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Abstract Recently, Edwards curves have received a lot of attention in the crypto-
graphic community due to their fast scalar multiplication algorithms. Then, many
works on the application of these curves to pairing-based cryptography have been
introduced. In this paper, we investigate refinements to Miller’s algorithm that play
a central role in paring computation. We first introduce a variant of Miller function
that leads to a more efficient variant of Miller’s algorithm on Edwards curves. Then,
based on the new Miller function, we present a refinement to Miller’s algorithm that
significantly improves the performance in comparison with the original Miller’s algo-
rithm. Our analyses also show that the proposed refinement is approximately 25%
faster than Xu–Lin’s refinements (CT-RSA, 2010). Last but not least, our approach is
generic, hence the proposed algorithms allow to compute bothWeil and Tate pairings
on pairing-friendly Edwards curves of any embedding degree.
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1 Introduction

In 2007, Bernstein and Lange [7] introduced Edwards curves to cryptography. Their
study and subsequent works in [2,8,9,16] showed that the addition law on such
curves is more efficient than all previously known formulas. Edwards curves have thus
attracted great interest in applications that require elliptic curve operations to achieve
faster arithmetic. Subsequently, the application of Edwards curves to pairing-based
cryptography has been studied in several research papers [1,13,17,20,24]. Although,
pairing computation onEdwards curves is slightly slower than onWeierstrass curves so
far. However, in many pairing-based cryptosystems, the most time-consuming opera-
tion is still to compute scalarmultiplesaP of a point P , and it thusmaybe advantageous
to use Edwards curves in these applications.

Pairing (or bilinear map) is probably the most useful cryptographic tool in the
2000s. It was first introduced to cryptography in Joux’s seminal paper [18] in 2000
that describes a tripartite (bilinear) Diffie–Hellman key exchange. Then, the use of
cryptosystems based on pairings has had a huge success with some notable break-
throughs such as the first practical identity-based encryption scheme [4].

Miller’s algorithm [21,22] plays an important role in pairing computations on ellip-
tic curves. Many papers are devoted to improvements in its efficiency. For example,
using specific pairing-friendly elliptic curves to speed upMiller’s algorithm [5,10,12].
Another approach of improving Miller’s algorithm is to reduce the Miller-loop length
by introducing variants of Tate pairings, for example Eta pairing [6], Ate pair-
ing [15], and particular optimal pairings [14,23]. For a more generic approach, studies
in [3,11,19] improved the performance for computing pairings of any type (i.e., Weil,
Tate, optimal pairings), and on generic pairing-friendly elliptic curves.

Basically, Miller’s algorithm is based on a rational function g of three points
P1, P2, P3. This function is called Miller function and has its divisor div(g) =
(P1) + (P2) − (P3) − (O), where O is a distinguished point (i.e. the neutral ele-
ment of the group law). For curves of Weierstrass form, this function is defined to be
the line passing through points P1 and P2 divided by the vertical line passing through
the point P3, where P3 = [P1 + P2]. On Edwards curves, finding such a point P3 is
not straightforward as in Weierstrass curves because Edwards equation has degree 4,
i.e. any line has 4 intersections with the curves instead of 3 on Weierstrass curves.

In [1], Arene et al. presented the first geometric interpretation of the group law on
Edwards curves and showedhow to computeTate pairing on twistedEdwards curves by
using a conic of degree 2. They also introduced explicit formulaswith a focus on curves
having an even embedding degree1. Then, Xu and Lin [24] proposed refinements to
Miller’s algorithm that sped up the pairing computation on generic Edwards curves,
i.e. curves with arbitrary embedding degree. The cost of their refinements is about
76.8% of that of the original Miller’s algorithm on Edwards curves.

In this paper, we further extend Xu–Lin’s works and propose new refinements to
Miller’s algorithm.Similar toXu–Lin’s refinements, our approach isgeneric.Although

1 Let E be an elliptic curve defined over a prime finite field Fp , and r be a prime dividing #E(Fp). The
embedding degree of E with respect to r is the smallest positive integer k such that r |pk −1. In other words,
k is the smallest integer such that F∗

pk
contains r -roots of unity.
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this approach did not bring a dramatic efficiency as that of Arene et al. [1] when com-
puting Tate pairing over Edwards curves with even embedded degrees, the proposed
refinements can be used to compute pairings of any type over pairing-friendly Edwards
curves with any embedding degree. This approach is of particular interest to compute
optimal pairings [14,23], and in situations where the denominator elimination tech-
nique using a twist is not possible (e.g., Edwards curveswith odd embedding degrees).2

We also analyze and show that our new algorithm is faster than the original Miller
algorithm and Xu–Lin’s refinements. When the embedding degree k gets larger, the
time required to performoperations in the full extension field dominates that in the base
field, then our algorithm is faster by approximately 25% than Xu–Lin’s algorithm.

The paper is organized as follows. In Sect. 2, we briefly recall some background on
pairing computation on Edwards curves, and then Xu–Lin’s refinements. In Sect. 3,
we present our refinements of Miller’s algorithm. Section 4 gives some discussion on
performance of the proposed algorithms. Section 5 is our conclusion.

2 Preliminaries

2.1 Pairings on Edwards curves

Let Fp be a prime finite field, where p is a prime different from 2. A twisted Edwards
curve Ea,d definedoverFp is the set of solutions (x, y)of the followingaffine equation:

Ea,d : ax2 + y2 = 1 + dx2y2, (1)

where a, d ∈ F
∗
p, and a �= d. Let P1 = (x1, y1) be a point on Ea,d . The negative of

P is −P = (−x1, y1). The point O = (0, 1) is the neutral element of the addition
law. The point O ′ = (0,−1) has order 2. The points at infinity Ω1 = (1 : 0 : 0)
and Ω2 = (0 : 1 : 0) are singular. The studies in [2,9,16] showed that twisted
Edwards curves provide the fastest doubling and addition operations in elliptic curve
cryptography.

The cryptographic pairing is a bilinear map that takes two points on elliptic curves
defined over finite fields and returns a value in extension finite field. Let r be a prime
number different from p and r |#Ea,d(Fp), where #Ea,d(Fp) is the number of points on
the Edwards curve Ea,d . Let k be the embedding degree of the elliptic curve Ea,d with
respect to r , and let Ea,d [r ] denote the subgroup of points of order r on the Edwards
curves Ea,d . A cryptographic pairing is defined over an Edwards curves Ea,d as:

e : Ea,d [r ] × Ea,d [r ] → F
∗
pk

2 Note that by definition optimal pairings only require about log2(r)/ϕ(k) iterations of the basic loop,where
r is the group order, ϕ is Euler’s totient function, and k is the embedding degree. For example, when k is
prime, then ϕ(k) = k−1. If we choose a curve having embedding degree k±1, then ϕ(k±1) ≤ k+1

2 which

is roughly ϕ(k)
2 = k−1

2 , so that at least twice as many iterations are necessary if curves with embedding
degrees k ± 1 are used instead of curves of embedding degree k.
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The key to the definition of pairings is the evaluation of rational functions in divisors.
In this section, we briefly recall Miller’s algorithm [22] that is so far the best known
method to compute pairings over (hyper-)elliptic curves. Readers who want to know
more about pairings can refer to papers [22,23]. Let P, Q ∈ Ea,d be two points of
order r . The main part of Miller’s algorithm is to construct the rational function fr,P
and evaluating fr,P (Q) with div( fr,P ) = r(P) − (r P) − [r − 1](O).

Let m and n be two integers, and gmP,nP be a rational function, so-called Miller
function, whose divisor div(gmP,nP ) = (mP) + (nP) − ([m + n]P) − (O). Miller’s
algorithm is based on the following lemma.

Lemma 1 (Lemma 2, [22]) For n and m two integers, up to a multiplicative constant,
we have

fm+n,P = fm,P fn,PgmP,nP . (2)

Equation (2) is called Miller relation, which is proved by considering divisors.
Miller’s algorithm makes use of Lemma 1 with m = n in a doubling step and n = 1
in an addition step. For Edwards curves, Arene et al. [1] defined the Miller function
in the following theorem.

Theorem 1 (Theorem 2, [1]) Let a, d ∈ F
∗
p, a �= d and Ea,d be a twisted Edwards

curve over Fp. Let P1, P2 ∈ Ea,d(Fp). Define P3 = P1 + P2. Let φP1,P2 be the
equation of the conic C passing through P1, P2,−P3,Ω1,Ω2,O ′ whose divisor is
(P1) + (P2) + (−P3) + (O ′) − 2(Ω1) − 2(Ω2). Let �1,P3 be the horizontal line going
through P3 whose divisor is div(�1,P3) = (P3) + (−P3) − 2(Ω2), and �2,O is the
vertical line going through O whose divisor is (O) + (O ′) − 2(Ω1). Then we have

div

(
φP1,P2

�1,P3�2,O

)
∼ (P1) + (P2) − (P3) − (O). (3)

The rational function gP1,P2 = φP1,P2
�1,P3�2,O

consists of three terms and can be thus

considered as Miller function on Edwards curves. Miller’s algorithm for Edwards
curves using this function works as in Algorithm 1.

2.2 Xu–Lin’s refinements

For simplicity, we make use of the notation φP,P (resp. �2,[2]P , and �1,O ) replacing for
φP,P (Q) (resp. �2,[2]P (Q), and �1,O (Q)). By extending the Blake et al.’s method [11]
to Edwards curves, Xu and Lin [24] presented a refinement of Miller’s algorithm.
Their algorithm was derived from the following theorem.

Theorem 2 (Theorem 1, [24]) Let Ea,d be a twisted Edwards curve over Fp and
P, R ∈ Ea,d be two points of order r . Then,

1.

(
φR,R

�1,[2]R�2,O

)2
φ[2]R,[2]R
�1,[4]R�2,O

= φ2
R,R

φ[−2]R,[−2]RφO,O
;
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Further refinements of Miller’s algorithm on Edwards curves 209

Input: r = ∑t
i=0 ri2

i with ri ∈ {0, 1}, P, Q ∈ E[r ];
Output: f = fr,P (Q);

R ← P , f ← 1, g ← 1
for i = t − 1 to 0 do

f ← f 2 · φR,R(Q)

g ← g2 · �1,2R(Q) · �2,O (Q)

R ← 2R
if (ri = 1) then

f ← f · φR,P (Q)

g ← g · �1,R+P (Q) · �2,O (Q)

R ← R + P
end

end
return f/g

Algorithm 1:Miller’s Algorithm for twisted Edwards curves [24]

2.

φR,R

�1,[2]R�2,O

φ[2]R,P

�1,[2]R+P�2,O
= φR,R�1,P

φ[2]R+P,−P�2,O
.

The above theorem was proven by calculating divisors (see [24] for more details).
From this theorem, they described a variant of Miller’s algorithm in radix-4 [24,
Algorithm 3]. They also claimed that the total cost of the proposed algorithm is about
76.8% of that of the originalMiller algorithm. In the following section, wewill present
our refinements that are approximately 25% faster than Xu–Lin’s refinements.

3 Our improvements on Miller’s algorithm

3.1 First improvement

We first present a new rational function whose divisor is equivalent to Miller function
(Eq. (3)) presented in [1].

Definition 1 Let Ea,d be a twisted Edwards curve and R, P ∈ Ea,d . Let φR,P be a
conic passing through R and P , and let φR+P,−[R+P] a conic passing through R + P
and −[R + P]. Then we define

gR,P = φR,P

φR+P,−[R+P]
. (4)

Lemma 2 We have

div(gR,P ) = (R) + (P) − ([R + P]) − O.

Proof By calculating divisors, it is straightforward to see that

div(gR,P) = (R) + (P) + (−[R + P]) + (O ′) − 2(Ω1) − 2(Ω2)
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−([R + P]) − (−[R + P]) − (O) − (O ′) + 2(Ω1) + 2(Ω2)

= (R) + (P) − ([R + P]) − (O) .

which concludes the proof. 
�
Recall that the Miller function is defined as gR,P = �R,P

υR+P
on Weierstrass curves,

where �R,P , υR+P are lines passing through R, P and R+ P,−[R+ P], respectively
(see [22]). Eq. (4) thus looks like the Miller function on Weierstrass curves if a conic
plays role of a line function. Notice that during pairing computation, R is multiple of
the inputted point P . By applying Eq. (4), a variant of Miller’s algorithm is described
in Algorithm 2.

Input: r = ∑t
i=0 ri2

i with ri ∈ {0, 1}, P, Q ∈ E[r ];
Output: f = fr (Q);

R ← P , f ← 1, g ← 1
for i = t − 1 to 0 do

1 f ← f 2 · φR,R(Q)

2 g ← g2 · φ2R,−2R(Q)

R ← 2R
if (ri = 1) then

3 f ← f · φR,P (Q)

4 g ← g · φR+P,−(R+P)(Q)

R ← R + P
end

end
return f/g

Algorithm2:First improvement ofMiller’sAlgorithm for twistedEdwards curves

Remark 1 As the original Miller algorithm, our algorithm cannot avoid divisions
needed to update f . But we can reduce them easily to one inversion at the end of
the addition chain (for the cost of one squaring, and one extra multiplication if ri = 1
per iteration of the algorithm).

Algorithm 2 always performs one doubling step per iteration and one addition
step if ri = 1. To update functions f, g, the doubling step requires 2 squarings
and 2 multiplications in the full extension field Fpk and the addition step requires 2
multiplications. It is obvious to see that Algorithm 2 requires only one multiplication
for updating the function g in doubling/addition steps instead of twomultiplications as
in Algorithm 1. Notice that this multiplication is costly because it is performed in the
full extension field. In Sect. 4, we will provide a detailed analysis on the performance
of these algorithms. In the following section, we introduce a further refinement that
even offers a better performance in comparison with Algorithm 2.

3.2 Further refinement

The new refinement is inspired by the following lemmas.
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Lemma 3 We have

gR,P = φR,−R · φP,−P

φ−R,−P · φO,O
. (5)

Proof Again, this lemma is proved by considering divisors. Indeed,

div
(

φR,−R ·φP,−P
φ−R,−P ·φO,O

)
= (R) + (−R) + (O) + (O ′) − 2(Ω1) − 2(Ω2)

+(P) + (−P) + (O) + (O ′) − 2(Ω1) − 2(Ω2)

−(−R) − (−P) − ([R + P]) − (O ′) + 2(Ω1) + 2(Ω2)

−3(O) − (O ′) + 2(Ω1) + 2(Ω2)

= (R) + (P) − ([R + P]) − (O)

= div(gR,P) .

which concludes the proof. 
�
Lemma 4 Let R ∈ Ea,d be a point of order r , we have

φR,R

φ2
R,−R · φ2R,−2R

= 1

φ−R,−R · φO,O
. (6)

Proof This lemma is easy to be proven using Definition 1 and Lemma 3 by replacing
P by R. By Definition 1, we have

gR,R = φR,R

φ2R,−2R
,

and by Lemma 3, we have

gR,R = φR,−R · φR,−R

φ−R,−R · φO,O
.

Thus, we obtain

φR,R

φ2
R,−R · φ2R,−2R

= 1

φ−R,−R · φO,O


�
Remark 2 The right-hand side of Eq. (6) can be further simplified. Since Q is a fixed
point during pairing computation, the conic function φO,O can be precomputed and
integrated into φ−R,−R as follows:

φ′−R,−R(Q) = φ−R,−R(Q) · φO,O (Q)

= (cZ2(Z2
Q + YQ ZQ) + cXY XQYQ + cX Z XQ ZQ)(XQ(ZQ − YQ))

= cZ2η1 + cXY η2 + cX Zη3,
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212 D.-P. Le, C. H. Tan

where η1 = (Z2
Q + YQ ZQ)(XQ(ZQ − YQ)), η2 = X2

QYQ(ZQ − YQ), η3 =
X2
Q ZQ(ZQ − YQ). Because Q is fixed for the whole computation, the values η1,

η2, and η3 are also fixed. Hence, these values can be precomputed and stored. Eq. (6)
can thus be rewritten as follows:

φR,R

φ2
R,−R · φ2R,−2R

= 1

φ′−R,−R
. (7)

The right-hand side of Eq. (7) has only one conic function while the left-hand
side contains 3 conic functions. We aim to use this observation to reduce φR,−R

in Algorithm 2, where R is multiple of P . To do so, we apply the following simple
strategy.Whenever possible, we delay φR,−R in the denominator for the next iteration.
This conic function will be squared in the next doubling step, then by applying Eq. (7)
one can cancel out φ2

R,−R and φ2R,−2R .
We introduce a variable m to determine whether there exists a delay of one conic

function φR,−R in the current iteration. If m = 1, there is a delay from the previous
iteration, otherwise, there is no delay. Let (rtrt−1 . . . r0)2, where ri ∈ {0, 1} be the
binary representation of the order r . There are four cases to be considered as follows:

1. If the current bit ri = 0 andm = 0. The proposed algorithmwill perform a doubling
step by applying Eq. (4), but keep delaying φ2 R,−2 R for the next iteration, i.e. m
will be set to 1 after this iteration.

2. If the current bit ri = 0 and m = 1. The proposed algorithm will perform a
doubling step by applying Eq. (7). This allows to eliminate the delayed conicφ2

R,−R
and φ2 R,−2 R . The value of m will be set to 0. This is only case in the proposed
algorithm there is no delay for the next iteration.

3. If the current bit ri = 1 andm = 1. The proposed algorithmwill apply Eq. (7) in the
doubling step andEq. (4) in the addition step. It also keeps delayingφ2 R+P,−(2 R+P)

for the next iteration.
4. If the current bit ri = 1 and m = 0. This is the most costly case of the proposed

algorithm. The proposed algorithmwill apply Eq. (4) in both doubling and addition
steps. Likewise, it keeps delaying φ2 R+P,−(2 R+P) for the next iteration.

Let f (i)
r,P be the value of the rational function fr,P when processing at the bit ri of

the order r . Formally, we define the following function fr,P by applying Eq. (7) as
follows:

f (i)
r,P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( f (i+1)
r,P )2φR,R if ri = 0 and m = 0

( f (i+1)
r,P )2 1

φ′−R,−R
if ri = 0 and m = 1

( f (i+1)
r,P )2

φ2 R,P
φ′−R,−R

if ri = 1 and m = 1

( f (i+1)
r,P )2

φR,R ·φ2 R,P
φ2 R,−2 R

if ri = 1 and m = 0,

where 0 ≤ i < t , f (t)
r,P = 1, and R is a multiple of the input point P at the cur-

rent iteration, i.e. R = [(rt . . . ri+1)2]P . The proposed algorithm is described by the
pseudo-code in Algorithm 3.
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Further refinements of Miller’s algorithm on Edwards curves 213

Input: r = ∑t
i=0 ri2

i with ri ∈ {0, 1}, P, Q ∈ E[r ];
Output: f = fr,P (Q);

T ← P , f ← 1, g ← 1, m ← 0 ;
for i = t − 1 to 0 do

1 if (ri = 0) ∧ (m = 0) then
f ← f 2 · φR,R ; g ← g2 ; R ← 2R ; m ← 1

end
2 if (ri = 0) ∧ (m = 1) then

f ← f 2 ; g ← g2 · φ′−R,−R ; R ← 2R ; m ← 0

end
3 if (ri = 1) ∧ (m = 1) then

f ← f 2 · φ2R,P ; g ← g2 · φ′−R,−R ; R ← 2R + P ; m ← 1

end
4 if (ri = 1) ∧ (m = 0) then

f ← f 2 · φR,R · φ2R,P ; g ← g2 · φ2R,−2R ; R ← 2R + P ; m ← 1
end

end
if m = 1 then

g ← g · φR,−R
end

return f
g

Algorithm 3: Improved Refinement of Miller’s Algorithm for any Pairing-
Friendly Edwards Curve

3.3 Examples

We give some examples in this section. We list the calculation formulas of fr,P for
r = 5, 17 and 23 using Miller’s algorithm from [1,24] (Algorithm 1), our improved
version 1 (Algorithm 2) and our improved version 2 (Algorithm 3). Here the symbol
φmP,nP , φ′

mP,nP , �1,nP , �2,nP and fr,P are shortened to φm,n, φ′
m,n, �1,n , �2,n and

fr respectively, where m, n ∈ Z.
Compute f5:

Number (101)2 = 5

Algorithm 1 f5 = φ21,1

�21,2·�22,O
φ2,2

�1,4·�2,O
φ4,1

�1,5·�2,O

Algorithm 2 f5 = φ21,1

φ22,−2

φ2,2
φ4,−4

φ4,1
φ5,−5

Algorithm 3 f5 = φ2
1,1

φ4,1
φ′−2,−2

1
φ5,−5
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Compute f17:

Number (10001)2 = 17

Algorithm 1 f17 = φ81,1

�81,2·�82,O
φ42,2

�41,4·�42,O
φ24,4

�21,8·�22,O
φ8,8

�1,16·�2,O
φ16,1

�1,17·�2,O

Algorithm 2 f17 = φ81,1

φ82,−2

φ42,2

φ44,−4

φ24,4

φ28,−8

φ8,8
φ16,−16

φ16,1
φ17,−17

Algorithm 3 f17 = φ8
1,1

1
(φ′−2,−2)

4 φ2
4,4

φ16,1
φ′
8,−8

1
φ17,−17

Compute f23:

Number (10111)2 = 23

Algorithm 1 f23 = φ81,1

�81,2·�82,O
φ42,2

�41,4·�42,O
φ44,1

�41,5·�42,O
φ25,5

�21,10·�22,O
φ210,1

�21,11·�22,O
φ11,11

�1,22·�2,O
φ22,1

�1,23·�2,O

Algorithm 2 f23 = φ81,1

φ82,−2

φ42,2

φ44,−4

φ44,1

φ45,−5

φ25,5

φ210,−10

φ210,1

φ211,−11

φ11,11
φ22,−22

φ22,1
φ23,−23

Algorithm 3 f23 = φ8
1,1

φ44,1
(φ′−2,−2)

4

φ210,1
(φ′−5,−5)

2
φ22,1

φ′−11,−11

1
φ23,−23

4 Performance discussion

In this section, we make a comparison between our refinements and the algorithms
described in [1,24]. Before analyzing the costs of algorithm, we introduce notations
for the cost of field arithmetic operations. Let Fpk be an extension of degree k of Fp

for k ≥ 1 and let Ipk , Mpk , and Spk be the costs for inversion, multiplication, and
squaring in the field Fpk , respectively.

The cost of the algorithms for pairing computation consists of three parts: the cost
of updating the functions f , and g; the cost of updating the point R; and the cost of
evaluating rational functions at some point Q. Arene et al. in [1, Section 5] analyzed
in detail the total cost of updating the point R and coefficients cZ2 , cXY , and cZ Z of
the conic. Without special treatment, this cost is the same for all algorithms.

The most costly operations in pairing computations are operations in the full exten-
sion field Fpk . At high levels of security (i.e. k large), the complexity of operations in
Fpk dominates the complexity of the operations that occur in the lower degree sub-
fields. In this section, we only analyze the cost of updating the functions f, g which
are generally executed on the full extension field Fpk . Assume that the ratio of one
squaring to one multiplication in the full extension field is set to be Spk = 0.8Mpk as
commonly used value in the literature.

For a doubling (lines 1, 2), Algorithm 2 requires 2Mpk + 2Spk , while Algorithm 3
requires only 1Mpk +2Spk in order to update functions f and g. Likewise, an addition
step requires 2Mpk in Algorithm 2 (lines 3, 4), while this step requires only 1Mpk
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Further refinements of Miller’s algorithm on Edwards curves 215

Table 1 Comparison of the cost of updating f, g of algorithms

Doubling Doubling and addition

Algorithm 1 (Miller’s
algorithm [1,24])

2Spk + 3Mpk = 4.6Mpk 2Spk + 5Mpk = 6.6Mpk

Algorithm in [1] (even
embedding degrees)

1Spk + 1Mpk = 1.8Mpk 1Spk + 2Mpk = 2.8Mpk

Algorithm 2 2Spk + 2Mpk = 3.6Mpk 2Spk + 4Mpk = 5.6Mpk

Algorithm 3 2Spk + 1Mpk = 2.6Mpk 2Spk + 2Mpk = 3.6Mpk (line 3)

2Spk + 3Mpk = 4.6Mpk (line 4)

“Doubling” is when algorithms deal with the bit “ri = 0” and “Doubling and Addition” is when algorithms
deal with the bit “ri = 1”

by Algorithm 3.3 Table 1 shows the number of operations needed in Fpk for updating
f, g in different algorithms.
Obviously,Algorithm3offers a better performance thanAlgorithm2. FromTable 1,

for the generic case we can see that Algorithm 3 saves two full extension fieldmultipli-
cationswhen the bit ri = 0 as compared to the originalMiller algorithm (Algorithm 1).
When the bit ri = 1, Algorithm 3 saves two or three full extension fieldmultiplications
in comparison with Algorithm 1, depending on which case Algorithm 3 executes (i.e.,
line 3 or line 4).

In comparison with Arene et al.’s algorithm [1], Algorithm 3 requires one more
squaring in the full extension field for each doubling step. However, as mentioned
early Arene et al.’s algorithm can only be applied on Edwards curves with an even
embedding degree k for Tate pairing computation, while our approach is generic. It
can be applied to any (pairing-friendly) Edwards curve and for both the Weil and the
Tate pairing.

Let r = ∑l ′−1
i=0 qi4i , with qi ∈ {0, 1, 2, 3} be the representation in radix-4 of the

group order r . The refinements in [24] are described in radix 4. Their algorithm ([24,
Algorithm3]) allows to eliminate some rational line functions from Eq. (3) during
pairing computations. Their best results could be obtained by combining formula (1)
and (2) of Theorem 2. In particular, they used the first formula for cases qi = 0, 1, 2,
and the second formula in the case qi = 3. Table 2 compares Algorithm 3 and their
algorithm. Because our algorithm works in radix 2, the number of operations in radix
4 could be counted by simply counting from Table 1. Notice that line 4 in Algorithm 3
(the most costly case in our algorithm) will never be performed in two consecutive
iterations because the value ofm will never be equal to 0 for two consecutive iterations
(see Algorithm 3). Thus, when qi = 3 the worst case of Algorithm 3 happens as
follows: the first bit “1” will be computed by using line 4 (cost 2Spk + 3Mpk ), and
then value value of m is set to be 1; the second bit “1” will be computed by using line
3 (cost 2Spk + 2Mpk ).

3 Lines 3, 4 in Algorithm 3 combine both a doubling and an addition step.

123



216 D.-P. Le, C. H. Tan

Table 2 Comparison of our algorithm with the refinements in [24]

Algorithm in [24] Algorithm 3

qi = 0 5Spk + 3Mpk = 7Mpk 4Spk + 2Mpk = 5.2Mpk

qi = 1 4Spk + 7Mpk = 10.2Mpk 4Spk + 3Mpk = 6.2Mpk (line 3)

4Spk + 4Mpk = 7.2Mpk (line 4)

qi = 2 4Spk + 7Mpk = 10.2Mpk 4Spk + 3Mpk = 6.2Mpk (line 3)

4Spk + 4Mpk = 7.2Mpk (line 4)

qi = 3 4Spk + 10Mpk = 13.2Mpk 4Spk + 4Mpk = 7.2Mpk (line 3)

4Spk + 5Mpk = 8.2Mpk (line 4)

Table 2 shows that Algorithm 3 is obviously faster than the refinements of Miller’s
algorithm in [24] for all four cases. Our algorithm saves two operations (resp., at
least 3, or 5 operations) occurring in the full extension field Fpk for qi = 0 (resp.,
qi = 1, 2 or qi = 3). When the embedding degree k gets larger, the complexity of
these operations dominates the complexity of these operations occurring in Fp, then
our algorithm is approximately 25% faster than Xu–Lin’s algorithm.

5 Conclusion

In this paper, we proposed further refinements to Miller’s algorithm over Edwards
curves. Our refinements significantly improved the performance of Miller’s algorithm
in comparison with the original Miller algorithm and its previous refinements. Our
method is generic, hence the proposed algorithm can be applied for computing pairings
of any type over any pairing-friendly Edwards curve. This allows the use of Edwards
curves with odd embedding degree, and is suitable for the computation of optimal
pairings.
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