
AAECC (2016) 27:105–122
DOI 10.1007/s00200-015-0269-0

ORIGINAL PAPER

On the complexity of skew arithmetic

Joris van der Hoeven1

Received: 4 September 2012 / Revised: 23 June 2015 / Accepted: 25 June 2015 /
Published online: 18 August 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In this paper, we study the complexity of several basic operations on linear
differential operators with polynomial coefficients. As in the case of ordinary polyno-
mials, we show that these complexities can be expressed almost linearly in terms of
the cost of multiplication.

Keywords Linear differential operators · Algorithm · Complexity · Multiplication ·
Local solution · Division · gcrd · lclm

Mathematics Subject Classification 68W30 · 68Q15 · 34M03 · 12E15

1 Introduction

Let K be an effective field of constants of characteristic zero, so that all field opera-
tions can be carried out by algorithms. Given an indeterminate x and the derivation
δ = x∂ , where ∂ = ∂/∂x , it is well known [8,12,20,22,23] that the skew polynomial
ring K(x)[δ] behaves very much like an ordinary polynomial ring: there are skew
analogues for each of the classical operations of division with remainder, greatest
common divisors, least common multiples, etc. In this paper, we will study the com-
plexity of these operations. For this purpose, it will be more appropriate to work in
the ring K[x, δ] instead of K(x)[δ]. In analogy with the commutative case, we will

This work has been supported by the ANR-09-JCJC-0098-01 MaGiX Project, as well as a Digiteo
2009-36HD grant and Région Ile-de-France.

B Joris van der Hoeven
vdhoeven@lix.polytechnique.fr
http://lix.polytechnique.fr/∼vdhoeven

1 LIX, CNRS, École Polytechnique, 91128 Palaiseau Cedex, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00200-015-0269-0&domain=pdf

106 J. van der Hoeven

give bounds for the computational complexities of the various operations in terms of
the complexity of operator multiplication.

For our complexity measures, we make the customary assumption that all field
operations in K can be carried out in constant time O(1). We will try to express the
complexities of our algorithms in terms of the following standard complexities:

– The time M(n) required for the multiplication of two polynomials of degrees <n
and coefficients in K. It is classical [9,25,26] that M(n) = O(n log n log log n)

and M(n) = O(n log n) ifK admits sufficiently many 2p-th roots of unity [10].
– The complexity O(rω) of multiplying two r × r matrices with entries in K. It is
classical [11,18,24,28] that ω < 2.376, although ω ≈ 3 in practice.

We will denote byK[x]n the subset ofK[x] of polynomials of degree < n. Likewise,
we denote by K[x, δ]n,r the set of operators L ∈ K[x, δ] of degree degx L < n in x
and degree degδ L < r in δ.

Now consider two linear differential operators K , L ∈ K[x, δ]n,r . We start with
studying the following complexities:

– The complexity SM(n, r) of multiplying K and L .
– The complexity SV(n, r) of applying L to a vector of r polynomials inK[x]n .
– The cost SF(n, r) to compute a fundamental system of r solutions to the monic
equation (δr+L) f = 0 inK[[x]], up to order O(xn), while assuming the existence
of such a fundamental system.

– Given a vector V of r truncated power series in K[x], the cost SA(n, r) of com-
puting a monic operator in A = δr + K[x, δ]n,r with A(V) = O(xn).

The special case n = r was first studied in [30], where it was shown that
SM(n, n) = O(nω), using evaluation–interpolation techniques. The inverse bound
nω = O(SM(n, n)) has been proved in [5]; this paper also contains detailed informa-
tion on the constant factors involved in these bounds. Recently (and after the writing
of a first version of this paper), the quasi-optimal bound SM(n, r) = Õ(nr(nr)ω−2)

was proved in [2].
For fixed constants α, β > 0, one has M(αn) = O(M(n)), (βr)ω = O(rω),SM

(αn, βr) = O(SM(n, r)), etc., by splitting the multiplicands in a finite number
of pieces. In this paper, we will freely use this remark without further mention. In
order to simplify our complexity estimates, it will be convenient to make a few addi-
tional assumptions. First of all, we will assume that ω > 2, whence in particular
M(n) log n = O(nω−1). We will also assume that the function M(n)/n is increasing
and that SM(n, r)/(nr) is increasing in both n and r . This will indeed be the case for
the complexity bounds for SM(n, r) that will be given in Sect. 2.

In Sect. 2, we will first prove (see Theorems 1 and 2) that the problems of multi-
plication and operator–vector application are essentially equivalent when n � r . We
also recall the best existing bounds for operator multiplication.

In Sect. 3, we show that the problems of computing fundamental systems of solu-
tions and its inverse can be reduced to operator multiplication modulo a logarithmic
overhead (see Theorems 5 and 6). This provides a dual way to perform operations on
differential operators by working on their fundamental systems of solutions. In Sect. 3
and all subsequent sections, we always assume that n � r . This is indeed required for

123

On the complexity of skew arithmetic 107

the truncations of the fundamental systems of solutions at order O(xn) to be linearly
independent.

In Sect. 4, we start with the operations of exact right division and right division with
remainder. In Sect. 5, we consider greatest common right divisors (gcrds) and least
common leftmultiples (lclms). Again, wewill showhow to express the complexities of
these operations essentially in terms of the complexitySM(n, r) of multiplication (see
Theorems 7, 8, 9 and 10).

For several of our algorithms, we need to work at a point where certain operators
are non singular. If we only need the input operators to be non singular, then it is easy
to find a point where this is the case. If we also need the output operators or certain
auxiliary operators to be non singular (as in Sect. 5), then we resort to picking random
points, which are non singular with probability 1. In Sect. 5.2 we present additional
techniques for turning algorithmswhich rely on random point picking into randomized
algorithms of Las Vegas type and into fully deterministic algorithms.

For technical reasons, we found it convenient to work with respect to the Euler
derivation δ instead of ∂ . Nevertheless, operators L in K[x, δ] can be converted effi-
ciently into operators inK[x, ∂] and vice versa, modulo an increase of the degree n in
x with the degree r in δ or ∂ (see Lemma 2). Using our assumption that n � r , such
increases of the degree n by r only gives rise to constant overheads in the complexity
bounds. Hence, the complexity bounds for our main algorithms from Sects. 3, 4 and 5
still hold when replacing δ by ∂ . In addition, some of the algorithms can be adapted
to directly use ∂ instead of δ, without the need for any conversions (see Remark 3).

To the best of our knowledge, the idea to perform operations on linear differential
operators via power series solutions was first proposed (but only partially worked out)
in [4, Chapter 10]. In this paper, we use a slightly different technique: instead of a
single power series solution, we prefer to consider a fundamental system of solutions.
This has the advantage of forcing a clean bijection between operators and solution
spaces, thereby avoiding part of the randomness in the proposals from [4, Chapter 10].

It is also possible tomimic classical divide and conquer algorithms for right division,
greatest common right divisors and least common left multiples, while using adjoints
in order to perform the recursive operations on the appropriate side. Such algorithms
were partially implemented inside Mathemagix [34] and we plan to analyze this
technique in more details in a forthcoming paper.

Various complexity results for computations with linear differential operators and
other skew polynomials were previously obtained [4,13–16,19]. Especially the com-
putation of greatest common right divisors and least common left multiples of two or
more operators has received particular attention. After the publication of a first version
of this paper [33], the complexities of several classical algorithms [17,19,27] for the
computation of least common right multiples were studied in great detail in [6], and
new improvements were proposed there.

The complexities of most of the algorithms in this paper are stated in terms of the
input and output sizes. The uncertified randomized algorithms for gcrds and lclms are
optimal up to logarithmic factors from this perspective, which yields an improvement
with respect to the previously known complexity bounds. In the context of certified
randomized algorithms (i.e. of Las Vegas type), the complexity bounds remain quasi-

123

108 J. van der Hoeven

optimal in terms of the size of a suitable certificate. From the deterministic point of
view, the new algorithms for gcrds and lclms are suboptimal.

2 Evaluation and interpolation

The key argument behind the proof from [30] that SM(n, n) = O(nω) is the observa-
tion that an operator L ∈ K[x, δ]n,r is uniquely determined by its images on the vector
x ;r = (1, . . . , xr−1). This makes it possible to use a similar evaluation–interpolation
strategy for the multiplication of differential operators as in the case of FFT-
multiplication of commutative polynomials. More precisely, given L ∈ K[x, δ]n,r ,
let Φr+n,r

L be the matrix of the mappingK[x]r → K[x]r+n; P �→ L(P) with respect
to the bases x ;r and x ;r+n :

Φ
r+n,r
L =

⎛
⎜⎝

L(1)0 · · · L(xr−1)0
...

...

L(1)r+n−1 · · · L(xr−1)r+n−1

⎞
⎟⎠ .

The evaluation and interpolation steps can be done efficiently using the following
lemma, which is essentially contained in [5]:

Lemma 1 Let L ∈ K[x, δ]n,r . Then

(a) We may compute Φ
r+n,r
L as a function of L in time O (nM(r) log r).

(b) We may recover L from Φ
r+n,r
L in time O (nM(r) log r).

Proof Consider the expansion of L with respect to x

L(x, δ) = L0(δ) + · · · + xn−1Ln−1(δ).

For all i, j , we have

L(x, δ)(x j)i+ j = [xi Li (δ)](x j)i+ j

= [xi+ j Li (δ + j)(1)]i+ j

= Li (j).

In other words, Φr+n,r
L is a lower triangular band matrix

Φ
r+n,r
L =

⎛
⎜⎜⎜⎜⎜⎜⎝

L0(0)
...

. . .

Ln−1(0) L0(r − 1)
. . .

...

Ln−1(r − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

of bandwidth � n. The coefficients on the i-th subdiagonal of Φ
r+n,r
L are exactly the

result of a multipoint evaluation of Li at 0, . . . , r−1. It is classical [3,21,29] that both

123

On the complexity of skew arithmetic 109

multipoint evaluation and the inverse operation of interpolation can be performed in
time O (M(r) log r). Doing this for each of the polynomials L0, . . . , Ln−1 yields the
result. ��
Theorem 1 If n � r , then

SM(n, r) = O(SV(n, r) + nM(r) log r) (1)

Proof Let K , L ∈ K[x, δ]n,r and assume that we want to compute K L . We may
evaluate L(x ;2r) in time SV(max(n, 2r), 2r) = O(SV(n, r)). We may also evaluate
K (L(x ;2r)) in timeSV(n + 2r, 2r) = O(SV(n, r)). Using Lemma 1, wemay recover
K L from K (L(x ;2r)) in time O(nM(r) log r). This completes the proof. ��
Theorem 2 If n � r , then

SV(n, r) = O(SM(n, r) + nM(r) log r). (2)

Proof Assume now that we are given K (x, δ) ∈ K[x, δ]n,r , as well as a vec-
tor V = (V0, . . . , Vr−1) ∈ K[x]rn and that we want to evaluate K (V) =
(K (V0), . . . , K (Vr−1)). This is equivalent to evaluating the operator K ∗ = K (x, δ−r)
at the vector xr V . It is classical [1] that K ∗ can be computed in time O (nM(r)). Using
Lemma 1, we may compute the unique operator L ∈ K[x, δ]n+r,r with L(x ;r) = xr V
in time O((n + r)M(r) log r) = O (nM(r) log r). We may next compute the product
K ∗L in time SM(n + r, r) = O (SM(n, r)). Lemma 1 finally allows us to evaluate
K ∗L at x ;r in time O (nM(r) log r), thereby yielding K (V). ��

The above results immediately imply the bound SM(n, n) = O(nω) from [30] by
the computation of a product K L to the computation of a matrix product

Φ
2r+2n,2r
K L = Φ

2r+2n,2r+n
K Φ

2r+n,2r
L .

After the publication of a first version of this paper, the following quasi-optimal bound
for SM(n, r) was established in [2, Theorems 3 and 5].

Theorem 3 (i) For r � n, we have SM(n, r) = O
(
nω−1r + nM(r) log r

)
.

(ii) For n � r , we have SM(n, r) = O
(
rω−1n + rM(n) log n

)
.

The inverse bound nω = O(SM(n, n)) from [5] can also be generalized:

Theorem 4 If n � r , then the product of an r × n matrix and an r × r matrix with
coefficients in K can be computed in time O(SM(n, r)).

Proof By the result from [5], the problem is equivalent to the computation of k =

n/r� operators K0, . . . , Kk−1 in K[x, δ]r,r with a fixed operator L ∈ K[x, δ]r,r .
Setting K = K0 + x2r K1 + · · · + x2r(k−1)Kk−1, we may compute K L in time
O(SM(n, r)).Wemay directly read off the products K0L , . . . , Kk−1L from the result.

��

123

110 J. van der Hoeven

In this paper, we have chosen to work with respect to the derivation δ instead of ∂ .
The following result from [5, Section 3.3] can be used to efficiently convert between
operators inK[x, δ] andK[x, ∂] (in [30], we proved a somewhat weaker result which
would also suffice for the purposes of this paper). We have written K [x, ∂]n,r for the
set of operators of degree < n in x and degree < r in ∂ .

Lemma 2 (a) Any operator in K[x, δ]n,r can be converted into an operator in
K[x, ∂]n+r,r in time O ((n + r)M(r) log r).

(b) Any operator in xrK[x, ∂]n,r can be converted into an operator in K[x, δ]n+r,r

in time O ((n + r)M(r) log r).

3 Local solutions

From now on, we will assume that n � r . We recall that an operator L ∈ K[x, ∂] of
order r is said to be non singular at x0, if its leading coefficient Lr does not vanish at
x0. We will say that an operator L ∈ K[x, δ] of order r is non singular (at the origin)
if x−r L ∈ K[x, ∂] and x−r L is non singular as an operator in ∂ .

Given a non singular differential operator L ∈ K[x, δ]n,r+1 of order r , the equation
L(H) = 0 admits a canonical fundamental system H = (H0, . . . , Hr−1) of solutions
inK[[x]]r , with the property that (Hi)i = 1 and (Hi) j = 0 for all i, j < r with i �= j .
Conversely, given aK-linearly independent vector of power series H ∈ K[[x]]r , there
exists a unique monic operator L ∈ δr +K[[x]][δ] of order r with L(H) = 0. Let us
show how to convert efficiently between these two representations.

Theorem 5 Let L ∈ K[x, δ]n,r+1 be a differential operator of order r � n, which is
non singular at the origin, and let H be its canonical fundamental system of solutions.
Thenwemay compute H up to order O(xn) in time O(SV(n, r) log n). In other words,

SF(n, r) = O(SM(n, r) log n). (3)

Proof Modulo multiplying L on the left by L−1
r , we may assume without loss of

generality that L is monic. Since L is non singular at the origin, we have x−r L ∈
K[x, ∂]. Rewritten in terms of δ, this means that L is of the form

L = Δr (δ) + xCr−1Δr−1(δ) + · · · + xrC0Δ0(δ).

Δk(δ) = δ(δ − 1) · · · (δ − k + 1),

for certain C0, . . . ,Cr−1 ∈ K[x]. Setting R = Δr (δ) − L ∈ xK[x, δ]n−1,r , we
observe that R mapsK[[x]] into xrK[[x]]. We now compute H using the “recursive”
formula

H =
⎛
⎜⎝

1
...

xr−1

⎞
⎟⎠ + Δr (δ)

−1(R(H)), (4)

123

On the complexity of skew arithmetic 111

where

Δr (δ)
−1

⎛
⎝∑

k�r

Akx
k

⎞
⎠ =

∑
k�r

Ak

Δr (k)
xk .

Equation (4) is a schoolbook example for applying the strategy of relaxed resolution
of power series equations [31,32]. Since Δr (δ)

−1 operates coefficientwise, it can be
computed in linear time. The main cost of the computation therefore reduces to the
relaxed evaluation of R(H). Using fast relaxed multiplication, this amounts to a cost

SF(n, r) = 2SV(
n/2�, r) + 4SV(
n/4�, r) + · · · + nSV(1, r).

Using the monotonicity assumption and Theorem 2, the result follows. ��
In what follows, given a non zero series Y in x , we denote by v(Y) its valuation.

Given a vector V of elements in aK-vector space, we will also denote by Vect(V) the
subvector space generated by the entries of V , and

vmax(V) = max{v(Y) : Y ∈ Vect(V)\{0}}.

Notice that vmax(V) � dim(Vect(V)) − 1.

Theorem 6 Let H = (H0, . . . , Hr−1) ∈ K[[x]]r be K-linearly independent. Then
there exists a unique monic operator L = ann(H) ∈ δr +K[[x]][δ]r with L(H) = 0.
Moreover, given the truncation of H at order O(xn), we may compute L at order
O(xn−vmax(H)) in time O(SM(n, r) log r). In other words,

SA(n, r) = O(SM(n, r) log r). (5)

Proof Modulo a triangularization of H , we may assume without loss of generality
that v(H0) < · · · < v(Hr−1) = vmax(H). We define operators L [0], . . . , L [r] by

L [0] = 1

L [i+1] =
(

δ − δL [i](Hi)

L [i](Hi)

)
L [i].

Then L = L [r] annihilates H and for any other operator L̃ ∈ δr + K[[x]][δ]r with
L̃(H) = 0, we would have (L̃ − L)(H) = 0, which is in contradiction with the
fact that dim ker(L̃ − L) < r . Moreover, by induction over i , we observe that the
coefficient of x0 in L [i] is given by (δ − v(H0)) · · · (δ − v(Hi−1)) and the coef-
ficients of x0, . . . , xn−1 in L [i] can be expressed in terms of the coefficients of
x0, . . . , xn−1+v(Hi−1) in H0, . . . , Hi−1. In particular, the truncation of L at order
O(xn−vmax(H)) is uniquely determined by the truncation of H at order O(xn).

In order to explicitly compute L up to a given order, it is more efficient to use a
divide and conquer approach. More precisely, given H ∈ (H0, . . . , Hr−1) ∈ K[x]rn
we compute annn(H) ∈ δr + K[x, δ]n,r using the following method:

123

112 J. van der Hoeven

– If r = 1, then we take annn(H) = δ − (δH0/H0)mod xn .
– Otherwise, let r = a + b with a =
r/2�.
– Compute A := annn(H0, . . . , Ha−1).
– Evaluate I := (A(Ha), . . . , A(Hr−1))mod xn .
– Compute B := annn(I0, . . . , Ib−1).
– Return L = BAmod xn .

If n > vmax(H), then it is easy to check that annn(H)(H) = O(xn−vmax(H)). For a
fixed constant C , we thus have

SA(n, 2r) � 2SA(n, r) + CSM(n, r).

The result now follows from the monotonicity assumption. ��
Remark 1 If SM(n, r)/r1+ε is increasing in r for some ε > 0, then the bound further
simplifies to SA(n, r) = O(SM(n, r)).

Remark 2 We notice that the operator L in Theorem 6 is singular if and only if
vmax(H) = r − 1, and if and only if {v(Y) : Y ∈ Vect(H)\{0}} = {0, . . . , r − 1}.
Remark 3 The algorithm from the proof can be adapted so as produce a vanishing
operator in xr∂r + K[[x]][∂]r instead of δr + K[[x]][δ]r . Indeed, for this, it suffices
to take

L [i+1] = x

(
∂ − ∂L [i](Hi)

L [i](Hi)

)
L [i],

and carefully adapt the truncation orders. ��
Although a general operator L ∈ K[x, δ] can be singular at the origin, many

operations on operators (such as right division and greatest common right divisors)
commute with translations x �→ x + x0, and Lemma 2 may be used in conjunction
with the following lemma in order to reduce to the case when L is non singular at the
origin.

Lemma 3 Given a non zero operator L ∈ K[x, ∂]n,r , we may find a point x0 ∈ K
where L is non singular in time O(M(n)).

Proof Let Lk be the leading coefficient of L . Since degx Lk < n, we have Lk(x0) �= 0
for some x0 ∈ {0, . . . , n}. Using fast multipoint evaluation [7], we may find such a
point x0 in time O(M(n)). ��

4 Right division

Both the degrees in x and δ are additive for the multiplication of operators K , L ∈
K[x, δ]. In particular, if K , L ∈ K[x, δ]n,r and L is left or right divisible by K , then
the quotient is again in K[x, δ]n,r .

123

On the complexity of skew arithmetic 113

Theorem 7 Let K , L ∈ K[x, δ]n,r be such that L = QK for some Q ∈ K[x, δ] and
n � r . Then we may compute Q in time O (SM(n, r) log n).

Proof By Lemmas 2 and 3, and modulo a shift x �→ x + x0, we may assume without
loss of generality that K and L are non singular at the origin.We now use the following
algorithm:

– We first compute the canonical fundamental system of solutions H to L(H) = 0
up to order O(xn+r). By Theorem 5, this can be done in time O (SM(n, r) log n).

– We next evaluate I = K (H) and compute a K-basis G for Vect(I) at order
O(xn+r). This can be done in time O(SM(n, r)), by Theorems 2 and 4, and using
linear algebra. Since K is non singular, we have v(Y) � degδ K ⇒ v(K (Y)) =
v(Y) for all Y ∈ K[[x]]. In particular, the degδ Q = degδ L − degδ K elements of
H of valuations degδ K , . . . , degδ L − 1 are mapped to set which spans a vector
space of dimension degδ Q. This shows that s = dim(Vect(I)mod xr) = degδ Q.

– We now compute the monic annihilator Ω = ann(G) of G at order O(xn). This
can be done in time O(SM(n, r) log r) = O (SM(n, r) log n), by Theorem 6.

– We return the truncation of QsΩ at order O(xn), where Qs = Ldegδ L/Kdegδ K .

Since each of the steps can be carried out in time O(SM(n, r) log n), the result follows.
��

It is classical that euclidean division generalizes to the skew polynomial ring
K(x)[δ]. In other words, given operators A, B ∈ K(x)[δ] where B �= 0, there exist
unique operators Q = quo(A, B) and R = rem(A, B) inK(x)[δ] with

A = QB + R,

and degδ R < degδ B. If A, B ∈ K[x, δ] and I is the leading term of B with respect to
δ, then left multiplication of A by I degδ A−degδ B+1 allows us to remain in the domain
K[x, δ]: there exist unique Q = pquo(A, B) and R = prem(A, B) inK[x, δ] with

I degδ A−degδ B+1A = QB + R, (6)

and degδ R < degδ B. The operators Q and R are usually called pseudo-quotients and
pseudo-remainders. In some cases, a non trivial polynomial can be factored out in the
relation (6). Let J be monic, of maximal degree, such that J−1QB, J−1R ∈ K[x, δ].
Thenwe call J−1Q = quo∗(A, B) and J−1R = rem∗(A, B) the “simplified” pseudo-
quotient and pseudo-remainder of A and B.

Lemma 4 Let H = (H0, . . . , Hr−1) ∈ K[[x]]r beK-linearly independent and define
p = vmax(Vect(H)) + 1. Given G ∈ (x pK[[x]])r , there exists a unique operator
L ∈ K[[x]][δ]r of order < r with L(H) = G and we may compute its first n terms
with respect to x in time O(SM(n + p, r) log n).

Proof Let αi = v(Hi) for each i . Modulo a base change, we may assume without loss
of generality that α0 < · · · < αr−1. Let Φ : K[[x]]r → K[[x]]r be the operator with

Φ(V0, . . . , Vr−1) = (xα0V0, . . . , x
αr−1Vr−1),

123

114 J. van der Hoeven

and letΦ−1 denote the inverse operator. LetΨ : K[[x]][δ]r → K[[x]]r be the operator
with

Ψ (K) = Φ−1(K (Φ(1))).

Writing K = ∑
i,k Ki,k xkδi and Ψ (K)i,k = (Ψ (K)i)k , we have

⎛
⎜⎝

Ψ (K)0,k
...

Ψ (K)r−1,k

⎞
⎟⎠ =

⎛
⎜⎝
1 k + α0 · · · (k + α0)

r−1

...
...

...

1 k + αr−1 · · · (k + αr−1)
r−1

⎞
⎟⎠

⎛
⎜⎝

K0,k
...

Kr−1,k

⎞
⎟⎠ .

In other words, Ψ and its inverse Ψ −1 operate coefficientwise and n coefficients can
be computed in time O(rωn).

Putting Hi = xαi + Ei with Ei = o(xαi) for each i , we may rewrite the equation
L(H) = G as

L = Ψ −1(Φ−1(G − L(E)))

and we observe that the coefficient of xk in the righthand side only depends on earlier
coefficients of 1, . . . , xk−1 in L . In particular, we may solve the equation using a
relaxed algorithm. Then the main cost is concentrated in the relaxed evaluation of
L(E). As in the proof of Theorem 5, this evaluation can be done in time O(SM(n +
p, r) log n). ��
Theorem 8 Let K , L ∈ K[x, δ]n,r with n � r and s = degδ K > 0. Right pseudo-
division of L by K and simplification yields a relation

AL = QK + R,

where A, Q = quo∗(L , K), R = rem∗(L , K) ∈ K[x, δ]. If n′ � n is such that
A, Q, R ∈ K[x, δ]n′,r , then A, Q and R can be computed in time O(SM(n′, r) log n′).

Proof Modulo a shift x �→ x + x0, we may assume without loss of generality that K
and L are non singular at the origin. We now use the following algorithm:

– We compute the canonical fundamental system H of solutions to K (H) = 0 up
to order O(x2n

′+r). This requires a time O(SM(n′, s) log n′).
– We compute G = L(H) with R(H) = AG up to order O(x2n

′+r). This requires
a time O(SM(n′, r)).

– We determine the operator Ω ∈ K[[x]][δ]s with Ω(H) = xsG up to order
O(x2n

′+r). Lemma 4 shows that this can be done in time O(M(n′, s) log n′).
– By Theorem 6, we have R = x−s AΩ and x−sΩ is known up to order O(x2n

′
).

Now x−sΩ0, . . . , x−sΩs−1 are truncated rational functions, for which the degrees
of the numerators and denominators are bounded by n′. Using rational function
reconstruction [35], we may thus compute Nk/Dk = x−sΩk with gcd(Nk, Dk) =
1 in time sO(M(n) log n). Taking A = lcm(D0, . . . , Ds−1), we find R.

123

On the complexity of skew arithmetic 115

– Once A and R are known, we compute Q using the algorithm from Theorem 7.

The total complexity of this algorithm is bounded by O(SM(n′, r) log n′). ��
Remark 4 In the above proof, we have assumed that n′ is known beforehand. In gen-
eral, we may still apply the above algorithm for a trial value n∗. Then the algorithm
may either fail (for instance, if deg lcm(D0, . . . , Ds−1) � n∗), or return the triple
(A, Q, R) under the assumption that A, Q, R ∈ K[x, δ]n∗,r . We may then check
whether the triple is correct in time O(SM(n∗, r)). Applying this procedure for suc-
cessive guesses n∗ = n, 2n, 4n, . . ., the algorithm ultimately succeeds for an n∗ with
n∗ � 2n′. Using the monotonicity hypothesis, the total running time thus remains
bounded by O(SM(n∗, r) log n∗) = O(SM(n′, r) log n′).

5 Euclidean operations

5.1 Randomized algorithms

It is classical that greatest common right divisors and least common left multiples
exist in the skew euclidean domain K(x)[δ]: given two operators K , L ∈ K(x)[δ],
the greatest common right divisorΓ = gcrd(K , L) and the least common left multiple
Λ = lclm(K , L) are the unique monic operators with

K(x)[δ]Γ = K(x)[δ]K + K(x)[δ]L
K(x)[δ]Λ = K(x)[δ]K ∩ K(x)[δ]L .

Assume now that K , L ∈ K[x, δ] and let A and B be monic polynomials of minimal
degrees, such that AΓ and BΛ are inK[x, δ]. Then we callΓ ∗ = gcrd∗(K , L) = AΓ

and Λ∗ = lclm∗(K , L) = BΛ the (simplified) pseudo-gcrd and pseudo-lclm of K
and L .

Lemma 5 Let K , L ∈ K[x, δ]n,r be such that K and L are non singular at the origin,
as well as gcrd∗(K , L) or lclm∗(K , L). Let G and H be the canonical fundamental
systems of solutions to K (G) = 0 and L(H) = 0. Then

degδ lclm
∗(K , L) = dim([Vect(G) + Vect(H)]mod x2r)

degδ gcrd
∗(K , L) = dim([Vect(G) ∩ Vect(H)]mod x2r).

Proof Let Γ ∗ = gcrd∗(K , L),Λ∗ = lclm∗(K , L), s = degδ Γ ∗ and t = degδ Λ∗ �
2r . If Λ∗ is non singular, then it admits a canonical fundamental system of solutions
M = (M0, . . . , Mt−1) with (Mi)i = 1 and (Mi) j = 0 for all i, j < t with i �= j . In
particular, dim(Vect(M)mod x2r) = t . Since Λ∗ is the least common left multiple of
K and L , we also have Vect(M) = Vect(G)+Vect(H), which completes the proof of
the first equality. If Γ ∗ is non singular, then we obtain the second equality in a similar
way.

If Λ∗ is non singular, then we also have dim(Vect(K)mod x2r) = degδ K
and dim(Vect(L)mod x2r) = degδ L , since K and L are non singular. Now

123

116 J. van der Hoeven

dim([Vect(G) ∩ Vect(H)]mod x2r) = dim(Vect(K)mod x2r) + dim(Vect(L)mod
x2r) − dim([Vect(G) + Vect(H)]mod x2r), whence dim([Vect(G) ∩ Vect(H)]mod
x2r) = degδ K + degδ L − degδ Λ∗ = degδ Γ ∗. If Γ ∗ is non singular, then we obtain
the first equality in a similar way. ��
Theorem 9 Let K , L ∈ K[x, δ]n,r and n′ � n be such that Γ ∗ = gcrd∗(K , L) ∈
K[x, δ]n′,r and n � r . Assume that K , L and gcrd∗(K , L) (or lclm∗(K , L)) are non
singular at the origin. Then we may compute Γ ∗ in time O(SM(n′, r) log n′).

Proof We compute Γ ∗ using the following algorithm:

– Wecompute the canonical fundamental systemsof solutionsG and H to K (G) = 0
and L(H) = 0 at order O(x2n

′+r). This can be done in time O(SM(n′, r) log n′).
– Using linear algebra, we compute a basis B for V = Vect(G) ∩ Vect(H) at
order O(x2n

′+r). This can be done in time O(n′rω−1). By Lemma 5, we have
s := dim(V mod x2r) = degδ Γ ∗. We also notice that vmax(B) < r .

– We compute Ω = ann(B) = gcrd(K , L) at order O(x2n
′
). By Theorem 6, this

can be done in time O(SM(n′, r) log n′).
– We compute Γ ∗ from Ω mod x2n

′
using rational function reconstruction.

This algorithm requires a total running time O(SM(n′, r) log n′). ��
Remark 5 In the above proof, we have again assumed that n′ is known beforehand.
Below, we will discuss ways to check the correctness of the computed result for a
trial value n∗, after which a similar strategy as in remark 4 can be applied. During
the relaxed computation of G and H , we may also check whether V = ∅ at each
next coefficient. In the particular case when Γ = 1, the running time of the algorithm
will then be bounded by O(SM(n∗, r) log n∗), where n∗ is the smallest order at which
common solutions no longer exist. This kind of early termination only works for this
very special case.

Remark 6 Notice thatΓ ∗ might be singular at the origin, even if K , L and lclm∗(K , L)

are not. This happens for instance when K is the minimal annihilator of the vector
(1, x) and L the minimal annihilator of the vector (ex , x), so that Γ = δ − 1.

Theorem 10 Let K , L ∈ K[x, δ]n,r and n′ � n be such that Λ∗ = lclm∗(K , L) ∈
K[x, δ]n′,2r and n � r . If K , L and lclm∗(K , L) (or gcrd∗(K , L)) are non singular
at the origin, then we may compute Λ∗ in time O(SM(n′, r) log n′).

Proof Similar to the proof of Theorem 9, by taking V = Vect(K) + Vect(L) instead
of V = Vect(K) ∩ Vect(L). ��

5.2 Certifying correctness

The assumption that lclm∗(K , L) should be non singular is still a bit unsatisfactory
in Theorems 9 and 10, even though the probability that a randomly chosen point is
singular is infinitesimal. If we drop this assumption, then we still have s � degδ Γ ∗
in the proof of Theorem 9. Consequently, “candidate” pseudo-gcrds Γ ∗ found by

123

On the complexity of skew arithmetic 117

the algorithm are genuine pseudo-gcrds whenever Γ ∗ pseudo-divides both K and L .
Using the right division algorithms from the previous section, this can be checked in
time O(SM(n′r, r) log n′) in the case of gcrds and O(SM(nr, r) log n′) in the case of
lclms.

Remark 7 Using the polynomial linear algebra techniques from [6,16], it is likely that
one may prove that PK = AΓ ∗ for some P ∈ K[x]nr and A ∈ K[x, δ]nr,r . If this is
indeed the case, then the trial divisions of K and L by Γ ∗ can actually be carried out
in time O(SM(nr, r) log n′).

An alternative way to check whether candidate gcrds and lclms are correct is to
compute Bezout and Ore relations. More precisely, given K , L ∈ K(x)[δ] with L /∈
Q(x)K , there exist operators A, B,C, D ∈ K(x)[δ] with

(
Γ

0

)
=

(
A B
C D

) (
K
L

)
,

degδ AK , degδ BL < degδ Λ andCK = −DL = Λ. The 2×2matrix at the righthand
side will be called the Euclidean matrix E = Eucl(K , L) of K and L . In a similar way
as above, we may define a (simplified) pseudo-Euclidean matrix E∗ = Eucl∗(K , L)

with entries A∗, B∗,C∗, D∗ in K[x, δ], whenever K , L ∈ K[x, δ]. We will say that
Eucl(K , L) is non singular at x0, if the denominators of A, B,C and D do not vanish
at x0.

Theorem 11 Let K , L ∈ K[x, δ]n,r and n′ � n be such that E∗ = Eucl∗(K , L) ∈
K[x, δ]2×2

n′,r and n � r . If K , L , lclm∗(K , L) and Eucl(K , L) are non singular at the

origin, then we may compute Λ∗ in time O(SM(n′, r) log n′) = Õ(n′rω−1).

Proof Assuming n′ known, we compute Eucl(K , L) =
(
A B
C D

)
at order O(x2n

′
)

as follows:

– Wecompute the canonical fundamental systemsof solutionsG and H to K (G) = 0
and L(H) = 0 at order O(x2n

′+3r).
– We compute a basis X for Vect(G) ∩Vect(H) at order O(x2n

′+3r), together with
bases Ĝ and Ĥ for the supplements of Vect(X) in Vect(G) resp. Vect(H). We also
compute Γ = ann(X) at order O(x2n

′+2r).
– We solve the systems A(K (Ĥ)) = Γ (Ĥ) and B(L(Ĝ)) = Γ (Ĝ) in A resp. B at
order O(x2n

′
), using Lemma 4.

– We compute a basis Y for Vect(G)+Vect(H) at order O(x2n
′+2r), as well as bases

H̃ and G̃ for the vector spaces Vect(K (Y)) resp. Vect(L(Y)) at order O(x2n
′+2r).

– We compute C = K−1
degδ K

ann(H̃) and D = −Ldegδ L ann(G̃) at order O(x2n
′
).

We finally compute E∗ from A, B,C and D using rational function reconstruction.
The complexity analysis and the remainder of the proof is done in a similar way as in
the proofs of Theorems 8 and 9. ��

With the above techniques, we may at least verify whether computed pseudo-gcrds
or pseudo-lclms are correct. For a fully deterministic algorithm, we still need a way

123

118 J. van der Hoeven

to find a point where lclm∗(K , L) is non singular. This can be done by brute force.
Let us state the result in the most general setting of pseudo-Euclidean matrices.

Theorem 12 Let K , L ∈ K[x, δ]n,r and n′ � n be such that E∗ = Eucl∗(K , L) ∈
K[x, δ]2×2

n′,r and n � r . Then we may compute E∗ in time O(SM(n′, r) log n′ +
n′(M(n)r + rω log r)) = Õ(n′(rω + nr)).

Proof Let k = degδ K , l = degδ L , and assume first that we know n′. Let
x0, . . . , xn′+n be n′ + n + 1 be pairwise distinct, randomly chosen points in K at
which K and L are non singular. At each xi , we compute canonical fundamental sys-
tems of solutions G and H for K and L at order O(xk+l). We claim that this can be
done in time O

(
M(n′)r log n′ + n′ (M(n)r + rω log r)

)
.

Indeed, it requires a time O ((n + r)M(r) log r) to rewrite each operator with
respect to ∂ . We next perform a multipoint evaluation of the coefficients of these
operators to obtain the shifted operators at x0, . . . , xn′+n (this requires a time
O

(
M(n′)r log n′)). The truncations of these operators at order O(xk+l+r) are then

converted back to the respresentation with respect to δ. This can be done in time
O

(
n′rM(r) log r

)
. Using Theorem 5, we finally compute the required fundamental

systems of solutions in time O
(
n′SM(r, r) log r

) = O(n′rω log r).
From E∗ ∈ K[x, δ]2×2

n′,r , we get Λ∗ = lclm∗(K , L) ∈ K[x, δ]n′+n,2r . Since we
assumed n′ to be sufficiently large, it follows that Λ∗ = lclm∗(K , L) is non singular
at one of the points xi . At such a point xi , the canonical fundamental systems of
solutions G and H generate a vector space V = Vect(G) + Vect(H) of maximal
dimension s := degδ Λ∗, and with a basis y0, . . . , ys−1 such that v(yk) = k for all
0 � k < s. We finally apply Theorem 11 in order to obtain E∗. If n′ is unknown, then
we use a sequence of guesses n′ = n, 2n, 4n, . . ., as in the previous proofs. ��
Remark 8 In the case of least common left multiples, we may directly compute Λ∗
using Theorem 10 and certify the result using trial division by K and L . This allows us
to use the weaker assumption Λ∗ ∈ K[x, δ]n′,2r instead of E∗ ∈ K[x, δ]2×2

n′,r , whereas

the complexity bound becomes O
(
SM(nr, r) log n′ + n′(M(n)r + rω log r)

) =
Õ(n′(rω + nr)).

5.3 Summary of the complexity bounds for Euclidean operations

Wehave summarizedour complexity bounds forEuclideanoperations on twooperators
K , L ∈ K[x, δ]n,r in Table 1. We systematically write n′ for the degree in x of the
result. We also write n∗ for the degree of the Euclidean matrix in x .

The algorithms in the first line correspond to applying Theorems 9, 10 and 11 at
a randomly chosen point, without checking the result. The second line corresponds
to the Las Vegas randomized algorithm for which the answers are certified through
trial division (the bound for gcrds might further drop to Õ(nrω) in view of Remark 7;
more generally, the bounds can be restated in terms of sizes of certificates). In the
third line, we rather use Euclidean matrices for the certification. The fourth line shows
complexity bounds for the deterministic versions of our algorithms.

123

On the complexity of skew arithmetic 119

Table 1 Complexity bounds for the Euclidean operations on two operators K and L

Algorithm gcrd lclm Euclidean matrix

Randomized, uncertified Õ(n′rω−1) Õ(n′rω−1) Õ(n′rω−1)

Certified via division Õ(n′rω) Õ(nrω)

Euclidean certification Õ(n∗rω−1) Õ(n∗rω−1) Õ(n′rω−1)

Deterministic Õ(n∗(rω + nr)) Õ(n′(rω + nr)) Õ(n′(rω + nr))

In comparison, several randomized Las Vegas algorithms were given in [6] that
achieve the complexity bound Õ(nrω) for lclms. This is in particular the case for
Heffter’s algorithm [17], when using Theorem 3. The non determinism is due to the
use of a fast LasVegas randomized algorithm for the computation of kernels ofmatrices
with polynomial entries [6, Theorem 2]. Grigoriev established complexity bounds for
gcrds which rely on a similar reduction to polynomial linear algebra. Along the same
lines as in [6], this should lead to a Las Vegas randomized algorithm of complexity
Õ(nrω), although we did not check this in detail.

In summary, the new algorithms do not achieve any improvements in the worst
case. Nevertheless, the uncertified versions of our algorithms admit optimal running
times up to logarithmic factors in terms of the combined input and output size. The
certified randomized versions satisfy similar complexity bounds in terms of the size of
a suitable certificate; such bounds can sometimes be better than the previously known
worst case bounds. When performing our expansions at a randomly chosen point in
K, we also recall that the probability of failure is exponentially small as a function of
the bitsize of this point.

5.4 Generalizations

The algorithms from Sect. 5.1 extend in a straightforward way to the computation of
greatest common right divisors and least common left multiples ofmore than two oper-
ators. For instance, using obvious notations, we obtain the following generalizations
of Theorems 10 and 9.

Theorem 13 Let L1, . . . , Lk ∈ K[x, δ]n,r with n � r and r ′ � r, n′ � max(n, r ′) be
such thatΛ∗ = lclm∗(L1, . . . , Lk) ∈ K[x, δ]n′,r ′ . Assume that L1, . . . , Lk andΛ∗ are
all non singular at the origin. Then we may computeΛ∗ in time O(SM(n′, r ′) log n′ +
kSM(n′, r) log n′ + kr(r ′)ω−2n′).

Proof We compute Λ∗ using the following algorithm:

– Wefirst compute the canonical fundamental systems of solutions Hi to Li (Hi) = 0
at order O(x2n

′+r ′
). This can be done in time O(kSM(n′, r) log n′).

– Let Vi, j = Vect(Hi)+· · ·+Vect(Hj) for all 1 � i � j � k. Using linear algebra,
we may recursively compute a basis Bi, j for Vi, j from bases Bi,m and Bm+1, j for
Vi,m and Vm+1, j , where m = �(i + j)/2�. This algorithm yields a basis B for

123

120 J. van der Hoeven

V1,k in time O(kr(r ′)ω−2n′). Using a suitable generalization of Lemma 5, we also
notice that dim(V mod xr

′
) = degδ Λ∗.

– We compute Ω = ann(B) = lclm(L1, . . . , Lk) at order O(x2n
′
). By Theorem 6,

this can be done in time O(SM(n′, r ′) log n′).
– We compute Λ∗ from Ω mod x2n

′
using rational function reconstruction.

We obtain the result by adding up all complexity bounds. ��
Remark 9 When taking r ′ = kr � n′ and using [2], the complexity bound sim-
plifies to O

(
SM(n′, kr) log n′) = O

(
kω−1rω−1n′ log n′ + krM(n′) log2 n′). By [6,

Theorem 6], we may always take n′ = nrk2, after which the bound further reduces
to Õ(kω+1rωn). In our randomized setting, this improves upon the bounds from [6,
Figure 1].

Remark 10 If we also require a certification of the result, then we may use the trial
division technique. This amounts to k exact divisions of operators in K[x, δ]n′+nr ′,r ′
by L1, . . . , Lk . Using the division algorithm from Sect. 4, and taking r ′ = kr � n′
and n′ = nrk2 as above, this can be done in time

O
(
kSM(n′ + nr ′, r ′) log(nr ′)

) = Õ(k(n′ + nr ′)(r ′)ω−1) = Õ(kω+2rωn).

This is slightly better than the new bound from [6].

Theorem 14 Let L1, . . . , Lk ∈ K[x, δ]n,r and n′ � n � r be such that Γ ∗ =
gcrd∗(L1, . . . , Lk) ∈ K[x, δ]n′,r . Assume that L1, . . . , Lk andΓ ∗ are all non singular
at the origin. Then we may compute Γ ∗ in time O(SM(n′, r) log n′ + kSM(r, r)
log r).

Proof The proof is similar to the one of Theorem 13, except for the way how we
compute a basis for V = Vect(H1)∩ · · · ∩Vect(Hk). Indeed, we first compute a basis
Bmod xr for V mod xr . This requires a time O (kSM(r, r) log r) for the computation
of H1, . . . , Hk modulo xr and a time O(krω) for the remaining linear algebra. We
next compute the unique constant matrix C such that B = CH1 modulo xr . Since Γ ∗
is non singular, we have B = CH1 at any order, so it suffices to compute H1 up to
order x2n

′+r in order to obtain B up to order x2n
′+r . ��

Remark 11 An interesting question is whether there exists a faster algorithm to com-
pute the orders s and t of Γ ∗ = gcrd∗(L1, . . . , Lk) and Λ∗ = lclm∗(L1, . . . , Lk),
without computing Γ ∗ and Λ∗ themselves. For this, it suffices to compute the dimen-
sions of Vect(H1)∩· · ·∩Vect(Hk) and Vect(H1)+· · ·+Vect(Hk). Assuming that we
are at a “non singular point”, the answer is therefore yes: using the techniques from
the proofs of Theorems 14 and 13, we may compute s in time O (kSM(r, r) log r) =
Õ(krω) and t in time O

(
kSM(t, r) log t + krtω−1

) = Õ(krtω−1).

Acknowledgments The author is grateful to the second referee whose questions and remarks led to
several improvements with respect to the first version of this paper. The article was originally written by the
author using GNU TeXmacs, and Springer acknowledges the assistance of the author with the conversion
into Springer’s LaTeX format.

123

On the complexity of skew arithmetic 121

References

1. Aho,A.V., Steiglitz, K.,Ullman, J.D.: Evaluating polynomials on a fixed set of points. SIAMJ.Comput.
4, 533–539 (1975)

2. Benoit, A., Bostan, A., van der Hoeven, J.: Quasi-optimalmultiplication of linear differential operators.
In Proceedings of FOCS ’12, pp. 524–530. IEEE, New Brunswick (2012)

3. Borodin, A., Moenck, R.T.: Fast modular transforms. J. Comput. Syst. Sci. 8, 366–386 (1974)
4. Bostan, A.: Algorithmique efficace pour des opérations de base en calcul formel. Ph.D. Thesis, École

polytechnique (2003)
5. Bostan, A., Chyzak, F., Le Roux, N.: Products of ordinary differential operators by evaluation

and interpolation. In: Rafael Sendra, J., González-Vega, L. (eds.) ISSAC, pp. 23–30. ACM Press,
Linz/Hagenberg (2008)

6. Bostan, A., Chyzak, F., Salvy, B., Li, Z.: Fast computation of common left multiples of linear ordinary
differential operators. In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of ISSAC ’12, pp.
99–106. Grenoble, France (2012)

7. Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex.
21(4), 420–446 (2005). Festschrift for the 70th Birthday of Arnold Schönhage

8. Brassine, E.: Analogie des équations différentielles linéaires à coefficients variables, avec les équations
algébriques, pp. 331–347. Note III du Tome 2 du Cours d’analyse de Ch. Sturm. École polytechnique
(1864)

9. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28,
693–701 (1991)

10. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math.
Comput. 19, 297–301 (1965)

11. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceedings of
the 19th Annual Symposium on Theory of Computing, pp. 1–6. New York City (1987)

12. Demidov, S.S.: On the history of the theory of linear differential equations. Arch. Hist. Exact. Sci.
28(4), 369–387 (1983)

13. Giesbrecht, M.: Factoring in skew polynomial rings over finite fields. In: Proceedings of LATIN ’92,
Volume 583 of LNCS, pp. 191–203 (1992)

14. Giesbrecht, M.: Factoring in skew polynomial rings over finite finite fields. JSC 26, 463–486 (1998)
15. Giesbrecht, M., Zhang, Y.: Factoring and decomposing ore polynomials over Fq (t). In: Bronstein, M.

(ed.) Proceedings of ISSAC ’03, pp. 127–134. Philadelphia, USA (2003)
16. Grigoriev, D.Y.: Complexity of factoring and calculating the GCD of linear ordinary differential oper-

ators. J. Symb. Comput. 10(1), 7–37 (1990)
17. Heffter, L.: Über gemeinsame Vielfache linearer Differentialausdrücke und lineare Differentialgle-

ichungen derselben Klasse. J. Reine Angew. Math. 116, 157–166 (1896)
18. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of ISSAC 2014, pp.

296–303. Kobe, Japan (2014)
19. Li, Z.: A subresultant theory for ore polynomials with applications. In: Gloor, O. (ed.) Proceedings of

ISSAC ’98, pp. 132–139. Rostock, Germany (1998)
20. Libri, G.:Mémoire sur la résolution des équations algébriques dont les racines ont entre elles un rapport

donné, et sur l’intégration des équations différentielles linéaires dont les intégrales particulières peuvent
s’exprimer les unes par les autres. J. Reine Angew. Math. 10, 167–194 (1833)

21. Moenck, R.T., Borodin, A.: Fast modular transforms via division. In: Thirteenth Annual IEEE Sym-
posium on Switching and Automata Theory, pp. 90–96. Univ. Maryland, College Park, MD (1972)

22. Ore, O.: Theorie der linearen Differentialgleichungen. J. Reine Angew. Math. 167, 221–234 (1932)
23. Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933)
24. Pan, V.: How to Multiply Matrices Faster, Volume 179 of Lect. Notes in Math. Springer, Berlin (1984)
25. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inf.

7, 395–398 (1977)
26. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)
27. Stanley, R.P.: Differentially finite power series. Eur. J. Comb. 1, 175–188 (1980). MR #81m:05012
28. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 352–356 (1969)
29. Strassen, V.: Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpo-

lationskoeffizienten. Numer. Math. 20, 238–251 (1973)
30. van der Hoeven, J.: FFT-like multiplication of linear differential operators. JSC 33(1), 123–127 (2002)

123

122 J. van der Hoeven

31. van der Hoeven, J.: Relax, but don’t be too lazy. JSC 34, 479–542 (2002)
32. vanderHoeven, J.:Relaxedmultiplicationusing themiddle product. In:Bronstein,M. (ed.) Proceedings

of ISSAC ’03, pp. 143–147. Philadelphia, USA (2003)
33. van der Hoeven, J.: On the complexity of skew arithmetic. Technical Report, HAL (2011). http://hal.

archives-ouvertes.fr/hal-00557750
34. van der Hoeven, J., Lecerf, G., Mourrain, B., et al.: Mathemagix (2002). http://www.mathemagix.org
35. von zur Gathen, J., Gerhard, J.: Mod. Comput. Algebra, 2nd edn. Cambridge University Press, Cam-

bridge (2002)

123

http://hal.archives-ouvertes.fr/hal-00557750
http://hal.archives-ouvertes.fr/hal-00557750
http://www.mathemagix.org

	On the complexity of skew arithmetic
	Abstract
	1 Introduction
	2 Evaluation and interpolation
	3 Local solutions
	4 Right division
	5 Euclidean operations
	5.1 Randomized algorithms
	5.2 Certifying correctness
	5.3 Summary of the complexity bounds for Euclidean operations
	5.4 Generalizations

	Acknowledgments
	References

