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Abstract In the literature, few n-variable rotation symmetric bent functions have been
constructed. In this paper, we present two infinite classes of rotation symmetric bent
functions on Fn

2 of the two forms:

(i) f (x) = ∑m−1
i=0 xi xi+m + γ(x0 + xm, . . . , xm−1 + x2m−1),

(ii) ft (x) = ∑n−1
i=0 (xi xi+t xi+m + xi xi+t )+∑m−1

i=0 xi xi+m +γ(x0 + xm, . . . , xm−1 +
x2m−1),

where n = 2m, γ(X0, X1, . . . , Xm−1) is any rotation symmetric polynomial, and
m/gcd(m, t) is odd. The class (i) of rotation symmetric bent functions has algebraic
degree ranging from 2 to m and the other class (ii) has algebraic degree ranging from
3 to m. Moreover, the two classes of rotation symmetric bent functions are disjoint.
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1 Introduction

Boolean bent functions introduced by Rothaus [37] are an interesting combinatorial
object with the maximum Hamming distance to the set of all affine functions. Such
functions have been extensively studied because of their important applications in
cryptography (stream ciphers [5]), sequences [33], graph theory [35], coding the-
ory (Reed–Muller codes [13], two-weight and three-weight linear codes [1,17]), and
association schemes [36]. A complete classification of bent functions is still elusive.
Further, not only their characterization, but also their generation are challenging prob-
lems. Many papers on bent functions are devoted to the construction of bent functions
[2–5,9,11,12,15,16,18,22–32,42].

Rotation symmetric Boolean functions, introduced by Pieprzyk and Qu [34], are
invariant under circular translation of indices. Due to less space to be stored and allow-
ing faster computation of the Walsh transform, they are of great interest. They can be
obtained from idempotents (and vice versa) [19,20]. Characterizing and constructing
rotation symmetric bent functions are difficult and have theoretical and practical inter-
est. The dual of a rotation symmetric bent function is also a rotation symmetric bent
function. In the literature, few constructions of bent idempotents have been presented,
which are restricted by the number of variables and have algebraic degree no more
than 4. See more rotation symmetric bent functions in [7,8,14,21,38–40].

Quadratic rotation symmetric bent functions have been characterized by Gao et al.
[21]. They proved that the quadratic function

m−1∑

i=1

ci

⎛

⎝
n−1∑

j=0

x j xi+ j

⎞

⎠ + cm

⎛

⎝
m−1∑

j=0

x j xm+ j

⎞

⎠

is rotation symmetric bent if and only if the polynomial
∑m−1

i=1 ci (Xi +Xn−i )+cm Xm

is coprime with Xn + 1, where ci ∈ F2. Stanica et al. [38] conjectured that there are
no homogeneous rotation symmetric bent functions of algebraic degree greater than
2. The construction of rotation symmetric bent functions of algebraic degree greater
than 2 is an interesting problem [6]. Charnes et al. [10] constructed homogeneous bent
functions of algebraic degree 3 in 8, 10, and 12 variables by applying the machinery of
invariant theory. Up to now, there are few known constructions of rotation symmetric
bent functions. Gao et al. [21] constructed an infinite class of cubic rotation symmetric
bent functions of the form

ft (x0, x1, . . . , xn−1) =
n−1∑

i=0

(xi xi+t xi+m + xi xi+t ) +
m−1∑

i=0

xi xi+m,

where 1 ≤ t ≤ m − 1 and m/gcd(m, t) is odd. Carlet et al. [7] presented n-variable
cubic rotation symmetric bent functions of the form

123



Two infinite classes of rotation symmetric bent functions… 199

f (x0, x1, . . . , xn−1) =
n−1∑

i=0

xi xi+r xi+2r +
2r−1∑

i=0

xi xi+2r xi+4r +
m−1∑

i=0

xi xi+m,

where n = 2m = 6r . Carlet et al. [8] proposed an infinite class of quartic rotation
symmetric bent functions from two known semi-bent rotation symmetric functions by
the indirect sum. Su and Tang [40] gave a class of n-variable rotation symmetric bent
functions of any possible algebraic degree ranging from 2 to n/2 of the form

f (x) =
m−1∑

i=0

xi xi+m +
∑

δ∈A

∑

β′�β′′∈Om (δ)

m−1∏

i=0

xβ′
i xβ′′

i+m, (1)

where

– δ ∈ F
m
2 .

– On(δ) is the orbit of δ by cyclic shift.
– A is a subset of the representative elements of all the orbits Om(δ).
– β′ = (β′

0, β
′
1, . . . , β

′
m−1) and β′′ = (β′′

0, β
′′
1, . . . , β

′′
m−1).

– � denotes the sum over Z.

These functions contain functions by Carlet et al. [7].
Motivated by the constructions of Gao et al. [21] and Su et al. [40], this paper

constructs new rotation symmetric bent functions from some known rotation sym-
metric bent functions. We obtain two infinite classes of rotation symmetric bent
functions which are equivalent to functions in the class of Maiorana–McFarland. Let
γ(X0, X1, . . . , Xm−1) be a rotation symmetric polynomial in F2[X0, X1, . . . , Xm−1],
i.e.,γ(X0, X1, . . . , Xm−1) = γ(X1, . . . , Xm−1, X0).Weobtain two classes of rotation
symmetric bent functions of the form

f (x) =
m−1∑

i=0

xi xi+m + γ(x0 + xm, . . . , xm−1 + xm),

ft (x) =
n−1∑

i=0

(xi xi+t xi+m + xi xi+t ) +
m−1∑

i=0

xi xi+m + γ(x0 + xm, . . . , xm−1 + x2m−1),

where 1 ≤ t ≤ m − 1 and m/gcd(m, t) is odd. In fact, these bent functions belong to
theMaiorana–McFarland class of bent functions.Moreover, the two classes of rotation
symmetric bent functions are disjoint.

The rest of the paper is organized as follows. Section 2 introduces some basic nota-
tions of Boolean functions and rotation symmetric bent functions. Section 3 presents
the constructed rotation symmetric bent functions. Section 4 proves main results on
rotation symmetric bent functions. Section 5 makes a conclusion.
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2 Preliminaries

Let F
n
2 denote the n-dimensional vector space over the finite field F2. An n-

variable Boolean function f (x0, x1, . . . , xn−1) is a mapping from F
n
2 to F2. And

f (x0, x1, . . . , xn−1) can be represented by a polynomial called its algebraic normal
form (ANF):

f (x0, x1 . . . , xn−1) =
∑

u∈Fn2
cu

(
n−1∏

i=0

x
βi
i

)

, (2)

where u = (β0, β1, . . . , βn−1) and cu ∈ F2. The number of variables in the highest
order product term with nonzero coefficient is called its algebraic degree.

Definition 1 A Boolean function f over F
n
2 or an algebraic normal form f in

F2[x0, x1, . . . , xn−1] is called rotation symmetric if for each input x = (x0, x1, . . . ,
xn−1) ∈ F

n
2, we have

f (x1, x2, . . . , xn−1, x0) = f (x0, x1, . . . , xn−1).

The Walsh transform of a Boolean function calculates the correlations between the
function and linear Boolean functions. The Walsh transform of f over Fn

2 is

W f (b) =
∑

x∈Fn2
(−1) f (x)+b·x ,

where b = (b0, b1, . . . , bn−1) ∈ F
n
2, x = (x0, x1, . . . , xn−1), and b · x = ∑n−1

i=0 xibi .

Definition 2 ABoolean function f : Fn
2 −→ F2 is a bent function ifW f (b) = ±2n/2

for any b ∈ F
n
2.

A Boolean bent function only exists for even n. The algebraic degree of a bent function
is no more than m for n = 2m ≥ 4 and the algebraic degree of a bent function for
n = 2 is 2.

Let σ be a permutation of Fn
2 such that for any bent function f, f ◦ σ is also bent.

Then σ(x) = x A + b, where A is an n × n nonsingular binary matrix over F2, x A is
the product of the row-vector x and A, and b ∈ F

n
2. All these permutations form an

automorphism of the set of bent functions. Two functions f (x) and g(x) = f ◦ σ(x)
are called linearly equivalent. If f (x) is bent and L(x) is an affine function, then f +L
is also a bent function. Two functions f and f ◦ σ + L are called EA-equivalent. The
completed version of a class is the set of all functions, which are EA-equivalent to the
functions in the class.

Maiorana and McFarland [26] introduced independently a class of bent functions
by concatenating affine functions. This class is called the Maiorana–McFarland class
M of functions defined over Fm

2 × F
m
2 of the form

f (a, y) = y · π(a) + h(a), (3)
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where (a, y) ∈ F
m
2 ×F

m
2 ,π(a) is anymapping fromF

m
2 toFm

2 , and h(a) is any Boolean
function on F

m
2 . Then f is bent if and only if π is bijective.

3 Two infinite classes of rotation symmetric bent functions

In this section, we only present two infinite classes of rotation symmetric bent func-
tions. The proofs of the main results will be given in the next section.

Theorem 1 Let n = 2m and γ(X0, X1, . . . , Xm−1) ∈ F2[X0, X1, . . . , Xm−1] be an
algebraic normal form of algebraic degree d. Then the function

f (x) =
m−1∑

i=0

xi xi+m + γ(x0 + xm, . . . , xm−1 + x2m−1)

is a bent function. Further, if γ(X0, X1, . . . , Xm−1) is rotation symmetric, then f is a
rotation symmetric bent function. If d ≥ 2, then f has algebraic degree d.

Example 1 Let m = 6. Then the function

f (x) =
5∑

i=0

xi xi+6 +
5∏

i=0

(xi + xi+6)

is a rotation symmetric bent function of algebraic degree 6.

Theorem 2 Let n = 2m, t be an integer such that 1 ≤ t ≤ m − 1 and m/gcd(m, t)
is odd, and γ(X0, X1, . . . , Xm−1) ∈ F2[X0, X1, . . . , Xm−1] be an algebraic normal
form. Then the function

ft (x) =
n−1∑

i=0

(xi xi+t xi+m + xi xi+t ) +
m−1∑

i=0

xi xi+m + γ(x0 + xm, . . . , xm−1 + x2m−1)

is a bent function. Further, if γ(X0, X1, . . . , Xm−1) is rotation symmetric of algebraic
degree d ≥ 3, then f is a rotation symmetric bent function of algebraic degree d.

Example 2 Let m = 6 and t = 2. Then the function

f2(x) =
11∑

i=0

(xi xi+2xi+6 + xi xi+2) +
5∑

i=0

xi xi+6 +
5∏

i=0

(xi + xi+6)

is a rotation symmetric bent function of algebraic degree 6.

Example 3 Letm be an odd positive integer withm ≥ 3 and t = 1. Then the function

f1(x) =
2m−1∑

i=0

(xi xi+1xi+m + xi xi+1) +
m−1∑

i=0

xi xi+m +
m−1∏

i=0

(xi + xi+m)

is a rotation symmetric bent function with the greatest possible algebraic degree m.
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The following lemma shows that the two classes of rotation symmetric bent func-
tions constructed in Theorems 1 and 2 do not overlap.

Lemma 1 Let g(x0, x1, . . . , xn−1) be a Boolean function on Fn
2 or an algebraic nor-

mal form in F2[x0, x1, . . . , xn−1] such that

(1) for any 0 ≤ i ≤ m − 1, g(x0, . . . , xi , . . . , xi+m, . . . , xn−1) = g(x0, . . . ,
xi+m, . . . , xi , . . . , xn−1);

(2) for any 0 ≤ i ≤ m − 1, xi xi+m is not in the terms of g;
(3) g is rotation symmetric.

Then there exists a rotation symmetric polynomialγ(X0, X1, . . . , Xm−1) ∈ F2[X0, X1,

. . . , Xm−1] such that

g(x0, x1, . . . , xn−1) = γ(x0 + xm, x1 + xm+1, . . . , xm−1 + x2m−1).

Proof If there exists γ(X0, X1, . . . , Xm−1) such that

g(x0, x1, . . . , xn−1) = γ(x0 + xm, x1 + xm+1, . . . , xm−1 + x2m−1).

Since g is rotation symmetric, then γ(X0, X1, . . . , Xm−1) is rotation symmetric.
Now we will give the proof by the induction on algebraic degree d of g, i.e, there

exists such rotation symmetric polynomialγ from rotation symmetric g(x) of algebraic
degree d satisfying conditions (1) and (2).

(1) When g = 0 or g = 1, such γ obviously exists.
(2) When d = 1, such γ obviously exists.
(3) Suppose d ≥ 2. From the conditions (1) and (2), there exists i such that

g(x0, x1, . . . , xn−1)

= xi g
′(x0, . . . , xi−1, xi+1, . . . , xi+m−1, xi+m+1, . . . , xn−1)

+ xi+mg
′′(x0, . . . , xi−1, xi+1, . . . , xi+m−1, xi+m+1, . . . , xn−1),

where g′, g′′ ∈ F2(x0, . . . , xi−1, xi+1, . . . , xi+m−1, xi+m+1, . . . , xn−1). From
the condition (1), we have g′ = g′′. From the induction of algebraic degree
d, for g′ and g′′, there exists γ′(X0, . . . , Xi−1, Xi+1, . . . , Xm−1) such that

g′ = g′′ = γ′(x0 + xm, . . . , xi−1 + xi+m−1, xi+1 + xi+m+1, . . . , xm−1 + x2m−1).

Take γ(X0, X1, . . . , Xm) = Xiγ
′(X0, . . . , Xi−1, Xi+1, . . . , Xm−1). Then

g(x0, x1, . . . , xn−1) = γ(x0 + xm, x1 + xm+1, . . . , xm−1 + x2m−1).

Hence, this lemma follows. �	
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Remark 1 Let f (x) = ∑m−1
i=0 xi xi+m + g(x) defined in Eq. (1), where

g(x) =
∑

δ∈A

∑

β′�β′′∈Om (δ)

m−1∏

i=0

xβ′
i xβ′′

i+m .

We can verify that g(x) satisfies all the three conditions in Lemma 1. There exists
γ ∈ F2[X0, X1, . . . , Xm−1] such that

f (x) =
m−1∑

i=0

xi xi+m + γ(x0 + xm, . . . , xm−1 + x2m−1)

is bent. This shows that rotation symmetric bent functions constructed by Su and
Tang [40] are contained in functions in Theorem 1. Let h(x) = ∑n−1

i=0 (xi xi+t xi+m +
xi xi+t ). From Lemma 1, h can not be expressed as h(x) = γ(x0 + xm, . . . , xm−1 +
x2m−1) with γ ∈ F2[X0, X1, . . . , Xm−1] being a rotation symmetric polynomial.
Thus, any function f (x) constructed in Theorem 2 can not be written in f (x) =∑m−1

i=0 xi xi+m + γ(x0 + xm, . . . , xm−1 + x2m−1), where γ is a rotation symmetric
polynomial in F2[X0, X1, . . . , Xm−1]. Hence, the class of rotation symmetric bent
functions constructed in Theorem 2 is completely disjoint from the one constructed
in Theorem 1. In particular, any rotation symmetric bent functions in Theorem 2 are
different from rotation symmetric bent functions constructed by Su and Tang [40].

Remark 2 From the proof of Lemma 1, it is observed that a Boolean function
g(x0, . . . , x2m−1) on F

2m
2 can be written as g = γ(x0 + xm, . . . , xm−1 + x2m−1)

with γ ∈ F2[X0, X1, . . . , Xm−1] if and only if the following two conditions hold

(1) for any permutation σ over {0, 1, . . . , 2m−1} with {σ(i), σ(i +m)} = {i, i +m},
where 0 ≤ i ≤ m − 1, g(x0, . . . , x2m−1) = g(xσ(0), . . . , xσ(2m−1));

(2) for any 0 ≤ i ≤ m − 1, xi xi+m is not in the terms of g.

For any boolean function g(x0, . . . , x2m−1) on F2m
2 and i ∈ {0, 1, . . . , 2m − 1}, let

Dig be the functions defined as

Dig(x0, . . . , x2m−1) = g(x0, . . . , xi + 1, . . . , x2m−1) + g(x0, . . . , xi , . . . , x2m−1).

Then, one has the following proposition.

Proposition 1 Let g(x0, . . . , x2m−1) be a Boolean function onF2m
2 . Then, g = γ(x0+

xm, . . . , xm−1+ x2m−1) with γ ∈ F2[X0, X1, . . . , Xm−1] if and only if Di g = Di+mg
for any i ∈ {0, 1, . . . ,m − 1}.
Proof First, assume g = γ(x0 + xm, . . . , xm−1 + x2m−1). Then,

Di+mg(x0, . . . , x2m−1) = γ(x0 + xm, . . . , xi + xi+m + 1, . . . , xm−1 + x2m−1)

+γ(x0 + xm, . . . , xi + xi+m, . . . , xm−1 + x2m−1)

= Dig(x0, . . . , x2m−1).
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204 C. Tang et al.

Conversely, assume Di g = Di+mg. Then, for any i ∈ {0, 1, . . . ,m − 1}, there exist
Boolean functions Ai , Bi ,Ci and Di , whose values are completely independent with
xi and xi+m such that

g(x0, . . . , x2m−1) = Ai xi xi+m + Bi xi + Ci xi+m + Di . (4)

Thus, Di+mg(x0, . . . , x2m−1) = Ai xi +Ci and Di g(x0, . . . , x2m−1) = Ai xi+m + Bi .
One gets Ai = 0 and Bi = Ci from Di g = Di+mg. By Eq. (4), one has

g(x0, . . . , x2m−1) = Bi (xi + xi+m) + Di .

Hence, the function g satisfies the conditions (1) and (2) in Remark 2,which completes
the proof.

4 Proofs

In this section, we give the proofs of our main results on rotation symmetric bent
functions. We first give the following lemma on rotation symmetric functions.

Lemma 2 Letγ ∈ F2[X0, . . . , Xm−1], then g(x0, . . . , x2m−1) = γ(x0+xm, . . . , xm−1
+ x2m−1) over F2m

2 is rotation symmetric if and only if γ(X0, . . . , Xm−1) over Fm
2 is

rotation symmetric.

Proof If γ(X0, . . . , Xm−1) over Fm
2 is rotation symmetric, then

g(x1, . . . , xm, xm+1 . . . , x0) = γ(x1 + xm+1, . . . , x0 + xm)

= γ(x0 + xm, . . . , xm−1 + x2m−1)

= g(x0, . . . , xm−1, xm, . . . , x2m−1).

Thus, γ(x0 + xm, . . . , xm−1 + x2m−1) is rotation symmetric.
Conversely, let g(x0, . . . , x2m−1) be rotation symmetric. Set xi = Xi for 0 ≤ i ≤

m − 1 and xi = 0 for m ≤ i ≤ 2m − 1.Then,

γ(X1, . . . , X0) = γ(x1 + xm+1, . . . , x0 + xm)

= g(x1, . . . , xm, xm+1, . . . , x0)

= g(x0, . . . , xm−1, xm, . . . , x2m−1)

= γ(x0 + xm, . . . , xm−1 + x2m−1)

= γ(X0, . . . , Xm−1).

Thus, γ(X0, . . . , Xm−1) is rotation symmetric. �	
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4.1 The proof of Theorem 1

For any function γ on F
m
2 , the function

f0(a, y) =
m−1∑

i=0

yiai + γ(a0, a1, . . . , am−1)

is a bent function on F
m
2 × F

m
2 in the Maiorana–McFarland class M of functions

defined in Eq. (3). Take the nondegenerate linear transform on f0(a, y) as

yi = xi ,

ai = xi + xi+m,

where 0 ≤ i ≤ m − 1. We have a bent function

f1(x0, x1, . . . , xn−1) =
m−1∑

i=0

xi (xi + xi+m) + γ(x0 + xm, . . . , xm−1 + x2m−1)

=
m−1∑

i=0

xi xi+m + γ(x0 + xm, . . . , xm−1 + x2m−1) +
m−1∑

i=0

xi .

Since
∑m−1

i=0 xi is a linear function, then f (x) = f1 + ∑m−1
i=0 xi is a bent function.

Since Lemma 2, if γ is a rotation symmetric polynomial in F2[X0, X1, . . . , Xm−1],
then f (x) is also rotation symmetric.

Ifγ(X0, X1, . . . , Xm−1) has algebraic degree d, thenγ(x0+xm, . . . , xm−1+x2m−1)

has algebraic degree d. If d ≥ 3, then the algebraic degree of f is d. Otherwise, f has
algebraic degree less than 2. Thus, f has algebraic degree 2 since f is bent. Hence,
Theorem 1 follows.

4.2 The proof of Theorem 2

In order to prove Theorem 2, we first recall some notations and results in [21]. Define
the sets

E = {x ∈ F
n
2 : xi + xi+m = 1 for 0 ≤ i ≤ m − 1}

= {(y0, . . . , ym−1, 1 + y0, . . . , 1 + ym−1) ∈ F
n
2 : (y0, . . . , ym−1) ∈ F

m
2 }

and

W = {x ∈ F
n
2 : xi = 0 for m ≤ i ≤ n − 1}

= {(a0, . . . , am−1, 0, . . . , 0) ∈ F
n
2 : (a0, . . . , am−1) ∈ F

m
2 }.
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206 C. Tang et al.

Then

F
n
2 =

⋃

a∈W
(a + E).

Thus, for any x ∈ F
n
2, there exists a unique pair (a, y) (a ∈ W and y ∈ E), such that

x = a + y. Furthermore, if x = (x0, x1, . . . , xn−1), then

y = (xm + 1, xm+1 + 1, . . . , xn−1 + 1, xm, xm+1, . . . , xn−1)

a = (x0 + xm + 1, x1 + xm+1 + 1, . . . , xm−1 + xn−1 + 1, 0, 0, . . . , 0). (5)

Gao et al. [21] proved that Ft (x) = ∑n−1
i=0 (xi xi+t xi+m + xi xi+t ) + ∑m−1

i=0 xi xi+m

can be expressed in Maiorana–McFarland’s form

Ft (x) = Ft (a + y) = π(a) · y + h0(a), (6)

wherea ∈ W, y ∈ E ,h0(a) = ∑m−1
i=m−t ai ai+t , andπ(a) = (π0(a),π1(a), . . . ,πm−1

(a), 0, 0, . . . , 0) with πi (a) = aia(i+t) mod m + a(i+t) mod m + a(i+m−t) mod m .
Since m/gcd(m, t) is odd, then from Gao et al. [21][Proof in Theorem 1], a 
→
(π0(a),π1(a), . . . ,πm−1(a), 0, 0, . . . , 0) is a permutation of W . Then Ft (x) is a
bent function.

Let ft (x) = Ft (x) + γ(x0 + xm, . . . , xm−1 + x2m−1) = ∑n−1
i=0 (xi xi+t xi+m +

xi xi+t ) + ∑m−1
i=0 xi xi+m + γ(x0 + xm, . . . , xm−1 + x2m−1), where γ ∈ F2[X0, X1,

. . . , Xm−1]. From Eq. (5), for any γ ∈ F2[X0, X1, . . . , Xm−1], there exists a function
h1 on W such that γ(x0 + xm, . . . , xm−1 + x2m−1) = h1(a). Then, from Eq. (6), we
can express ft in the form

ft (x) = ft (a + y) = π(a) · y + (h0(a) + h1(a)).

Hence, ft (x) is a bent function. FromLemma2, ifγ is a rotation symmetric polynomial
in F2[X0, X1, . . . , Xm−1], then ft (x) is also rotation symmetric. Obviously, if γ has
algebraic degree d ≥ 3, then f is also a function of algebraic degree d. Hence,
Theorem 2 follows.

Remark 3 From the proofs of Theorems 1 and 2, bent functions in both theorems are
in the completed Maiorana–McFarland class of bent functions.

5 Conclusion

In this paper, we propose a systematic method for constructing n-variable rotation
symmetric bent functions from some functions in the Maiorana–McFarland class.
One class of rotation symmetric bent functions has algebraic degree ranging from 2
to m and the other class has algebraic degree ranging from 3 to m.
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