q) is a cyclic group of automorphisms acting sharply tran-
sitively on the points. The generator of such a group is known as a Singer cycle. Singer
groups are known to exist in classical projective spaces of any order and dimension
and their existence follows from that of primitive elements in a finite field.

Here, we make use of a Singer group that is most easily understood by modelling
a finite projective space using a finite field. If we let β be a primitive element of
GF(qk+1), the points of � = PG(k, q) can be represented by the field elements
β0 = 1, β, β2, . . . , βn−1, where n = θ(k).

The non-zero elements of GF(qk+1) form a cyclic group under multiplication.
Multiplication by β induces an automorphism, or collineation, on the associated pro-
jective space PG(k, q) (see e.g. [22]). Denote by φ the collineation of � defined by
β i �→ β i+1. The map φ clearly acts sharply transitively on the points of �.

As observed in [5], we can construct 2-dimensional codewords by considering
orbits under some subgroup of G. Let n = θ(k) = � · T where G is the Singer group
of � = PG(k, q). Since G is cyclic there exists an unique subgroup H of order T (H
is the subgroup with generator φ�).

Definition 1 Let�, T be integers such that n = θ(k) = �·T . For an arbitrary pointset
S in� = PG(k, q)we define the�×T incidence matrix A = (ai, j ), 0 ≤ i ≤ �−1,
0 ≤ j ≤ T − 1 where ai, j = 1 if and only if the point corresponding to β i+� j is in S.

If S is a pointset of � with corresponding � × T incidence matrix W of weight
w, then φ� induces a cyclic shift on the columns of W . For any such set S, consider
its orbit OrbH (S) under the group H generated by φ�. The set S has full H-orbit
if |OrbH (S)| = T = n

�
and short H-orbit otherwise. If S has full H -orbit then

a representative member of the orbit and corresponding 2-dimensional codeword is
chosen. The collection of all such codewords gives rise to a (� × T , w, λa, λc) 2-D
OOC, where λa is determined by

max
1≤i< j≤ T

{
|φ�·i (S) ∩ φ�· j (S)|

}

and λc is determined by

max
1≤i, j≤ T

{
|φ�·i (S) ∩ φ�· j (S′)|

}
.

4.2 Construction

Let� = PG(k, q)whereG = 〈φ〉 is the Singer group of� as in the previous section.
Our work will rely on the following results about orbits of flats.

Theorem 4.1 (Rao [22], Drudge [10]) In � = PG(k, q), there exists a short G-orbit
of d-flats if and only if gcd(k+1, d+1) 	= 1. In the case that d+1 divides k+1 there is
a short orbitS which partitions the points of� (i.e. constitutes a d-spread of�). There

is precisely one such orbit, and the G-stabilizer of any� ∈ S is StabG(�) = 〈φ θ(k)
θ(d) 〉.
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4.2.1 Construction 1

For our first constructionwemimic themethods of [2], whereby codewords correspond
to lines that are not contained in any element of a d-spread of �.
For d ≥ 1, let k > 1 such that d + 1 divides k + 1. Let G = 〈φ〉 be the Singer group
of � = PG(k, q), as detailed above, and let S be the d-spread determined (as in
Theorem 4.1) by G, where say StabG(S) = H = 〈

φ�
〉
, where � = θ(k)

θ(d)
.

Let 
 be a line not contained in any spread element (a d-flat in S), and let A be the
� × θ(d) projective incidence array corresponding to 
. Observe that 
 has a full H -
orbit. H acts sharply transitively on the points of each spread element. It follows that A,
considered as a�×θ(d) codeword, satisfies λa = 0. For each such line 
, we choose a
representative element of it’s H -orbit, and include its corresponding incidence array as
a codeword. The aggregate of these codewords gives an ideal (�× θ(d), q + 1, 0, 1)-
3-D OOC, C . Elementary counting gives

|C | = L(k) − L(d) · θ(k)
θ(d)

θ(d)

= θ(k)θ(k − 1)

θ(d)(q + 1)
− θ(d − 1)θ(k)

θ(d)(q + 1)

= θ(k)

θ(d)(q + 1)
[θ(k − 1) − θ(d − 1)] . (23)

Comparing (23) with the bound in Theorem 2.6 shows these codes to be optimal.

Theorem 4.2 For d + 1 a proper divisor of k + 1, there exists a J-optimal (
θ(k)
θ(d)

×
θ(d), q + 1, 0, 1) 2-D OOC.

With the observation that θ(k)
θ(d)

= θ(m − 1, qd+1), we have shown the following.

Corollary 4.3 For d ≥ 1, m > 1, and for any positive integral factorisation �1 ·
�2 · · ·�n−1 = θ(m − 1, qd+1), there exists a J-optimal (ideal) (�1 × �2 × · · · ×
�n−1 × θ(d), q + 1, 0, 1) n−D OOC .

Table 2 will perhaps place this construction in context. Each of the optimal � × T
constructions described in the table gives rise to optimal higher dimensional OOCs,
with dimensions limited by the number of distinct factors in �.

4.2.2 Construction 2

In our second construction, codewords correspond to conics, and lines in � =
PG(3, q). An m-arc in PG(2, q) is a collection of m > 2 points such that no 3
points are incident with a common line. In PG(2, q), a (non-degenerate) conic is a
(q + 1)-arc. Elementary counting shows that this arc is complete (of maximal size)
when q is odd. The (q + 2)-arcs (hyperovals) exist in PG(2, q) if q is even and they
are necessarily complete. Conics are a special case of the so called normal rational
curves. We will be interested in the existence of large collections of arcs pairwise
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Table 2 J-optimal families of ideal 2-D OOCs that give rise to higher dimensional optimal codes

(p prime, q a prime power)
Parameters Conditions Reference

Codes with λ = 1

(� × p, �, 0, 1) � ≤ p, [13]
(
θ(k, q2) × (q + 1), q + 1, 0, 1

)
k ≥ 1 [7]

(θ(k, q) × (q − 1), q, 0, 1) k ≥ 1 [7]
(
(2n + 1) × θ(k, 2), 2n , 0, 1

)
k ≥ 1, n ≥ 2 [7]

(
θ(k)
θ(d)

× θ(d), q + 1, 0, 1), d < k, d + 1|k + 1, Ideal Theorem 4.2

Codes with λ ≥ 2

(� × p, �, 0, λc) � ≤ p, λc ≥ 1 [17]
(
(qn + 1) × θ(k, q), qn , 0, q − 1

)
k ≥ 1, n ≥ 2 [7]

intersecting in at most two points. From Theorem 8 of [1], and its proof, we obtain
the following.

Theorem 4.4 ([1]) In � = PG(2, q) there exists a family F of conics, pairwise
intersecting in atmost2 points,where |F | = q3−q2.Moreover, there is a distinguished
line 
 in � disjoint from each member of F .

LetG = 〈φ〉 be the Singer group as above, and let S be the 1-spread determined (as
in Theorem 4.1) by G where say StabG(S) = H = 〈

φ�
〉
where � = θ(3)

q+1 = q2 + 1.
Through each line 
 of S, choose a plane π(
). As the members of S are disjoint,
each such plane contains precisely one member of S (and therefore meets q2 further
members of S in precisely one point). As H acts sharply transitively on the points of
each line in S, each such plane has full H orbit. A dimension argument shows that
any two elements in the H -orbit of π(
) meet precisely in 
. In each π(
), let F(
)

be a family of conics as in Theorem 4.4. Denote by F = ∪F(
), where the union is
taken over all spread lines.

Let C ∈ F be a conic, and let A be the (q2 + 1) × (q + 1) incidence array
corresponding to 
. From the above, it follows that A, considered as a codeword,
satisfies λa = 0. For each such conic, choose a representative element of it’s H -orbit,
and include its corresponding incidence array as a codeword. The aggregate of these
codewords gives an ideal (q2 +1×q +1, q +1, 0, 2)-2D OOC, C1. Note that λc = 2
follows from the fact that two conics in F are either coplanar, and therefore meet in
at most two points, or are not coplanar, in which case their intersection lies on the line
common to the two planes.

Note that as in Construction 1, the H -orbits of non-spread lines of � correspond to
an ideal (q2 + 1 × q + 1, q + 1, 0, 1)-2D OOC, C2. Since a line and a conic meet in
at most two points, we have C = C1 ∪C2 is an ideal (q2 + 1× q + 1, q + 1, 0, 2)-2D
OOC. Moreover

|C | = (q2 + 1) · (q3 − q2) + L(3) − (q2 + 1)

q + 1
= q(q2 + 1)(q2 − q + 1) (24)
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Comparing 24 to the bound in Theorem 2.6 shows C to be asymptotically optimal.

Theorem 4.5 For q a prime power, there exists an asymptotically optimal (q2 + 1 ×
q + 1, q + 1, 0, 2) 2-D OOC.

Corollary 4.6 For any positive integral factorisation�1 ·�2 · · ·�n−1 = q2 +1, there
exists an asymptotically optimal (ideal) (�1 × �2 × · · · × �n−1 × q + 1, q + 1, 0, 2)
n−D OOC .

5 Conclusion

Here, we have generalized to higher dimensions the notions of optical orthogonal
codes. We establish bounds on the capacity of general n-dimensional OOCs, as well
as specific types of ideal codes. The bounds presented subsume existing bounds on
codes of dimension three or less appearing in the literature.

In Sect. 2.2 we observe that, barring any imposed structural requirements on the
remaining domains, the maximum capacity of a code is intrinsically linked to the
length of the time spreading domain only. From an implementation standpoint, there
is great advantage in constraining the structure of codewords to guarantee an off-peak
auto-correlation of zero (ideal codes). We establish bounds for ideal codes, and in
Sect. 4 provide constructions of ideal codes. One construction furnishes an infinite
family of optimal codes for each dimension n ≥ 2, and another which provides an
asymptotically optimal family for each dimension n ≥ 2.
Our constructions are iterative, in that they start with a construction of 2-D OOC,
the wavelength domain is then factored to produce higher dimensional codes. The
literature seems quite sparse of constructions of infinite families of higher dimensional
OOCs that do not arise (at least indirectly) from 2-D OOCs. Perhaps combinatorial
design techniques such as those in [26,27] may be fruitful in this regard.
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