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Abstract Let N = 2kn where n is odd and k a positive integer.We present a canonical
form decomposition for every cyclic code over Z4 of length N , where each subcode
is concatenated by a basic irreducible cyclic code over Z4 of length n as the inner
code and a constacyclic code over a Galois extension ring of Z4 for length 2k as the
outer code. For the case of k = 2, by determining their outer codes, we give a precise
description for cyclic codes over Z4, present dual codes and investigate self-duality
for cyclic codes over Z4 of length 4n. Then we list all self-dual cyclic codes over Z4
of length 28 and 60, respectively.
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Self-dual code
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1 Introduction

Abualrub and Oehmk in [1] determined the generators for cyclic codes over Z4 for
lengths of the form 2k , and Blackford in [2] presented the generators for cyclic codes
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over Z4 for lengths of the form 2n where n is odd. The case for odd n follows
from results in [3] and also appears in more detail in [5]. Dougherty and Ling in
[4] determined the structure of cyclic codes over Z4 for arbitrary even length giv-
ing the generator polynomial for these codes, described the number and dual codes
of cyclic codes for a given length and presented the form of cyclic codes that are
self-dual.

A code over a ring R of length N is a nonempty subset C of RN . The code C is said
to be linear if C is an R-submodule. All codes in this paper are assumed to be linear
unless otherwise specified. The ambient space RN is equipped with the usual Euclid-
ian inner product, i.e., [a, b] = ∑N−1

j=0 a jb j , where a = (a0, a1, . . . , aN−1), b =
(b0, b1, . . . , bN−1) ∈ RN , and the dual code is defined by C⊥ = {a ∈ RN |
[a, b] = 0,∀b ∈ C}. If C⊥ = C, C is called a self-dual code over R. Let ζ be an
invertible element of R. C is said to be ζ -constacyclic if (c0, c1, . . . , cN−1) ∈ C
implies (ζcN−1, c0, c1, . . . , cN−2) ∈ C. Particularly, C is called a negacyclic code if
ζ = −1, and C is called a cyclic code if ζ = 1. We use the natural connection of
ζ -constacyclic codes to polynomial rings, where c = (c0, c1, . . . , cN−1) is viewed
as c(x) = ∑N−1

j=0 c j x j and the ζ -constacyclic code C is an ideal in the polynomial

residue ring R[x]/〈xN − ζ 〉.
Let N = 2kn where n is odd and k a positive integer. Then cyclic codes over Z4

of length N are viewed as ideals of the ring Z4[x]/〈xN − 1〉. Let m be a positive
integer, and h(x) a monic basic irreducible polynomial in Z4 of degree m that divides
x2

m−1 − 1. As in [4], we denote GR(4,m) = Z4[x]/〈h(x)〉, which is an extension
Galois ring of Z4 with cardinality 4m , and set R4(u,m) = GR(4,m)[u]/〈u2k − 1〉.
The main important contribution in [4] is the complete description for cyclic codes
over GR(4,m) of length 2k , i.e., ideals of the ring R4(u,m). Then ideals of the ring
Z4[x]/〈xN − 1〉 are described by a ring isomorphism from Z4[x]/〈xN − 1〉 onto
⊕α∈J R4(u,mα) (see [4, Theorem 3.2]) using a discrete Fourier transformation, and
then connecting cyclic codes over Z4 of length N to a direction sum of some cyclic
codes over GR(4,mα) of length 2k (see [4, Corollary 3.3]). But the expressions for
codes in [4] are not clear enough for the purpose of designing and encoding codes.

In this paper, we focus our attention on cyclic codes of length 4n where n is odd,
and attempt to give a precise description for these cyclic codes overZ4 in terms of con-
catenated structure of codes. By use of this description, one can easily to design codes
for their requirements and encode presented codes by constructing their generator
matrices from the concatenated structure directly.

The present paper is organized as follows. In Sect. 2, we present a canonical form
decomposition for every cyclic code over Z4 of length 2kn, where each subcode is
concatenated by a basic irreducible cyclic code over Z4 of length n as the inner code
and a constacyclic code over a Galois extension ring over Z4 of length 2k as the outer
code. In Sect. 3, we give a precise description for each cyclic code by determining
its outer code when k = 2. Using the canonical form decomposition, we present dual
codes and investigate self-duality in Sect. 4. Finally, we list all self-dual cyclic codes
over Z4 of length 28 and 60 in Sect. 5.
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Concatenated structure of cyclic codes over Z4 of length 4n 281

2 The concatenated structure of cyclic codes over Z4 of length 2kn

In this section, we give a canonical form decomposition for every cyclic code over Z4
of length 2kn where n is odd.

It is known that any element a of Z4 is unique expressed as a = a0 + 2a1 where
a0, a1 ∈ F2 = {0, 1} in which we regard F2 as a subset of Z4. Denote a = a0 ∈ F2.
Then − : a �→ a (∀a ∈ Z4) is a surjective ring homomorphism from Z4 onto F2,
and − can be extended to a surjective ring homomorphism from Z4[x] onto F2[x] by
f (x) = f (x) = ∑m

i=0 bi x
i for any f (x) = ∑m

i=0 bi x
i ∈ Z4[x]. Recall that a monic

polynomial f (x) ∈ Z4[x] of positive degree is said to be basic irreducible if f (x) is
an irreducible polynomial in F2[x] (cf. [7, Chapter 5]). In the rest of this paper, we
adopt the following notations.

Notation 2.1 Let n be an odd positive integer, denoteA = Z4[y]/〈yn−1〉 and assume

yn − 1 = f1(y) f2(y) . . . fr (y), (1)

where f1(y), f2(y), . . . , fr (y) are pairwise coprime monic basic irreducible poly-
nomials in Z4[y]. We assume deg( fi (y)) = mi and denote Ri = Z4[y]/〈 fi (y)〉 =
{∑mi−1

j=0 b j y j | b0, b1, . . . , bmi−1 ∈ Z4}, for all i = 1, . . . , r .

For each integer i , 1 ≤ i ≤ r , by [7, Chapter 6] we know that Ri is a Galois
ring of characteristic 4 and cardinality 4mi with the usual polynomial addition and
multiplication modulo fi (y). The Teichmüller set of Ri is

Ti =
⎧
⎨

⎩

mi−1∑

j=0

t j y
j | t0, t1, . . . , tmi−1 ∈ F2

⎫
⎬

⎭
,

and every element α of Ri has a unique 2-adic expansion: α = r0 + 2r1, r0, r1 ∈ Ti .
Moreover, α is invertible if and only if r0 �= 0.

Denote Fi (y) = yn−1
fi (y)

∈ Z4[y] in the following. Since Fi (y) and fi (y) are coprime,
there are polynomials ui (y), vi (y) ∈ Z4[y] such that ui (y)Fi (y) + vi (y) fi (y) = 1.
In the rest of this paper, we denote by εi (y) the unique element of A satisfying

εi (y) ≡ ui (y)Fi (y) = 1 − vi (y) fi (y)
(
mod yn − 1

)
. (2)

Then from classical ring theory, we deduce the following lemma.

Lemma 2.2 (cf. [6, Theorem 2.7]) The ring A satisfies the following properties.

(i) ε1(y) + · · · + εr (y) = 1, εi (y)2 = εi (y) and εi (y)ε j (y) = 0 for all 1 ≤ i �=
j ≤ r .

(ii) A = A1 ⊕ · · · ⊕ Ar , where Ai = εi (y)A is a ring with multiplicative identity
εi (y). Moreover, this decomposition is a direct sum of rings in that AiA j = {0}
for all i and j , 1 ≤ i �= j ≤ r .

(iii) For each 1 ≤ i ≤ r , define a mapping ϕi : g(y) �→ εi (y)g(y) (∀g(y) ∈ Ri ).
Then ϕi is a ring isomorphism from Ri onto Ai . Hence |Ai | = 4mi .
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282 Y. Cao et al.

(iv) For each 1 ≤ i ≤ r , Ai is a basic irreducible cyclic code over Z4 of length n
having parity check polynomial fi (y).

For convenience and self-sufficiency of the paper, we restate the concatenated struc-
ture of codes over rings.

Definition 2.3 Using the notations above, let C be a linear code over Ri of length l,
i.e.,C is an Ri -submodule of Rl

i = {(r0, r1, . . . , rl−1) | r j ∈ Ri , j = 0, 1, . . . , l−1}.
The concatenated code of Ai and C is defined by

Ai�ϕi C = {(ϕi (c0), ϕi (c1), . . . , ϕi (cl−1)) | (c0, c1, . . . , cl−1) ∈ C} ⊆ Z
nl
4 ,

where the cyclic code Ai over Z4 of length n is called the inner code and C is called
the outer code.

Lemma 2.4 Ai�ϕi C is a linear code over Z4 of length nl. The number of codewords
in this concatenated code is equal to |Ai�ϕi C | = |C | and

dmin(Ai�ϕi C) ≥ dmin(Ai ) · dmin(C),

where dmin(Ai�ϕi C) is the minimum distance of Ai�ϕi C as a linear code over Z4,
dmin(Ai ) is the minimum distance of Ai as a linear code over Z4 of length n and
dmin(C) is the minimum distance of C as a linear code over the Galois ring Ri of
length l.

Proof Every nonzero codeword ξ in Ai�ϕi C is given by ξ = (ϕi (c0), ϕi (c1), . . . ,
ϕi (cl−1)) with c = (c0, c1, . . . , cl−1) ∈ C ⊆ Rl

i and c �= 0. Then the Hamming
weight wH (c) of c satisfies wH (c) = |{i | ci �= 0, i = 0, 1, . . . , l − 1}| ≥ dmin(C).
Now, let wH (ϕi (ci )) be the Hamming weight of ϕi (ci ) ∈ Ai ⊆ A = Z4[y]/〈yn − 1〉
(in which we regard ϕi (ci ) as a vector in Z

n
4). Then wH (ϕi (ci )) ≥ dmin(Ai ) for all

ci �= 0, 0 ≤ i ≤ l−1. Therefore, as a vector inZnl
4 the Hamming weight of ξ satisfies

wH (ξ) =
∑

ci �=0, 0≤i≤l−1

wH (ϕi (ci )) ≥ wH (c) · dmin(Ai ) ≥ dmin(C) · dmin(Ai ).

Hence dmin(Ai�ϕi C) ≥ dmin(Ai ) · dmin(C). ��

By the following lemma, we see that a generator matrix of the concatenated code
Ai�ϕi C as a Z4-submodule can be constructed from a generator matrix of the cyclic
codeAi overZ4 and a generator matrix of the linear codeC over Ri straightforwardly.

Theorem 2.5 Let εi (y) = ∑n−1
j=0 ei, j y

j with ei, j ∈ Z4, and C be a linear code over
the Galois ring Ri of length l with a generator matrix GC = (α j,s)1≤ j≤t,1≤s≤l where
α j,s ∈ Ri , i.e., C is an Ri -submodule of Rl

i generated by the row vectors of GC . Then
we have the following
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Concatenated structure of cyclic codes over Z4 of length 4n 283

(i) A generator matrix of the cyclic code Ai over Z4 of length n is given by

GAi =

⎛

⎜
⎜
⎝

ei,0 ei,1 . . . ei,n−2 ei,n−1
ei,n−1 ei,0 . . . ei,n−3 ei,n−2
. . . . . . . . . . . . . . .

ei,n−mi+1 ei,n−mi+2 . . . ei,n−mi−1 ei,n−mi

⎞

⎟
⎟
⎠ .

(ii) Assume fi (y) = ∑mi
j=0 fi, j y j with fi, j ∈ Z4 and fi,mi = 1, and let M fi =

(
0 Imi−1

− fi,0 Vi

)

be the companion matrix of fi (y) where Imi−1 is the identity

matrix of order mi − 1 and Vi = (− fi,1, . . . ,− fi,mi−1). For any α = α(y) =
∑mi−1

j=0 r j y j ∈ Ri with r j ∈ Z4, denote Aα = α(M fi ) = ∑mi−1
j=0 r j (M fi )

j ∈
Mmi×mi (Z4) in the rest of the paper. Then

αY = AαY, where Y =

⎛

⎜
⎜
⎝

1
y

. . .

ymi−1

⎞

⎟
⎟
⎠ .

(iii) Let GC = (α j,s)1≤ j≤t,1≤s≤l with α j,s ∈ Ri . Then a generator matrix of the
concatenated code Ai�ϕi C is given by

GAi�ϕi C
=

⎛

⎝
Aα1,1GAi . . . Aα1,l GAi

. . . . . . . . .

Aαt,1GAi . . . Aαt,l GAi

⎞

⎠ .

Hence Ai�ϕi C = {wGAi�ϕi C
| w ∈ Z

mi t
4 }.

Proof (i) Since fi (y) is a monic basic irreducible polynomial in Z4[y] of degree
mi , {1, y, . . . , ymi−1} is a Z4-basis of the Galois ring Ri = Z4[y]/〈 fi (y)〉
(See [7, Chapter 6]). As ϕi is a Z4-module isomorphism from Ri onto Ai by
Lemma 2.2(iii), we conclude that {εi (y), yεi (y), . . . , ymi−1εi (y)} is a Z4-basis
of Ai . Hence GAi is a generator matrix of Ai as a Z4-submodule of Zn

4.
(ii) It is obvious that yY = M fi Y , which implies that y jY = (M fi )

j Y for all

j = 0, 1, . . . ,mi − 1. Hence αY = ∑mi−1
j=0 r j (y jY ) = AαY .

(iii) Let C be the Z4-submodule of Znl
4 generated by the row vectors of GAi�ϕi C

,

i.e., C = {wGAi�ϕi C
| w ∈ Z

mi t
4 }. By Definition 2.3, ξ ∈ Ai�ϕi C if and

only if there exists a unique codeword c = (c1, . . . , cl) ∈ C such that ξ =
(ϕi (c1), . . . , ϕi (cl)). Since GC is a generator matrix of C , c ∈ C if and only if c
is an Ri -combination of the row vectors (α1,1, . . . , α1,l), . . . , (αt,1, . . . , αt,l) of
GC , which is equivalent that there exist β1, . . . , βt ∈ Ri such that

ξ = (
ϕi

(
β1α1,1 + · · · + βtαt,1

)
, . . . , ϕi

(
β1α1,l + · · · + βtαt,l

))

= (
ϕi

(
β1α1,1

) + · · · + ϕi
(
βtαt,1

)
, . . . , ϕi

(
β1α1,l

) + · · · + ϕi
(
βtαt,l

))
,
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since ϕi is a Z4-module isomorphism. For each integer j , 1 ≤ j ≤ t , by β j ∈ Ri

there is a unique row vector b j ∈ Z
mi
4 such that β j = b jY . From this and by (ii)

we deduce that β jα j,s = b j (α j,sY ) = b j Aα j,s Y for all s = 1, . . . , l. Also, since
ϕi is a Z4-module isomorphism, we have

ξ = (
b1Aα1,1ϕi (Y ) + · · · + bt Aαt,1ϕi (Y ), . . . ,

b1Aα1,lϕi (Y ) + · · · + bt Aαt,lϕi (Y )
)

= w

⎛

⎝
Aα1,1ϕi (Y ) . . . Aα1,lϕi (Y )

. . . . . . . . .

Aαt,1ϕi (Y ) . . . Aαt,lϕi (Y )

⎞

⎠ ,

where w = (b1, . . . , bt ) ∈ Z
mi t
4 . Then from

ϕi (Y ) =

⎛

⎜
⎜
⎝

ϕi (1)
ϕi (y)
. . .

ϕi (ymi−1)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

εi (y)
yεi (y)

. . .

ymi−1εi (y)

⎞

⎟
⎟
⎠ = GAi

⎛

⎜
⎜
⎝

1
y

. . .

yn−1

⎞

⎟
⎟
⎠

and the identification of Z4[y]〈yn −1〉 with Zn
4, we deduce ξ = wGAi�ϕi C

∈ C.
Therefore, Ai�ϕi C = C. ��

Now, we give the concatenated structure of cyclic codes over Z4. From now on, let
N = 2knwhere k is a positive integer. As usual, wewill identifyZN

4 withZ4[x]/〈xN −
1〉 under the natural Z4-module isomorphism: (c0, c1, . . . , cN−1) �→ c0 +c1x +· · ·+
cN−1xN−1 (c j ∈ Z4, j = 0, 1, . . . , N − 1).

Using the notations of Lemma 2.2, every element of the ring A can be uniquely
expressed as a(y) = ∑n−1

j=0 a j y j with a j ∈ Z4. Then every element of the quotient

ring A[x]/〈x2k − y〉 can be uniquely expressed as α(x, y) = ∑n−1
i=0

∑2k−1
j=0 ci, j yi x j ,

ci, j ∈ Z4. Now, define

Ψ (α(x, y)) = α
(
x, x2

k
)

=
n−1∑

i=0

2k−1∑

j=0

ci, j x
i2k+ j .

It is clear that Ψ is a ring isomorphism from A[x]/〈x2k − y〉 onto Z4[x]/〈xN − 1〉.
In the rest of this paper, we will identify A[x]/〈x2k − y〉 with Z4[x]/〈xN − 1〉 under
this isomorphism Ψ .

Theorem 2.6 Using the notations in Notation 2.1 and Lemma 2.2, let C ⊆
Z4[x]/〈xN − 1〉. The following are equivalent:

(i) C is a cyclic code over Z4 of length N.
(ii) C is an ideal of the ring A[x]/〈x2k − y〉.
(iii) For each integer i , 1 ≤ i ≤ r , there is a unique ideal Ci of the ring

Ai [x]/〈εi (y)x2k − εi (y)y〉 such that C = ⊕r
i=1Ci .
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Concatenated structure of cyclic codes over Z4 of length 4n 285

(iv) For each integer i , 1 ≤ i ≤ r , there is a unique y-constacyclic code Ci over Ri

of length 2k , i.e., Ci is an ideal of the ring Ri [x]/〈x2k − y〉, such that

C = (
A1�ϕ1C1

) ⊕ · · · ⊕ (
Ar�ϕr Cr

)
,

where Ai�ϕi Ci = {εi (y)α(x) | α(x) ∈ Ci } for all i = 1, . . . , r .

Proof (i)⇔(ii) It follows from Z4[x]/〈xN − 1〉 = A[x]/〈x2k − y〉.
(ii)⇔(iii) By Lemma 2.2 (i) and (ii) it follows that

A[x]/
〈
x2

k − y
〉
= ⊕r

i=1

(
Ai [x]/

〈
εi (y)x

2k − εi (y)y
〉)

and (Ai [x]/〈εi (y)x2k − εi (y)y〉)(A j [x]/〈ε j (y)x2
k − ε j (y)y〉) = {0} for all i �= j .

Hence C is an ideal of the ring Z4[x]/〈xN − 1〉 if and only if for each integer i ,
1 ≤ i ≤ r , there is a unique ideal Ci of the ring Ai [x]/〈εi (y)x2k − εi (y)y〉 such that
C = ⊕r

i=1Ci .
(iii)⇔(iv) By Lemma 2.2(iii), ϕi : g(y) �→ εi (y)g(y) (∀g(y) ∈ Ri ) is a

ring isomorphism from Ri onto Ai . It is clear that ϕi induces a ring isomorphism
from Ri [x]/〈x2k − y〉 onto Ai [x]/〈εi (y)x2k − εi (y)y〉 by the rule that: ∀α(x) =
∑2k−1

j=0 α j x j ∈ Ri [x]/〈x2k − y〉 with α0, α1, . . . , α2k−1 ∈ Ri ,

ϕi (α(x)) =
2k−1∑

j=0

ϕi (α j )x
j ↔ (

ϕi (α0), ϕi (α1), . . . , ϕi (α2k−1)
) ∈ A2k

i .

Therefore, for each integer i , 1 ≤ i ≤ r , and an ideal Ci ofAi [x]/〈εi (y)x2k −εi (y)y〉,
there is a unique ideal Ci of Ri [x]/〈x2k − y〉 such that Ci = ϕi (Ci ). Hence Ci =
Ai�ϕi Ci by Definition 2.3. It is clear that Ci is a y-constacyclic code over the Galois
ring Ri of length 2k . ��

By Theorem 2.6, in order to present all cyclic codes over Z4 of length N it is
sufficient to determine all ideals of the ring Ri [x]/〈x2k − y〉, for all i = 1, . . . , r .

3 Representation of cyclic codes over Z4 of length 4n

In this section, following [4] we give another precise description for cyclic codes over
Z4 of length 4n by determining their outer codes in the concatenated structure of
subcodes.

Since n is odd, there is a positive integer e, 1 ≤ e < n, such that 2ke ≡ −1 (mod
n). By Eq. (1) it follows that yn ≡ 1 (mod fi (y)), i.e., yn = 1 in Ri . From these we
deduce that (ye)2

k = y−1 in Ri .

Lemma 3.1 Using the notations above, define a mapping σi : Ri [u]/〈u2k − 1〉 →
Ri [x]/〈x2k − y〉 by
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σi (a(u)) = a
(
yex

)
, ∀a(u) ∈ Ri [u]/

〈
u2

k − 1
〉
.

Then σi is a ring isomorphism from Ri [u]/〈u2k − 1〉 onto Ri [x]/〈x2k − y〉 preserving
Ri -Hamming weight.

Proof For any b(u) = ∑
j b j u j ∈ Ri [u] where b j ∈ Ri , define σi (b(u)) =

∑
j b j (yex) j ∈ Ri [x]. Since ye is an invertible element of Ri , σi is a ring isomorphism

from Ri [u] onto Ri [x]. From this and by σi (u2
k − 1) = (yex)2

k − 1 = ye2
k
x2

k − 1 =
y−1(x2

k − y) in Ri [x], we deduce the conclusions. ��

In the rest of this paper, we denote

πi = yex − 1 = σi (u − 1) ∈ Ri [x]/
〈
x2

k − y
〉
. (3)

Now, we denote Γ4(u,m) = Ri [u]/〈u2k − 1〉 where Ri = GR(4,mi ) (cf. Eq. (7) in
Page 130 of [4]). Recall that ideals of the ring Γ4(u,m) are in fact cyclic codes over
the Galois ring Ri of length 2k . These cyclic codes have been studied in [4]. For the
purpose of this paper, we list some conclusions from [4].

Lemma 3.2 ([4, Theorem 2.6]) The number of ideals of Ri [u]/〈u2k −1〉, where Ri =
GR(4,mi ), is equal to

N(4,mi ;k) = 5 + (
2mi

)2k−1 + (
5 · 2mi − 1

) (
2mi

) (2mi )2
k−1−1 − 1

(2mi − 1)2
− 4 · 2

k−1 − 1

2mi − 1
.

Especially, N(4,mi ;k) = 9 + 5 · 2mi + 22mi when k = 2.

By Theorem 2.6, Lemmas 3.1 and 3.2, we see that the number of cyclic codes over
Z4 of length 2kn is equal to

∏r
i=1 N(4,mi ;k) ([4, Corollary 3.4]).

For any ideal Ci of the ring Ri [x]/〈x2k − y〉, recall that the annihilating ideal of
Ci is Ann(Ci ) = {α ∈ Ri [x]/〈x2k − y〉 | αβ = 0,∀β ∈ Ci }.

Then by Lemma 3.1 and [4, Theorem 5.3] or by direct calculations, we list all
distinct y-constacyclic codes over the Galois ring Ri of length 4, i.e., ideals of the ring
Ri [x]/〈x4 − y〉, by the following theorem.

Theorem 3.3 All distinct y-constacyclic codes Ci over the Galois ring Ri of length
4 and their annihilating ideals are given by one of the following cases:

123



Concatenated structure of cyclic codes over Z4 of length 4n 287

Case Ci |Ci | Ann(Ci ) LC

1. 〈0〉 1 〈1〉 1

2. 〈1〉 28mi 〈0〉 1

3. 〈π j
i 〉 ( j = 1, 2) 22mi (4− j) 〈π4− j

i + 2π2− j
i 〉 2

4. 〈2〉 24mi 〈2〉 1

5. 〈2π s
i 〉 (s = 1, 2, 3) 2mi (4−s) 〈π4−s

i , 2〉 3

6. 〈πi + 2h〉 (h ∈ Ti\{0}) 26mi 〈π3
i + 2πi (1 + πi h)〉 2mi − 1

7. 〈π2
i + 2πi h〉 24mi 〈π2

i + 2(1 + πi h)〉 2mi − 1

(h ∈ Ti\{0})
8. 〈π2

i + 2(h + πi g)〉 24mi 〈π2
i + 2(1 + h + πi g)〉 22mi − 2mi+1

(h ∈ Ti\{0, 1}, g ∈ Ti )
9. 〈π2

i + 2(1 + πi h)〉 24mi 〈π2
i + 2πi h〉 2mi − 1

(h ∈ Ti\{0})
10. 〈π3

i + 2πi (3 + πi h)〉 22mi 〈πi + 2h〉 2mi − 1

(h ∈ Ti\{0})
11. 〈π3

i + 2h〉 (h ∈ Ti ) 24mi 〈π3
i + 2h〉 2mi

13. 〈π j
i + 2π j−2

i 〉 ( j = 2, 3) 22mi (4− j) 〈π4− j
i 〉 2

14. 〈π j
i , 2〉 ( j = 1, 2, 3) 2mi (8− j) 〈2π4− j

i 〉 3

15. 〈π2
i + 2, 2πi 〉 25mi 〈π3

i , 2π2
i 〉 1

16. 〈π3
i , 2π2

i 〉 23mi 〈π2
i + 2, 2πi 〉 1

17. 〈π3
i + 2πi , 2π

2
i 〉 23mi 〈π2

i , 2πi 〉 1

18. 〈π2
i , 2πi 〉 25mi 〈π3

i + 2πi , 2π
2
i 〉 1

19. 〈π2
i + 2h, 2πi 〉 25mi 〈π3

i + 2πi (1 + h), 2π2
i 〉 2mi − 2

(h ∈ Ti\{0, 1})
20. 〈π3

i + 2πi h, 2π2
i 〉 23mi 〈π2

i + 2(1 + h), 2πi 〉 2mi − 2

(h ∈ Ti\{0, 1})

where Ti = {∑mi−1
j=0 t j y j | t0, t1, . . . , tmi−1 ∈ {0, 1}} and LC is the number of codes

in the same row.

Proof In [4] Theorem 5.3, all distinct ideals of Γ4(u,m) = Ri [u]/〈u2k − 1〉 and their
annihilating ideals are listed in terms of u − 1. By Lemma 3.1, all distinct ideals of
Ri [x]/〈x2k − y〉 and their annihilating ideals can be obtained by replacing u − 1 to
σi (u − 1) = yex − 1 = πi from [4] Theorem 5.3. Particularly, we get the conclusions
for the special case of k = 2. ��
Example 3.4 We know that y15 − 1 = f1(y) f2(y) f3(y) f4(y) f5(y), where

• f1(y) = y − 1, f2(y) = 1 + y + y2, f3(y) = 1 + y + y2 + y3 + y4;
• f4(y) = 1 + 3y + 2y2 + y4, f5(y) = 1 + 2y2 + 3y3 + y4,

and f1(y), f2(y), f3(y), f4(y), f5(y) are pairwise coprime monic basic irreducible
polynomials in Z4[y]. Hence r = 5, m1 = 1, m2 = 2 and m3 = m4 = m5 = 4. Now,
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let N = 60 = 2k · 15 where k = 2. Then the number of cyclic codes over Z4 of length
60 is equal to

5∏

i=1

N(4,mi ;2) =
5∏

i=1

(
9 + 5 · 2mi + 22mi

)
= 23 · 45 · 3453 = 42, 500, 851, 875.

For each integer i , 1 ≤ i ≤ 5, let Ri = Z4[y]/〈 fi (y)〉, which is a Galois ring
of characteristic 4 and cardinality 4mi . By 4 · 11 ≡ −1, (mod 15), it follows that
(y11)4 = y−1 in every Ri . We select e = 11. Using Eq. (3), we have the following.

• π1 = y11x − 1 = x − 1 ∈ R1[x]/〈x4 − y〉 = R1[x]/〈x4 − 1〉, since y11 ≡ y ≡ 1
(mod y − 1), i.e., ye = 1 in R1, and R1 = Z4[y]/〈y − 1〉 = Z4.

• π2 = y11x − 1 = (3 + 3y)x − 1 ∈ R2[x]/〈x4 − y〉, since y11 ≡ 3 + 3y (mod
f2(y)), i.e., ye = 3 + 3y in R2.

• π3 = y11x − 1 = yx − 1 ∈ R3[x]/〈x4 − y〉, since y11 ≡ y (mod f3(y)), i.e.,
ye = y in R3.

• π4 = y11x − 1 = (2 + y + y2 + 3y3)x − 1 ∈ R4[x]/〈x4 − y〉, since y11 ≡
2 + y + y2 + 3y3 (mod f4(y)), i.e., ye = 2 + y + y2 + 3y3 in R4.

• π5 = y11x−1 = (3+3y2+3y3)x−1 ∈ R5[x]/〈x4−y〉, since y11 ≡ 3+3y2+3y3

(mod f5(y)), i.e., ye = 3 + 3y2 + 3y3 in R5.

Then by Theorem 3.3, one can list all cyclic codes over Z4 of length 60.

Finally, from Theorems 2.6, 3.3 and 2.5 we deduce the following corollary.

Corollary 3.5 Every cyclic code C over Z4 of length 4n can be constructed by the
following two steps:

(i) For each i = 1, . . . , r , choose a y-constacyclic code Ci over Ri of length 4 listed
in Theorem 3.3.

(ii) Set C = ⊕r
i=1Ci with Ci = Ai�ϕi Ci .

The number of codewords in C is equal to |C| = ∏r
i=1 |Ci | and the minimal Hamming

distance of C satisfies

dmin(C) ≤ min {dmin(Ci ) | i = 1, . . . , r} ,

where dmin(Ci ) is theminimalZ4-Hammingweight of Ci . Moreover, a generatormatrix

of C is given by GC =
⎛

⎝
GA1�ϕ1C1

. . .

GAr�ϕr Cr

⎞

⎠.

Using the notations of Corollary 3.5(ii), C = ⊕r
i=1Ci is called the canonical form

decomposition of the cyclic code C over Z4 of length 4n.

4 Dual codes of cyclic codes over Z4 of length 4n

In this section, we give the dual code of each cyclic code over Z4 of length N where
N = 4n, and investigate the self-duality of these codes.
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Concatenated structure of cyclic codes over Z4 of length 4n 289

As usual, we will identify a = (a0, a1, . . . , aN−1) ∈ Z
N
4 with a(x) =

∑N−1
j=0 a j x j ∈ Z4[x]/〈xN − 1〉. In this paper, we define

μ(a(x)) = a
(
x−1

)
= a0 +

N−1∑

j=1

a j x
N− j , ∀a(x) ∈ Z4[x]/

〈
xN − 1

〉
.

Then μ is a ring automorphism of Z4[x]/〈xN − 1〉 satisfying μ−1 = μ and μ(c) = c
for all c ∈ Z4. The following lemma is well known.

Lemma 4.1 Let a, b ∈ Z
N
4 . Then [a, b] = 0 if a(x)μ(b(x)) = 0 in the ring

Z4[x]/〈xN − 1〉.
Using the notations of Sect. 3, we have Z4[x]/〈xN − 1〉 = A[x]/〈x4 − y〉 under

the substitution y = x4, where A = Z4[y]/〈yn − 1〉. Hence

μ(y) =
(
x−1

)4 = y−1 in A[x]/
〈
x4 − y

〉
.

Therefore, the restriction of μ to A is given by

μ( f (y)) = f
(
y−1

)
(∀ f (y) ∈ A) ,

which is a ring automorphism of A. For notations simplicity, we still denote this
restriction by μ. From this and by Notation 2.1, we deduce

μ(εi (y)) = ui
(
y−1

)
Fi

(
y−1

)
= 1 − vi

(
y−1

)
fi

(
y−1

)
in A. (4)

Let f (y) = ∑m
j=0 c j y

j be a polynomial in Z4[y] of degree m ≥ 1. Recall that

the reciprocal polynomial of f (y) is defined by f̃ (y) = ym f ( 1y ) = ∑m
j=0 c j y

m− j .

Especially, f (y) is said to be self-reciprocal if f̃ (y) = δ f (y) for some δ ∈ Z
×
4 =

{1,−1}. Then by Eq. (1) in Sect. 2, we have

yn − 1 = − f̃1(y) f̃2(y) . . . f̃r (y).

Since f1(y), f2(y), . . . , fr (y) are pairwise coprimemonic basic polynomials inZ4[y],
for each 1 ≤ i ≤ r there is a unique integer i ′, 1 ≤ i ′ ≤ r , such that f̃i (y) = δi fi ′(y)
for some δi ∈ {1,−1}. From this, by Eq. (4) and yn = 1 in the ring A, we deduce

μ (εi (y)) = 1 − yn−deg(vi (y))−mi
(
ydeg(vi (y))vi (y

−1)
) (

ymi fi
(
y−1

))

= 1 − yn−deg(vi (y))−mi ṽi (y) f̃i (y)

= 1 − hi (y) fi ′(y)
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where hi (y) = δi yn−deg(vi (y))−mi ṽi (y) ∈ A. Similarly, by (4) it follows that
μ(εi (y)) = gi (y)Fi ′(y) for some gi (y) ∈ A. Then from these and by Eq. (2) in
Sect. 2, we deduce that μ(εi (y)) = εi ′(y).

As stated above, we see that for each 1 ≤ i ≤ r there is a unique integer i ′,
1 ≤ i ′ ≤ r , such that μ(εi (y)) = εi ′(y). We still use μ to denote this map i �→ i ′, i.e.,
μ(εi (y)) = εμ(i)(y). Whether μ denotes the automorphism of A or this map on the
set {1, . . . , r} is determined by the context. The next lemma shows the compatibility
of the two uses of μ.

Lemma 4.2 With the notations above, we have the following conclusions.

(i) μ is a permutation on the set {1, . . . , r} satisfying μ−1 = μ.
(ii) After a rearrangement of ε1(y), . . . , εr (y), there are integers λ, ρ such that

μ(i) = i for all i = 1, . . . , λ and μ(λ + j) = λ + ρ + j for all j = 1, . . . , ρ,
where λ ≥ 1, ρ ≥ 0 and λ + 2ρ = r .

(iii) For each integer i , 1 ≤ i ≤ r , there is a unique element δi of {1,−1} such that
f̃i (y) = δi fμ(i)(y).

(iv) For any integer i , 1 ≤ i ≤ r , μ(εi (y)) = εμ(i)(y) in the ring A, and μ(Ai ) =
Aμ(i). Then μ induces a ring isomorphism from Ai onto Aμ(i).

Proof (i)–(iii) follow from the definition of the map μ, and (iv) follows from that
Ai = εi (y)A immediately. ��
Lemma 4.3 Using the notations above, the following hold for any 1 ≤ i ≤ r .

(i) For any ξ ∈ Ri , we define ξ̂ = (ϕ−1
μ(i)μϕi )(ξ). Then̂is a ring isomorphism from

Ri onto Rμ(i) such that the following diagram commutes

Ri = Z4[y]/〈 fi (y)〉 ̂−→ Rμ(i) = Z4[y]/〈 fμ(i)(y)〉
ϕi ↓ ↓ ϕμ(i)

Ai
μ−→ Aμ(i)

Specifically, we have ξ̂ = a(y−1) ∈ Rμ(i) for all ξ = a(y) ∈ Ri .
(ii) For any α(x) = ∑3

j=0 α j x j ∈ Ri [x]/〈x4 − y〉 where α0, α1, α2, α3 ∈ Ri , define

α̂(x) = ∑3
j=0 α̂ j x j . Then μ induces a ring isomorphism from Ri [x]/〈x4 − y〉

onto Rμ(i)[x]/〈x4 − y〉 by the rule that

μ : α(x) =
3∑

j=0

α j x
j �→ α̂

(
x−1

)
= α̂0 + y−1

3∑

j=1

α̂ j x
4− j .

Proof (i) By Lemma 2.2(iii) and Lemma 4.2(iv), we see that ϕ−1
μ(i)μϕi is a ring iso-

morphism from Ri onto Rμ(i) such that the following diagram commutes

Ri = Z4[y]/〈 fi (y)〉
ϕ−1

μ(i)μϕi−→ Rμ(i) = Z4[y]/〈 fμ(i)(y)〉
ϕi ↓ ↓ ϕμ(i)

Ai
μ−→ Aμ(i)
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Then for any ξ = a(y) ∈ Ri , by εμ(i)(y) = 1 − hi (y) fμ(i)(y) we have

ξ̂ =
(
ϕ−1

μ(i)μϕi

)
(ξ) = ϕ−1

μ(i)μ(εi (y)a(y)))

= ϕ−1
μ(i)

(
εμ(i)(y)a(y−1)

)
= (

1 − hi (y) fμ(i)(y)
)
a

(
y−1

)

≡ a
(
y−1

) (
mod fμ(i)(y)

)
,

which implies ξ̂ = a(y−1) ∈ Rμ(i).
(ii) As y ∈ Ri , by (i) we deduce that ŷ = y−1 ∈ Rμ(i) and y−1 = yn−1 (mod

fμ(i)(y)). Since x and y are invertible elements of Rμ(i)[x]/〈x4 − y〉, we have
〈μ(x4− y)〉 = 〈(x−1)4− y−1〉 = 〈−x−4y−1(x4− y)〉 = 〈x4− y〉 as ideals of the
ring Rμ(i)[x]/〈x4− y〉. Henceμ induces a ring isomorphism from Ri [x]/〈x4− y〉
onto Rμ(i)[x]/〈x4 − y〉 by the rule that μ(α(x)) = α̂(x−1) = ∑3

j=0 α̂ j x− j .

Finally, by x4 = y, i.e., y−1x4 = 1 in Rμ(i)[x]/〈x4− y〉 it follows thatμ(α(x)) =
α̂0 + y−1 ∑3

j=1 α̂ j x4− j as required. ��

Lemma 4.4 Let a(x) = ∑r
i=1 ai (x), b(x) = ∑r

i=1 bi (x) ∈ A[x]/〈x4 − y〉, where
ai (x), bi (x) ∈ Ai [x]/〈εi (y)x4 − εi (y)y〉. Then

a(x)μ(b(x)) =
r∑

i=1

ai (x)μ(bμ(i)(x)).

Proof By Lemma 4.2(iv), we have

μ
(
bμ(i)(x)

) ∈ μ
(
Aμ(i)[x]/

〈
εμ(i)(y)x

4 − εμ(i)y
〉)

= Ai [x]/
〈
εi (y)x

4 − εi (y)y
〉
.

Hence ai (x)μ(bμ(i)(x)) ∈ Ai [x]/〈εi (y)x4 − εi (y)y〉 for all i . If j �= μ(i), then
i �= μ( j), which implies AiAμ( j) = {0} by Lemma 2.2(ii). Therefore,

(
Ai [x]/〈εi (y)x4 − εi (y)y〉

) (
Aμ( j)[x]/〈εμ( j)(y)x

4 − εμ( j)(y)y〉
)

= {0},

and so ai (x)μ(b j (x)) = 0 since μ(b j (x)) ∈ Aμ( j)[x]/〈εμ( j)(y)x4 − εμ( j)(y)y〉.
Hence a(x)μ(b(x)) = ∑r

i=1
∑r

j=1 ai (x)μ(b j (x)) = ∑r
i=1 ai (x)μ(bμ(i)(x)). ��

Now, we can give the dual code of each cyclic code over Z4 of length 4n.

Theorem 4.5 Let C be a cyclic code over Z4 of length 4n with concatenated structure
C = ⊕r

i=1(Ai�ϕi Ci ), where Ci is an ideal of the ring Ri [x]/〈x4 − y〉 listed by
Theorem 3.3 for all i = 1, . . . , r . Using the notations of Theorem 3.3, the dual code
C⊥ is given by

C⊥ = ⊕r
i=1

(
Aμ(i)�ϕμ(i)Dμ(i)

)
,
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where Dμ(i) = μ(Ann(Ci )), which is an ideal of the ring Rμ(i)[x]/〈x4 − y〉 given in
the following table.

Case Ci (mod x4 − y, fi (y)) Dμ(i) = μ(Ann(Ci )) (mod x4 − y, fμ(i)(y))

1. 〈0〉 〈1〉
2. 〈1〉 〈0〉
3. 〈π j

i 〉 ( j = 1, 2) 〈π4− j
μ(i) + 2π2− j

μ(i) y
2ex2〉

4. 〈2〉 〈2〉
5. 〈2π s

i 〉 (s = 1, 2, 3) 〈π4−s
μ(i) , 2〉

6. 〈πi + 2h〉 (h ∈ Ti\{0}) 〈π3
μ(i) + 2πμ(i)(1 + πμ(i)ĥ y

n−ex4n−1)y2ex2〉
7. 〈π2

i + 2πi h〉 (h ∈ Ti\{0}) 〈π2
μ(i) + 2(1 + πμ(i)ĥ y

n−ex4n−1)y2ex2〉
8. 〈π2

i + 2(h + πi g)〉 〈π2
μ(i) + 2(1 + ĥ + πμ(i) ĝy

n−ex4n−1)y2ex2〉
(h ∈ Ti\{0, 1}, g ∈ Ti )

9. 〈π2
i + 2(1 + πi h)〉 〈π2

μ(i) + 2πμ(i)ĥ y
ex〉

(h ∈ Ti\{0})
10. 〈π3

i + 2πi (1 + πi h)〉 〈πμ(i) + 2ĥ yex〉
(h ∈ Ti\{0})

11. 〈π3
i + 2h〉 (h ∈ Ti ) 〈π3

μ(i) + 2ĥ y3ex3〉
13. 〈π j

i + 2π j−2
i 〉 ( j = 2, 3) 〈π4− j

μ(i) 〉
14. 〈π j

i , 2〉 ( j = 1, 2, 3) 〈2π4− j
μ(i) 〉

15. 〈π2
i + 2, 2πi 〉 〈π3

μ(i), 2π
2
μ(i)〉

16. 〈π3
i , 2π2

i 〉 〈π2
μ(i) + 2y2ex2, 2πμ(i)〉

17. 〈π3
i + 2πi , 2π

2
i 〉 〈π2

μ(i), 2πμ(i)〉
18. 〈π2

i , 2πi 〉 〈π3
μ(i) + 2πμ(i)y

2ex2, 2π2
μ(i)〉

19. 〈π2
i + 2h, 2πi 〉 〈π3

μ(i) + 2πμ(i)(1 + ĥ)y2ex2, 2π2
μ(i)〉

(h ∈ Ti\{0, 1})
20. 〈π3

i + 2πi h, 2π2
i 〉 〈π2

μ(i) + 2(1 + ĥ)y2ex2, 2πμ(i)〉
(h ∈ Ti\{0, 1})

where ĥ = b0 + ∑mi−1
j=1 b j yn− j (mod fμ(i)(y)) and ĝ = g0 + ∑mi−1

j=1 g j yn− j

(mod fμ(i)(y)) for any h = ∑mi−1
j=0 b j y j , g = ∑mi−1

j=0 g j y j ∈ Ti .

Proof For any integer i , 1 ≤ i ≤ r , let Dμ(i) = μ(Ann(Ci )). Then Dμ(i) is an ideal
of the ring Rμ(i)[x]/〈x4 − y〉. SetD = ⊕r

i=1(Aμ(i)�ϕμ(i)Dμ(i)) = ⊕r
j=1(A j�ϕ j D j ),

where Dj = μ(Ann(Cμ( j))). ThenD is an ideal ofA[x]/〈x4 − y〉. Since (Ai�ϕi Ci ) ·
μ(Aμ(i)�ϕμ(i)Dμ(i)) = (Ai�ϕi Ci ) · (Ai�ϕiAnn(Ci )) = εi (y)(Ci · Ann(Ci )) = {0},
by Lemma 4.4 we have C · μ(D) = ∑r

i=1(Ai�ϕi Ci ) · μ(Aμ(i)�ϕμ(i)Dμ(i)) = {0}.
Hence D ⊆ C⊥ by Lemma 4.1.
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On the other hand, by Theorem 3.3 we see that |Ci ||Ann(Ci )| = 28mi for all
i = 1, . . . , r , which implies

|C||D| =
r∏

i=1

|Ai�ϕi Ci ||Aμ(i)�ϕμ(i)Dμ(i)| =
r∏

i=1

|Ci ||Dμ(i)|

=
r∏

i=1

|Ci ||Ann(Ci )| = 44
∑r

i=1 mi = 44n

= |Z4[x]/〈x4n − 1〉|.

As stated above, we conclude that C⊥ = D since Z4 is a finite chain ring.
It is clear that x4n = yn = 1 in Ri [x]/〈x4 − y〉 for any i = 1, . . . , r . Now, for any

integer l, 1 ≤ l ≤ 3, by Eq. (3) we have

μ
(
π l
i

)
= (

μ
(
yex − 1

))l =
((

y−1
)e

x−1 − 1
)l = (−1)l y−el x−l (yex − 1

)l

= (−1)l y−el x−lπ l
μ(i) = (−1)l yn−el x4n−lπ l

μ(i) ∈ Rμ(i)[x]/
〈
x4 − y

〉
.

Then the conclusions follow from Theorem 3.3, Lemma 4.3 and direct calculations. ��
Finally, we list all distinct self-dual cyclic codes over Z4 of length 4n by the fol-

lowing corollary.

Corollary 4.6 Using the notations in Theorem 4.5 and Lemma 4.2(ii), let C be a
cyclic code over Z4 of length 4n with C = ⊕r

i=1(Ai�ϕi Ci ), where Ci is an ideal of
Ri [x]/〈x4 − y〉. Then C is self-dual if and only if for each integer i , 1 ≤ i ≤ r , Ci

satisfies the following conditions:

(i) If 1 ≤ i ≤ λ, Ci is given by one of the following three cases:

〈2〉,
〈
π2
i + 2 (1 + πi )

〉
,

〈
π3
i

〉
.

(ii) If i = λ + j where 1 ≤ j ≤ ρ, then Ci is an ideal of Ri [x]/〈x4 − y〉 and
Ci+ρ = μ(Ann(Ci )) which is given in the table of Theorem 4.5.

Hence the number of all self-dual cyclic codes over Z4 of length 4n is equal to

3λ

λ+ρ∏

j=λ+1

(
9 + 5 · 2mi + 22mi

)
.

Proof Using the notations in Lemma 4.2(ii), by Theorem 4.5 we have

C = ⊕λ
i=1(Ai�ϕi Ci ) ⊕

(
⊕λ+ρ

i=λ+1

(
(Ai�ϕi Ci ) ⊕ (Ai+ρ�ϕi+ρ

Ci+ρ)
))

,

C⊥ = ⊕λ
i=1(Ai�ϕi Di ) ⊕

(
⊕λ+ρ

i=λ+1

(
(Ai�ϕi Di ) ⊕ (Ai+ρ�ϕi+ρ

Di+ρ)
))

,
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where Di = Dμ(i) = μ(Ann(Ci )) for all i = 1, . . . , λ, Di = Dμ(i+ρ) =
μ(Ann(Ci+ρ)) and Di+ρ = Dμ(i) = μ(Ann(Ci )) for all i = λ + 1, . . . , λ + ρ.

Now, by Theorem 2.6 we conclude that C = C⊥ if and only if Ci = Di for all
i = 1, . . . , λ + 2ρ. Precisely, Ci = Di if and only if Ci satisfies the following
conditions:

(i) Let 1 ≤ i ≤ λ. Then Ci = Dμ(i) = μ(Ann(Ci )). By Theorem 4.5, Ci must be
given by one of the following five cases:
• 〈2〉.
• 〈π2

i +2πi h〉, where h ∈ Ti\{0} satisfying h−(1+πi ĥ y−ex−1)y2ex2 ≡ 0 (mod
x4− y, fi (y), 2), i.e., ((1+ ĥ)y2e)x2+ (̂hye)x+h ≡ 0 (mod x4− y, fi (y), 2).
It is clear that there is no h ∈ Ti\{0} satisfying this condition.

• 〈π2
i + 2(h + πi g)〉, where h ∈ Ti\{0, 1} and g ∈ Ti satisfying h + πi g − (1+

ĥ +πi ĝ y−ex−1)y2ex2 ≡ 0 (mod x4 − y, fi (y), 2), i.e., ((1+ ĥ + ĝ)y2e)x2 +
((g + ĝ)ye)x + (h + g) ≡ 0 (mod x4 − y, fi (y), 2). It is clear that there is no
h ∈ Ti\{0, 1} and g ∈ Ti satisfying this condition.

• 〈π2
i + 2(1+ πi h)〉, where h ∈ Ti\{0} satisfying 1+ πi h − πi ĥ yex ≡ 0 (mod

x4 − y, fi (y), 2), i.e., ((h + ĥ)ye)x + (1 + h) ≡ 0 (mod x4 − y, fi (y), 2). It
is clear that the condition is equivalent to h = 1.

• 〈π3
i + 2h〉, where h ∈ Ti satisfying h − ĥ y3ex3 ≡ 0 (mod x4 − y, fi (y), 2).

It is clear that the condition is equivalent to h = 0.
As stated above, we conclude that Ci must be given by one of the following three
cases: 〈2〉, 〈π2

i + 2(1 + πi )〉, 〈π3
i 〉.

(ii) Let i = λ + j where 1 ≤ j ≤ ρ. Then Ci+ρ = Di+ρ = Dμ(i) = μ(Ann(Ci ))

as μ(i) = i + ρ. Furthermore, Ci+ρ = Di+ρ = μ(Ann(Ci )) implies Di =
Dμ(i+ρ) = μ(Ann(Ci+ρ)) = μ(Ann(μ(Ann(Ci ))) = Ci .

Therefore, (Ci ,Ci+ρ) is determined completely by the ideal Ci of Ri [x]/〈x4 − y〉
and the relation Ci+ρ = μ(Ann(Ci )). Hence the number of pairs of (Ci ,Ci+ρ) is
equal to N(4,mi ,2) = 9 + 5 · 2mi + 22mi by Lemma 3.2.

Finally, from (i) and (ii) we deduce that number of all self-dual cyclic codes over
Z4 of length 4n is equal to 3λ

∏λ+ρ
i=λ+1(9 + 5 · 2mi + 22mi ). ��

5 Examples

In this section, we give all self-dual cyclic codes over Z4 of length 28 and 60.
♦ In the case of N = 28 = 4n where n = 7, it is known that y7 − 1 =

f1(y) f2(y) f3(y), where f1(y) = y − 1, f2(y) = y3 + 2y2 + y + 3 and f3(y) =
y3 + 3y2 + 2y + 3 are pairwise coprime monic basic irreducible polynomials in
Z4[y]. Obviously, f̃1(y) = δ1 f1(y) and f̃2(y) = δ2 f3(y) where δ1 = δ2 = −1,
which implies that μ(1) = 1 and μ(2) = 3. Hence m1 = 1, m2 = m3 = 3,
r = 3 and λ = ρ = 1. By Lemma 3.2 and Corollary 4.6, the number of cyclic
codes and the number of self-dual cyclic codes over Z4 of length 28 is equal to
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∏3
i=1 N(4,mi ;2) = ∏3

i=1(9+5 ·2mi +22mi ) = 23 ·1132 = 293, 687 and 3 ·113 = 339,
respectively.

Using the notations in Sect. 2, for each integer i , 1 ≤ i ≤ 3, we denote Fi (y) =
y7−1
fi (y)

, andfindpolynomialsui (y), vi (y) ∈ Z4[y] satisfyingui (y)Fi (y)+vi (y) fi (y) =
1. Then set εi (y) ≡ ui (y)Fi (y) (mod y7 − 1). Precisely, we have

ε1(y) = 3 + 3y + 3y2 + 3y3 + 3y4 + 3y5 + 3y6;
ε2(y) = 1 + 3y + 3y2 + 2y3 + 3y4 + 2y5 + 2y6;
ε3(y) = 1 + 2y + 2y2 + 3y3 + 2y4 + 3y5 + 3y6.

LetA = Z4[y]/〈y7 −1〉 andAi = Aεi (y). ThenAi is a basic irreducible cyclic code
over Z4 of length 7 with parity check polynomial fi (y) for i = 1, 2, 3. Precisely, we
know that

• A1 is a freeZ4-submodule ofZ7
4, rankZ4(A1) = 1, and a generator matrix is given

by GA1 = (3, 3, 3, 3, 3, 3, 3). Hence A1 = {(a, a, a, a, a, a, a) | a ∈ Z4} and
dmin(A1) = 7.

• A2 is a free Z4-submodule of Z7
4, rankZ4(A2) = 3, and a generator matrix is

given by GA2 =
(

1 3 3 2 3 2 2
2 1 3 3 2 3 2
2 2 1 3 3 2 3

)

. Hence A2 = {wGA2 | w ∈ Z
3
4} and

dmin(A2) = 4.
• A3 is a free Z4-submodule of Z7

4, rankZ4(A3) = 3, and a generator matrix is

given by GA3 =
(

1 2 2 3 2 3 3
3 1 2 2 3 2 3
3 3 1 2 2 3 2

)

. Hence A3 = {wGA3 | w ∈ Z
3
4} and

dmin(A3) = 4.

Denote Ri = Z4[y]/〈 fi (y)〉. Obviously, 4·5 ≡ −1 (mod 7), which implies (y5)4 =
y−1 by y7 = 1 in Ri for all i = 1, 2, 3. Using the notations in Sect. 3, we have e = 5.
Therefore, by Corollary 4.6 we conclude that all distinct self-dual cyclic codes over
Z4 of length 28 are given by

C = (A1�ϕ1C1) ⊕ (A2�ϕ2C2) ⊕ (A3�ϕ3C3),

where Ci is a y-constacyclic code over Ri of length 4, i.e., an ideal of the ring
Ri [x]/〈x4 − y〉, satisfying the following conditions:

• C1 is is an ideal of Z4/〈x4 − 1〉 given by one of the following 3 cases:

〈2〉 ,
〈
(x − 1)2 + 2x

〉
,

〈
(x − 1)3

〉
.

• (C2,C3) is given by one of the following 113 cases, since y−5x−1 = yx3,
(y5x)2 = y3x2 and (y5x)3 = yx3:
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Case C2 (mod x4 − y, f2(y)) C3 (mod x4 − y, f3(y)) LC

1. 〈0〉 〈1〉 1

2. 〈1〉 〈0〉 1

3. 〈π j
2 〉 ( j = 1, 2) 〈π4− j

3 + 2π2− j
3 y3x2〉 2

4. 〈2〉 〈2〉 1

5. 〈2π s
2 〉 (s = 1, 2, 3) 〈π4−s

3 , 2〉 3

6. 〈π2 + 2h〉 (h ∈ T2\{0}) 〈π3
3 + 2π3(1 + π3ĥ yx

3)y3x2〉 7

7. 〈π2
2 + 2π2h〉 (h ∈ T2\{0}) 〈π2

3 + 2(1 + π3ĥ yx
3)y3x2〉 7

8. 〈π2
2 + 2(h + π2g)〉 〈π2

3 + 2(1 + ĥ + π3 ĝyx
3)y3x2〉 48

(h ∈ T2\{0, 1}, g ∈ T2)
9. 〈π2

2 + 2(1 + π2h)〉 〈π2
3 + 2π3ĥ y5x〉 7

(h ∈ T2\{0})
10. 〈π3

2 + 2π2(1 + π2h)〉 〈π3 + 2ĥ y5x〉 7

(h ∈ T2\{0})
11. 〈π3

2 + 2h〉 (h ∈ T2) 〈π3
3 + 2ĥ yx3〉 8

13. 〈π j
2 + 2π j−2

2 〉 ( j = 2, 3) 〈π4− j
3 〉 2

14. 〈π j
2 , 2〉 ( j = 1, 2, 3) 〈2π4− j

3 〉 3

15. 〈π2
2 + 2, 2π2〉 〈π3

3 , 2π2
3 〉 1

16. 〈π3
2 , 2π2

2 〉 〈π2
3 + 2y3x2, 2π3〉 1

17. 〈π3
2 + 2π2, 2π

2
2 〉 〈π2

3 , 2π3〉 1

18. 〈π2
2 , 2π2〉 〈π3

3 + 2π3y3x2, 2π
2
3 〉 1

19. 〈π2
2 + 2h, 2π2〉 〈π3

3 + 2π3(1 + ĥ)y3x2, 2π2
3 〉 6

(h ∈ T2\{0, 1})
20. 〈π3

2 + 2π2h, 2π2
2 〉 〈π2

3 + 2(1 + ĥ)y3x2, 2π3〉 6

(h ∈ T2\{0, 1})

where T2 = {∑2
j=0 t j y

j | t0, t1, t2 ∈ {0, 1}} and LC is the number of pairs (C2,C3)

in the same row. Furthermore, we have the following

• π1 = y5x − 1 = x − 1 ∈ R1[x]/〈x4 − 1〉 where R1 = Z4[y]/〈 f1(y)〉 = Z4;
• π2 = y5x − 1 = (y2 + 3y + 3)x − 1 ∈ R2[x]/〈x4 − y〉 since y5 ≡ y2 + 3y + 3
(mod f2(y));

• π3 = y5x − 1 = (2y2 + 3y+ 3)x − 1 ∈ R3[x]/〈x4 − y〉 since y5 ≡ 2y2 + 3y+ 3
(mod f3(y)),

and ϕi : Ri → Ai is given by

• ϕ1(a) = aε1(y) for all a ∈ R1;
• ϕi (a(y)) = a(y)εi (y) for all a(y) ∈ Ri , i = 2, 3.

Next, by an example we describe how to obtain an encoder for each self-dual
code over Z4 of length 28 listed above. Choose C = (A1�ϕ1C1) ⊕ (A2�ϕ2C2) ⊕
(A3�ϕ3C3), where C1 = 〈(x − 1)3〉, C2 = 〈π2

2 + 2(1 + π2h)〉 and C3 = 〈π2
3 +

2π3ĥ y5x〉 in which h = y + y2. As y7 = 1 we have ĥ = y−1 + (y−1)2 = y5 + y6.
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By Cases 11 and 9 in Theorem 3.3, it follows that |C1| = 24m1 = 42 and |C2| =
|C3| = 24m2 = 46, which implies |C| = |C1||C2||C3| = 414. Furthermore, we have
the following:

• C1 = 〈3+3x + x2 + x3〉. Then a generator matrix of the cyclic codeC1 over R1 is

GC1 =
⎛

⎝

3 3 1 1
1 3 3 1
1 1 3 3
3 1 1 3

⎞

⎠. Since the companion matrix of f1(y) = y−1 is M f1 = (1),

by Theorem 2.5 a generator matrix of A1�ϕ1C1 is given by

GA1�ϕ1C1 =

⎛

⎜
⎜
⎜
⎝

3GA1 3GA1 GA1 GA1

GA1 3GA1 3GA1 GA1

GA1 GA1 3GA1 3GA1

3GA1 GA1 GA1 3GA1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

• C2 = 〈(3+ 2y + 2y2)+ (2+ 2y)x + (1+ 3y + 2y2)x2〉. Then a generator matrix
of the y-constacyclic code C2 over R2 is given by

GC2 =

⎛

⎜
⎜
⎜
⎝

α2 β2 γ2 0

0 α2 β2 γ2

yγ2 0 α2 β2

yβ2 yγ2 0 α2

⎞

⎟
⎟
⎟
⎠

,

where α2 = 3 + 2y + 2y2, β2 = 2 + 2y, γ2 = 1 + 3y + 2y2, yβ2 = 2y + 2y2

and yγ2 = 2 + 3y + 3y2. Using the notations of Theorem 2.5, we have

Aα2 = 3I3 + 2M f2 + 2M2
f2 =

⎛

⎝
3 2 2
2 1 2
2 0 1

⎞

⎠ ,

Aβ2 = 2I3 + 2M f2 =
⎛

⎝
2 2 0
0 2 2
2 2 2

⎞

⎠ ,

Aγ2 = I3 + 3M f2 + 2M2
f2 =

⎛

⎝
1 3 2
2 3 3
3 3 1

⎞

⎠ ,

Ayβ2 = 2M f2 + 2M2
f2 =

⎛

⎝
0 2 2
2 2 2
2 0 2

⎞

⎠ ,
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Ayγ2 = 2I3 + 3M f2 + 3M2
f2 =

⎛

⎝
2 3 3
3 3 1
1 2 1

⎞

⎠ .

Since the companionmatrix of f2(y) isM f2 =
(

0 1 0
0 0 1
1 3 2

)

, by Theorem 2.5 a generator

matrix of A2�ϕ2C2 is given by

GA2�ϕ2C2 =

⎛

⎜
⎜
⎜
⎝

Aα2GA2 Aβ2GA2 Aγ2GA2 0

0 Aα2GA2 Aβ2GA2 Aγ2GA2

Ayγ2GA2 0 Aα2GA2 Aβ2GA2

Ayβ2GA2 Ayγ2GA2 0 Aα2GA2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 3 1 2 3 0 0 2 0 0 2 2 2 0 3 2 2 1 3 3 2 0 0 0 0 0 0 0

0 3 3 1 2 3 0 0 2 0 0 2 2 2 2 3 2 2 1 3 3 0 0 0 0 0 0 0

0 0 3 3 1 2 3 2 0 2 0 0 2 2 3 2 3 2 2 1 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3 3 1 2 3 0 0 2 0 0 2 2 2 0 3 2 2 1 3 3 2

0 0 0 0 0 0 0 0 3 3 1 2 3 0 0 2 0 0 2 2 2 2 3 2 2 1 3 3

0 0 0 0 0 0 0 0 0 3 3 1 2 3 2 0 2 0 0 2 2 3 2 3 2 2 1 3

2 3 2 2 1 3 3 0 0 0 0 0 0 0 3 3 1 2 3 0 0 2 0 0 2 2 2 0

3 2 3 2 2 1 3 0 0 0 0 0 0 0 0 3 3 1 2 3 0 0 2 0 0 2 2 2

3 3 2 3 2 2 1 0 0 0 0 0 0 0 0 0 3 3 1 2 3 2 0 2 0 0 2 2

0 2 0 0 2 2 2 2 3 2 2 1 3 3 0 0 0 0 0 0 0 3 3 1 2 3 0 0

2 0 2 0 0 2 2 3 2 3 2 2 1 3 0 0 0 0 0 0 0 0 3 3 1 2 3 0

2 2 0 2 0 0 2 3 3 2 3 2 2 1 0 0 0 0 0 0 0 0 0 3 3 1 2 3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

• C3 = 〈1+ 2x + (1+ 3y2)x2〉. Then a generator matrix of the y-constacyclic code
C3 over R3 is given by

GC3 =

⎛

⎜
⎜
⎜
⎝

1 2 α3 0

0 1 2 α3

yα3 0 1 2

2y yα3 0 1

⎞

⎟
⎟
⎟
⎠

,

where α3 = 1 + 3y2, yα3 = 3 + 3y + 3y2. Using the notations in Theorem 2.5,
we have Ay = M f3 and
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Aα3 = I3 + 3M2
f3 =

⎛

⎝
1 0 3
3 3 3
3 1 2

⎞

⎠ ,

Ayα3 = 3I3 + 3M f3 + 3M2
f3 =

⎛

⎝
3 3 3
3 1 2
2 3 3

⎞

⎠ .

Since the companionmatrix of f3(y) isM f3 =
(

0 1 0
0 0 1
1 2 1

)

, by Theorem 2.5 a generator

matrix of A3�ϕ2C3 is given by

GA3�ϕ2C3 =

⎛

⎜
⎜
⎜
⎝

GA3 2GA3 Aα3GA3 0

0 GA3 2GA3 Aα3GA3

Ayα3GA3 0 GA3 2GA3

2M f3GA3 Ayα3GA3 0 GA3

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 2 3 2 3 3 2 0 0 2 0 2 2 2 3 1 1 0 0 1 0 0 0 0 0 0 0

3 1 2 2 3 2 3 2 2 0 0 2 0 2 1 2 3 1 1 0 0 0 0 0 0 0 0 0

3 3 1 2 2 3 2 2 2 2 0 0 2 0 0 1 2 3 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 2 3 2 3 3 2 0 0 2 0 2 2 2 3 1 1 0 0 1

0 0 0 0 0 0 0 3 1 2 2 3 2 3 2 2 0 0 2 0 2 1 2 3 1 1 0 0

0 0 0 0 0 0 0 3 3 1 2 2 3 2 2 2 2 0 0 2 0 0 1 2 3 1 1 0

1 2 3 1 1 0 0 0 0 0 0 0 0 0 1 2 2 3 2 3 3 2 0 0 2 0 2 2

0 1 2 3 1 1 0 0 0 0 0 0 0 0 3 1 2 2 3 2 3 2 2 0 0 2 0 2

0 0 1 2 3 1 1 0 0 0 0 0 0 0 3 3 1 2 2 3 2 2 2 2 0 0 2 0

2 2 0 0 2 0 2 1 2 3 1 1 0 0 0 0 0 0 0 0 0 1 2 2 3 2 3 3

2 2 2 0 0 2 0 0 1 2 3 1 1 0 0 0 0 0 0 0 0 3 1 2 2 3 2 3

0 2 2 2 0 0 2 0 0 1 2 3 1 1 0 0 0 0 0 0 0 3 3 1 2 2 3 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then by Corollary 3.5, a generator matrix of the self-dual cyclic code C over Z4 of

length 28 is given by GC =
⎛

⎝
GA1�ϕ1C1
GA2�ϕ2C2
GA3�ϕ3C3

⎞

⎠. Now, by performing a reduction on GC

we obtain a standard generator matrix of the self-dual cyclic code C over Z4 of length

28 given by G =
⎛

⎝

g1
g2
. . .

g14

⎞

⎠, where

g1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3);
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g2 = (3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3);
g3 = (3, 3, 1, 2, 3, 0, 0, 2, 0, 0, 2, 2, 2, 0, 3, 2, 2, 1, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0);
g4 = (0, 3, 3, 1, 2, 3, 0, 0, 2, 0, 0, 2, 2, 2, 2, 3, 2, 2, 1, 3, 3, 0, 0, 0, 0, 0, 0, 0);
g5 = (0, 0, 3, 3, 1, 2, 3, 2, 0, 2, 0, 0, 2, 2, 3, 2, 3, 2, 2, 1, 3, 0, 0, 0, 0, 0, 0, 0);
g6 = (0, 0, 0, 0, 0, 0, 0, 3, 3, 1, 2, 3, 0, 0, 2, 0, 0, 2, 2, 2, 0, 3, 2, 2, 1, 3, 3, 2);
g7 = (0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 1, 2, 3, 0, 0, 2, 0, 0, 2, 2, 2, 2, 3, 2, 2, 1, 3, 3);
g8 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 1, 2, 3, 2, 0, 2, 0, 0, 2, 2, 3, 2, 3, 2, 2, 1, 3);
g9 = (1, 2, 2, 3, 2, 3, 3, 2, 0, 0, 2, 0, 2, 2, 2, 3, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0);
g10 = (3, 1, 2, 2, 3, 2, 3, 2, 2, 0, 0, 2, 0, 2, 1, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0);
g11 = (3, 3, 1, 2, 2, 3, 2, 2, 2, 2, 0, 0, 2, 0, 0, 1, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0);
g12 = (0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 2, 3, 3, 2, 0, 0, 2, 0, 2, 2, 2, 3, 1, 1, 0, 0, 1);
g13 = (0, 0, 0, 0, 0, 0, 0, 3, 1, 2, 2, 3, 2, 3, 2, 2, 0, 0, 2, 0, 2, 1, 2, 3, 1, 1, 0, 0);
g14 = (0, 0, 0, 0, 0, 0, 0, 3, 3, 1, 2, 2, 3, 2, 2, 2, 2, 0, 0, 2, 0, 0, 1, 2, 3, 1, 1, 0).

Therefore, C is encoded by

C =
{
uG | u ∈ Z

14
4

}
=

⎧
⎨

⎩

14∑

j=1

u jg j | u1, . . . , u14 ∈ Z4

⎫
⎬

⎭
.

Precisely, the Hamming weight enumerator of the self-dual cyclic code C over Z4 of
length 28 is given by

W (H)
C (Y ) = 1 + 14Y 2 + 91Y 4 + 364Y 6 + 448Y 7 + 1001Y 8 + 4032Y 9

+18130Y 10 + 41216Y 11 + 154875Y 12 + 344064Y 13 + 890472Y 14

+1828736Y 15 + 3660475Y 16 + 6340992Y 17 + 9985234Y 18

+13558272Y 19 + 17731945Y 20 + 19586560Y 21 + 20430956Y 22

+16488640Y 23 + 11621211Y 24 + 6754496Y 25 + 3548174Y 26

+1112832Y 27 + 114497Y 28.

♦ In the case of N = 60 = 4·15.Using the notations of Lemma4.2, byExample 3.4
we see that

f̃1(y) = − f1(y), f̃2(y) = f2(y), f̃3(y) = f3(y) and f̃4(y) = f5(y),

which imply μ(4) = 5 and μ(i) = i for i = 1, 2, 3. Hence λ = 3 and ρ = 1. From
these and by Corollary 4.6, we deduce that the number of self-dual cyclic codes over
Z4 of length 60 is equal to 33 · 345 = 9315.

Specifically, all distinct self-dual cyclic codes over Z4 of length 60 are the follow-
ing:

(A1�ϕ1C1) ⊕ (A2�ϕ2C2) ⊕ (A3�ϕ3C3) ⊕ (A4�ϕ4C4) ⊕ (A5�ϕ5C5),
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• For each integer i , 1 ≤ i ≤ 3, Ci is given by one of the following cases:

〈2〉 ,
〈
π2
i + 2(1 + πi )

〉
,

〈
π3
i

〉
,

which are y-constacyclic codes over Ri of length 4.
• As x−1 = x59 = (x4)14x3 = y14x3, we have y−11x−1 = y3x3 and y22 = y7. By
Theorem 4.5 and Corollary 4.6, (C4,C5) is given by one of the following cases:

Case C4 (mod x4 − y, f4(y)) C5 (mod x4 − y, f5(y)) LC

1. 〈0〉 〈1〉 1

2. 〈1〉 〈0〉 1

3. 〈π j
4 〉 ( j = 1, 2) 〈π4− j

5 + 2π2− j
5 y7x2〉 2

4. 〈2〉 〈2〉 1

5. 〈2π s
4 〉 (s = 1, 2, 3) 〈π4−s

5 , 2〉 3

6. 〈π4 + 2h〉 (h ∈ T4\{0}) 〈π3
5 + 2π5(1 + π5ĥ y

3x3)y7x2〉 15

7. 〈π2
4 + 2π4h〉 (h ∈ T4\{0}) 〈π2

5 + 2(1 + π5ĥ y
3x3)y7x2〉 15

8. 〈π2
4 + 2(h + π4g)〉 〈π2

5 + 2(1 + ĥ + π5 ĝy
3x3)y7x2〉 224

(h ∈ T4\{0, 1}, g ∈ T4)
9. 〈π2

4 + 2(1 + π4h)〉 〈π2
5 + 2π5ĥ y

11x〉 15

(h ∈ T4\{0})
10. 〈π3

4 + 2π4(1 + π4h)〉 〈π5 + 2ĥ y11x〉 15

(h ∈ T4\{0})
11. 〈π3

4 + 2h〉 (h ∈ T4) 〈π3
5 + 2ĥ y3x3〉 16

13. 〈π j
4 + 2π j−2

4 〉 ( j = 2, 3) 〈π4− j
5 〉 2

14. 〈π j
4 , 2〉 ( j = 1, 2, 3) 〈2π4− j

5 〉 3

15. 〈π2
4 + 2, 2π4〉 〈π3

5 , 2π2
5 〉 1

16. 〈π3
4 , 2π2

4 〉 〈π2
5 + 2y7x2, 2π5〉 1

17. 〈π3
4 + 2π4, 2π

2
4 〉 〈π2

5 , 2π5〉 1

18. 〈π2
4 , 2π4〉 〈π3

5 + 2π5y
7x2, 2π2

5 〉 1

19. 〈π2
4 + 2h, 2π4〉 〈π3

5 + 2π5(1 + ĥ)y7x2, 2π2
5 〉 14

(h ∈ T4\{0, 1})
20. 〈π3

4 + 2π4h, 2π2
4 〉 〈π2

5 + 2(1 + ĥ)y7x2, 2π5〉 14

(h ∈ T4\{0, 1})

whereT4 = {∑3
j=0 t j y

j | t0, t1, t2, t3 ∈ {0, 1}} and LC is the number of pairs (C4,C5)

in the same row.
Finally, we list the numberN of self-dual cyclic codes over Z4 of length 4n, where

n is odd and 12 ≤ 4n ≤ 100, by the following table.
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4n N 4n N 4n N

12, 20, 44, 52, 76 9 28 339 84 4,500,225

36, 68, 100 27 60 9315 92 12,613,659

6 Conclusions

We have given precise description for cyclic codes over Z4, present precisely dual
codes and investigate self-duality for cyclic codes over Z4 of length 4n. These codes
enjoy a rich algebraic structure compared to arbitrary linear codes (which makes the
search process much simpler). Obtaining some bounds for minimal distance such as
BCH-like of a cyclic code over the ringZ4 by just looking at the concatenated structure
would be rather interesting.
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