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Abstract In this paper, several classes of Boolean functionswith fewWalsh transform
values, including bent, semi-bent and five-valued functions, are obtained by adding
the product of two or three linear functions to some known bent functions. Numerical
results show that the proposed class contains cubic bent functions that are affinely
inequivalent to all known quadratic ones.
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1 Introduction

For a positive integer n, let F2n be the finite field with 2n elements, F∗
2n = F2n\{0}.

A Boolean function is a mapping from F2n to F2. The Walsh transform is a powerful
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tool to investigate cryptographic properties of Boolean functions which have wide
applications in cryptography and coding theory. An interesting problem is to find
Boolean functions with fewWalsh transform values and determine their distributions.
Bent functions, introduced by Rothaus [27], are Boolean functions with two Walsh
transform values and achieve the maximum Hamming distance to all affine Boolean
functions. Such functions have been extensively studied because of their important
applications in coding theory [2,20], cryptography [6], sequence designs [26] and
graph theory [12,29]. Complete classification of bent functions seems elusive even
in the binary case. However, a number of recent interesting results on bent functions
have been found through primary constructions and secondary constructions (see [3,
4,7,10,15,17,19,21,23,25,33], and references therein).

As a particular case of the so-called plateaued Boolean functions [34], semi-bent
functions are an important kind of Boolean functions with three Walsh transform val-
ues. The termof semi-bent function introduced byChee et al. [11]. Semi-bent functions
investigated under the name of three-valued almost optimal Boolean functions in [2],
i.e., they have the highest possible nonlinearity in three-valued functions. They are
also nice combinatorial objects and havewide applications in cryptography and coding
theory. A lot of research work has been devoted to finding new families of semi-bent
functions (see [8,10,13,17,22,28,30] and the references therein). However, there is
only a few known constructions of semi-bent functions. In general, it is difficult to
characterize all functions with few Walsh transform values.

For any positive integers n, and k dividing n, the trace function from F2n to F2k ,
denoted by Trnk , is the mapping defined as:

Trnk (x) = x + x2
k + x2

2k + · · · + x2
n−k

.

For k = 1, Trn1(x) = ∑n−1
i=0 x2

i
is called the absolute trace function. Recently,

Mesnager [24] has proved a strong version of [5, Theorem 3], and provided several
primary and secondary constructions of bent functions. In particular, by means of the
second order derivative of the dual of known bent functions, she [24] presented two
new infinite families of bent functions with the forms

f (x) = Trm1 (λx2
m+1) + Trn1(ux)Tr

n
1(vx) (1)

and

f (x) =Trm1 (x2
m+1) + Trn1

⎛

⎝
2r−1−1∑

i=1

x (2m−1) i
2r +1

⎞

⎠ + Trn1(ux)Tr
n
1(vx) (2)

over F2n , where n = 2m, λ ∈ F
∗
2m and u, v ∈ F

∗
2n , and showed that the function

defined by (1) is bent when Trn1
(
λ−1u2

m
v
) = 0 and the function defined by (2) is bent

when u, v ∈ F
∗
2m .

The aim of this paper is to present several classes of functions with few Walsh
transform values. Inspired by the work of [24], we present several classes of bent
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functions by adding the product of three or two linear functions to some known bent
functions. Computer experiments show that we can obtain some cubic bent functions
from some quadratic bent functions, since the algebraic degree of the obtained bent
functions is three, they can not affinely equivalent to any quadratic bent function.
Meanwhile, several classes of semi-bent and five-valued functions are also obtained.
The proofs of our main results are based on the study of the Walsh transform.

The paper is organized as follows. In Sect. 2, we give some notation and recall the
necessary background. In Sect 3, we present some Boolean functions with few Walsh
transform values from Kasami function and Gold function. A family of bent functions
via Niho exponents is presented in Sect. 4 and two families of functions with few
Walsh transform values via Maiorana–McFarland’s class are provided in Sect. 5.

2 Preliminaries

By viewing each x = x1ξ1 + x2ξ2 + · · · + xnξn ∈ F2n as a vector (x1, x2, . . . , xn)
∈ F

n
2 where {ξ1, . . . , ξn} is a basis of F2n over F2, we identify F

n
2 (the n-dimensional

vector space over F2) with F2n , and then every function f : F2n → F2 is equivalent
to a Boolean function. For x, y ∈ F2n , the inner product is defined as x · y = Trn1(xy).
It is well known that every nonzero Boolean function defined on F2n can be written in
the form of f (x) = ∑

j∈�n
Tro( j)1 (a j x j )+ ε(1+ x2

n−1), where �n is a set of integers
obtained by choosing one element in each cyclotomic coset of 2 modulo 2n − 1, o( j)
is the size of the cyclotomic coset containing j , a j ∈ F2o( j) and ε = wt ( f )(mod 2),
where wt ( f ) is the cardinality of its support supp := {x ∈ F2n | f (x) = 1}. The
algebraic degree of f is equal to the maximum 2-weight of an exponent j for which
a j �= 0 if ε = 0 and to n if ε = 1.

The Walsh transform of a Boolean function f : F2n → F2 is the function χ̂ f :
F2n → Z defined by

χ̂ f (a) =
∑

x∈F2n

(−1) f (x)+Tr
n
1(ax), a ∈ F2n .

The values χ̂ f (a), a ∈ F2n are called theWalsh coefficients of f . TheWalsh spectrum
of a Boolean function f is the multiset {χ̂ f (a), a ∈ F2n }. A Boolean function f is
said to be balanced if χ̂ f (0) = 0.

Definition 1 [27] A Boolean function f is said to be bent if |χ̂ f (a)| = 2n/2 for all
a ∈ F2n .

In view of Parseval’s equation this definition implies that bent functions exist only
for an even number of variables. For a bent function with n variables, its dual is the
Boolean function f̃ defined by χ̂ f (a) = 2n/2(−1) f̃ (a). It is easy to verify that the dual
of f is again bent. Thus, Boolean bent functions occur in pair. However, determining
the dual of a given bent function is not an easy thing. A bent function is said to be
self-dual (resp. anti-self-dual) if f̃ = f (resp. f̃ = f +1). Formore study on self-dual
and anti-self-dual bent functions can be founded in [5,9,16,24].

Two functions f, g : F2n → F2 are called affinely equivalent if f (x) = ag(l(x) +
b) + c for some linearized permutation l(x) ∈ F2n [x], a, c ∈ F2 and b ∈ F2n . Note
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that algebraic degree, the set of absolute values of Walsh coefficients and bentness of
a Boolean function are affine invariants.

Definition 2 [11] A Boolean function f is said to be semi-bent if

χ̂ f (a) ∈
{

{0,±2
n+1
2 }, if n is odd

{0,±2
n
2+1}, if n is even

for all a ∈ F2n .
Our constructions can be derived from some known bent functions. The following

result will be used in the sequel.

Lemma 1 Let n be a positive integer and u, v, r ∈ F
∗
2n . Let g(x) be aBoolean function

over F2n . Define the Boolean function f (x) by

f (x) = g(x) + Trn1(ux)Tr
n
1(vx)Tr

n
1(r x).

Then, for every a ∈ F2n ,

χ̂ f (a) =1

4

[
3χ̂g(a) + χ̂g(a + v) + χ̂g(a + u) − χ̂g(a + u + v)

+ χ̂g(a + r) − χ̂g(a + r + v) − χ̂g(a + r + u) + χ̂g(a + r + u + v)
]
.

In particular, if r = v, then

χ̂ f (a) = 1

2

[
χ̂g(a) + χ̂g(a + u) + χ̂g(a + v) − χ̂g(a + u + v)

]
.

Proof For i, j ∈ {0, 1} and u, v ∈ F
∗
2n , define

T(i, j) = {x ∈ F2n |Trn1(ux) = i,Trn1(vx) = j}

and denote

S(i, j)(a) =
∑

x∈T(i, j)

(−1)g(x)+Tr
n
1(ax)

and

Q(i, j)(a + r) =
∑

x∈T(i, j)

(−1)g(x)+Tr
n
1((a+r)x).
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For each a ∈ F2n , we have

χ̂ f (a) =
∑

x∈F2n

(−1) f (x)+Tr
n
1(ax) =

∑

x∈F2n

(−1)g(x)+Tr
n
1(ux)Tr

n
1(vx)Tr

n
1(r x)+Trn1(ax)

=
∑

x∈T(0,0)

(−1)g(x)+Tr
n
1(ax) +

∑

x∈T(0,1)

(−1)g(x)+Tr
n
1(ax)

+
∑

x∈T(1,0)

(−1)g(x)+Tr
n
1(ax) +

∑

x∈T(1,1)

(−1)g(x)+Tr
n
1((a+r)x)

= S(0,0)(a) + S(0,1)(a) + S(1,0)(a) + Q(1,1)(a + r)

= χ̂g(a) − S(1,1)(a) + Q(1,1)(a + r). (3)

In the following, we will compute the sums S(1,1)(a) and Q(1,1)(a + r). Let T(i, j) be
defined as above. Clearly,

χ̂g(a) = S(0,0)(a) + S(0,1)(a) + S(1,0)(a) + S(1,1)(a). (4)

Furthermore, we have

χ̂g(a + v) =
∑

x∈T(0,0)

(−1)g(x)+Tr
n
1(ax) −

∑

x∈T(0,1)

(−1)g(x)+Tr
n
1(ax)

+
∑

x∈T(1,0)

(−1)g(x)+Tr
n
1(ax) −

∑

x∈T(1,1)

(−1)g(x)+Tr
n
1(ax)

= S(0,0)(a) − S(0,1)(a) + S(1,0)(a) − S(1,1)(a). (5)

Similarly,

χ̂g(a + u) = S(0,0)(a) + S(0,1)(a) − S(1,0)(a) − S(1,1)(a) (6)

and

χ̂g(a + u + v) = S(0,0)(a) − S(0,1)(a) − S(1,0)(a) + S(1,1)(a). (7)

From (4)–(7), we have

⎛

⎜
⎜
⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

S(0,0)(a)

S(0,1)(a)

S(1,0)(a)

S(1,1)(a)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

χ̂g(a)

χ̂g(a + v)

χ̂g(a + u)

χ̂g(a + u + v)

⎞

⎟
⎟
⎠ . (8)

Note that the coefficient matrix of (8) is a Hadamard matrix of order 4. Then we have

S(1,1)(a) =1

4

[
χ̂g(a) − χ̂g(a + v) − χ̂g(a + u) + χ̂g(a + u + v)

]
. (9)
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Substituting a by a + r in (9), we can get

Q(1,1)(a + r) = 1

4

[
χ̂g(a + r) − χ̂g(a + r + v)

−χ̂g(a + r + u) + χ̂g(a + r + u + v)
]
. (10)

The desired conclusion follows from (3), (9) and (10).
In particular, if r = v, it is easy to show that

χ̂ f (a) = 1

2

[
χ̂g(a) + χ̂g(a + u) + χ̂g(a + v) − χ̂g(a + v + u)

]
.

The proof is completed. ��

It must be pointed out that f (x) = g(x) + Trn1(ux)Tr
n
1(vx)Tr

n
1(r x) = g(x) +

Trn1(ux)Tr
n
1(vx) Tr

n
1(ux + vx) = g(x) when u + v + r = 0. In the following, we

always assume that u + v + r �= 0.

3 Several infinite families of bent, semi-bent and five-valued functions
from monomial bent functions

3.1 An infinite family of bent, semi-bent and five-valued functions from Kasami
function

Let n = 2m (m is at least 2) be a positive even integer. The Kasami function
g(x) = Trm1 (λx2

m+1) is bent where λ ∈ F
∗
2m and its dual g̃ is given by g̃(x) =

Trm1 (λ−1x2
m+1) + 1 [24]. In other words, for each a ∈ F2n , the Walsh coefficient

χ̂g(a) is

χ̂g(a) = −2m(−1)Tr
m
1 (λ−1a2

m+1). (11)

In the following result, we will present some bent and five-valued functions bymaking
use of the Kasami function.

Theorem 1 Let n = 2m be a positive even integer and let u, v, r be three distinct
pairwise elements in F

∗
2n such that u + v + r �= 0. Define the Boolean function f on

F2n as

f (x) = Trm1 (λx2
m+1) + Trn1(ux)Tr

n
1(vx)Tr

n
1(r x),

where λ ∈ F
∗
2m . If Tr

n
1(λ

−1u2
m
v) = Trn1(λ

−1r2
m
u) = Trn1(λ

−1r2
m
v) = 0, then f is

bent. Otherwise, f is five-valued and the Walsh spectrum of f is {0,±2m,±2m+1}.
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Proof Let g(x) = Trm1 (λx2
m+1). For each a ∈ F2n , by Lemma 1, we have

χ̂ f (a) = 1

4

[
3χ̂g(a) + χ̂g(a + v) + χ̂g(a + u) − χ̂g(a + u + v)

+χ̂g(a + r) − χ̂g(a + r + v) − χ̂g(a + r + u) + χ̂g(a + r + u + v)
]

= �1 + �2,

where

�1 = 1

4

[
3χ̂g(a) + χ̂g(a + v) + χ̂g(a + u) − χ̂g(a + u + v)

]

and

�2 = 1

4

[
χ̂g(a + r) − χ̂g(a + r + v) − χ̂g(a + r + u) + χ̂g(a + r + u + v)

]
.

Now we use (11) to compute the sums �1 and �2 respectively.

�1 = 1

4
(−2m)

[
3(−1)Tr

m
1 (λ−1a2

m+1)+(−1)Tr
m
1 (λ−1(a+v)2

m+1) + (−1)Tr
m
1 (λ−1(a+u)2

m+1)

− (−1)Tr
m
1 (λ−1(a+u+v)2

m+1)
]

=− 1

4
2m(−1)Tr

m
1 (λ−1a2

m+1)

[

3 + (−1)
Trm1

(
λ−1(a2

m
v+av2

m+v2
m+1)

)

+ (−1)
Trm1

(
λ−1(a2

m
u+au2

m+u2
m+1)

)

− (−1)
Trm1

(
λ−1(a2

m
v+av2

m+v2
m+1+a2

m
u+au2

m+u2
m+1+u2

m
v+uv2

m
)
)]

.

Similarly, we have

�2 = 1

4
(−2m)(−1)

Trm1
(
λ−1(a2

m+1+a2
m
r+ar2

m+r2
m+1)

)

×
[

1 − (−1)
Trm1

(
λ−1(a2

m
v+av2

m+v2
m+1+r2

m
v+rv2

m
)
)

− (−1)
Trm1

(
λ−1(a2

m
u+au2

m+u2
m+1+r2

m
u+ru2

m
)
)

+ (−1)
Trm1

(
λ−1(a2

m
v+av2

m+v2
m+1+a2

m
u+au2

m+u2
m+1)

)

× (−1)
Trm1

(
λ−1(r2

m
v+rv2

m+r2
m
u+ru2

m+u2
m

v+uv2
m

)
)]

.

To simplify �1 and �2, we write t1 = Trm1 (λ−1(r2
m
v + rv2

m
)) = Trn1(λ

−1r2
m
v),

t2 = Trm1 (λ−1(r2
m
u + ru2

m
)) = Trn1(λ

−1r2
m
u) and t3 = Trm1 (λ−1(u2

m
v + uv2

m
)) =

Trn1(λ
−1u2

m
v) due to the transitivity property of the trace function ( for every k dividing
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n, Trn1(x) = Trk1(Tr
n
k (x))). Meanwhile, denote c1 = Trm1 (λ−1(a2

m
v+av2

m +v2
m+1)),

c2 = Trm1 (λ−1(a2
m
u + au2

m + u2
m+1)) and c3 = Trm1 (λ−1(a2

m
r + ar2

m + r2
m+1)).

Then the sums �1 and �2 can be written as

�1 = 1

4
(−2m)(−1)Tr

m
1 (λ−1a2

m+1) × [
3 + (−1)c1 + (−1)c2 − (−1)c1+c2+t3

]
(12)

and

�2 = 1

4
(−2m)(−1)Tr

m
1 (λ−1a2

m+1)+c3

× [
1 − (−1)c1+t1 − (−1)c2+t2 + (−1)c1+c2+t1+t2+t3

]
. (13)

Firstly, we prove that f is bent when t1 = t2 = t3 = 0. If t1 = t2 = t3 = 0, then

�1 = 1

4
(−2m)(−1)Tr

m
1 (λ−1a2

m+1)
[
3 + (−1)c1 + (−1)c2 − (−1)c1+c2

]

and

�2 = 1

4
(−2m)(−1)Tr

m
1 (λ−1a2

m+1)+c3 × [
1 − (−1)c1 − (−1)c2 + (−1)c1+c2

]
.

When c3 = 0, we can get

χ̂ f (a) = �1 + �2 = −2m(−1)Tr
m
1 (λ−1a2

m+1).

When c3 = 1, we can get

χ̂ f (a) = �1 +�2 = 1

2
(−2m)(−1)Tr

m
1 (λ−1a2

m+1)
[
1 + (−1)c1 + (−1)c2 − (−1)c1+c2

]

=
{
2m(−1)Tr

m
1 (λ−1a2

m+1), if c1 = c2 = 1

−2m(−1)Tr
m
1 (λ−1a2

m+1), otherwise.

Hence, f is bent if Trn1(λ
−1u2

m
v) = Trn1(λ

−1r2
m
u) = Trn1(λ

−1r2
m
v) = 0.

Secondly, we show that f is five-valued if at least one ti (i ∈ {1, 2, 3}) is equal to
1. We only give the proof of the case of t1 = t2 = 0 and t3 = 1 since the others can
be proven in a similar manner. In this case, (12) and (13) become

�1 =1

4
(−2m)(−1)Tr

m
1 (λ−1a2

m+1)
[
3 + (−1)c1 + (−1)c2 + (−1)c1+c2

]

and

�2 =1

4
(−2m)(−1)Tr

m
1 (λ−1a2

m+1)+c3
[
1 − (−1)c1 − (−1)c2 − (−1)c1+c2

]
.
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When c3 = 0, then we have

χ̂ f (a) = �1 + �2 = −2m(−1)Tr
m
1 (λ−1a2

m+1). (14)

When c3 = 1, then we have

χ̂ f (a) = �1 + �2= 1

2
(−2m)(−1)Tr

m
1 (λ−1a2

m+1)
[
1+(−1)c1 + (−1)c2 + (−1)c1+c2

]

=
{

−2m+1(−1)Tr
m
1 (λ−1a2

m+1), if c1 = c2 = 0
0, otherwise.

(15)

It then follows from (14) and (15) that f is five-valued and its Walsh spectrum is
{0,±2m,±2m+1}.

This completes the proof. ��
It is easily checked that Trn1(λ

−1u2
m
v) = Trn1(λ

−1r2
m
u) = Trn1(λ

−1r2
m
v) = 0

when u, v, r ∈ F
∗
2m . From Theorem 1, we get the following corollary.

Corollary 1 Let n = 2m be a positive even integer and λ ∈ F
∗
2m . If u, v, r ∈ F

∗
2m are

three pairwise distinct elements such that u+v + r �= 0, then the Boolean function f

f (x) = Trm1 (λx2
m+1) + Trn1(ux)Tr

n
1(vx)Tr

n
1(r x)

is bent.

Remark 1 If r = v, the bent functions f presented in Theorem 1 become ones in
[24, Theorem 9], i.e., if Trn1(λ

−1u2
m
v) = 0, then the Boolean function f (x) =

Trm1 (λx2
m+1) + Trn1(ux)Tr

n
1(vx) is bent.

Now let us consider the algebraic degree of f in Theorem 1. Let i, j, k ∈ {0, 1, · · · ,

n − 1} are pairwise distinct integers. Denote the set of all permutations on i, j, k
by P . It is clear that the possible cubic term in the expression of f has the form
(
∑

(i, j,k)∈P u2
i
v2

j
r2

k
)x2

i+2 j+2k . If there exist three pairwise distinct integers i, j, k ∈
{0, 1, . . . , n − 1} such that (

∑
(i, j,k)∈P u2

i
v2

j
r2

k
) �= 0, then the algebraic degree of

f is 3.
Next we will show that if Trn1(λ

−1u2
m
v) = Trn1(λ

−1r2
m
u) = Trn1(λ

−1r2
m
v) = 0,

the algebraic degree of f in Theorem 1 is not equal to 3 when m = 2. Otherwise, this
will contradict the fact that the algebraic degree of a bent function f is at most n/2.
Let P1 be the set of all permutations on {0, 1, 3}, P2 be the set of all permutations on
{0, 1, 2},P3 be the set of all permutations on {1, 2, 3} andP4 be the set of all permuta-
tions on {0, 2, 3}. The condition Tr41(λ−1r2

2
v) = Tr41(λ

−1r2
2
u) = Tr41(λ

−1u2
2
v) = 0

can be written as
⎧
⎪⎨

⎪⎩

r2
2
v + r2

3
v2 + rv2

2 + r2v2
3 = 0

r2
2
u + r2

3
u2 + ru2

2 + r2u2
3 = 0

u2
2
v + u2

3
v2 + uv2

2 + u2v2
3 = 0.

(16)
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Multiplying u, v and r to the first, the second and the third equation of (16) respectively
yields

⎧
⎪⎨

⎪⎩

r2
2
vu + r2

3
v2u + rv2

2
u + r2v2

3
u = 0

r2
2
vu + r2

3
vu2 + rvu2

2 + r2vu2
3 = 0

ru2
2
v + ru2

3
v2 + ruv2

2 + ru2v2
3 = 0.

(17)

Adding three equations of (17) gives
∑

(i, j,k)∈P1
u2

i
v2

j
r2

k = 0. Similarly,multiplying

u2, v2 and r2 to the first, the second and the third equation of (16) respectively yields
∑

(i, j,k)∈P2
u2

i
v2

j
r2

k = 0. Multiplying u2
2
, v2

2
and r2

2
to the first, the second and the

third equation of (16) respectively yields
∑

(i, j,k)∈P3
u2

i
v2

j
r2

k = 0 and multiplying

u2
3
, v2

3
and r2

3
to the first, the second and the third equation of (16) respectively yields

∑
(i, j,k)∈P4

u2
i
v2

j
r2

k = 0. Therefore, there are no cubic terms in the expression of f
whenm = 2 , which implies that the algebraic degree of f in Theorem 1 is equal to 2.

Remark 2 When m = 2, the algebraic degree of the bent function f in Theorem 1 is
equal to 2. Whenm ≥ 3, the bent functions f in Theorem 1may be cubic according to
our numerical results. Recall that algebraic degree is an affine invariant. We conclude
that there exist bent functions in Theorem 1 which are affinely inequivalent to all
known quadratic bent functions.

Example 1 Let m = 3, F26 be generated by the primitive polynomial x6 + x4 + x3 +
x + 1 and ξ be a primitive element of F26 . Take λ = 1, u = ξ , v = ξ9 and r = ξ27.
Let P be the set of all permutations on 0, 1, 2. By help of a computer, we can get
Tr61(u

8v) = Tr61(r
8u) = Tr61(r

8v) = 0,u+v+r �= 0,
∑

(i, j,k)∈P u2
i
v2

j
v2

k = ξ45 �= 0

and the function f (x) = Tr31(x
9)+Tr61(ξ x)Tr

6
1(ξ

9x)Tr61(ξ
27x) is a cubic bent function,

which coincides with the results in Theorem 1.

Example 2 Let m = 4, F28 be generated by the primitive polynomial x8 + x4 +
x3 + x2 + 1 and ξ be a primitive element of F28 . Take λ = ξ17, u = ξ10,
v = ξ9, r = ξ3. Then the function f in Theorem 1 is f (x) = Tr41(ξ

17x17) +
Tr81(ξ

10x)Tr81(ξ
9x)Tr81(ξ

3x) . By help of a computer, we can get Tr81(λ
−1u16v) = 1,

Tr81(λ
−1r16u) = Tr81(λ

−1r16v) = 0 and f is five-valued, which is consistent with the
results given in Theorem 1.

As noted in Remark 1, if Trn1(λ
−1u2

m
v) = 0, then the Boolean function f (x) =

Trm1 (λx2
m+1) + Trn1(ux)Tr

n
1(vx) is bent. In the following result, we will prove that if

Trn1(λ
−1u2

m
v) = 1, the Boolean function f (x) = Trm1 (λx2

m+1) + Trn1(ux)Tr
n
1(vx) is

semi-bent by using Lemma 1.

Theorem 2 Let n = 2m be a positive even integer and u, v ∈ F
∗
2n . Define a Boolean

function f on F2n by

f (x) = Trm1 (λx2
m+1) + Trn1(ux)Tr

n
1(vx),
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where λ ∈ F
∗
2m . If Trn1(λ

−1u2
m
v) = 1, then f is semi-bent. Moreover, when

Trn1(λ
−1u2

m
v) = 1, if Trm1 (λ−1u2

m+1) = 1 or Trm1 (λ−1v2
m+1) = 1, then f is a

balanced semi-bent function.

Proof Let g(x) = Trm1 (λx2
m+1). By Lemma 1 and (11), for each a ∈ F

∗
2n , we have

χ̂ f (a) = 1

2

[
χ̂g(a) + χ̂g(a + v) + χ̂g(a + u) − χ̂g(a + u + v)

]

= 1

2
χ̂g(a)

[
1 + (−1)Tr

m
1 (λ−1(a2

m
v+av2

m+v2
m+1))

+ (−1)
Trm1

(
λ−1(a2

m
u+au2

m+u2
m+1)

)

− (−1)
Trm1

(
λ−1(a2

m
v+av2

m+v2
m+1+a2

m
u+au2

m+u2
m+1+u2

m
v+uv2

m
)
)]

= 1

2
χ̂g(a)

[

1 + (−1)
Trm1

(
λ−1(a2

m
v+av2

m+v2
m+1)

)

+ (−1)
Trm1

(
λ−1(a2

m
u+au2

m+u2
m+1)

)

+ (−1)
Trm1

(
λ−1(a2

m
v+av2

m+v2
m+1+a2

m
u+au2

m+u2
m+1)

)]

(18)

where the last identity holds because Trn1(λ
−1u2

m
v) = Trm1 (u2

m
v + uv2

m
) = 1.

Denote c1 = Trm1 (λ−1(a2
m
v+av2

m +v2
m+1)) and c2 = Trm1 ((λ−1(a2

m
u+au2

m +
u2

m+1)). Then (18) can be written as

χ̂ f (a) = 1

2
(−2m)(−1)Tr

m
1 λ−1a2

m+1)[1 + (−1)c1 + (−1)c2 + (−1)c1+c2 ]

=
{

(−2m+1)(−1)Tr
m
1 (λ−1a2

m+1), if c1 = c2 = 0
0, otherwise.

It then follows from Definition 2 that f is semi-bent. Furthermore, from (18), if
Trn1(λ

−1u2
m
v) = Trm1 (λ−1(u2

m
v + uv2

m
)) = 1 then the Walsh transform coefficient

of the function f evaluated at 0 is equal to

χ̂ f (0) = 1

2
(−2m)

[
1 + (−1)Tr

m
1 (λ−1v2

m+1)

+ (−1)Tr
m
1 (λ−1u2

m+1) + (−1)Tr
m
1 (λ−1(v2

m+1+u2
m+1))

]
.

It is easy to check that χ̂ f (0) = 0 if Trm1 (λ−1v2
m+1) = 1 or Trm1 (λ−1u2

m+1) = 1.
Therefore, f (x) is a balanced semi-bent function. ��
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3.2 An infinite family of bent, semi-bent and five-valued functions from
Gold-like monomial function

In [9], Carlet et.al proved that the Gold-like monomial function g(x) = Tr4k1 (λx2
k+1)

over F24k where k is at least 2 and λ ∈ F
∗
24k

, is self-dual or anti-self-dual bent if and

only if λ2 + λ2
3k+1 = 1 and λ2

k+1 + λ2
3k+2k = 0. Recently, Mesnager showed that

g(x) = Tr4k1 (λx2
k+1) over F24k is self-dual bent when λ + λ2

3k = 1 in [24, Lemma
23], i.e., for each a ∈ F

∗
24k

, the Walsh coefficient χ̂ f (a) is

χ̂g(a) = 22k(−1)Tr
4k
1 (λa2

k+1)

when λ + λ2
3k = 1.

Theorem 3 Let k be a positive integer such that k > 1 and let u, v, r be three pairwise
distinct elements in∈ F

∗
24k

such that u+v+r �= 0. Let λ ∈ F
∗
24k

such that λ+λ2
3k = 1.

If Tr4k1 (λ(u2
k
v + uv2

k
)) = Tr4k1 (λ(r2

k
u + ru2

k
)) = Tr4k1 (λ(r2

k
v + rv2

k
)) = 0, then

the Boolean function

f (x) = Tr4k1 (λx2
k+1) + Tr4k1 (ux)Tr4k1 (vx)Tr4k1 (r x)

over F24k is a bent function. Otherwise, f (x) is a five-valued function.

Proof Let g(x) = Tr4k1 (λx2
k+1). We write Tr4k1 (λ(r2

k
v + rv2

k
)) = t1, Tr4k1 (λ(r2

k
u +

ru2
k
)) = t2, Tr4k1 (λ(u2

k
v + uv2

k
)) = t3. Denote c1 = Tr4k1 (λ(a2

k
v + av2

k + v2
k+1)),

c2 = Tr4k1 (λ(a2
k
u + au2

k + u2
k+1)) and c3 = Tr4k1 (λ(a2

k
r + ar2

k + r2
k+1)). By

analyses similar to those in Theorem 1, we have

χ̂ f (a) = �1 + �2,

where

�1 =1

4
22k(−1)Tr

4k
1 (λa2

k+1)
[
3 + (−1)c1 + (−1)c2 − (−1)c1+c2+t3

]
(19)

and

�2 = 1

4
22k(−1)Tr

4k
1 (λa2

k+1)+c3
[
1 − (−1)c1+t1 − (−1)c2+t2 + (−1)c1+c2+t1+t2+t3

]
.

(20)

Similar to Theorem 1, we can prove that f (x) is bent if t1 = t2 = t3 = 0.
Next we will prove that f is five-valued in the case of t1 = t2 = 0 and t3 = 1 since

the others can be proven in a similar manner. In this case, (19) and (20) become

�1 =1

4
22k(−1)Tr

4k
1 (λa2

k+1)
[
3 + (−1)c1 + (−1)c2 + (−1)c1+c2

]
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and

�2 = 1

4
22k(−1)Tr

4k
1 (λa2

k+1)+c3
[
1 − (−1)c1 − (−1)c2 − (−1)c1+c2

]
.

When c3 = 0, then we have

χ̂ f (a) = �1 + �2 = 22k(−1)Tr
4k
1 (λa2

k+1). (21)

When c3 = 1, then we have

χ̂ f (a) = �1 + �2 = 1

2
22k(−1)Tr

4k
1 (λa2

k+1)
[
1 + (−1)c1 + (−1)c2 + (−1)c1+c2

]

=
{

22k+1(−1)Tr
4k
1 (λa2

k+1), if c1 = c2 = 0
0, otherwise.

(22)

Thus, f is a five-valued function if t1 = t2 = 0 and t3 = 1. ��
By analyses similar to those in Theorem 2, we get the following result.

Theorem 4 Let k be a positive integer such that k > 1 and let u, v ∈ F
∗
24k

. Assume

that λ ∈ F
∗
24k

such that λ + λ2
3k = 1. Define a Boolean function as

f (x) = Tr4k1 (λx2
k+1) + Tr4k1 (ux)Tr4k1 (vx)

over F24k . Then the following hold:

1) If Tr4k1 (λ(u2
k
v + uv2

k
)) = 0, then f is bent.

2) If Tr4k1 (λ(u2
k
v + uv2

k
)) = 1, then f is semi-bent. Moreover, if Tr4k1 (λu2

k+1) = 1

or Tr4k1 (λv2
k+1) = 1, then f is a balanced semi-bent function.

Example 3 Let k = 2, F28 be generated by the primitive polynomial x8 + x4 + x3 +
x2 + 1 and ξ be a primitive element of F28 .

1) Let P be the set of all permutations on 0, 1, 2. If one takes λ = ξ34, u = ξ212,
v = ξ10 and r = ξ16, then by a Magma program, one can get λ + λ2

6 = 1,
Tr81(λ(u4v + uv4)) = Tr81(λ(r4u + ru4)) = Tr81(λ(r4v + rv4)) = 0 and
∑

(i, j,k)∈P u2
i
v2

j
v2

k = ξ8 �= 0. Computer experiment shows that f (x) =
Tr81(ξ

34x5) + Tr81(ξ
212x)Tr4k1 (ξ10x)Tr4k1 (ξ16x) given by in Theorem 3 is a cubic

bent function, which is consistent with the results given in Theorem 3.
2) If one takes λ = ξ34, u = ξ212, v = ξ10 and r = ξ12, then by a Magma

program, one can get Tr81(λ(r4v + rv4)) = Tr81(λ(r4u + ru4)) = 1 and
Tr81(λ(u4v + uv4)) = 0. Computer experiment shows that f (x) = Tr81(ξ

34x5) +
Tr81(ξ

212x)Tr4k1 (ξ10x)Tr4k1 (ξ12x) given by in Theorem 3 is a five-valued function.
This is compatible with the results given in Theorem 3.
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4 An infinite family of bent functions from the Niho exponents

The bent function

g(x) = Trm1 (x2
m+1) + Trn1

⎛

⎝
2k−1−1∑

i=1

x
(2m−1) i

2k
+1

⎞

⎠

via 2k Niho exponentswas foundbyLeander andKholosha [18],where gcd(k,m) = 1.
Take any α ∈ F2n with α + α2m = 1. It was shown in [1] that g̃ is

g̃(a) = Trm1
(
(α(1 + a + a2

m
) + α2n−k + a2

m
)(1 + a + a2

m
)1/(2

k−1)). (23)

Now using Lemma 1 and (23), we can present the following class of bent functions
via 2k Niho exponents.

Theorem 5 Let n = 2m, k be a positive with gcd(k,m) = 1 and u, v, r ∈ F
∗
2m such

that u + v + r �= 0. Then the Boolean function

f (x) =Trm1 (x2
m+1) + Trn1

⎛

⎝
2k−1−1∑

i=1

x
(2m−1) i

2k
+1

⎞

⎠ + Trn1(ux)Tr
n
1(vx)Tr

n
1(r x)

is a bent function.

Proof Let g(x) = Trm1 (x2
m+1)+Trn1

(
∑2k−1−1

i=1 x
(2m−1) i

2k
+1

)

. For each a ∈ F2n , by

Lemma 1, we have

χ̂ f (a) = 1

4

[
3χ̂g(a) + χ̂g(a + v) + χ̂g(a + u) − χ̂g(a + u + v)

+ χ̂g(a + r) − χ̂g(a + r + v) − χ̂g(a + r + u) + χ̂g(a + r + u + v)
]

= �1 + �2,

where

�1 = 1

4

[
3χ̂g(a) + χ̂g(a + v) + χ̂g(a + u) − χ̂g(a + u + v)

]

and

�2 =1

4

[
χ̂g(a + r) − χ̂g(a + r + v) − χ̂g(a + r + u) + χ̂g(a + r + u + v)

]
.

Set A = 1 + a + a2
m
. It follows from (23) that

χ̂g(a) = 2m(−1)Tr
m
1

(
(αA+α2n−k+a2

m
)A1/(2k−1)

)

,
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where α ∈ F2n such that α + α2m = 1. Now we compute �1 and �2 respectively.
Note that u, v, r ∈ F

∗
2m . Then we have

�1 = 1

4

[
3 + χ̂g(a + v) + χ̂g(a + u) − χ̂g(a + u + v)

]

= 1

4
χ̂g(a)

[

3 + (−1)Tr
m
1

(
vA1/(2k−1)

)

+ (−1)Tr
m
1

(
uA1/(2k−1)

)

− (−1)Tr
m
1

(
vA1/(2k−1)

)
+Trm1

(
uA1/(2k−1)

)]

= 1

4
2m(−1)Tr

m
1

(
(αA+α2n−k+a2

m
)A1/(2k−1)

)[
3 + (−1)Tr

m
1

(
vA1/(2k−1)

)

+ (−1)Tr
m
1

(
uA1/(2k−1)

)

− (−1)Tr
m
1

(
vA1/(2k−1)

)
+Trm1

(
uA1/(2k−1)

)]
. (24)

Similarly, we have

�2 = 1

4
2m(−1)Tr

m
1

(
(αA+α2n−k+a2

m+r)A1/(2k−1)
)[
1 − (−1)Tr

m
1

(
vA1/(2k−1)

)

− (−1)Tr
m
1

(
uA1/(2k−1)

)

+ (−1)Tr
m
1

(
vA1/(2k−1)

)
+Trm1

(
uA1/(2k−1)

)]
. (25)

Let c1 = Trm1
(
vA1/(2k−1)

)
and c2 = Trm1

(
uA1/(2k−1)

)
. When Trm1

(
r A1/(2k−1)

) = 0,
by (24) and (25) we have

χ̂ f (a) = �1 + �2 = 2m(−1)Tr
m
1

(
(αA+α2n−k+a2

m
)A1/(2k−1)

)

.

When Trm1
(
r A1/(2k−1)

) = 1, by (24) and (25) again, we have

χ̂ f (a) = �1 + �2 = 1

2
2m(−1)Tr

m
1

(
(αA+α2n−k+a2

m
)A1/(2k−1)

)

× [
1 + (−1)c1 + (−1)c2 − (−1)c1+c2

]

=
⎧
⎨

⎩

−2m(−1)Tr
m
1

(
(αA+α2n−k+a2

m
)A1/(2k−1)

)

, if c1 = 1, c2 = 1

2m(−1)Tr
m
1

(
(αA+α2n−k+a2

m
)A1/(2k−1)

)

, otherwise.

Therefore, f (x) is a bent function. ��
Remark 3 This result generalizes the case in [24, Theorem 11] for r = v. It may
be noted that we can not construct more bent functions for the case u, v, r /∈ F

∗
2m

according to our numerical results.
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Example 4 Let m = 4, k = 3 and F28 be generated by the primitive polynomial
x8+x4+x3+x2+1 and ξ be a primitive element of F28 . If we take u = ξ34, v = ξ17,
r = ξ51, then by a Magma program, we can see that f (x) = Tr41(x

17) + Tr81(x
226) +

Tr81(x
196) + Tr81(x

166) + Tr81(ξ
34x)Tr81(ξ

17x)Tr81(ξ
51x) given by in Theorem 5 is a

bent function, which is consistent with the results given in Theorem 5.

5 Several infinite families of bent, semi-bent and five-valued functions
from the class of Maiorana–McFarland

In this section, we identify F2n (where n = 2m) with F2m ×F2m and consider Boolean
functions with bivariate representation f (x, y) = Trm1 (P(x, y)), where P(x, y) is a
polynomial in two variables over F2m . For a = (a1, a2), b = (b1, b2) ∈ F2n , the scalar
product in F2n can be defined as

〈(a1, a2), (b1, b2)〉 = Trm1 (a1b1 + a2b2).

The well-known Maiorana–McFarland class of bent functions can be defined as fol-
lows.

g(x, y) = Trm1 (xπ(y)) + h(y), (x, y) ∈ F2m × F2m

where π : F2m → F2m is a permutation and h is a Boolean function over F2m , and its
dual is given by

g̃(x, y) = Trm1 (yπ−1(x)) + h(π−1(x))

where π−1 denotes the inverse mapping of the permutation π [6]. This together with
the definition of the dual function implies that for each a = (a1, a2) ∈ F2n

χ̂g(a1, a2) = 2m(−1)Tr
m
1 (a2π−1(a1))+h(π−1(a1)). (26)

In what follows, by choosing suitable permutations π , we will construct some
bent, semi-bent and five-valued functions from the class of Maiorana–McFarland. It
is well known that the compositional inverse of a linearized permutation polynomial is
also a linearized polynomial. The following two theorems will employ the linearized
permutation polynomial over F2m to give Boolean functions with fewWalsh transform
values.

Theorem 6 Let n = 2m and u = (u1, u2), v = (v1, v2), r = (r1, r2) are three
pairwise distinct nonzero elements in F2m × F2m such that u + v + r �= 0. Assume
that π is a linearized permutation polynomial over F2m . Let f (x, y) be the Boolean
function given by

f (x, y)=Trm1 (xπ(y)) + Trm1 (y)+Trm1 (u1x+u2y)Tr
m
1 (v1x+v2y)Tr

m
1 (r1x + r2y).
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If Trm1 (r2π−1(v1) + v2π
−1(r1)) = 0, Trm1 (r2π−1(u1) + u2π−1(r1)) = 0 and

Trm1 (u2π−1(v1) + v2π
−1(u1)) = 0, then f (x, y) is bent. Otherwise, f (x, y) is five-

valued and the Walsh spectrum of f (x, y) is {0,±2m,±2m+1}.
Proof Let g(x, y) = Trm1 (xπ(y))+Trm1 (y). From (26), for each (a1, a2) ∈ F2m ×F2m ,
we get

χ̂g(a1, a2) = 2m(−1)Tr
m
1 (a2π−1(a1))+Trm1 (π−1(a1)). (27)

Applying Lemma 1 again, for each (a1, a2) ∈ F2m × F2m , we have

χ̂ f (a1, a2) = �1 + �2,

where

�1 = 1

4

[
3χ̂g(a1, a2) + χ̂g(a1 + v1, a2 + v2) + χ̂g(a1 + u1, a2 + u2)

−χ̂g(a1 + v1 + u1, a2 + v2 + u2)
]

and

�2 = 1

4

[
χ̂g(a1 + r1, a2 + r2) − χ̂g(a1 + r1 + v1, a2 + r2 + v2)

−χ̂g(a1 + r1 + u1, a2 + r2 + u2)

+χ̂g(a1 + r1 + v1 + u1, a2 + r2 + v2 + u2)
]
.

Note that π−1 is a linearized polynomial. Let c1 = Trm1
(
a2π−1(v1) + v2π

−1(a1) +
(v2 + 1)π−1(v1)

)
, c2 = Trm1 (a2π−1(u1) + u2π−1(a1) + (u2 + 1)π−1(u1)) and

c3 = Trm1 (a2π−1(r1)+r2π−1(a1)+(r2+1)π−1(r1)). Denote t1 = Trm1 (r2π−1(v1)+
v2π

−1(r1)), t2 = Trm1 (r2π−1(u1) + u2π−1(r1)) and t3 = Trm1 (u2π−1(v1) +
v2π

−1(u1)). A similar analysis as the proof of Theorem 1 shows that

�1 =1

4
2m(−1)Tr

m
1 (a2π−1(a1))+Trm1 (π−1(a1))

[
3 + (−1)c1 + (−1)c2 − (−1)c1+c2+t3

]

(28)

and

�2 = 1

4
2m(−1)Tr

m
1 (a2π−1(a1))+Trm1 (π−1(a1))+c3

[
1 − (−1)c1+t1 − (−1)c2+t2

+ (−1)c1+c2+t1+t2+t3
]
. (29)

It is easy to see that when t1 = t2 = t3 = 0 and c3 = 0

χ̂ f (a1, a2) = 2m(−1)Tr
m
1 (a2π−1(a1))+Trm1 (π−1(a1))
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and when t1 = t2 = t3 = 0 and c3 = 1

χ̂ f (a1, a2) =
{

−2m(−1)Tr
m
1 (a2π−1(a1))+Trm1 (π−1(a1)), if c1 = c2 = 1

2m(−1)Tr
m
1 (a2π−1(a1))+Trm1 (π−1(a1)), otherwise.

Hence, f (x, y) is bent if t1 = t2 = t3 = 0.
Next we will prove that f (x, y) is five-valued in the case of t1 = t2 = 1 and t3 = 0

and others can be proved by a similar manner. In this case, (28) and (29) become

�1 =1

4
2m(−1)Tr

m
1 (a2π−1(a1))+Trm1 (π−1(a1))

[
3 + (−1)c1 + (−1)c2 − (−1)c1+c2

]

and

�2 =1

4
2m(−1)Tr

m
1 (a2π−1(a1))+Trm1 (π−1(a1))+c3

[
1 + (−1)c1 + (−1)c2 + (−1)c1+c2

]
.

When c3 = 0, we have

χ̂ f (a1, a2) = �1 + �2 = 1

2
2m(−1)Tr

m
1 (a2π−1(a1))+Trm1 (π−1(a1))[2+(−1)c1+(−1)c2 ]

=

⎧
⎪⎨

⎪⎩

2m+1(−1)Tr
m
1 (a2π−1(a1))+Trm1 (π−1(a1)), if c1 = c2 = 0

0, if c1 = c2 = 1

2m(−1)Tr
m
1 (a2π−1(a1))+Trm1 (π−1(a1)), otherwise.

(30)

When c3 = 1, we have

χ̂ f (a1, a2) = �1 + �2 = 1

2
2m(−1)Tr

m
1 (a2π−1(a1))+Trm1 (π−1(a1))[1 − (−1)c1+c2 ]

=
⎧
⎨

⎩

0, if c1 = c2 = 1
or c1 = c2 = 0

2m(−1)Tr
m
1 (a2π−1(a1))+Trm1 (π−1(a1)), otherwise.

(31)

Combining (30) and (31), we conclude that f (x, y) is five-valued and the Walsh
spectrum of f (x, y) is {0,±2m,±2m+1}. ��

It should be noted that two of u, v, r ∈ F
∗
2n can be equal. Without loss of generality,

we assume that r = v, then the following result can be obtained.

Theorem 7 Let n = 2m and u = (u1, u2), v = (v1, v2) are two distinct nonzero
elements in F2m ×F2m . Assume that π is a linearized permutation polynomial of F2m .
Let f (x, y) be the Boolean function given by

f (x, y) = Trm1 (xπ(y)) + Trm1 (y) + Trm1 (u1x + u2y)Tr
m
1 (v1x + v2y).

If Trm1 (u2π−1(v1) + v2π
−1(u1)) = 0, then f is bent. Otherwise, f is semi-bent.
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Proof The proof is similar to Theorem 2 and we omit it here. ��
Remark 4 To obtain our constructions in Theorems 6 and 7, we need to determine the
compositional inverse of a given linearized permutation polynomial over F2m . Infor-
mation on the compositional inverses of certain linearized permutation polynomials
could be found in [14,31,32]. Clearly, the simplest suitable linearized permutation
polynomial π over F2m in Theorems 6 and 7 is x2

k
where 0 ≤ k ≤ n − 1.

Theorem 8 Let n = 2m and s be a divisor of m with m
s is odd. Assume that u =

(u1, u2), v = (v1, v2) are two distinct nonzero elements in F2s ×F2s such that u1v2 +
v1u2 = 0. Let f (x, y) be the Boolean function given by

f (x, y) = Trm1 (xyd) + Trm1 (u1x + u2y)Tr
m
1 (v1x + v2y)

where d(2s + 1) ≡ 1 (mod 2m − 1). If Trm1 (u21v2 + u2v21) = 0, then f (x, y) is bent.
Otherwise, f (x, y) is semi-bent.

Proof Let π(y) = yd and g(x, y) = Trm1 (xπ(y)). Since d(2s +1) ≡ 1 (mod 2m −1),
thenπ−1(y) = y2

s+1. This together with (26) implies that for each a = (a1, a2) ∈ F2n

χ̂g(a1, a2) = 2m(−1)Tr
m
1 (a2a

2s+1
1 ). (32)

According to Lemma 1, for each (a1, a2) ∈ F2n , we have

χ̂ f (a1, a2) = 1

2

[
χ̂g(a1, a2) + χ̂g(a1 + v1, a2 + v2)

+ χ̂g(a1 + u1, a2 + u2) − χ̂g(a1 + v1 + u1, a2 + v2 + u2)
]
.

Nowwe compute χ̂g(a1+v1, a2+v2), χ̂g(a1+u1, a2+u2) and χ̂g(a1+v1+u1, a2+
v2 + u2) respectively. By (32), we have

χ̂g(a1 + v1, a2 + v2)

= 2m(−1)
Trm1

(
(a2+v2)(a1+v1)

2s+1
)

= 2m(−1)
Trm1 (a2a

2s+1
1 )+Trm1 (a2a2

s
1 v1+a2a1v2

s
1 +a2v

2s+1
1 )+Trm1

(
a2

s+1
1 v2+a2

s
1 v1v2+a1v2

s
1 v2+v2

s+1
1 v2

)

= χ̂g(a1, a2)(−1)
Trm1

(
a2a2

s
1 v1+a2a1v1+a2v21

)
+Trm1

(
a2

s+1
1 v2+a2

s
1 v1v2+a1v1v2+v21v2

)

(33)

where the last identity holds since v = (v1, v2) is a nonzero element in F2s × F2s .
Similarly, we can show that

χ̂g(a1 + u1, a2 + u2)

= χ̂g(a1, a2)(−1)
Trm1

(
a2a2

s
1 u1+a2a1u1+a2u21

)
+Trm1

(
a2

s+1
1 u2+a2

s
1 u1u2+a1u1u2+u21u2

)

(34)
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and

χ̂g(a1 + v1 + u1, a2 + v2 + u2)

= χ̂g(a1, a2)(−1)
Trm1

(
a2a2

s
1 v1+a2a1v1+a2v21

)
+Trm1

(
a2

s+1
1 v2+a2

s
1 v1v2+a1v1v2+v21v2

)

× (−1)
Trm1

(
a2a2

s
1 u1+a2a1u1+a2u21

)
+Trm1 (a2

s+1
1 u2+a2

s
1 u1u2+a1u1u2+u21u2)

× (−1)
Trm1

(
(a2

s
1 +a1)(u1v2+v1u2)+u21v2+v21u2

)

. (35)

Let c1 = Trm1 (a2a2
s

1 v1 + a2a1v1 + a2v21 + a2
s+1

1 v2 + a2
s

1 v1v2 + a1v1v2 + v21v2) and

c2 = Trm1 (a2a2
s

1 u1 + a2a1u1 + a2u21 + a2
s+1

1 u2 + a2
s

1 u1u2 + a1u1u2 + u21u2).
Note that u1v2 + v1u2 = 0. If Trm1 (u21v2 + u2v21) = 0, combining (33), (34) and

(35), we get

χ̂ f (a1, a2) = 1

2
2m(−1)Tr

m
1 (a2a

2s+1
1 )[1 + (−1)c1 + (−1)c2 − (−1)c1+c2 ]

=
{

−2m(−1)Tr
m
1 (a2a

2s+1
1 ), if c1 = c2 = 1

2m(−1)Tr
m
1 (a2a

2s+1
1 ), otherwise.

If Trm1 (u21v2 + u2v21) = 1, then

χ̂ f (a1, a2) = 1

2
2m(−1)Tr

m
1 (a2a

2s+1
1 )[1 + (−1)c1 + (−1)c2 + (−1)c1+c2 ]

=
{

2m+1(−1)Tr
m
1 (a2a

2s+1
1 ), if c1 = c2 = 0

0, otherwise.

The desired conclusion follows from the definitions of bent and semi-bent function.
��

Example 5 Let m = 9, s = 3 and F29 be generated by the primitive polynomial
x9 + x4 + 1 and ξ be a primitive element of F29 .

1) Take u = (u1, u2) = (ξ219, ξ73) and v = (v1, v2) = (ξ146, 1). Clearly, u1v2 +
u2v1 = 0 and 284 × (23 + 1) ≡ 1(mod 512). By help of a computer, we can
get Tr91(u

2
1v2 + u2v21) = 0 and the function f (x) = Tr91(xy

284) + Tr91(ξ
219x +

ξ73y)Tr91(ξ
146x + y) is a bent function over F29 × F29 , which is consistent with

the results given in Theorem 8.
2) Take u = (u1, u2) = (ξ146, ξ73) and v = (v1, v2) = (ξ73, 1). Clearly, u1v2 +

u2v1 = 0 and 284 × (23 + 1) ≡ 1(mod 512). By help of a computer, we can
get Tr91(u

2
1v2 + u2v21) = 1 and the function f (x) = Tr91(xy

284) + Tr91(ξ
146x +

ξ73y)Tr91(ξ
73x + y) is semi-bent function over F29 ×F29 , which is consistent with

the results given in Theorem 8.
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6 Conclusion

Several classes of Boolean functions with fewWalsh transform values, including bent,
semi-bent andfive-valued functions are provided.As a generalization of the result [24],
we obtained not only bent functions but also semi-bent and five-valued functions from
a different approach. Furthermore, some cubic bent functions can be given by using
our approach.
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