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Abstract Linear codes have been an interesting topic in both theory and practice for
many years. In this paper, for an odd prime power q, we present a class of linear codes
over finite fields Fq with quadratic forms via a general construction and then deter-
mine the explicit complete weight enumerators of these linear codes. Our construction
covers some related ones via quadratic form functions and the linear codes may have
applications in cryptography and secret sharing schemes.
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1 Introduction

Let p be an odd prime, m(>1), e be positive integers and q = pe. An [n, k, d] linear
code C over the finite field Fq is a k-dimensional subspace of Fn

q with minimum
(Hamming) distance d, which determines the error correcting capability of C. Let Ai
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denote the number of codewords with Hamming weight i in a code C of length n. The
weight enumerator of C is defined by

1 + A1z + A2z
2 + . . . + Anz

n .

The sequence (1, A1, A2, . . . , An) is called the weight distribution of C. The code
C is said to be t-weight if the number of nonzero A j (1 ≤ j ≤ n) in the sequence
(A1, A2, . . . , An) equals t.

The complete weight enumerator of a code C over Fq enumerates the codewords
according to the number of symbols of each kind contained in each codeword. Let
Fq = {ω0, ω1, · · · , ωq−1} with ω0 = 0 and F∗

q = Fq\{0}. For a codeword c =
(c0, c1, · · · , cn−1) ∈ Fn

q , the complete weight enumerator ω[c] of c is defined by

ω[c] = ω
k0
0 ω

k1
1 · · · ωkq−1

q−1 ,

where
∑q−1

j=0 k j = n, k j is the number of components of c that equalsω j . The complete
weight enumerator of the code C is then defined by

CWE(C) =
∑

c∈C
ω[c].

The weight distribution gives the minimum distance of the code, and hence the
error correcting capability. Furthermore, the weight distribution of a code allows the
computation of the probability of error detection and correction (see [22] for details).
Thus the study of the weight distribution attracts much attention in coding theory
and much work is focused on the determination of the weight distributions of linear
codes (see [9,10,12,14,16,26,27,32–34] and the references therein). Linear codes can
be applied in consumer electronics, communication and data storage system. Linear
codes with a few weights are of importance in secret sharing [6,28], authentication
codes [13], association schemes [4] and strongly regular graphs [5].

It is easy to see that the complete weight enumerators of binary linear codes are just
their weight enumerators, while for the nonbinary case, the weight enumerators can be
obtained from their complete weight enumerators. Furthermore, the complete weight
enumerators are closely related to the deception probabilities of certain authentication
codes constructed from linear codes [11], and used to compute the Walsh transform
of monomial functions over finite fields [17]. Thus, a great deal of research [3,7,8,15,
19,23,24,29,30] is devoted to the computation of the complete weight enumerators
of specific codes over Fq .

Let D = {d1, d2, . . . , dn} ⊆ Fqm . A linear code of length n over Fq is defined by

CD = {(Trm1 (xd1), Tr
m
1 (xd2), . . . , Tr

m
1 (xdn)) : x ∈ Fqm }

where Trm1 is the trace function from Fqm to Fq . The set D is called the defining set of
CD . This construction method was used for obtaining linear codes with a few weights
[10,34]. The selection of D directly affects the parameters of the constructed linear
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code CD . How to choose the defining set D for obtaining a good linear code CD is an
interesting and important problem.

Let Q(x) be a quadratic form function from Fqm to Fq . Very recently, for e = 1
and Q(x) being a quadratic form function of full rank (quadratic Bent function), Zhou
et al. constructed some classes of linear codes over Fp with defining set D = {x ∈
F∗
qm : Q(x) = 0} and examined their weight distribution [34]. Later, Zhang et al.

extended Zhou et al.’s construction to Fq for general quadratic form function Q(x)
and examined the complete weight enumerators of the codes [31]. In this paper, for the
case of clarity, we will denote the defining set D by Da

Q = {x ∈ F∗
qm : Q(x) = a} for

any a ∈ Fq . Firstly, we construct a class of linear codes over Fq with defining set Da
Q .

Then we examine their complete weight enumerators and discuss their application in
secret sharing schemes.

2 Quadratic form functions

Identifying Fqm with the m-dimensional Fq -vector space Fm
q , a function Q(x) from

Fqm to Fq can be regarded as an m-variable polynomial over Fq . The former is called
a quadratic form over Fq if the latter is a homogeneous polynomial of degree two in
the form

Q(x1, x2, . . . , xm) =
∑

1≤i≤ j≤m

ai j xi x j ,

whereai j ∈ Fq . Any choice of a basis {β1, β2, . . . , βm} from Fqm as a vector space over
Fq determines an identification Fm

q → Fqm by x̄ = (x1, x2, . . . , xm) �→ ∑m
i=1 xiβi =

x . We write x̄ when an element is to be viewed as a vector in Fm
q , and we write x when

the same vector is to be viewed as an element of Fqm . The rank of the quadratic form
Q(x) is defined as the codimension of the Fq -vector space

V = {y ∈ Fqm : Q(x + y) − Q(x) − Q(y) = 0 for all x ∈ Fqm }.

That is |V | = qm−r where r is the rank of Q(x).
In the sequel, we shall give some lemmas that are essential in proving our main

results. Before doing this, we first fix some notation.

* B2 j (x̄) = x1x2 + x3x4 + . . . + x2 j−1x2 j where j is an integer with 0 ≤ 2 j ≤ m
(we assume that B0 = 0 when j = 0).

* I (x) is a function over Fq defined by I (x) = −1 for any x ∈ F∗
q and I (0) = q−1.

* η(x) is the quadratic character of Fq with η(0) = 0.

Quadratic forms have been well studied (see [20,21,25], for example). Here we
follow the treatment in [20] and [21]. It should be noted that the rank of a quadratic
form over Fq is the smallest number of variables required to represent the quadratic
form, up to nonsingular coordinate transformations. Mathematically, any quadratic
form of rank r can be transferred to three canonical forms described in Table 1.
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Table 1 Standard types of quadratic form over Fq with rank r and m variables

Type of quadratic form Parity of r Na

I: Br (x̄) Even qm−1 + I (a)qm− r
2−1

II: Br−1(x̄) + μx2r Odd qm−1 + η(μa)qm− r+1
2

III: Br−2(x̄) + x2r−1 − γμx2r Even qm−1 − I (a)qm− r
2−1

Lemma 1 ([21]) Let Q(x) be a quadratic form over Fq of rank r in m variables.
Under a nonsingular change of coordinates, Q(x) is equivalent to one of the three
standard types in Table 1:
where μ ∈ {1, γ } and γ is a fixed nonsquare in Fq and we denote Na by

Na = |{x̄ ∈ Fm
q : Q(x̄) = a}| for all a ∈ Fq .

Consider a system of equations consisting of a quadratic form and a linear func-
tion. The number of solutions depends on the type and rank of the quadratic form.
Let Q(x̄) be a quadratic form of rank r in m variables in one of the three stan-
dard types. Let Lb̄(x̄) = b̄x̄ T = ∑m

i=1 bi xi be a linear function in m variables with
b̄ = (b1, b2, . . . , bm) ∈ Fm

q \{0̄}, where 0̄ = (0, 0, . . . , 0) denotes the all zero vector.
For any a, v ∈ Fq , we denote by N (a, v) the number of solutions to the system of
equations

{
Q(x̄) = a,

Lb̄(x̄) = v.

The following lemmas will be used to determine the complete weight enumerators
of linear codes constructed from general quadratic forms over Fq . Before introduc-
ing them, we give some notations for the standard quadratic form Q(x̄) defined
above. For any vector x̄ = (x1, x2, . . . , xm), denote x̄ ′ = (x1, x2, . . . , xr ) and
x̄

′′ = (xr+1, xr+2, . . . , xm), where r is the rank of Q(x̄). Thus Q(x̄) = Q(x̄ ′). Let

Q̂(x̄) =

⎧
⎪⎪⎨

⎪⎪⎩

Q(x̄), if Q(x̄) = Br (x̄),

Br−1(x̄) + x2r
4μ, if Q(x̄) = Br−1(x̄) + μx2r ,

Br−2(x̄) + x2r−1
4 − x2r

4γ , if Q(x̄) = Br−1(x̄) + x2r−1 − γ x2r ,

where μ ∈ {1, γ } and γ is a fixed nonsquare in Fq . Note that Q̂(x̄) is equivalent to
Q(x̄) under a change of coordinates.

Lemma 2 ([21]) Let Q(x̄) be a quadratic form over Fq of rank r in m variables. Let
the notation be the same as before and b̄

′′ = 0.
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(1) When Q is of Type I or Type III,

N (a, v) =

⎧
⎪⎨

⎪⎩

qm−2 + ε I (a)qm− r
2−1, if Q(b̄) = 0 and v = 0,

qm−2, if Q(b̄) = 0 and v 	= 0,

qm−2 + εη
(
v2 − 4aQ̂(b̄)

)
qm− r

2−1, if Q(b̄) 	= 0.

(2) When Q is of Type II,

N (a, v) =

⎧
⎪⎨

⎪⎩

qm−2 + η(μa)qm− r+1
2 , if Q(b̄) = 0 and v = 0,

qm−2, if Q(b̄) = 0 and v 	= 0,

qm−2 + I
(
v2 − 4aQ̂(b̄)

)
η
(
μQ̂(b̄)

)
qm− r+3

2 , if Q(b̄) 	= 0,

where ε = 1 if Q(x) is equivalent to Type I and ε = −1 if Q(x) is equivalent to Type
III.

Lemma 3 ([21]) Let Q(x̄) be a quadratic form over Fq of rank r in m variables. Let
the notation be the same as before and b̄

′′ 	= 0.

(1) When Q is of Type I or Type III,

N (a, v) = qm−2 + ε I (a)qm− r
2−2.

(2) When Q is of Type II,

N (a, v) = qm−2 + η(μa)qm− r+3
2 .

3 Linear codes from quadratic forms

In this paper, for any a ∈ Fq , the defining set is defined by

Da
Q = {x ∈ Fqm : Q(x) = a} = {d1, d2, . . . , dn}. (1)

A linear code of length n over Fq is defined by

CDa
Q

= {(Tr(xd1), Tr(xd2), . . . , Tr(xdn)) : x ∈ Fqm }. (2)

Note that for the case of a = 0, the weight distribution of the linear codes has been
discussed in [34] for Q(x) over Fp with r = m and later in [31] for general quadratic
form Q(x) over Fq . Thus we consider the complete weight enumerator of the linear
code CDa

Q
only for a ∈ F∗

q .

Theorem 1 Let g be a generator of F∗
q . If r is even, then the code CDa

Q
is a [qm−1 −

εqm− r
2−1,m] linear code with the weight distribution given in Table 2 and its complete

weight enumerator is
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Table 2 Weight distribution of
the codes CDa

Q
with r even

Weight Multiplicity

0 1

(q − 1)(qm−2 − εqm− r
2−2

) qm − qr

qm−1 − qm−2 q+1
2 qr−1 + ε

q−1
2 q

r
2−1 − 1

qm−1 − qm−2 − 2εqm− r
2−1 q−1

2 (qr−1 − εq
r
2−1

)

CWE(CDa
Q
) = ω

qm−1−εqm− r
2−1

0 + (qm − qr )
q−1∏

ρ=0

ωqm−2−εqm− r
2−2

ρ

+
(
qr−1 + ε(q − 1)q

r
2−1 − 1

)
ω
qm−2−εqm− r

2−1

0

q−1∏

ρ=1

ωqm−2

ρ

+ (qr−1 − εq
r
2−1)

q−1
2∑

β=1

ω
qm−2+( −1

q )εqm− r
2−1

0 ω
qm−2

2gβ ω
qm−2

q−2gβ

·
∏

ρ 	=0,±2gβ

ω
qm−2+(

ρ2−4g2β

q )εqm− r
2−1

ρ

+ (qr−1 − εq
r
2−1)

q−1
2∑

β=1

ω
qm−2−( −1

q )εqm− r
2−1

0

q−1∏

ρ=1

ω
qm−2+(

ρ2−4g2β+1

q )εqm− r
2−1

ρ .

Proof By Lemma 1, it is obvious that the code CDa
Q
has length n = Na = qm−1 −

εqm− r
2−1 and dimension m. For any codeword cb in CDa

Q
, according to the definition,

the Hamming weight is equal to

WT (cb) = Na − N (a, 0).

Then, the weight distribution of CDa
Q
follows from Lemmas 1, 2 and 3.

To obtain the complete weight enumerator of CDa
Q
, we need to determine the value

distribution ofNb(a, v) for each v ∈ Fq when b runs through all the elements in Fqm .
Let {α1, α2, . . . , αm} and {β1, β2, . . . , βm} be the dual basis of Fqm over Fq . Using the
dual bases, wewrite x = x1β1+x2β2+. . .+xmβm and b = b1α1+b2α2+. . .+bmαm

for x, b ∈ Fqm and we write corresponding vectors as x̄ = (x1, x2, . . . , xm) ∈ Fm
q

and b̄ = (b1, b2, . . . , bm) ∈ Fm
q . So, the linear function Trm1 (bx) = v is equivalent

to Lb̄(x̄) = v. Let Nb(a, v) be equal to the number of solutions x̄ ∈ Fm
q \{0̄} of the

following system of equations:

{
Q̂(x̄) = a,

Lb̄(x̄) = v,

123



Linear codes from quadratic forms 541

Table 3 Weight distribution of the codes CDa
Q
with r odd

Weight Multiplicity

0 1

(q − 1)
(
qm−2 + η(μa)qm− r+3

2
)

qm − qr + q−1
2

(
qr−1 − η(μa)q

r−1
2

)

qm−1 − qm−2 qr−1 − 1

qm−2(q − 1) + η(μa)(q + 1)qm− r+3
2 q−1

2

(
qr−1 + η(μa)q

r−1
2

)

Table 4 Weight distribution of
the codes CDa

Q
with

r = η(μa) = 1

Weight Multiplicity

0 1

2qm−2(q − 1) qm − q

2qm−1 q − 1

after nonsigular transformation for the quadratic form Q(x) (for simplicity, we still
use symbol x̄).

Observe that b = 0 gives the zero codeword and the contribution to the complete
weight enumerator is ωn

0 , so below we assume that b ∈ F∗
q . Note that b̄ runs through

all the elements in Fm
q \{0̄} if and only if b runs though all the elements in F∗

qm .

Note that g is a generator of F∗
q , i.e., each element of F∗

q can be represented by gβ

for some 1 ≤ β ≤ q−1. When β runs over all the elements of the set {1, 2, . . . , q−1
2 },

g2β and g2β+1 will run over all the quadratic residues and quadratic nonresidues of
F∗
q , respectively.
The desired conclusions then follow from Lemmas 2 and 3. 
�

Theorem 2 Let g be a generator of F∗
q . If r is odd, then the code CDa

Q
is a [qm−1 +

η(μa)qm− r+1
2 ,m] linear code with the weight distribution given in Table 3 and its

complete weight enumerator is

CW E(CDa
Q
) = ω

qm−1+η(μa)qm− r+1
2

0 + (qm − qr )
q−1∏

ρ=0

ωqm−2+η(μa)qm− r+3
2

ρ

+ (qr−1 − 1)ωqm−2+η(μa)qm− r+1
2

0

q−1∏

ρ=1

ωqm−2

ρ

+
(
qr−1 + η(μa)q

r−1
2

)
q−1
2∑

β=1

ω
qm−2−η(μa)qm− r+3

2

0 ω
qm−2+(q−1)η(μa)qm− r+3

2

2gβ
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Table 5 Weight distribution of
the codes CDa

Q
with full rank m

even

Weight Multiplicity

0 1

qm−1 − qm−2 q+1
2 qm−1 + ε

q−1
2 q

m
2 −1 − 1

qm−1 − qm−2 − 2εq
m
2 −1 q−1

2 (qm−1 − εq
m
2 −1

)

·ωqm−2+(q−1)η(μa)qm− r+3
2

q−2gβ

∏

ρ 	=0,±2gβ

ωqm−2−η(μa)qm− r+3
2

ρ

+ q − 1

2

(
qr−1 − η(μa)q

r−1
2

) q−1∏

ρ=0

ωqm−2+η(μa)qm− r+3
2

ρ .

The proof is very similar to that of Theorem 1, so we omitted it here.

Remark As a special case of Theorem2, if Q(x) is a quadratic formof rank r = 1, then
the code CDa

Q
does not exist since the length of CDa

Q
equals zero when η(μa) = −1.

While for the case of η(μa) = 1, we have that CDa
Q
is a [2qm−1,m] linear code with

the weight distribution given in Table 4 and its complete weight enumerator is

CWE(CDa
Q
) = ω

2qm−1

0 + (qm − q)

q−1∏

ρ=0

ω2qm−2

ρ + 2

q−1
2∑

β=1

ω
qm−1

2gβ ω
qm−1

q−2gβ .

For the quadratic form Q(x) over Fq with full rank r = m, we have following two
corollaries corresponding to Theorems 1 and 2, respectively.

Corollary 1 Let Q(x) be a quadratic form of full rank from Fqm to Fq . If m is even,
then CDa

Q
is a two-weight [qm−1−εq

m
2 −1,m] code over Fq with theweight distribution

given in Table 5 and its complete weight enumerator is

CW E(CDa
Q
)

= ω
qm−1−εq

m
2 −1

0 +
(
qm−1 + ε(q − 1)q

m
2 −1 − 1

)
ω
qm−2−εq

m
2 −1

0

q−1∏

ρ=1

ωqm−2

ρ

+ (qm−1 − εq
m
2 −1)

q−1
2∑

β=1

ω
qm−2+( −1

q )εq
m
2 −1

0 ω
qm−2

2gβ ω
qm−2

q−2gβ

·
∏

ρ 	=0,±2gβ

ω
qm−2+(

ρ2−4g2β

q )εq
m
2 −1

ρ

+ (qm−1 − εq
m
2 −1)

q−1
2∑

β=1

ω
qm−2−( −1

q )εq
m
2 −1

0

q−1∏

ρ=1

ω
qm−2+(

ρ2−4g2β+1

q )εq
m
2 −1

ρ .
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Table 6 Weight distribution of the codes CDa
Q
with full rank m odd

Weight Multiplicity

0 1

qm−1 − qm−2 qm−1 − 1

qm−2(q − 1) + η(μa)(q + 1)q
m−3
2 q−1

2

(
qm−1 + η(μa)q

m−1
2

)

(q − 1)
(
qm−2 + η(μa)q

m−3
2

)
q−1
2

(
qm−1 − η(μa)q

m−1
2

)

Corollary 2 Let Q(x) be a quadratic form of full rank from Fqm to Fq . If m is odd,

then CDa
Q
is a three-weight [qm−1 + η(μa)q

m−1
2 ,m] code over Fq with the weight

distribution given in Table 6 and its complete weight enumerator is

CW E(CDa
Q
) = ω

qm−1+η(μa)q
m−1
2

0 + (qm−1 − 1)ωqm−2+η(μa)q
m−1
2

0

q−1∏

ρ=1

ωqm−2

ρ

+
(
qm−1 + η(μa)q

m−1
2

)
q−1
2∑

β=1

ω
qm−2−η(μa)q

m−3
2

0 ω
qm−2+(q−1)η(μa)q

m−3
2

2gβ

·ωqm−2+(q−1)η(μa)q
m−3
2

q−2gβ

∏

ρ 	=0,±2gβ

ωqm−2−η(μa)q
m−3
2

ρ

+q − 1

2

(
qm−1 − η(μa)q

m−1
2

) q−1∏

ρ=0

ωqm−2+η(μa)q
m−3
2

ρ .

We conclude this section by providing some examples as an indication of the validity
of our results.

Example 1 Let q = p = 3, m = 6, a = 1, and Q(x) = Trq6/q(2x
4 + x2), which

is a Type I quadratic form with rank 4. Our Magma program shows that CDa
Q
has

parameters [216, 6, 108] and the complete weight enumerator

ω216
0 + 24ω108

0 ω54
1 ω54

2 + 648ω72
0 ω72

1 ω72
2 + 56ω54

0 ω81
1 ω81

2 .

This agrees with the conclusion of Theorem 1.

Example 2 Let q = p = 3, m = 5, a = 1, and Q(x) = Trq5/q(2x
10 + x2), which

is a Type III quadratic form with rank 4. Our Magma program shows that CDa
Q
has

parameters [90, 5, 54] and the complete weight enumerator

ω90
0 + 50ω36

0 ω27
1 ω27

2 + 162ω30
0 ω30

1 ω30
2 + 30ω18

0 ω36
1 ω36

2 .

This is consistent with the statement of Theorem 1.
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Example 3 Let q = p = 3, m = 3, a = 1, and Q(x) = Trq3/q(2x
4 + x2), which is

a Type II quadratic form with rank 1 and η(μ) = 1, the Magma program shows that
CDa

Q
has parameters [18, 3, 12] and the complete weight enumerator

ω18
0 + 24ω6

0ω
6
1ω

6
2 + 2ω9

1ω
9
2.

This agrees with the conclusion of Theorem 2.

Example 4 Let p = 3, e = 2, q = 9, m = 4, a ∈ {1, 2, 4, 5, 7, 8}, and Q(x) =
Trq4/q(x

q2+1) be a Type III quadratic form with full rank. The Magma program
shows that CDa

Q
has parameters [738, 4, 648] and the weight enumerator

1 + 3608z648 + 2952z666.

The complete weight enumerator is very cumbersome, limited by the length of the
space is no longer listed. This agrees with the conclusion of Corollary 1.

4 Optimal codes

An [n, k, d] code over Fq is called optimal if there is no [n, k, d + 1] or [n, k + 1, d]
code over Fq . An [n, k, d] code over Fq is called almost optimal if the [n, k, d + 1]
or [n, k + 1, d] code is optimal [18]. Below, we prove that some of the codes in the
paper are optimal or almost optimal with respect to the Griesmer bound.

Lemma 4 [18] (Griesmer Bound) Let C be an [n, k, d] code over Fq with k ≥ 1.
Then

n ≥
k−1∑

i=0

⌈
d

qi

⌉

.

Theorem 3 Let the notation be the same as before. Then we have

(1) If Q(x) is a Type II quadratic form with rank r = η(μa) = 1, CDa
Q
is optimal.

(2) If Q(x) is a Type III quadratic form with rank r = m = 2, CDa
Q
is almost optimal.

(3) For the other cases, the gap between the length of codes and the Griesmer bound
increases together with the dimension.

Proof (1) If Q(x) be a Type II quadratic form with r = η(μa) = 1, then CDa
Q
has

parameters [2qm−1,m, 2qm−2(q − 1)]. So it follows from Lemma 4 that

n −
k−1∑

i=0

⌈
d

qi

⌉

= 2qm−1 −
⌈
2qm−2(q − 1)

⌉
− . . . − 
2(q − 1)� −

⌈

2(1 − 1

q
)

⌉

= 2qm−1 − (2qm−2(q − 1)) − . . . − (2(q − 1)) − 2

= 0.

This completes the proof of (1).
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(2) The proof is very similar to that of (1), so we omit it here.
(3) We only prove the case that Q(x) be a Type II quadratic form with η(μa) = 1

and r 	= 1, since the other cases can be proved with the similar idea. Theorem

2 means that the code CDa
Q
has parameters [qm−1 + qm− r+1

2 ,m, qm−1 − qm−2].
Then it follows from Lemma 4 that

n −
k−1∑

i=0

⌈
d

qi

⌉

= qm−1 + qm− r+1
2 −

⌈
qm−1 − qm−2

⌉

− . . . − 
q − 1� −
⌈

1 − 1

q

⌉

= qm−1 + qm− r+1
2 − (qm−1 − qm−2) − . . . − (q − 1) − 1

= qm− r+1
2 .

This completes the proof of (3). 
�

5 Minimal codewords in CDa
Q

The support of a vector c = (c0, . . . , cn−1) ∈ Fn
q is defined as

{0 ≤ i ≤ n − 1 : ci 	= 0}.

We say that a vector x covers a vector y if the support of x contains that of y as a
proper subset.

A minimal codeword of a linear code C is a nonzero codeword that does not cover
any other nonzero codeword of C. It is an interesting problem to construct codes
whose nonzero codewords are all minimal since such linear codes can be employed to
construct secret sharing schemes with interesting access structures [28]. For minimal
codewords, we have following results [1,2]:

Lemma 5 In an [n, k, d] code C, let wmin and wmax be the minimum and maximum
nonzero weights, respectively. If

wmin

wmax
>

q − 1

q
,

then all nonzero codewords of C are minimal.

In this section, we will show that for most of quadratic forms Q(x) and q and a,
each of codewords of CDa

Q
given by (2) is minimal.

If Q(x) is equivalent to Type I, then for CDa
Q
we have

wmin

wmax
= qm−1 − qm−2 − 2qm− r

2−1

qm−1 − qm−2 >
q − 1

q
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if r = 4 and q ≥ 5, or if r ≥ 6. When Q(x) is equivalent to Type III, we have

wmin

wmax
= qm−1 − qm−2

qm−1 − qm−2 + 2qm− r
2−1

>
q − 1

q

for all even r ≥ 4.
Similarly, if r ≥ 5 is odd, we have wmin

wmax
>

q−1
q .

By Lemma 5, for certain smaller r and if m ≥ r ≥ 5 for all odd prime power q,
the linear codes CDa

Q
we constructed satisfy the condition wmin

wmax
>

q−1
q , and can be

employed to obtain secret sharing schemes with nice access structures. We omit the
details here since it is similar to that of [10].

6 Conclusion

In this paper, we presented a family of linear codeswith defining set Da
Q , where a ∈ Fq

and Q(x) is any quadratic form, and determined their complete weight enumerators.
Our results are extensions of earlier related works and some of the code we derived
are optimal or almost optimal codes. We also discussed the application of the linear
codes in secret sharing.
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