
AAECC (2017) 28:425–436
DOI 10.1007/s00200-017-0313-3

ORIGINAL PAPER

Several proofs of security for a tokenization algorithm

Riccardo Aragona1 · Riccardo Longo1 ·
Massimiliano Sala1

Received: 12 October 2016 / Accepted: 1 February 2017 / Published online: 13 February 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract In this paperwepropose a tokenization algorithmofReversibleHybrid type,
as defined in PCI DSS guidelines for designing a tokenization solution, based on a
block cipher with a secret key and (possibly public) additional input. We provide some
formal proofs of security for it, which imply our algorithm satisfies themost significant
security requirements described in PCI DSS tokenization guidelines. Finally, we give
an instantiation with concrete cryptographic primitives and fixed length of the PAN,
and we analyze its efficiency and security.

Keywords Tokenization · Block ciphers · Provable security · IND CPA security

Mathematics Subject Classification 94A60

1 Introduction

In recent years, credit cards have becomeone of themost popular payment instruments.
Their growing popularity has brought many companies to store the card information of
its customers tomake simpler subsequent payments. This need is shared bymany other
actors in the payment process. On the other hand, credit card data are very sensitive
information, and then the theft of such data is considered a serious threat.

Any company that stores credit card data aims to achieve thePayment Card Industry
Security Standard Council (PCI SSC) compliance. The PCI SSC is an organization,
founded by the largest payment card networks, which has developed several standards
and recommendations. One of these is called the PCI Data Security Standard (PCI

B Riccardo Aragona
ric.aragona@gmail.com

1 University of Trento, Trento, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00200-017-0313-3&domain=pdf

426 R. Aragona et al.

DSS [14]) and its goal is to guarantee the security of credit card data. PCI DSS requires
that companies that handle payment cards protect the data of the cardholderwhen these
are stored, transmitted or processed.

These stringent requirements led to consider a new method for storage and trans-
mission of the card information: instead of protecting the actual card data, it is easier
to remove them (when their storing is not requested) and replace them with another
value, called token. Tokens are alpha-numeric strings representing the PAN (Primary
Account Number) of a payment card, and that may have a format similar to it. In any
case, from a token it must be infeasible (without additional information) to recover
the PAN from which it was generated. This process is called tokenization. In [5], the
authors present an interesting formal cryptographic study of tokenization systems and
their security.

In recent years, PCI SSC has drafted some guidelines to design a tokenization
solution [12,13]. In [13], the following five types of tokens are described: Authen-
ticatable Irreversible Tokens, Non-Authenticatable Irreversible Tokens, Reversible
Cryptographic Tokens, Reversible Non-Cryptographic Tokens and Reversible Hybrid
Tokens.

In particular, a reversible tokenization algorithm , i.e. providing the possibility for
entities using or producing tokens to obtain the original PAN from the token, can be
designed in three ways:

– Reversible Cryptographic, if it generates tokens from PANs using strong cryptog-
raphy. In particular, a mathematical relationship between PAN and corresponding
token exists. In this case, the PAN is never stored; only the cryptographic key is
(securely) stored.

– Reversible Non-Cryptographic, if obtaining a PAN from its token is only by a data
look-up in a dedicated server (called a Card Data Vault). In this case, the token
has no mathematical relationship with its associated PAN and the only thing to be
kept secret is the actual relationship between the PAN and its token (e.g., a look-up
table in the Card Data Vault).

– A reversible tokenization algorithm is called Hybrid if it contains some features of
both Reversible Cryptographic tokens and Reversible Non-Cryptographic tokens.
A typical situation of this type is when, although there is a mathematical relation-
ship between a token and its associated PAN, a data look-up table must be used to
retrieve the PAN from the token.

In this paper we propose a tokenization algorithm of the Reversible Hybrid type,
based on a block cipher with a secret key and (possibly public) additional input. We
provide some formal proofs of security for it. To fully appreciate our design and the
proposed proofs it is necessary to analyze the PCI requirements in more detail. The
remainder of the paper is thus as follows:

– In Sect. 2, we analyze some PCI requirements for a tokenization algorithm ([12,
13]).

– In Sect. 3, we describe our tokenization algorithm;
– In Sect. 4, we prove the security of the algorithm defined in Sect. 3 in a very general
scenario, which would imply our algorithm satisfies most requirements present in
Sect. 2. More precisely, we present a security notion, Indistinguishability under a

123

Several proofs of security for a tokenization algorithm 427

Chosen-Plaintext Attack (IND-CPA), for a tokenization algorithm of our type, and
we prove it under the assumption that our core cryptographic algorithm satisfies a
standard IND-CPA. We also provide a separate proof for a special requirement.

– In Sect. 5, we give an instantiation of our algorithm, considering concrete crypto-
graphic primitives and fixing PAN length, and analyzing the security and efficiency
in this real-life application.

2 Requirements

The first two requirements are not linked to security:

– Although tokens can enjoy a variety of formats, the most convenient is probably
the same format of the PAN itself, since in this case a token can move inside a
payment network and also be used as a payment token (for a definition of a payment
token see p. 13 in [6]). But if we try to create a token by a direct encryption of the
PAN we will meet several problems, since the output of the encryption may not
have a format like a PAN. Indeed, we must keep in mind that PCI requests the use
of standard encryption algorithms and so we cannot create ad-hoc cryptographic
primitives, but we must rely on established algorithms.
So we must face the problem of designing algorithms that preserve the message
format, or the so-called Format Preserving Encryption (FPE) [1]. In literature,
there are some interesting examples of algorithms that solve such problem [2,4,7,
9,15].

– It must be possible to obtain different tokens from a single PAN (even one per
transaction, if necessary), so the tokenization algorithm will require additional
inputs, such as, a transaction counter, an expiration date, etc.

Concerning security issues, there aremany security requirements that our algorithm
has to satisfy in order to meet PCI compliance. We list here the main requests:

A1 “the recovery of the original PAN must not be computationally feasible knowing
only the token or a number of tokens.” (p. 6 in [12]).
In other words, even if an attacker has managed to collect many tokens, all
coming from the same PAN, possibly even on a long period of time, they must
be computationally unable to retrieve the corresponding PAN. This is a form of
ciphertext-only attack.

A2 “access to multiple token-to-PAN pairs should not allow the ability to predict or
determine other PAN values from knowledge of only tokens.” (p. 6 in [12] and
GT4 in [13]).
This is a known-plaintext attack.

A3 “Tokens should have no value if compromised or stolen, and should be unusable
to an attacker if a system storing only tokens is compromised” (p. 6 in [12]).
Since this sentence comes immediately after A1 and A2, which aim at prevent-
ing PAN recoveries, we take the goal of this rather cryptic sentence to be the
prevention of unauthorized token generation. In other words, an attacker pos-
sessing many tokens (but not knowing the corresponding PAN’s) must be unable
to generate even one other valid token. This condition is drastically different from

123

428 R. Aragona et al.

A1, because here we do not require the attacker to be able to deduce any of the
involved PAN’s. However, there are two matters. First, since they needs to com-
pute valid tokens, they must have control on any other input of the tokenization
algorithm (such as, a transaction counter). Second, they needs to know for which
PAN they can generate a token.

A4 “Converting from a token produced under one cryptographic key to a token
produced under another cryptographic key should require an intermediate PAN
state—i.e. invocation of de-tokenization.” (GT 11 in [13]).
Since our system uses a block cipher with additional (public) input, we take this
to mean that if an attacker gets a token obtained by a PAN, a secret key and an
additional input, then they must be unable to compute any token corresponding
to the same PAN (and same additional input) but to a different key.

A* “The recovery of the original PAN should be computationally infeasible knowing
only the token, a number of tokens, or a number of PAN/token pairs” (GT 5 in
[13]).
This is a repetition of A1 and A2.

To prove that our tokenization algorithm satisfies A1, A2 and A3, we will prove
in Sect. 4 that it satisfies an even stronger condition, under the assumption of the
strength of the core primitive we are using to define it (a block cipher). Requirement
A4 requires a separate proof in Sect. 4.

3 Algorithm

A card number is formed by three concatenated parts: the IIN (also called BIN), that
identifies the card Issuer, a numeric code, that identifies the account, and a check digit.
We assume to replace the IIN with another fixed code (called a “token BIN” in [6], p.
14), whichmarks the resulting card number as a token, sowewill ignore the first part in
the description of our algorithm. We will also compute the check digit as appropriate,
so we can discard it too in the forthcoming formal description of our algorithm.

We assume to be able to invoke the encryption function of a block cipher E , just
by sending a plaintext and obtaining a ciphertext, with a key that is kept somewhere
protected and that we do not need to know. We can think of E as the first ingredient
of our algorithm.K denotes the keyspace of E and K ∈ K will be any key, so that we
can view E as a function E : K × (F2)

m −→ (F2)
m for some m ∈ N. With K fixed,

E is a permutation acting on the set (F2)
m of the m-bit strings. With standard block

ciphers we have m = 64 or m = 128. We assume as usual that the set of its encryption
functions forms a random sample of the set of permutations acting on (F2)

m .
For strings we use a notation like |0110|2, where the index 2 denotes that we are

using only symbols from {0, 1}, i.e. remainders of division by 2.
Our algorithm processes two inputs: a numeric code coming from the PAN and an

additional input.

– By numeric codewemean a string of � decimal digits, � any agreed number � ∈ N,
and we formally define the set of our numeric codes as P := {0, 1, . . . , 9}�. At
present, 13 ≤ � ≤ 19 for numeric codes coming from PANs [6], but we do not
need to impose any limitation. We observe that P is in obvious bijection with the

123

Several proofs of security for a tokenization algorithm 429

integer set {a ∈ N | 0 ≤ a < 10�}, and so we can view a numeric code also as a
non-negative integer, but care has to be taken to pass from one representation to
the other. Let [y]s

b denote the representation (string) of a positive integer y < bs

in base b with s digits, where the most significant digits are on the left.
For example, [12]210 = |12|10, [12]310 = |012|10 and [13]52 = |01101|2.
Then any positive integer X such that X < 10� can be easily converted to [X]�10 ∈
P. We will use a bar to denote the conversion from a string to a number, like
|12|10 = 12 and |01100|2 = 12.

– The role of the additional input is to allow for different tokens corresponding to
the same PAN and so it can be anything, such as a transaction counter or an integer
denoting the current time. Formally, we will identify it as a binary string of finite
but arbitrary length (as for example the binarization of a transaction counter). We
will callU the set containing all these strings, so that any u ∈ U is implicitly meant
to be an additional input.

Let n := �log2(10�)� be the maximum number of bits required to represent a num-
ber with � decimal digits. Since most of the block ciphers used in real life applications
have a block-size of at least 64 bits, and for the maximum length of a PAN � = 19 we
have n = 64, we assume that � is such that n ≤ m.

Now we can present f , the second ingredient of our algorithm, which is a public
function

f : U × P −→ (F2)
m−n

In other words, given an additional input u ∈ U and a numeric code X ∈ P coming
from the PAN , f returns a string of m − n bits.

We require f to be collision-resistant, that is, it must be computationally infeasible
to obtain two distinct pairs (X1, u1) and (X2, u2) such that f (u1, X1) = f (u2, X2).
This requirement compels the image space to have a size large enough to prevent
brute-force collision attacks. So in the case of PAN tokenization we need to consider
only block ciphers with block size of at least 128 bits, in order to have an image space
of dimension at least 64 bits. The purposes of this function f are the followings:

– to pad the input of the tokenization algorithm to match the block size of the cipher;
– to allow the creation of multiple different tokens from the same PAN using the
same key, useful for example to change token for each transaction.

The output of f could be seen as a tweak in the context of Tweakable Encryption [8].
An example for this f could be a truncated version of a cryptographic hash function.

The third ingredient for our tokenization algorithm is a database stored somewhere
securely that contains a look-up table of PAN-token pairs. Once we have generated a
token, we assume it is inserted in the table. However, to generate a new token, we need
to access the database only via a function check that checks if the token is already
stored and returns either True or False accordingly.

One of the goals of a tokenization algorithm is to obtain an integer with � decimal
digits starting from another integerwith the same length. Since n := �log2(10�)� < m,
we have to consider only a fraction of the output of E , in particular we will take the n

123

430 R. Aragona et al.

least significant bits of the output, and then convert this string back to an integer. Given
that 10l < 2n , this integer could have � + 1 decimal digits. To solve this problem we
use a method known as Cycle Walking Cipher [3], designed to encrypt messages from
a spaceM using a block cipher that acts on a spaceM′ ⊃ M, and obtain ciphertexts
that are in M.

We are ready to write down our algorithm.
The Tokenization Algorithm T (K , X, u) executes the following steps:

1. t := f (u, X) || [
X̄

]n
2

2. c := E(K , t)
3. if (c̄ mod 2n) ≥ 10�, then t := c and go back to step 2
4. token := [c̄ mod 2n]�10
5. if check(token) = True, then u := u + 1 and go back to step 1
6. return token

The correctness of Algorithm T is obvious, we now discuss its termination.
At Step 3 we check if (c̄ mod 2n) ≥ 10�. Since x
→ E(K , x) is a random

permutation, we expect c to resemble a random binary string in (F2)
m . Therefore, the

number (c̄ mod 2n) is a random integer in {0, . . . , 2n −1}. Recall that 2n−1 < 10� <

2n . Therefore, the condition at Step 3 is met with probability 0 < p = 2n−10�

2n < 1.
Going back to step 2 another pseudo-random number is computed and the probability
that the condition of Step 3 is not satisfied for it is again p. Since the two events can be
considered independent, due to the pseudorandomness property of E , the probability
of the joint event goes down to p2, and so on. Therefore, the probability that the
algorithm remains stuck at Step 3 is negligible.

At Step 5 we check if we already have the new token in our database . If we have
it, we increase u to u + 1. We remain stuck only if f (u, X) = f (u + 1, X), but this
happens very rarely thanks to the collision resistance of f .

For a more detailed discussion of the probability to meet the conditions at Step 3
and at Step 5, see the instantiation of our algorithm given in Sect. 5.

4 Proof of security

In this section we will prove that the algorithm previously defined is secure in an
Indistinguishability under a Chosen-Plaintext Attack scenario, under the condition
that its core encrypting algorithm is secure in the same scenario. This will guarantee
in particular A1, A2 and A3. Then we will prove A4 separately.

Definition 1 (IND-CPA) Let E(K , m) → c be an encrypting function. An Indistigu-
ishability under Chosen Plaintext Attack (IND-CPA) game for E between an adversary
A and a challenger C proceeds as follows:

Phase I A chooses a plaintext mi and sends it to C, that responds with ci =
E(K , mi). This phase is repeated a polynomial number of times.

Challenge A chooses two plaintexts m∗
0, m∗

1 (never chosen in Phase I) and sends them
to C that selects ν ∈ {0, 1} at random and computes c = E(K , m∗

ν). Then
C sends c to A.

123

Several proofs of security for a tokenization algorithm 431

Phase II Phase I is repeated, with the obvious restriction that A cannot choose m∗
0

or m∗
1.

Guess A guesses ν′ ∈ {0, 1}. They wins if ν′ = ν.

We say that the advantage AdvE
A ofAwinning the IND-CPA game for the Encrypt-

ing algorithm E is:

AdvE
A =

∣
∣∣∣Pr

[
ν′ = ν

] − 1

2

∣
∣∣∣

E is said to be secure in a IND-CPA scenario if there is no probabilistic polynomial-
time algorithm A that wins the CPA game with more than negligible advantage.

We define a IND-CPA game for T analogously to 1, where messages are replaced
by numeric codes and additional inputs, while ciphertexts are replaced by tokens. So
the adversary chooses two code/additional input pairs and tries to distinguish which
of these corresponds to the token returned by C. The adversary is also able to request
other tokens (corresponding to a polynomial number of pairs), that she may choose
adaptively.

Definition 2 (IND-CPA for a Tokenization Algorithm) Let T (K , X, u) → token
be a tokenization algorithm that takes as input a key K , a numeric code X ∈ P

and an additional input u ∈ U, and returns a token token. An Indistiguishability
under Chosen Plaintext Attack (IND-CPA) game for T between an adversary A and
a challenger C proceeds as follows:

Phase I A chooses (Xi , ui) and sends it to C, that responds with tokeni =
T (K , Xi , ui). This phase is repeated a polynomial number of times.

Challenge A chooses (X∗
0, u∗

0), (X∗
1, u∗

1) (with (X∗
0, u∗

0) and (X∗
1, u∗

1) never chosen
in Phase I) and sends them to C that selects ν ∈ {0, 1} at random and
computes token = T (K , X∗

ν , u∗
ν), which sends to A.

Phase II Phase I is repeated, with the obvious restriction that A cannot choose
(X∗

0, u∗
0) or (X∗

1, u∗
1).

Guess A guesses ν′ ∈ {0, 1}, she wins if ν′ = ν.

We say that the advantage AdvT
A of A winning the IND-CPA game for the Tok-

enization Algorithm T is:

AdvT
A =

∣∣∣∣Pr
[
ν′ = ν

] − 1

2

∣∣∣∣

T is said to be secure in a IND-CPA scenario if there is no probabilistic polynomial-
time algorithmA that wins the IND-CPA game with more than negligible advantage.

Theorem 1 (IND-CPASecurity of TokenizationAlgorithm) Let T be the Tokeniza-
tion Algorithm described in Sect. 3, and let E be the block cipher used in Step 2 of T .
If E is secure in an IND-CPA scenario then T is secure in an IND-CPA scenario.

Proof Let C be the challenger in the IND-CPA game for E , and A be an algorithm
that can win the IND-CPA game for T with more than negligible advantage ε. We will

123

432 R. Aragona et al.

build a simulator S that plays the IND-CPA game for E by simulating an IND-CPA
game for T and interacting with A.

For Phase I and II we need to show how S answers to tokenization queries (Xi , ui)

made by A. The function f is publicly known, so S may compute ti := f (ui , Xi) ||[
Xi

]n
2 and queriesC for the encryption of ti , obtaining ci in response. If (ci mod 2n) ≥

10l , then S queries again C, this time requiring the encryption of ci , repeating this
passage until C answers with ci such that (ci mod 2n) < 10� (which will eventually
happen since c
→ E(K , c) is a random permutation). At this point S answers to the
query of A with tokeni := [ci mod 2n]l10.

Observe that the ci ’s, and hence thetokeni ’s, will be distinct with high probability,
since f is collision-resistant, even if the Xi ’s are identical, as long as the pairs (Xi , ui)’s
are distinct.

In the challenge phase,S receives fromA two pairs (X∗
0, u∗

0), (X∗
1, u∗

1).S computes
t∗j := f (u∗

j , X∗
j) || [X∗

j]n
2 for j ∈ {0, 1} and submits them toC for the challenge phase

of the IND-CPA game for E . C chooses at random ν ∈ {0, 1} and will respond with
the challenge ciphertext c. If (c mod 2n) ≥ 10l , S queries C requiring the encryption
of c, repeating this passage until we have token := (c mod 2n) < 10� (which will
eventually happen since c
→ E(K , c) is a random permutation). At this point S sends
token to A as the challenge token of the IND-CPA game for T .

Eventually A will send to S its guess ν′ for which code has been tokenized into
token. S then forwards this guess to C. It is clear thatA guesses correctly if and only
if S guesses correctly since the simulation is seamless.

Note that during the Challenge phase S is not allowed to send to C messages
submitted during Phase I, and in Phase IIS is not allowed to send to C the twomessages
submitted in the Challenge phase. Since the same restriction applies to the interaction
between A and S, problems may arise only when S queries for the re-encryption of
ciphertexts to meet the condition (ci mod 2n) < 10�. However the number of queries
is polynomial and the encryption function c
→ E(K , c) is a random permutation, so
the probability of such a collision is negligible.

Finally, throughout the simulation Step 5 of the algorithm has been ignored, always
supposing that the check function outputs False (to be coherent the check function
has to only check the simulated tokens already generated by S).

In phases I and II, when check(tokeni) = True, S is able to follow the algorithm
properly adjusting ui and querying C.

For the challenge phase instead we have to hope that check(token) = False,
which happens with non-negligible probability ρq1 (this probability depends on the
number of queries q1 made in Phase I). When check(token) = True, we cannot
simulate correctly, soSmaydirectly guess randomly, and so the probability of guessing
is 1

2 in this case. Thus the advantage ε′ of S is:

ε′ =
∣∣
∣∣

(
ρq1

(
1

2
+ ε

)
+ (1 − ρq1)

1

2

)
− 1

2

∣∣
∣∣

which is non-negligible since ε andρq1 are non-negligible. ThusS has a non-negligible
advantage winning the IND-CPA game for E . �

123

Several proofs of security for a tokenization algorithm 433

It is well-known that an encryption algorithm which is IND-CPA secure then it is
secure against a known-plaintext attack, and even more so against a ciphertext-only
attack. We now show similar results for our tokenization algorithm by proving some
of our claimed requirements.

Corollary 1 (A1-A2-A3) Let T be the Tokenization Algorithm described in Sect. 3,
and let E be the block cipher used in Step 2 of T . If E is secure in an IND-CPA
scenario then T satisfies A1, A2 and A3.

Proof – A1
If T does not satisfy A1 then an attacker A can obtain a PAN from a token once
she gets enough tokens corresponding to the same PAN. So we can suppose thatA
has access to an algorithm that takes in input a polynomial number N of tokens
and with a non-negligible probability outputs
– X , if all the N tokens correspond to X ;
– False, otherwise.

A tries the IND-CPA game for T and chooses N − 1 pairs (X, ui), with the same
X , and sends them to C, who responds with tokeni = T (K , X, ui). Then A
passes to the Challenge Phase and chooses u∗

0 and (X∗
1, u∗

1), with X∗
1 �= X and

sends (X∗
0, u∗

0), with X∗
0 = X , and (X∗

1, u∗
1) to C that selects ν ∈ {0, 1} at random

and computes token = T (K , X∗
ν , u∗

ν). Then C sends token to A. Then A runs
her algorithm passing as inputs {tokeni }1≤i≤N−1 and token, obtaining with
non-negligible probability either X∗

0 = X or False and so she knows for sure and
wins the IND-CPA game.

– A2
If A2 does not hold, then A has access to an algorithm that takes two inputs, a
polynomial number N of token-to-PAN pairs and a token, and returns the PAN
corresponding to the token with non-negligible probability. Thanks to our conven-
tion in Sect. 3, we can assume the algorithm inputs to be actually N pairs of type
(Xi ,tokeni) (plus the single token token∗) and the algorithm output to be the
X∗ ∈ P corresponding to token∗. The adversary tries the IND-CPA game for T
by choosing N random (Xi , ui)’s and obtaining fromC their corresponding tokens
tokeni ’s. Then she passes to the Challenge Phase and sends two random pairs:
(X∗

0, u∗
0) and (X∗

1, u∗
1). The Challenger returns the token token corresponding to

one of these. ThenA runs her algorithm passing as inputs the pairs (Xi ,tokeni)’s
and token, obtaining with non-negligible probability the correct X ∈ {X∗

0, X∗
1},

winning thus the IND-CPA game.
– A3
IfA3 does not hold, thenwe can assume thatA has access to an algorithm that takes
as input a polynomial number N of tokens and one additional input u∗, and that
returns a pair (X,token∗), where token∗ is the token corresponding to (X, u∗)
with non-negligible probability. The adversary tries the IND-CPA game for T by
choosing N random (Xi , ui)’s and obtaining from C their corresponding tokens
tokeni ’s. Then she chooses a u∗ ∈ U and passes it along with these tokens to her
algorithm, obtaining X and token∗. Then she passes to the Challenge Phase and
sends pairs: (X, u∗) and a random pair. The Challenger returns the token token

123

434 R. Aragona et al.

corresponding to one of these. The adversary easilywins the game just by checking
if token = token∗. �

Theorem 2 (A4 for Tokenization Algorithm) Let K , K ∗ ∈ K, X ∈ P and u ∈ U.
If an attacker knows only u and the token token = T (K , X, u), then she is able to
compute token∗ = T (K ∗, X, u) only with negligible probability.

Proof The two tokens come directly from the encryption of the same string M =
f (u, X) || [X]n

2 with two different keys, except when the unlikely condition in Step
3 is met. So, with non-negligible probability, A is able to compute E(K ∗, M) from
E(K , M). This means that for a large portion of the plaintext space the two encryption
functions are closely correlated, since from one it is possible to deduce the other
without the need for decryption/re-encryption contradicting our first assumption on
E , that is, that the set of its encryption function forms a random sample of the set of
permutations acting on (F2)

m . �

Remark 1 The requirement GT5 in [13] “The recovery of the original PAN should be
computationally infeasible knowing only the token, a number of tokens, or a number
of PAN/token pairs” directly follows from A1 and A2.

5 Conclusion

Tokenization is a problem of practical interest, so we conclude giving an example of
an instantiation with concrete cryptographic primitives and fixed length of the PAN,
and we will analyze its efficiency and security.

Let us consider PANs with length � = 16, so n = 54, let us take AES-256 as the
cipher E , and as the function f we take SHA-256 truncated to 128 − 54 = 74 bits.

5.1 Security

Given the results given in [10], SHA-256 passed several statistical tests designed to
verify “the absence of any detectable correlation between input and output and the
absence of any detectable bias due to single bit changes in the input string”. Therefore,
it can be considered collision-resistant and so it satisfies our purposes (see, for instance,
Step 5 of our algorithm).

Moreover, in [11], the authors showed thatAES-256 passed statistical tests designed
to verify the following properties:

– “the absence of any detectable correlation between plaintext/ciphertext pairs and
the absence of any detectable bias due to single bit changes to a plaintext block”;
and

– “the absence of any detectable deviations from randomness”.

Therefore, we can considerAES-256 IND-CPA secure and so it satisfies the hypothesis
of Theorem 1 and Corollary 1, and the randomness requirements of Theorem 2.

123

Several proofs of security for a tokenization algorithm 435

5.2 Efficiency

The probability that the condition at Step 3 is met is

p = 254 − 1016

254
≈ 0.445 (5.1)

We have a geometric distribution, so the expected value of the number of iterations
is:

E1 =
∞∑

k=1

kpk−1(1 − p) ≈ 1.801

thus on average less than 2 executions of AES-256 are needed to get to Step 5.
To quantify the probability to meet the condition of Step 5 we have to estimate the

size of the database. A very generous upper bound is 109 PANs and 104 token per
PAN (generating a new token for every transaction) for a total of 1013 entries in the
database. Considering that there are 1016 − 1 possible tokens, the probability to meet
the condition is:

ρ = 1013

1016 − 1
≈ 0.001

Again, the expected value of the number of iterations of the algorithm is:

E2 =
∞∑

k=1

kρk−1(1 − ρ) ≈ 1.001.

thus very rarely more than one execution of SHA-256 is needed.
Finally the expected value of the total number of executions of AES-256 is:

E1E2 ≈ 1.803.

thus on average less than 2 executions of AES-256 are needed to get to Step 6.

Acknowledgements The authors are indebted to several people for their suggestions: Sandra Díaz, Patrick
Harasser, Alessandro Tomasi and the anonymous referee.

References

1. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryption. In: Jacobson, M.J.,
Rijmen, V., Safavi-Naini, R. (eds.) Selected Areas in Cryptography–SAC 2009. Lecture Notes in
Computer Science, vol. 5867, pp. 295–312. Springer, Heidelberg (2009)

2. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-preserving encryption
(Draft 1.1). Manuscript (standards proposal) submitted to NIST (2010)

3. Black, J., Rogaway, P.: Ciphers with Arbitrary Finite Domains, pp. 114–130. Springer, New York
(2002)

123

436 R. Aragona et al.

4. Brier, E., Peyrin, T., Stern, J.: BPS: a Format-Preserving Encryption proposal. Manuscript (standards
proposal) submitted to NIST (2010)

5. Díaz-Santiago, S., Rodríguez-Henríquez, L.M., Chakraborty,D.:A cryptographic study of tokenization
systems. Int. J. Inf. Secur. 15(4), 413–432 (2016)

6. EMVCo: Payment Tokenisation Specification—Technical Framework, Version 1.0. Technical Report
(2014)

7. Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card shuffle. In: Safavi-Naini,
R., Canetti, R. (eds.) Advances in Cryptology–CRYPTO 2012. Lecture Notes in Computer Science,
vol. 7414, pp. 1–13. Springer, Heidelberg (2012)

8. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3), 588–613 (2011)
9. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain. In: Halevi, S. (ed.)

Advances in Cryptology–CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 286–302.
Springer, Heidelberg (2009)

10. NIST: Secure Hash Standard (SHS). FIPS Publication, Information Technology Laboratory National
Institute of Standards and Technology, Gaithersburg, MD, pp. 180-4 (2015)

11. Rukhin, A., et al.: A Statistical Test Suite for the Validation of Random and Pseudo Random Num-
ber Generators for Cryptographic Applications. NIST Special Publication, Information Technology
Laboratory National Institute of Standards and Technology, Gaithersburg, MD (2010)

12. SSC, P.: Information Supplement: PCI DSS Tokenization Guidelines, Version 2.0. Technical Report
(2011)

13. SSC, P.: Tokenization Product Security Guidelines—Irreversible and Reversible Tokens, Version 1.0.
Technical Report (2015)

14. SSC, P.: PCI DSS Requirements and Security Assessment Procedures, Version 3.2. Technical Report
(2016)

15. Stefanov, E., Shi, E.: FastPRP: Fast Pseudo-Random Permutations for Small Domains. IACR Cryp-
tology ePrint Archive, Report 2012/254 (2012), http://eprint.iacr.org/

123

http://eprint.iacr.org/

	Several proofs of security for a tokenization algorithm
	Abstract
	1 Introduction
	2 Requirements
	3 Algorithm
	4 Proof of security
	5 Conclusion
	5.1 Security
	5.2 Efficiency

	Acknowledgements
	References

