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Abstract Let N = 2%n where 1 is odd and k a positive integer. We present a canonical
form decomposition for every cyclic code over Z4 of length N, where each subcode
is concatenated by a basic irreducible cyclic code over Z4 of length n as the inner
code and a constacyclic code over a Galois extension ring of Zg4 for length 2F as the
outer code. For the case of k = 2, by determining their outer codes, we give a precise
description for cyclic codes over Z4, present dual codes and investigate self-duality
for cyclic codes over Z4 of length 4n. Then we list all self-dual cyclic codes over Z4
of length 28 and 60, respectively.
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Self-dual code
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1 Introduction

Abualrub and Oehmk in [1] determined the generators for cyclic codes over Zy4 for
lengths of the form 2%, and Blackford in [2] presented the generators for cyclic codes
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over Z4 for lengths of the form 2n where n is odd. The case for odd n follows
from results in [3] and also appears in more detail in [5]. Dougherty and Ling in
[4] determined the structure of cyclic codes over Zy4 for arbitrary even length giv-
ing the generator polynomial for these codes, described the number and dual codes
of cyclic codes for a given length and presented the form of cyclic codes that are
self-dual.

A code over aring R of length N is a nonempty subset C of R". The code C is said
to be linear if C is an R-submodule. All codes in this paper are assumed to be linear
unless otherwise specified. The ambient space R" is equipped with the usual Euclid-
ian inner product, i.e., [a, b] = Z;V:_ol ajbj, where a = (ap,ai,...,an-1),b =
(bo, b1, ...,by_1) € RV, and the dual code is defined by ct = {a € RN |
[a,b] = 0,Vb € C}. If Ct = C, Cis called a self-dual code over R. Let ¢ be an
invertible element of R. C is said to be ¢-constacyclic if (co,cy,...,cn—1) € C
implies ({cy—1, co, c1, ..., cN—2) € C. Particularly, C is called a negacyclic code if
¢ = —1, and C is called a cyclic code if { = 1. We use the natural connection of
¢-constacyclic codes to polynomial rings, where ¢ = (co, ¢, ..., cN—1) is viewed
as c(x) = Z;V:_Ol c jxj and the ¢-constacyclic code C is an ideal in the polynomial
residue ring R[x]/(x" — ¢).

Let N = 2Kn where n is odd and k a positive integer. Then cyclic codes over Zy4
of length N are viewed as ideals of the ring Z4[x]/(x" — 1). Let m be a positive
integer, and 4 (x) a monic basic irreducible polynomial in Z4 of degree m that divides
x2"=1 _ 1. Asin [4], we denote GR(4, m) = Za[x]/{h(x)), which is an extension
Galois ring of Z4 with cardinality 4, and set R4(u, m) = GR(4, m)[u]/(uzk —1).
The main important contribution in [4] is the complete description for cyclic codes
over GR(4, m) of length 2%, i.e., ideals of the ring R4(u, m). Then ideals of the ring
Z4[x]/(x" — 1) are described by a ring isomorphism from Z4[x]/(x" — 1) onto
@Puecj Ra(u, my) (see [4, Theorem 3.2]) using a discrete Fourier transformation, and
then connecting cyclic codes over Z4 of length N to a direction sum of some cyclic
codes over GR (4, my) of length 2k (see [4, Corollary 3.3]). But the expressions for
codes in [4] are not clear enough for the purpose of designing and encoding codes.

In this paper, we focus our attention on cyclic codes of length 4n where n is odd,
and attempt to give a precise description for these cyclic codes over Z4 in terms of con-
catenated structure of codes. By use of this description, one can easily to design codes
for their requirements and encode presented codes by constructing their generator
matrices from the concatenated structure directly.

The present paper is organized as follows. In Sect. 2, we present a canonical form
decomposition for every cyclic code over Z4 of length 21, where each subcode is
concatenated by a basic irreducible cyclic code over Z4 of length n as the inner code
and a constacyclic code over a Galois extension ring over Zy of length 2% as the outer
code. In Sect. 3, we give a precise description for each cyclic code by determining
its outer code when k = 2. Using the canonical form decomposition, we present dual
codes and investigate self-duality in Sect. 4. Finally, we list all self-dual cyclic codes
over Zy of length 28 and 60 in Sect. 5.
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Concatenated structure of cyclic codes over Z4 of length 4n 281

2 The concatenated structure of cyclic codes over Z4 of length 2¥n

In this section, we give a canonical form decomposition for every cyclic code over Z4
of length 2%n where n is odd.

It is known that any element a of Z4 is unique expressed as a = ag + 2a; where
ap, a; € Fp = {0, 1} in which we regard [F, as a subset of Z4. Denote @ = ag € F».
Then ™~ : a — a (Ya € Z4) is a surjective ring homomorphism from Z4 onto [F»,
and ~ can be extended to a surjective ring homomorphism from Z4[x] onto F5[x] by
f(x) = f(x) =DM bix' forany f(x) = D" bix' € Za[x]. Recall that a monic
polynomial f(x) € Za[x] of positive degree is said to be basic irreducible if 7(x) is
an irreducible polynomial in Fa[x] (cf. [7, Chapter 5]). In the rest of this paper, we
adopt the following notations.

Notation 2.1 Letn be an odd positive integer, denote A = Z4[y]/(y" —1) and assume

YVi=1=fiMLO) ... ), (1

where f1(y), f2(y), ..., fr(y) are pairwise coprime monic basic irreducible poly-
nomials in Z4[y]. We assume deg(f;(y)) = m; and denote R; = Za[y]/{fi(y)) =

{z]”.’;glbjy-l | bo. b1, ... b1 € Zy} foralli =1,... r.

For each integer i, 1 < i < r, by [7, Chapter 6] we know that R; is a Galois
ring of characteristic 4 and cardinality 4™ with the usual polynomial addition and
multiplication modulo f;(y). The Teichmiiller set of R; is

mi—1

Ti=1> tjy/ to.t1,. o tw1 €Fp
~

and every element « of R; has a unique 2-adic expansion: « = rg + 2ry, rg, r1 € 7;.
Moreover, « is invertible if and only if 7y #~ 0.
Denote F;(y) = ?‘,(__v; € Za[y]in the following. Since F; (y) and f; (y) are coprime,

there are polynomials u; (y), v;(y) € Za[y] such that u; (y) F; (y) + vi (y) fi(y) = 1.
In the rest of this paper, we denote by ¢;(y) the unique element of A satisfying

gi(y) =ui(MF () =1—vi(y)fi(y) (mody" —1). 2)
Then from classical ring theory, we deduce the following lemma.
Lemma 2.2 (cf. [6, Theorem 2.7]) The ring A satisfies the following properties.
(i) e1(0) + -+ &) = 1 &i(y)? =& (y) and &:(y)ej(y) = 0 forall 1 < i #
j=r.
(i) A=A & - ® A, where A; = €;(y).A is a ring with multiplicative identity
& (y). Moreover, this decomposition is a direct sum of rings in that A; A; = {0}
foralliand j, 1 <i # j <r.

(iii)) For each 1 < i < r, define a mapping ¢; : g(y) — & (¥)g(y) (Vg(y) € R;).
Then @; is a ring isomorphism from R; onto A;. Hence | A;| = 4™:.
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(iv) Foreach 1 <i < r, A; is a basic irreducible cyclic code over Z4 of length n
having parity check polynomial f;(y).

For convenience and self-sufficiency of the paper, we restate the concatenated struc-
ture of codes over rings.

Definition 2.3 Using the notations above, let C be a linear code over R; of length /,
i.e., Cisan R,--submoduleofRf ={(ro,r1,...,r—)|rj€R;, j=0,1,...,1-1}.
The concatenated code of A; and C is defined by

AiDy, C = {(@i(co), gi(c1), .., pilci—1) | (cos ¢, ... c1-1) € Cy S 7,

where the cyclic code A; over Z4 of length n is called the inner code and C is called
the outer code.

Lemma 2.4 A;0, C is a linear code over Z4 of length nl. The number of codewords
in this concatenated code is equal to | A; Oy, C| = |C| and

dmin(-AiDgoi C) > dmin(-Ai) dmin(C),

where diin (A; Oy, C) is the minimum distance of A;O, C as a linear code over Zs,
dmin(A;) is the minimum distance of A; as a linear code over Z4 of length n and
dmin(C) is the minimum distance of C as a linear code over the Galois ring R; of
length 1.

Proof Every nonzero codeword & in 4;0, C is given by & = (¢;(co), ¢i(c1), ...,
@i(ci—1)) with ¢ = (co,c1,...,¢c1—-1) € C C Rf and ¢ # 0. Then the Hamming
weight wy (c) of ¢ satisfies wy(c) = [{i | ¢; #0, i =0,1,...,1 — 1}| = dnin(C).
Now, let wp (¢; (c;)) be the Hamming weight of ¢; (¢;) € A; € A = Z4[y]/(Y" — 1)
(in which we regard ¢; (c;) as a vector in Zj). Then wy (¢; (¢;)) = dmin(A;) for all
¢i 70,0 <i <1[—1.Therefore, as a vector in Zﬁl the Hamming weight of & satisfies

waE = D wh@i(c) = Wh(C) - dmin(A) = duin(C) - dimin (A)).
¢i#0, 0<i<I—1
Hence dmin (AiDga,-C) > diin(Ai) - dmin (C). O

By the following lemma, we see that a generator matrix of the concatenated code
A;Oy, C as a Z4-submodule can be constructed from a generator matrix of the cyclic
code A; over Z4 and a generator matrix of the linear code C over R; straightforwardly.

Theorem 2.5 Let ¢;(y) = Z'};é e,-yjyj with e; j € Z4, and C be a linear code over
the Galois ring R; of length | with a generator matrix G¢c = (0 5)1<j<1,1<s<l Where
ajs € Ry, ie, Cisan R;-submodule of Rll. generated by the row vectors of G¢. Then
we have the following
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(i) A generator matrix of the cyclic code A; over Z4 of length n is given by

€i,0 €i,1 s €in-2 €in—1

G.A _ €in—1 €i.0 e €in-3 €in—-2
L=

Cin—mi+1 €in—mi+2 --- €in—mi—1 €in—m;

(i1) Assume fi(y) = ZT;O fg,jyj with f; j € Zg and fip;, = 1, and let My, =

—fio Vi
matrix of order m; — 1 and V; = (= fi1, ..., — fi,m;—1). For any a = a(y) =
Z;'.igl riy/ € Ry withrj € Zs, denote Ay = a(My,) = ZT’:Bl ri(Mg) e
My, xm; (Z4) in the rest of the paper. Then

0 Iy—
( il be the companion matrix of f;(y) where I, _1 is the identity

1

aY = A,Y, where Y = Y
y;h}'—1
(iii) Let G = (otjs)1<j<i,1<s<1 With aj s € R;. Then a generator matrix of the

=J=HhLI1=5=

concatenated code A; O, C is given by

Ao Guy - Ay Gy
GA,‘D(/;,.CZ
Au G -0 Ag, Gy
Hence AiDy,C = {wG gn, c | we ZZ”'I}.

Proof (1) Since f;(y) is a monic basic irreducible polynomial in Z4[y] of degree
mi, {1,y,...,y" "1} is a Zy-basis of the Galois ring R; = Za[yl/{fi())
(See [7, Chapter 6]). As ¢; is a Z4-module isomorphism from R; onto .4; by
Lemma 2.2(iii), we conclude that {¢;(y), y&; (¥), ..., ym’_lsi (v)} is a Z4-basis
of A;. Hence G A; 1s a generator matrix of A; asa Z4-squ0dule of ZZ

(ii) It is obvious that yY = MY, which implies that y/Y = (M)’Y for all
j=0.1,....mi — L. Hence a¥ = 3" ' r;(37¥) = AuY.

(iii) Let C be the Z4-submodule of ZZ’ generated by the row vectors of G A0, C
ie,C = {wGan,c | we Z,'""}. By Definition 2.3, & € A;0,,C if and

only if there exists a unique codeword ¢ = (cy,...,¢;) € C such that £ =
(pi(c1), ..., pi(cr)). Since G¢ is a generator matrix of C, ¢ € C if and only if ¢
is an R;-combination of the row vectors (aq,1, ..., a1,1), ..., (0,1, ..., 0:1) of

G ¢, which is equivalent that there exist By, ..., B € R; such that

£ = (g (Brari+-+Bi1). ... (Brars+ -+ Bag))
= (¢i (Brar,1) + -+ @i (Brara) s ... i (Browg) + -+ ¢ (Brewd)) s
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since ¢; is a Z4-module isomorphism. For each integer j, 1 < j <t,by 8; € R;
there is a unique row vector b; € Z:‘"" such that f; = b;Y. From this and by (i1)
we deduce that 8ja; = I_Jj (ajsY) = l_)jAO,_,.‘SY foralls =1, ..., 1. Also, since
@; is a Z4-module isomorphism, we have

S - (lllAal,lfﬂi(Y) + - +l_7[A(x,_1(pi(Y)7 ey
}Z1Aa1,1(ﬂi(y) + -+ QtAa,J(Pi(Y))

Aal,lﬁﬂi(Y) s A(xlv[ﬁoi(Y)
=w ,
Ag 19i(Y) ... Ag,9i(Y)
where w = (by,...,b,) € Z}"". Then from
@i (1) &i(y) 1
A &
0 (Y) = @i (y) _ | yaO» —Goal|
@i (" Y e (y) y!

and the identification of Z4[y](y" — 1) with Z}, we deduce § = wG 4,0, ¢ € C.
Therefore, A;0,,C = C. O

Now, we give the concatenated structure of cyclic codes over Z4. From now on, let
N = 2kn where k is a positive integer. As usual, we will identify Z} with Z4[x]/(x" —
1) under the natural Z4-module isomorphism: (cg, ¢, ..., cN—1) F> co+c1x+- -+
en—1xV " (c; € Z4, j=0,1,...,N = 1).

Using the notations of Lemma 2.2, every element of the ring .4 can be uniquely
expressed as a(y) = Z?;é a jyf with aj € Zg4. Then every element of the quotient
ring A[x]/(x% — y) can be uniquely expressed as a(x, y) = > Z%I:Ol cijy'x,
ci,j € Zs. Now, define '

n—12k—1

'I/(Ol(x, y)) = (.X, XZk) = Z Z ci’j_xiszF]‘.

i=0 j=0

It is clear that ¥ is a ring isomorphism from A[x]/(xzk — y) onto Z4 [x]/(xN —1).
In the rest of this paper, we will identify A[x]/ (x2k — y) with Zy4[x]/ (xN — 1) under
this isomorphism ¥.

Theorem 2.6 Using the notations in Notation 2.1 and Lemma 2.2, let C C
Z4[x1/(xN — 1). The following are equivalent:

(1) Cis a cyclic code over Z4 of length N.
(i) C is an ideal of the ring A[x]/(xzk —y).
(iii) For each integer i, 1 < i < r, there is a unique ideal C; of the ring

Ailx1/4e:(0)x2 — & (y)y) such that C = &_,C;.
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Concatenated structure of cyclic codes over Z4 of length 4n 285

(iv) For each integeri, 1 < i <, there is a unique y-constacyclic code C; over R;
of length 2%, i.e., C; is an ideal of the ring R; [x]/(xzk —y), such that

€= (Ai0pC) @ @ (4D, C).
where A;Oy, Ci = {g;()a(x) | a(x) € Ci} foralli =1,...,r.

Proof (1)< (i) It follows from Za[x]/(xV — 1) = A[x]/(x2" — y).
(i1)<>(ii1) By Lemma 2.2 (i) and (ii) it follows that

A1/ (2 =) = &y (Al {0 — )

k k . .
and (A;[x]/(e; (0)x? — &My (A;j[x]/(e;(0)x? —g;(y)y) = {0} forall i 5 ;.
Hence C is an ideal of the ring Zs[x]/(x"Y — 1) if and only if for each integer i,
1 <i <r, there is a unique ideal C; of the ring A4;[x]/(&; (y)xzk — ¢i(y)y) such that
C=a;_,C.

(ii)<(@v) By Lemma 2.23iii), ¢; : g(y) > &(y)g(y) (Vg(y) € Ri) is a
ring isomorphism from R; onto A4;. It is clear that ¢; induces a ring isomorphism
from R,-[x]/(xzk — y) onto .Ai[x]/(e,-(y)xzk — ¢i(y)y) by the rule that: Ya(x) =

kaz_ol otjxj € Ri[x]/(xzk —y)withag, a1, ..., a0_; € R;,
2k—1 _ .
gi(a() = D gila))x! < (i), gi(@r), ... i) € A7
j=0

Therefore, for each integeri, 1| < i < r,and anideal C; of A;[x]/(g; (y)x2k —&()y),
there is a unique ideal C; of R; [x]/(xzk — y) such that C; = ¢;(C;). Hence C; =
A; Oy, Ci by Definition 2.3. It is clear that C; is a y-constacyclic code over the Galois
ring R; of length 2. O

By Theorem 2.6, in order to present all cyclic codes over Z4 of length N it is
sufficient to determine all ideals of the ring R;[x]/ (xzk —y),foralli=1,...,r.

3 Representation of cyclic codes over Z4 of length 4n

In this section, following [4] we give another precise description for cyclic codes over
Zy4 of length 4n by determining their outer codes in the concatenated structure of
subcodes.

Since n is odd, there is a positive integer e, | < e < n, such that ke = —1 (mod
n). By Eq. (1) it follows that y"* = 1 (mod f;(y)), i.e., y" = 1 in R;. From these we
deduce that (ye)zk =y linR;.

Lemma 3.1 Using the notations above, define a mapping o; : R; [u]/(u2k -1) -
k
Rilx1/(x* —y) by
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oi(aw) =a (yx), Yaw) e Rilul/ {u = 1).

Then o; is a ring isomorphism from R; [u]/(uzk — 1) onto R; [x]/(xzk — y) preserving
R;-Hamming weight.

Proof For any b(u) = >, bju/ € R;[u] where b; € R;, define o;(b(u)) =
Zj b (yex)j € R;[x]. Since y° is an invertible element of R;, ; is a ring isomorphism
from R;[u] onto R;[x]. From this and by o; (uzk —-1) = (yex)zk —1= yezkxzk —1=
y_1 (xzk — y) in R;[x], we deduce the conclusions. O

In the rest of this paper, we denote
7=y = L=y — 1) € Rilel/ (x* — ). 3)

Now, we denote I4(u, m) = R; [u]/(uzk — 1) where R; = GR(4, m;) (cf. Eq. (7) in
Page 130 of [4]). Recall that ideals of the ring I4(u, m) are in fact cyclic codes over
the Galois ring R; of length 2. These cyclic codes have been studied in [4]. For the
purpose of this paper, we list some conclusions from [4].

Lemma 3.2 ([4, Theorem 2.6]) The number of ideals of R; [u]/(uzk — 1), where R; =
GR (4, m;), is equal to

26 1 i (2’”")21‘71_1 -1 k=1 1
Namio =5+ 2")"  +(5-2" —1) (2™) om 12 w1

Especially, N4 m; k) =9 +5-2™ + 22mi \when k = 2.

By Theorem 2.6, Lemmas 3.1 and 3.2, we see that the number of cyclic codes over
Z4 of length 2%n is equal to [7_ N m;:x) ([4, Corollary 3.4]).

For any ideal C; of the ring R;[x]/ (xzk — y), recall that the annihilating ideal of
C;iis Ann(C;) = {a € Ri[x]/(xzk —y) af =0,Y8 € C;}.

Then by Lemma 3.1 and [4, Theorem 5.3] or by direct calculations, we list all
distinct y-constacyclic codes over the Galois ring R; of length 4, i.e., ideals of the ring
Ri[x]/(x* — y), by the following theorem.

Theorem 3.3 All distinct y-constacyclic codes C; over the Galois ring R; of length
4 and their annihilating ideals are given by one of the following cases:
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Case Ci |Gl Ann(Cj) Lc

1. (0) 1 (1) 1

2. (1) 28m; (0) 1

3. () (=12 2mi=i) (g on2) )

4. 2) 24mi 2) 1

5. 27f) (s =1,2,3) om;(4=s) (7'[4 5.2) 3

6. (7 +2h) (h € T;\{0}) 26m; (w3 + 2m; (1 + ;) 2Mmi — |

7. (w2 +2m;h) 24m; (m? +2(1 + 7;h)) 2mi — |
(h € T;\{0})

8. (2 +2(h + 7;8)) 24m; (2 + 201+ h +m;g)) 22mi _omi+1
(h e T\{0,1}, g € T))

9. (2 +2(1 + 7;h)) 24m; (m? +2m;h) 2Mmi — ]
(h € T;\{0})

10. (3 +2m; 3 + mih)) 22m; (7; + 2h) 2Mmi — |
(h € T;\{0})

11. (3 +2h) (h € T7) 24m; (73 +2h) 2mi

13. (wl 42xl 72 (j=2,3) 22mit)) (m” > 2

14. (nij, 2)(j=1,2,3) 2m; (8=J) (2n Iy 3

15. (m? +2,2m;) 25m; (m3,2m2) 1

16. (m3. 272 23m; <n, +2 271;) 1

17. (3 +2m;,27%) 23m; (2, 2m;) 1

18. (2, 2m;) 25m; (3 +2m;, 272 1

19. (m2 +2h, 2m7;) 25m; (3 +2m;(1 + h), 272) 2mi —2
(h € T;\{0, 1})

20. (m} + 21k, 217 23m; (2 +2(1 + h), 27;) 2mi
(h € T;\{0, 1})

where T; = {Zl 20 tjy | to, 11, ..., tm;—1 € {0, 1}} and L is the number of codes

in the same row.

Proof In [4] Theorem 5.3, all distinct ideals of I'y(u, m) = R; [u]/(uzk — 1) and their
annihilating ideals are listed in terms of # — 1. By Lemma 3.1, all distinct ideals of

R;[x] /(xzk — y) and their annihilating ideals can be obtained by replacing u — 1 to
o;j(u—1) = y°x — 1 = 7; from [4] Theorem 5.3. Particularly, we get the conclusions
for the special case of k = 2. O

Example 3.4 We know that y'> — 1 = fi(y) £(») 3(») f2(¥) f5(y), where

e i =y—L AWM =14+y+y% s =1+y+y>+y +3%
o fu(y) =143y +2y2+ 4 fs(y) = 1 +2y% +3y3 + 4,

and f1(y), 2(3), f3(y), fa(y), f5(y) are pairwise coprime monic basic irreducible
polynomials in Z4[y]. Hence r = 5, m| = 1, my = 2 and m3 = mq4 = ms5 = 4. Now,
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let N = 60 = 2% . 15 where k = 2. Then the number of cyclic codes over Z4 of length
60 is equal to

5 5
[T Nemin =1 (9 £5.0mi g 22mf) — 23453455 = 42, 500, 851, 875.
i=1

i=1

For each integer i, | < i < 5,let R; = Z4[y]/{fi(y)), which is a Galois ring
of characteristic 4 and cardinality 4™i. By 4 - 11 = —1, (mod 15), it follows that
(y'H* = y~linevery R;. We select e = 11. Using Eq. (3), we have the following.

e m=y'lx—1l=x—1¢€Ri[x]/(x*—y) = Ri[x]/(x* = 1),since y!' = y =1

(mod y — 1),1i.e., y = lin Ry, and Ry = Z4[y]/{y — 1) = Za4.

e 1 =yllx —1 =GB +3y)x — 1 € Ry[x]/(x* — y), since y'! =3 + 3y (mod
S (), ie., y=3+3yin Rs.

e m =yllx —1=yx—1¢€ R3[x]/(x
y¢ = yin R3.

ey =y'lx—1=Q2+y+y2+3y)x — 1 € Ry[x]/(x* — y), since y!'! =
24y 4+ y2+3y3 (mod f4(y)),ie., y¢ =2+ y+ y2+3y%in Ry.

o w5 = ylx—1=(34+3y?4+3y3)x—1 € Rs[x]/(x*—y),since y'! = 34+3y243y>
(mod f5(y)), i.e., y¢ =3 + 3y +3y3 in Rs.

Then by Theorem 3.3, one can list all cyclic codes over Z4 of length 60.

4 —y), since y!! = y (mod f3(y)), ie.,

Finally, from Theorems 2.6, 3.3 and 2.5 we deduce the following corollary.

Corollary 3.5 Every cyclic code C over Zy of length 4n can be constructed by the
following two steps:

(i) Foreachi =1, ...,r, choose a y-constacyclic code C; over R; of length 4 listed
in Theorem 3.3.
(ii) SetC = @?:lci with C; = Aimwi Ci.

The number of codewords in C is equal to |C| = [;_, |C;| and the minimal Hamming
distance of C satisfies

Ain(C) < min{dmin(C;) | i =1,...,1},

where din (C;) is the minimal Z4-Hamming weight of C;. Moreover, a generator matrix
G, ¢
of C is given by G¢ = .
G,
Using the notations of Corollary 3.5(ii), C = ®;_,C; is called the canonical form
decomposition of the cyclic code C over Z4 of length 4n.

4 Dual codes of cyclic codes over Z4 of length 4n

In this section, we give the dual code of each cyclic code over Z4 of length N where
N = 4n, and investigate the self-duality of these codes.
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Concatenated structure of cyclic codes over Z4 of length 4n 289

As usual, we will identify a = (ag,ai,...,an—1) € Ziv with a(x) =
z;v:_ol ajxj € Z4[x]/(xN — 1). In this paper, we define

N-1

ula(x)) =a (x_l) =ap+ Z a.,-xN_j, Va(x) € Z4[x]/<xN - l>.

j=1

1

Then p is a ring automorphism of Z4[x]/(x™ — 1) satisfying ! = p and pu(c) = ¢

for all ¢ € Z4. The following lemma is well known.

Lemmad4.1 Let a,b € Zf‘v. Then [a,b] = 0 if ax)u(b(x)) = 0 in the ring
Zalx]/(x™ = 1).

Using the notations of Sect. 3, we have Z4[x]/(xN —1) = A[)c]/()c4 — y) under
the substitution y = x*, where A = Z4[y]/(y" — 1). Hence

4
n) = (+71) =y in A/ (x* - ).
Therefore, the restriction of u to A is given by
n(ron = £ (v7") vrom e,

which is a ring automorphism of A. For notations simplicity, we still denote this
restriction by p. From this and by Notation 2.1, we deduce

neo) =u () EGT)=1-u () AT ) ma @

Let f(y) = Z;”:O cj yj be a polynomial in Z4[y] of degree m > 1. Recall that
the reciprocal polynomial of f(y) is defined by f(y) = ymf(%) = ZI}I:O cj ymi,
Especially, f(y) is said to be self-reciprocal if f(y) = 8f(y) for some § € Z; =
{1, —1}. Then by Eq. (1) in Sect. 2, we have

Y= 1= =M AEG) .. ().

Since f1(y), f2(y), - .., fr(y) are pairwise coprime monic basic polynomials in Z4[ y],
foreach 1 < i < r there is a unique integer i’, 1 < i’ < r, such that f;(y) = &; fi(y)
for some §; € {1, —1}. From this, by Eq. (4) and y" = 1 in the ring A, we deduce

1 (8i (y)) = 1 — yn—degiG)—m; (ydegw,-(y))vi (y—l)) (y’”"fi (y—l))

= 1y RO () fi ()
= 1= hi()fr ()
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where h;(y) = & y*deewiO)=mig(y) e A. Similarly, by (4) it follows that
u(E (y)) = gi(y)Fy(y) for some g;(y) € A. Then from these and by Eq. (2) in
Sect. 2, we deduce that (g (y)) = €;7(y).

As stated above, we see that for each 1 < i < r there is a unique integer i’,
1 <i’ <r,suchthat u(e; (y)) = & (y). We still use u to denote this map i +— i/, i.e.,
(i (y)) = eu(i)(y). Whether 1 denotes the automorphism of A or this map on the
set {1, ..., r} is determined by the context. The next lemma shows the compatibility
of the two uses of u.

Lemma 4.2 With the notations above, we have the following conclusions.

() w is a permutation on the set {1, ..., r} satisfying u=' = .

(ii) After a rearrangement of €1(y), ..., &(y), there are integers A, p such that
@) =iforali=1,...,hand u(A+j)=r+p+jforalj=1,...,p,
where A > 1,p>0and » +2p =r.

(iii) For each integer i, 1 < i <r, there is a unique element §; of {1, —1} such that

Ji(y) =i fui )

(iv) For any integeri, 1 <i <r, u(&;(y)) = euq)(y) in the ring A, and (A;) =
A i) Then w induces a ring isomorphism from A; onto A, ).

Proof (i)—(iii) follow from the definition of the map w, and (iv) follows from that

A; = & (y).A immediately. O

Lemma 4.3 Using the notations above, the following hold for any 1 <i <r.

(1) Forany & € R;, we define E = ((p;(ll.)ugoi)(é). Then”is a ring isomorphism from
R; onto R,y such that the following diagram commutes

Ri = Zaly{fi ) —> Ry = Zalyl/fuiy))
vi d Oui
A; L Ay

Specifically, we have?: a(y™H e Ry forallé =a(y) € R;.

(i1) Forany a(x) = Z?:o ozjxj € R; [x]/(x4 — y) where o, a1, o0z, @3 € R;, define
a(x) = Zizo o’fjxj. Then p induces a ring isomorphism from Ri[x]/(x* — y)
onto Ru(i)[x]/(x4 — y) by the rule that

3 3
wa(x) = Zajxj — &(xil) =ap+y! Zoﬁx“*j.
=

Proof (1) By Lemma 2.2(iii) and Lemma 4.2(iv), we see that <P,:(l,-)ll¢i is a ring iso-
morphism from R; onto R,,(;) such that the following diagram commutes

(Pl:(li)ﬂ-wi
Ri = Zalyl/(fi(¥)) —> Ry = Zalyl/(fuiy())
vi | J Pui
A SN A
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Then for any § = a(y) € R;, by €,4)(y) =1 — hi (y) fu@)(y) we have

& = (siyei) ©) = gty ler(Ma())
= 0ty (ewtraG™) = (1= b fuwr ) a (y7!)
=a ()’_1) (mod f.i)(»)) .

which implies?;‘\ =ay He Ryiy-

(i) As y € Ry, by (i) we deduce that y = y~! € R,() and y~! = y"~! (mod
Sfu@ (). Since x and y are invertible elements of R,L(l-)[x]/(x4 — y), we have
(x*=y) = (e Ht =y 1) = (—x "y~ (x* - y)) = (x* —y) asideals of the
ring R (i) [)c]/()c4 — ). Hence p induces a ring isomorphism from R; [x]/(x4 —-y)
onto R, i[x]/(x* — y) by the rule that u(a(x)) = a(x~') = Z;zoé}x—j.
Finally, by x*=y,ie,y x*=1in Rﬂ(i)[x]/(x4—y) it follows that (e (x)) =
ao+y~! Zi’»:l ajx4/ as required. o

1

Lemmadd Leta(x) = > a;(x),b(x) = X\_ bi(x) € Alx]/(x* — y), where
a;(x), bi(x) € Ai[x]/(ei (»)x* — & (y)y). Then

a(x)u(b(x)) = Zai O (bpi)(x)).
i=1

Proof By Lemma 4.2(iv), we have
(b ®) € (A 131/ {0y 03" = 2uyy)) = ALl (1 003" = &)y

Hence a; (x) (b, i)(x)) € Ailx1/(ei(y)x* — &i(y)y) for all i. If j # w(i), then
i # wu(j), which implies A; A, (jy = {0} by Lemma 2.2(ii). Therefore,

(Ailx1/ter ) = e(09)) (A 1/ ey 5 = 20y (1)) = (0L,

and 50 ¢; ()p(bj(x)) = 0 since w(b; () € Auplx)/{enihMx* = ey (My).
Hence a(x)u(b(x)) = 3711 2oy @i ()b (x) = 201y @i ()1 (bpiy(x)). o
Now, we can give the dual code of each cyclic code over Z4 of length 4n.
Theorem 4.5 Let C be a cyclic code over Z4 of length 4n with concatenated structure
C = @®/_,(A;iOy,C;), where C; is an ideal of the ring R; [(x1/(x* — y) listed by

Theorem 3.3 for alli = 1, ..., r. Using the notations of Theorem 3.3, the dual code
Ct is given by

€
Ct =@y (Aui)Bgue, Putiy) »
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where D,y = w(Ann(C;)), which is an ideal of the ring R,L(,-)[Jc]/(x4 — y) given in
the following table.

Case Ci (mod x* — y, f; () Dy = w(AN(C))) (mod x* — v, £y ()
1. (0) (1)

2. (1) (0)

3. (rf) (=12 (il vonl v

4. (2) (2)

5. 27f) (s =1,2,3) <”iﬁ';’ 2)

6. (i +2h) (h € T;\{0}) (73 )+ 270y (14 iy By~ x =) y2e?)
7. (m? + 2m;h) (h € T;\{0}) (T2 1)+ 201+ iyt )22

8. (m} +2(h + 7 9)) (ﬂi(l)+2(l+h+nu(l)gy” extn—lyy2e 2y

(h e Ti\{0.1}, g €T))

2 2 7
9. (ﬂi +2(1 +m;h)) (Uﬂ(i) + Zﬂﬂ(i)hyex)
(h € T;\{0})
10. (3 + 21 (1 + ;) (i) + 2hy°x)
(h € T;\{0})
11. <n3+2h> (h €T (73 ) + 2hy3xd)
. 4—
13. (] +2n 2y (=23 ( (l{)
4—
14. (nlj 2)(j=1,2,3) <2nm§>
2 3 2
15. (m? +2,2m;) (730 272 )
3 2 2 2e .2
16. (), 2m7) (ﬂﬂ( ) +2y%x%, 27, (1)
17. (m? + 2m;, 2m?) <ni(1) 27,1y
2 3
18. (7, 2m;) (nﬂ( ) +2nﬂ(l)y x2 ZJTM(l)>
19. (m? +2h, 2m;) <7r}j(l)+2n,4(,)(1+h)y2ex2 272 2
(h € T;:\{0, 1})
20 (3 + 2mih, 272 (2 4201 + h)y2ex?, 2, )
: i i £ (i) y » AT i)

(h € T;:\{0, 1})

where b = by + 370 by =T (mod fum () and g =g+ 20 gy
(mod £,y () for any h = 31 byyI, g = S0 gyl € T,

Proof For any integer i, 1 <i <r,let D,;) = u(Ann(C;)). Then Dy, ;) is an ideal
of the ring R,y [x]/(x* — y). Set D = &/_, (Aui) Ty, D)) = @ (A;0,,D)),
where D; = (Ann(Cy;))). Then D is an ideal of Alx]/(x*—y). Since (A; Oy, Ci) -
(AL Bg,i Duiy) = (AiOy, Ci) - (A; Oy, Ann(C})) = &;(y)(C; - Ann(C;)) = {0},
by Lemma 4.4 we have C - u(D) = >/ (AiOy, Ci) - 1(Aui) By, Duiy) = {0}
Hence D C Ct by Lemma 4.1.
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On the other hand, by Theorem 3.3 we see that |C;||Ann(C;)| = 2% for all
i =1,...,r, which implies

r r

ICIID] = [ | 14 Dg; Cill Aty By Dy | = [ [ 1Ci 11Dy

i=1 i=1

;
= [T1Ci11AM(C)| = 44Xt — 4%
i=1

= |Za[x1/(x™ = 1)].

As stated above, we conclude that C+ = D since Z4 is a finite chain ring.
It is clear that x** = y*=1in R,~[x]/(x4 —y)foranyi = 1,...,r. Now, for any
integer [, 1 <1 < 3, by Eq. (3) we have

! “1\¢ — ! el — I
m (T[ll) = (/,L (yex — 1)) = ((y l) x = 1) = (=Dly~x! (yex — 1)
_ (_l)ly—elx—lni(i) _ (_l)lyn—elx4n—lni(i) c Ru(i)[x]/<x4 _ y>.
Then the conclusions follow from Theorem 3.3, Lemma 4.3 and direct calculations. O

Finally, we list all distinct self-dual cyclic codes over Z4 of length 4n by the fol-
lowing corollary.

Corollary 4.6 Using the notations in Theorem 4.5 and Lemma 4.2(ii), let C be a
cyclic code over Za of length 4n with C = EB{ZI(.A,-D% Ci), where C; is an ideal of
R;[x1/(x* — y). Then C is self-dual if and only if for each integer i, 1 < i < r, C;
satisfies the following conditions:

(1) If1 <i <A, C; is given by one of the following three cases:
2). <n,.2 1201+ m)), <n§>.

(i) Ifi = A+ j where 1 < j < p, then C; is an ideal of R;[x]/(x* — y) and
Ciyp = n(Ann(C;)) which is given in the table of Theorem 4.5.

Hence the number of all self-dual cyclic codes over Z4 of length 4n is equal to
Atp
¥ [T (945 2m+2).

j=A+1

Proof Using the notations in Lemma 4.2(ii), by Theorem 4.5 we have

C = (AT, C) @ (@?:)f)+l ((AiD, C) & (Ai+pOg;y, Ci+p))) )

Ot = &, (A0, D) @ (&]2041 ((AiDg D) @ (Aip D, Diss)) )
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where D; = Dy = w(Ann(Cy)) for all i = 1,...,A, D; = Dyitp =
n(Ann(Cip)) and D;y, = D,y = w(Ann(C;)) foralli = A +1,..., 1 + p.

Now, by Theorem 2.6 we conclude that C = C+ if and only if C; = D; for all
i = 1,..., 2 4+ 2p. Precisely, C; = D; if and only if C; satisfies the following
conditions:

(i) Let1 <i < A.Then C; = D,y = n(Ann(C;)). By Theorem 4.5, C; must be
given by one of the following five cases:

o (2).

o (w2+2m;h), where h € T;\{0} satisfying h—(1+7;hy~¢x~")y2¢x? = 0 (mod
=y, i), 2 ie., (1+7)y2)x2+ (hy*)x+h = 0 (mod x* — y, fi(y),2).
It is clear that there is no 4 € 7;\{0} satisfying this condition.

° (71 +2(h+mig)), where h € T\{O 1} and g € 7; satisfying h +mjg — (1 +
hi+migy=ex~")y*x? = 0 (mod x* DY i de. (@ +h+2)y*)x? +
((g+28)y)x+ (h+g) =0 (mod xt— v, fi(y), 2). It is clear that there is no
h € T;:\{0, 1} and g € 7; satisfying this condition.

° (JTZ-Z +2(1 + m;h)), where h € 7;\{0} satisfying 1 4+ 7;h — niﬁyex = 0 (mod
=y, i), 2),ie., (W +1)y)x + (1 +h) =0 (mod x* — y, fi(y),2). It
is clear that the condition is equivalent to 2 = 1.

° (711.3 + 2h), where h € 7; satisfying h — ﬁy3ex3 = 0 (mod x* — y, fi(¥),2).
It is clear that the condition is equivalent to 4 = 0.

As stated above, we conclude that C; must be given by one of the following three

cases: (2), (JTZ-2 +2(1 + 7)), (nf).

(ii) Leti = A + j where 1 < j < p. Then C;y, = Dy, = Dyi) = n(Ann(C;))
as (i) = i + p. Furthermore, Ciy, = Dj1, = n(Ann(C;)) implies D; =

Dyuii+p) = w(ANN(Ciyp)) = u(Ann(u(Ann(C;))) = C;

Therefore, (C;, C;4,) is determined completely by the ideal C; of R;[x]/ (x* —y)
and the relation C;;, = w(Ann(C;)). Hence the number of pairs of (C;, Ciy,) is
equal to N(gm; 2) = 9 + 5 - 2™ + 2™ by Lemma 3.2.

Finally, from (i) and (ii) we deduce that number of all self-dual cyclic codes over

Zy of length 4n is equal to 3* H?‘:fﬂ (9 +5-2mi 4 2%miy, O

5 Examples

In this section, we give all self-dual cyclic codes over Z4 of length 28 and 60.

<& In the case of N = 28 = 4n where n = 7, it is known that y7 -1 =
AN LMW fHG), where fi(y) = y = 1, f2(0) = y* +2y* + y +3and f3(y) =
y3 + 3y2 + 2y + i are pairwise coprime~monic basic irreducible polynomials in
Z4ly]. Obviously, fi(y) = &1 fi(y) and fo(y) = 82f3(y) where §; = &, = —1,
which implies that u(1) = 1 and w(2) = 3. Hence m; = 1, my = m3 = 3,
r = 3and A = p = 1. By Lemma 3.2 and Corollary 4.6, the number of cyclic
codes and the number of self-dual cyclic codes over Z4 of length 28 is equal to
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T2 N2y = [132; (9+5-2m 4227y = 23.113% = 293, 687 and 3- 113 = 339,
respectively.
Using the notations in Sect. 2, for each integer i, 1 < i < 3, we denote F;(y) =
I . e
ﬁ and find polynomials u; (), vi (y) € Za[y]satisfyingu; (y) F; (y)+v; (¥) fi (y) =
1. Then set &;(y) = u; (y) Fi (y) (mod y” — 1). Precisely, we have

e1(y) = 3+ 3y +3y% +3y° +3y* +3y° +3y%;
e2(y) = 143y +3y2 +2y% + 3y +2y° +2)%;
e3(y) = 142y +2y? +3y3 +2y* +3y° +3y5.

Let A = Z4[y]/(y” — 1) and A; = As;(y). Then A; is a basic irreducible cyclic code
over Z4 of length 7 with parity check polynomial f;(y) fori = 1, 2, 3. Precisely, we
know that

o A, isafree Zs-submodule of Z/, rankz, (A1) = 1, and a generator matrix is given
by G4, = (3,3,3,3,3,3,3). Hence A1 = {(a,a,a,a,a,a,a) | a € Z4} and
dmin(Al) =T.

o A, is a free Zy-submodule of Z7, rankz, (A2) = 3, and a generator matrix is

1332322
givenby G4, = (2 13323 2) Hence Ay = {wGy, | w € Zi} and
2213323
dmin(AZ) =4.
e Aj is a free Z4-submodule of Z], rankz, (A3) = 3, and a generator matrix is
1223233
given by G4, = {3 122323 ) Hence A3 = {wG 4, | w € Zi} and
3312232

dmin (-A3) =4.

Denote R; = Za4[y]/{fi(y)). Obviously,4-5 = —1 (mod 7), which implies (y5)4 =
y_1 by y7 = lin R; foralli = 1, 2, 3. Using the notations in Sect. 3, we have e = 5.
Therefore, by Corollary 4.6 we conclude that all distinct self-dual cyclic codes over
Z4 of length 28 are given by

C = (A10y, C1) @ (A28, C2) @ (A304,C3),

where C; is a y-constacyclic code over R; of length 4, i.e., an ideal of the ring
Ri[x]/(x* — ), satisfying the following conditions:

e () isis anideal of Z4/(x* — 1) given by one of the following 3 cases:

2) . <(x 12t 2x>, <(x — 1)3>.

5,—1 3

e ((C»,(C3) is given by one of the following 113 cases, since y °x~ = yx~,

(0% = y’x* and (y°x) = yx*:
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Case Ca (mod x* — y, /2(»)) C3 (mod x* — y, f3(y)) Lc
1. (0) (1 1
2. (1) (0) 1
3. () (j = 1.2) (g 2y )32 2
4. @) @) 1
5. @2r$) (s = 1,2,3) (m375,2) 3
6. (2 +2h) (h € T2\{0}) <7Tg +2m3(1 + m3hyx®)y3x?) 7
7. (3 + 2mah) (h € TH\{0)) (2 +2(1 + m3hyx3)y3x?) 7
8. (7122 +2(h + m28)) (713 +2(1+ 7+ mgyx3)y x2) 48
(h € H\{0,1}, g € T2)
9. (3 +2(1 + mah)) (2 + 2m3hy x) 7
(h € T\{0})
10. (3 + 2my (1 + mah)) (713 + 2hy°x) 7
(h € T\{0})
11. (3 +2h) (h € T) (3 + 2hyx3) 8
13, (w +27 73 (j=2.3) (5 ) 2
14. (7.2 (j=1,2,3) ry ) 3
15. (13 +2,2m)) (m3.272) 1
16. (3, 272) (3 +2y°x2, 273) 1
17. (73 +2mp, 273) (m3.2m3) 1
18. (JT22 2m7) (rr3 + 2ﬂ3y3x2, 27[32) 1
19. (3 +2h, 2m3) (m3 + 2m3(1 + h)y3x2, 272) 6
(h € To\{0, 1})
20. (3 +2mph, 273) (2 +2(1 + h)y3x2, 273) 6
(h € TH\{0, 1})
where 7, = {Z?ZO tjyj | to, t1, 12 € {0, 1}} and L¢ is the number of pairs (C», C3)

in the same row. Furthermore, we have the following

o m =yx —1=x—1¢€R[x]/(x* — 1) where Ry = Zu[yl/(/1(y)) = Za;

e 1y =yx—1=0u%>+3y+3)x —1 € Ro[x]/{(x* — y) since y° = y2 +3y+3
(mod f2(y));

o m3=yx—1=2y>+3y+3)x—1 € R3[x]/(x* — y) since y°> = 2y> 4+ 3y +3
(mod f3(y)),

and ¢; : R; — A; is given by
e ¢i(a) =aei(y) foralla € Ry;
e ¢i(a(y) =a(y)ei(y) foralla(y) € R;,i =2,3.

Next, by an example we describe how to obtain an encoder for each self-dual
code over Z4 of length 28 listed above. Choose C = (A10y,C1) @ (A204,C2) @
(A3D¢3C3) where C; = ((x — 1)?), C2 = (77 + 2(1 +n2h)) and C3 = (77 +
2713hy x)inwhichh = y + y2. As y’ = 1 we have h = y L4 (7 H2 =y 40,
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By Cases 11 and 9 in Theorem 3.3, it follows that |C1| = 2% = 4% and |C,| =

|C3] = 22 = 45 which implies |C| = |C1||C2||C3| = 4'*. Furthermore, we have
the following:
e C| = (343x +x?+x3). Then a generator matrix of the cyclic code C; over R; is
3311
Gc, = } ‘;’ ; ; . Since the companion matrix of f1(y) = y—1lisMp = (1),
3113
by Theorem 2.5 a generator matrix of A0y, Cy is given by
3Gy4, 3Gy4, Gy Gy,
Ga, 3Gy, 3Gy, Gy,
G.A1Dq,| c =

G4, Ga, 3Gy, 3Gy,
3G, Gua, Gy 3Gy,
1111111]1111111|3333333|3333333
3333333[1111111]1111111|3333333
3333333[3333333[1111111[1111111

1111111)3333333[3333333[1111111

e Cr =(B3+2y+ 2y2) +Q2+2y)x+(1+3y+ 2y2)x2). Then a generator matrix
of the y-constacyclic code C, over R is given by

a B 2 O

0 a B »
ywe 0 a B
B yy2 0 a

Ge, =

’

where ay = 3+ 2y +2y%, B2 =2+ 2y, y2 = 1 + 3y + 2y%, ypr = 2y + 2y2
and yy» = 2 + 3y + 3y2. Using the notations of Theorem 2.5, we have
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Ayyy =213+ 3My, +3M7, =

— W N
N W W
—_—— D

— oo
WO -
R - o

Since the companion matrix of f>(y)is My, = ( ) by Theorem 2.5 a generator

matrix of A>0,, Cs is given by

A,Ga, Ap,Ga, ApGa, 0

0 AayGa, Ap,Ga, ApGa,
Ay, G 4, 0  AnGa, ApGa,
Ayg,Gay, AyypGa, 0 Au,Gy,
3312300[2002220[3221332[0000000
0331230/0200222|2322133/0000000
0033123]2020022[3232213[0000000
0000000[3312300[2002220[3221332
0000000/0331230(0200222[2322133
0000000/0033123[2020022[3232213
2322133/0000000[3312300[2002220
3232213/0000000[0331230[0200222
3323221[0000000[0033123]2020022
0200222[2322133/0000000[3312300
2020022[3232213[0000000[0331230
2202002]3323221[0000000/0033123

GA2D¢2C2 =

e C3 = (1 +2x 4+ (1+3y?)x?). Then a generator matrix of the y-constacyclic code
C3 over Rj3 is given by

1 2 a3 O

0 1 2 a3
yaz 0 1 2
2y yaz 0 1

Gc, =

s

where a3 = 1 4+ 3y?, yaz = 3 + 3y + 3y?. Using the notations in Theorem 2.5,
we have Ay, = Mg, and
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1 03
Ay =D +3M7, =3 3 3|,
‘ 312
333
Ayay =3I +3Mp +3M7 = (3 1 2
2 33
010
Since the companion matrix of f3(y)isMs ={ 0 0 1 ), by Theorem 2.5 a generator
1 21
matrix of A30,,C3 is given by
G 4, 2G4, AwyG o4, 0
0 G, 2G4y, AasGoy,
GA3D¢2C3 =
Ayay G A, 0 G4, 2G 4,
2M G ay Ayas G a, 0 G4,

1223233|2002022[2311001/0000000
3122323[2200202(1231100/0000000
3312232[2220020/0123110/0000000
0000000[1223233]2002022[2311001
0000000[3122323]2200202[1231100
0000000[3312232[2220020[0123110
1231100/0000000[1223233[2002022
0123110/0000000[3122323[2200202
0012311/0000000[3312232[2220020
2200202[1231100[0000000[1223233
2220020[0123110/0000000[3122323
0222002[0012311[0000000[3312232

Then by Corollary 3.5, a generator matrix of the self-dual cyclic code C over Z4 of
Ga, Oy, C1
length 28 is given by G¢ = | GA,0,,c, |. Now, by performing a reduction on G¢
G 304,03
we obtain a standard generator matrix of the self-dual cyclic code C over Z4 of length
gl

28 given by G = g2 , Where

814

g =({11,11,11,1,11,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3);
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g =@,3,33,333111,11,1,1,1,1,1,1,1,1,1,3,3,3,3,3, 3,3);
g =(@,3,1,2,3,0,0,2,0,0,2,2,2,0,3,2,2,1,3,3,2,0,0,0,0,0, 0, 0);
g, =1(0,3,3,1,2,3,0,0,2,0,0,2,2,2,2,3,2,2,1,3,3,0,0,0,0, 0,0, 0);
g =1(0,0,3,3,1,2,3,2,0,2,0,0,2,2,3,2,3,2,2,1,3,0,0,0,0, 0,0, 0);
gs = (0,0,0,0,0,0,0,3,3,1,2,3,0,0,2,0,0,2,2,2,0,3,2,2, 1, 3, 3, 2);
g; =(0,0,0,0,0,0,0,0,3,3,1,2,3,0,0,2,0,0,2,2,2,2,3,2,2, 1, 3, 3);
gz = (0,0,0,0,0,0,0,0,0,3,3,1,2,3,2,0,2,0,0,2,2,3,2,3,2,2, 1, 3);
g =(1,2,2,3,2,3,3,2,0,0,2,0,2,2,2,3,1,1,0,0,1,0,0,0,0, 0,0, 0);
g0=@,1,2,2,3,2,3,2,2,0,0,2,0,2,1,2,3,1,1,0,0,0,0,0,0,0, 0, 0);
g1 =@,312,2,3,2,2,2,2,0,0,2,0,0,1,2,3,1,1,0,0,0,0,0,0, 0, 0);
g, =1(0,00,0,0,0,0,1,2,2,3,2,3,3,2,0,0,2,0,2,2,2,3,1,1,0,0, 1);
g3 =1(,0,0,0,0,0,0,3,1,2,2,3,2,3,2,2,0,0,2,0,2,1,2,3, 1,1, 0, 0);
g4 =1(00,000,0,0,3,3,1,2,2,3,2,2,2,2,0,0,2,0,0,1,2,3, 1, 1, 0).

Therefore, C is encoded by

14
C={£G|£EZ}14}= Z“fgj |u1,...,u14eZ4
j=1

Precisely, the Hamming weight enumerator of the self-dual cyclic code C over Z4 of
length 28 is given by

W (v) = 14 142 4 917 4 364Y° 4 448Y7 4 1001Y® + 4032Y°
+18130Y 10 +41216Y " + 15487512 + 344064Y '3 + 890472y 14
+1828736Y 15 + 3660475Y '° + 6340992Y 7 + 9985234y '8
+13558272Y "0 4 17731945720 4 195865607 2! + 20430956 >
+16488640Y>* + 11621211Y** + 6754496Y%° + 3548174y %6
+1112832Y%7 + 114497y %8,

<& Inthecase of N = 60 = 4-15. Using the notations of Lemma 4.2, by Example 3.4
we see that

A0 ==A0), L) = HG), ) = () and fa(y) = f5(3),

which imply n(4) = 5Sand pu(i) =i fori = 1,2,3. Hence A = 3 and p = 1. From
these and by Corollary 4.6, we deduce that the number of self-dual cyclic codes over
Z4 of length 60 is equal to 3% - 345 = 9315.

Specifically, all distinct self-dual cyclic codes over Z4 of length 60 are the follow-
ing:

(A10y, C1) @ (A204,C2) @ (A30,C3) @ (A40,,Cs) @ (AsOy,Cs),
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e For each integer i, | <i < 3, C; is given by one of the following cases:

@), (72 +20+m), (x2),

which are y -constacyclic codes over R; of length 4.

e Asx™ 59 (x4)14x3

y14x3, we have y

llel — y3x3 and y22 — y7. By

Theorem 4.5 and Corollary 4.6, (C4, Cs) is given by one of the following cases:

Case Cy (mod x* — y, fu () Cs (mod x* — y, f5(y)) Lc
1. (0) (1 1
2. (1 () 1
3. () (j=1,2) (e 4 2m T2 2
4. (2) (2) 1
5. 2r5) (s =1,2,3) (1375,2) 3
6. (4 + 2h) (h € T3\{0}) (w3 + 2751+ mshy3x%)y7x?) 15
7. (2 +2m4h) (h € T4\{0}) (2 +2(1 + mshy3x3)y7x?) 15
8. (F +2(h + 149)) (2 +201+ 7+ 758y3x%)yTx?) 224
(h € T4\{0, 1}, g € Tg)
9. (2 +2(1 + 74h)) (2 +27shy'lx) 15
(h € T4\{0})
10. (3 + 274 (1 + 74h)) (75 + 2hy!lx) 15
(h € T4\{0})
11. (3 +2h) (h € T2) (m3 + 2hy3x3) 16
13. (] 42717 (j=2,3) (e ) 2
14. (n],2) (j=1,2,3) (ril) 3
15. (3 +2,2m4) (w3272 1
16. (n3.217) (2 +2y7x%, 275) 1
17. (73 + 24, 272) (n2.275) 1
18. (7. 274) (m3 + 2msy7x%, 272) 1
19. (3 + 2h, 274) (w3 + 2751+ h)y'x2, 272) 14
(h € T4\{0, 1})
20. (3 + 2mah, 27} (m2 +2(1 + h)y"x2, 275) 14

(h € T4\{0, 1})

where 74 = {Z;zo tjyj | to, 11, 12, 13 € {0, 1}} and L is the number of pairs (C4, Cs)

in the same row.

Finally, we list the number A of self-dual cyclic codes over Zg4 of length 4n, where
nis odd and 12 < 4n < 100, by the following table.

@ Springer



302 Y. Cao et al.

4n N 4n N 4n N
12,20, 44, 52,76 9 28 339 84 4,500,225
36, 68, 100 27 60 9315 92 12,613,659

6 Conclusions

We have given precise description for cyclic codes over Zg4, present precisely dual
codes and investigate self-duality for cyclic codes over Z4 of length 4n. These codes
enjoy a rich algebraic structure compared to arbitrary linear codes (which makes the
search process much simpler). Obtaining some bounds for minimal distance such as
BCHe-like of a cyclic code over the ring Z4 by just looking at the concatenated structure
would be rather interesting.
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