
AAECC (2015) 26:151–164
DOI 10.1007/s00200-014-0243-2

ORIGINAL PAPER

Computing path categories of finite directed cubical
complexes

Michael D. Misamore

Received: 20 February 2014 / Revised: 23 April 2014 / Accepted: 26 July 2014 /
Published online: 30 December 2014
© Springer-Verlag Berlin Heidelberg 2015

Abstract A new method is introduced for simplifying finite directed cubical com-
plexes. This construction is effective in the sense that it can be computed relatively
efficiently, and it induces a fully faithful inclusion on path categories. The resulting
parallelized family of algorithms enables calculations of morphism sets of path cat-
egories of such complexes in many cases of practical interest, and working code is
provided as a proof of concept.

Keywords Directed topology · Path category · Simplicial sets

Mathematics Subject Classification Primary 18G30; Secondary 0304

1 Introduction

In [5], Pratt suggested using finite directed cubical complexes as models for higher
dimensional automata as an application to concurrency theory: in this framework,
computational processes which compete for common resources may not be able to
enter certain sets of states simultaneously, and these “forbidden regions” determine
“holes” in the directed state space. The problem, then, is usually to classify the pos-
sible paths between two given system states which successfully navigate around all
such holes, where two such paths are considered equivalent whenever there exist
directed homotopies between them. This leads to the study of the path categories
P(|X |) of triangulations |X | of finite directed cubical complexes X . Path categories
are not standard homotopy invariants [3], but they can nevertheless be analyzed with
homotopical tools. In particular, it becomes valuable to know when one can replace X
with a subcomplex Y such that the inclusion Y ⊂ X induces a fully faithful inclusion

M. D. Misamore (B)
University of Western Ontario, London, Canada
e-mail: m.misamore@gmail.com

123

152 M. D. Misamore

P(|Y |) ↪→ P(|X |). Theorem 1 here gives a practical criterion for when this is possi-
ble, and it has led the present author to develop software that applies this technique
to a significant class of examples. In combination with the previous software imple-
mentations of the techniques developed in [3], it is now feasible to easily analyze the
behavior of path categories for a large class of finite directed cubical spaces of interest,
including many of higher genera.

This paper is organized as follows: the necessary background from homotopy theory
is covered in Sect. 2, followed by the theoretical results leading to Theorem 1 in Sect. 3.
The development and analysis of some practical algorithms to implement these ideas
is discussed in Sect. 4, including results that lead to a parallelizable algorithm for
detecting corner vertices (Proposition 2) and an explicit identification of the potential
new corner vertices that can occur when such a corner vertex is removed (Proposition
5). The last section (Sect. 5) describes the software implementation of these ideas and
the practical accomplishments achieved with it thus far. Of course, concurrency models
are not the only possible application for these techniques: finite directed cubical state
spaces have potential applications to all locally partially ordered dynamical systems,
such as those arising in motion planning problems where it is of interest to classify
the possible means of avoiding obstacles. Finally, it is worth pointing out that other
approaches exist that attempt to simplify directed cubical complexes while preserving
the entire directed homotopy type: [4] is a recent example of what can be done so far
in this direction, at least in two dimensions.

2 Background

In posets, a standard cubical cell P(n) of dimension n ≥ 0 consists of the poset of
subsets of the finite set n := {1, . . . , n}. For any integer N ≥ 0, the ambient directed
cubical N-space C N given by the product (N ∪ {0})N is also naturally a poset, where
(x1, . . . , xN) ≤ (y1, . . . , yN) whenever xi ≤ yi for 1 ≤ i ≤ N ; observe that this is
not a total ordering unless N = 1. A directed (cubical) cell of dimension n in ambient
cubical N -space consists of an injective map of posets c : P(n) → C N such that
c(n) − c(∅) = (1, . . . , 1) on its image; observe that this is automatically a full and
faithful embedding at the level of categories so one may conflate c with its image in C N .
These are the objects of a category P/C N whose morphisms are commutative triangles

P(n)
θ ��

c �������� P(m)

d��������

C N

where θ is injective since c is injective.
A cell c is a subcell of a cell d exactly when there is a morphism c → d. A finite

directed cubical complex X in C N for some N ≥ 0 consists of a finite set of directed
cells in C N which is closed under taking subcells. The present definition of finite
directed cubical complexes is preferred to that given in [3] (where the ambient space
is �N) since in practical applications to concurrency models it is preferable for each
axis of the ambient space to extend along more than a single unit. In principle this
can be emulated within a single cubical cell: for example, modeling a 10-dimensional

123

Finite directed cubical complexes 153

finite directed cubical complex with 7 units along each axis would require an ambient
cell �N with exponent N ≥ 10 · log2(8) = 30. This is equivalent to the number of
bits required to represent the corresponding subcomplex in C10 with |C | = 8, but the
embeddings for the latter representation are much more direct to realize in software.

A top-cell c of such a complex X is a cell which is contained in no other subcell;
top-cells are significant in practice because their presence implies the presence of all of
their constituent subcells, thus for algorithms it often suffices to store only the top-cells
of a cubical complex at any given point in time, thereby saving a significant amount of
memory. Observe that top-cells need not be all of the same dimension, and that every
cell in a finite complex is contained in some (not necessarily unique) top-cell.

The simplicial nerve BP(n) is usually denoted �n and called the standard cubical
n-cell; its poset NP(n) of nondegenerate simplices is just P(n) again via the definition
of simplicial nondegeneracy. The triangulation |�n| of �n is given by the product
(Δ1)n of n copies of the standard 1-simplex. The k-simplices Δk → (Δ1)n correspond
to functors k → 1n and from this one can immediately see that certain “diagonal maps”
are included among them, yielding additional non-cubical 1-simplices in particular.
One may define the triangulation |Y | of an arbitrary cubical set Y via

|Y | := lim−→�n→Y

|�n|

where the colimit is taken over the cubical cell category of Y (see §3, [2] for a modern
introduction to cubical sets).

Any simplicial set X has a path category P(X) which is generated by the free graph
on the vertices and edges of X subject to the relations d1(σ) = d0(σ) ◦ d2(σ) for all
2-simplices σ of X ; in particular every path a � b in X is represented by a uniquely
determined path in N X , the non-degenerate simplices of X . Thus P(X) = P(N X)

where the latter is the free graph on the poset N X subject to the above relations
(after observing that degenerate 2-simplices do not generate any non-trivial relations).
For a cubical set Y , define P�(Y) := P(|Y |), the path category of the triangulation
of Y . It is known (Lemma 1.1, [3]) that the cubical 2-skeleton sk2(Y) completely
determines P�(Y), but on the other hand every non-degenerate 2-simplex of |sk2(Y)|
factors through the triangulation of some cubical 2-cell (since it has to come from
somewhere), so that P�(Y) is characterized as the free graph on the vertices and
edges of Y subject to the relations generated by the 2-cells of Y . In the case when Y is
a finite directed cubical complex, every cell is non-degenerate (has distinct vertices) so
the equivalence relation is generated by non-degenerate 2-cells; two paths f, g : a � b
in Y will be called homotopic in what follows if [f] = [g] in P�(Y).

In posets, an n-simplex in ambient directed N -space for N ≥ n ≥ 0 consists of
an injective map n → N where the poset ordering on each is just the natural number
ordering. There is again a category of such objects over N where the morphisms are
commutative triangles and the morphisms m → n over N are automatically inclusions,
which define subsimplices. Simplices are uniquely determined by the images of the
objects so that one usually conflates an n-simplex x with its list (x0, . . . , xn) of image
vertices in N . A finite directed simplicial complex in N then consists of a finite set of
simplices in N which is closed under taking subsimplices.

123

154 M. D. Misamore

In practice, the vertices of a finite directed cubical complex Y in C N can be taken
to consist of tuples (x1, . . . , xN) of natural numbers where xi ≥ 0. These tuples
admit a lexicographic ordering ≤l which is a total ordering with the property that
if (x1, . . . , xN) ≤ (y1, . . . , yN) in the usual cubical poset ordering then the same is
true for ≤l . Taking this total ordering on the vertices v(Y) of Y thereby induces a
poset injection (v(Y),≤l) ↪→ M by bijectively mapping the total ordering on v(Y)

to {0, . . . , M} for sufficiently large M . The non-degenerate simplices of |Y | then lift
to representations in M so that if Y is finite directed then |Y | can be regarded as a
genuine finite directed simplicial complex.

3 Avoiding vertices

Computing the path category P(X) of an arbitrary finite directed simplicial complex
is already possible in software (see [3]), but the combinatorial explosion of possible
paths through such a complex limits the applicability of such algorithms to those
problems in which the complexes are relatively small. For example, the path category
of a large wedge sum of ∂Δ2 such as

•

���
��

��
� •

���
��

��
� •

���
��

��
�

• ��

�������� • ��

�������� • . . . •

�������� �� •
is clearly intractable to compute given enough summands. In general, the problem
seems to be that knowledge of P(a, b) together with knowledge of P(b, c) is generally
insufficient to efficiently compute P(a, c), as in particular there may be non-local
“jumps” defined by 2-simplices which are not considered in the computation of the
former two sets. This prevents naïve local-to-global approaches from working.

One does know, however, that in practice many of these problems come from
triangulations of finite directed cubical sets, as in concurrency problems (e.g. [5]).
Unlike directed simplicial complexes, directed cubical complexes come with an obvi-
ous notion of locality: edges are uniformly represented as unit increments along single
coordinates, and cubical cells are therefore intrinsically bounded in space. It is there-
fore reasonable to ask if there is a method to directly reduce the complexity of such a
complex in a way that preserves P(a, b) for any particular pair (a, b) of interest, ide-
ally via a modification which is “local” in the sense just described. More specifically,
given a finite directed cubical complex X and a pair (a, b) of vertices of X , when is it
possible to find a proper subcomplex Y ⊂ X containing a and b such that the induced
map P(|Y |)(a, b) → P(|X |)(a, b) is a bijection?

One answer to this question (communicated to the present author by Rick Jardine)
is that any pushout of the form

∂�n ��

��

Y

��
�n �� X

123

Finite directed cubical complexes 155

where the left vertical arrow is the standard inclusion induces an isomorphism
P(|Y |) ∼= P(|X |) of path categories if n ≥ 3. An easy consequence is that
P�(X) ∼= P�(sk2(X)) so that the path category is determined by the (cubical) 2-
skeleton. However, by passing immediately to the 2-skeleton one loses opportunities
to simplify the complex: the triangulation of the directed cubical 2-torus does not
contain any 2-simplices which can be replaced by 1-horns �2

1, for example.
Instead, one could read the above result backwards: it does not hurt to include n-

cells for n ≥ 3, so they may as well be considered wherever possible. Such a complex
can be simplified using a new technique which begins with the following observation:

Lemma 1 Suppose X is a finite directed cubical complex and let x ∈ X be a vertex
which is contained in a unique top-cell. Then any path f : a � b passing through x
such that x �∈ {a, b} is homotopic to a path g : a � b which does not pass through x.
Furthermore, this homotopy of paths is uniquely determined by f and x.

Proof Any non-degenerate path through x factors into the form

a � s → x → t � b

where a ≤ s < x < t ≤ b. Since x is contained in a unique top-cell by assumption,
the 1-cells s → x and x → t must belong to some common 2-cell. Taking the local
poset representation where s = ∅, x = {v1} and t = {v1, v2}, one has a sequence of
the form

∅ → {v1} → {v1, v2}

which is homotopic to the composite

∅ → {v2} → {v1, v2}

which avoids x = {v1}. This representation makes it evident that the homotopy is
uniquely determined by f and x . �

There exist examples of cubical complexes X where some vertex x ∈ X has the
property that every non-degenerate path a � b through x (x �∈ {a, b}) factors through
a 2-cell but x is not contained in a unique top-cell, e.g.

x �� •
• ��

����� •
		���

• ��

•

The condition of the Lemma is therefore sufficent but not necessary, but using the
unique top-cell criterion nevertheless gives a good geometric interpretation for what
is happening.

123

156 M. D. Misamore

Lemma 2 Suppose Kx ⊂ |�n| is the full subcomplex supported on all vertices of
|�n| except some x �= n. Then there is a simplicial homotopy equivalence Kx � |�n|
and therefore homotopy equivalences P(Kx) � P(|�n|) � ∗.

Proof Observe that any k-simplex of |�n| or Kx may be thought of as a flag

y0
⊆−→ y1

⊆−→ · · · ⊆−→ yk

where the yi are subsets of n (none of which equal x in the case of Kx). The picture

y0 ��

��

y1 ��

��

· · · �� yk

��
n 1 �� n 1 �� · · · 1 �� n

describes a simplicial homotopy sending every such simplex to the vertex n. The
vertical maps exist in Kx since either y0 �= ∅ in which case [yi , n] belongs to ∂|�n|
or else y0 = ∅ in which case ∅ → n belongs to Kx since it is supported away from
x . The latter statement follows from the fact that P sends simplicial homotopies to
natural transformations of functors. �

In fact these homotopy equivalences are manifestly via “directed” homotopies in
the sense that they respect the poset orderings on vertices. The inclusions Kx ⊂ �n

are not equivalences on the path categories since they are not essentially surjective;
in particular, the free category on �n itself contains no nontrivial isomorphisms so x
cannot be isomorphic to an object in the free category on Kx . Nevertheless, one has

Lemma 3 Suppose Kx ⊂ |�n| is the full subcomplex supported on all vertices of
|�n| except for x ∈ |�n| (x = n now permitted). Then the induced functors

i∗ : P(Kx) → P(|�n|)

are fully faithful.

Proof If P(|�n|)(a, b) = ∅ for x �∈ {a, b} then certainly P(Kx)(a, b) = ∅ since Kx

is obtained from �n by removing cells, thus i∗ is trivially bijective on hom-sets in this
case. Otherwise P(|�n|)(a, b) = ∗ so it suffices to show that P(Kx)(a, b) = ∗. If
P(|�n|)(a, b) �= ∅ then P(Kx)(a, b) �= ∅ since any path a � b in |�n| is equivalent
to one in �n and by Lemma 1 any such path can always avoid x up to homotopy.
Therefore it suffices to show that any two paths in Kx from a to b are homotopic.

Suppose a �= ∅ or b �= n. Then a path a � b in Kx lies in ∂|�n| so that the flag
maps of the form

a ��

��

y1 ��

��

· · · �� yn ��

��

b

1
��

a �� b
1 �� · · · 1 �� b

1 �� b

123

Finite directed cubical complexes 157

establish that any two paths f, g : a � b are homotopic in Kx . Finally, observe that
any two non-degenerate paths f, g : ∅ � n in Kx are homotopic to the unique path
∅ → n in Kx whenever ∅, n ∈ Kx . �

Given a vertex x ∈ �n , the full cubical subcomplex Lx ⊂ �n supported away
from x is closely related to Kx : every path of Kx except possibly ∅ → n belongs to
∂|�n| so that if x ∈ {∅, n} one has |Lx | = Kx .

Lemma 4 The inclusion j : |Lx | ⊆ Kx induces an isomorphism

j∗ : P(|Lx |) ∼= P(Kx)

of path categories. In particular, j∗ is fully faithful so the composite inclusion |Lx | ⊆
Kx ⊂ �n induces a fully faithful functor on path categories.

Proof It suffices to assume that x �∈ {∅, n} since otherwise the result is trivial. Consider
any path a � b in Kx and observe that this path also belongs to |Lx | unless it equals
∅ → n, in which case there is some vertex y �= x (since n ≥ 2 in this case) and a
homotopy

∅ ��

��

y ��

��

n

��
∅ �� n �� n

showing that ∅ → n is homotopic to a path in |Lx |; the maps P(|Lx |)(a, b) →
P(Kx)(a, b) are therefore surjective. Any two paths a � b in |Lx | are also homotopic
since they factor through ∂|�n| and are therefore both homotopic to the path a → b,
so the map on path sets is also injective, hence bijective. �

The following result is the basis for an algorithm:

Theorem 1 Suppose there is a pushout

Lx ��

��

Y

i
��

�n c �� X

of finite directed cubical complexes where c is a (non-degenerate) top-cell of X, Lx ⊂
�n is the full subcomplex of �n on all vertices except some x ∈ �n, and Y ⊂ X is the
full subcomplex of X supported on all vertices except x. Then the induced functor

i∗ : P(Y) → P(X)

on path categories is fully faithful.

123

158 M. D. Misamore

Proof The functors | · | and P preserve pushouts and the induced functor P(|Lx |) →
P(�n) is fully faithful by Lemma 4. Fritsch and Latch have shown in (Prop. 5.2, [1])
that pushouts in Cat preserve fully faithful functors which are inclusions on objects,
so one finds in particular that i∗ : P(Y) → P(X) must also be fully faithful. �

A vertex x ∈ X contained in a unique top-cell of a finite directed cubical complex
X will be called a corner vertex of X . Given a corner vertex x ∈ v(c) belonging to the
set of vertices v(c) of some top-cell c of X , the Theorem shows that replacing c with
the cubical subcomplex Lx ⊂ c supported on v(c) − {x} does not alter P(X)(a, b)

for x �∈ {a, b}. In practice one often has a specific a and b in mind, and replacing c
with Lx often produces new corner vertices so this process can be iterated until no
corner vertices remain in X . Crucially, this process applies to cells of any dimension,
not just 2-cells, so one has an opportunity to determine P(X)(a, b) in complexes such
as large cubical tori without first passing to the 2-skeleton. This strategy also applies
to complexes of higher genus such as cubical surfaces of genus 2 or higher.

4 Algorithmic considerations

On a computer one must choose a truncated subspace C N ⊂ (N ∪ {0})N , such as that
given by C = {0, . . . , 28 − 1}, in which to embed the finite directed cubical complex
of interest; the vertices are then represented as N -tuples x = (x1, . . . , xN) of bytes. A
directed n-cell c is uniquely identified by the images c(∅) and c({1, . . . , n}) which will
be called the minimum and maximum vertices of c, denoted by min(c) and max(c).
The pointwise subtraction dc := max(c) − min(c) defines a vector of bits called the
difference vector of c; in particular, the count of 1’s in dc determines the dimension of
c. It follows that a space-efficient computer representation of a directed cubical cell
may be given by the pair (min(c), dc) where max(c) is recovered via the pointwise
addition min(c) + dc.

Let |X | denote the number of top-cells of a finite directed cubical complex X ⊆ C N .
Then it is possible to determine all the corner vertices of X by scanning through all top-
cells of X , storing their vertices, and then throwing away any vertices which are found
to have occurred more than once. This requires O(N · |X | · 2N) integer operations to
generate the vertices since there are |X | top-cells, and each could have as many as 2N

vertices, each of which is described by N integers. It also requires about O(N ·|X |·2N)

operations to determine which of these vertices occur only once (using a hash table
implementation, say) so the algorithm has overall time complexity O(N · |X | · 2N).

The major practical problem with this approach is that the number of vertices of X
could be enormous: in the general case O(N ·|X |·2N) bytes would be required to store
them all and this quickly becomes infeasible for large complexes. Of course, one could
instead try to detect if a single vertex is a corner vertex: this requires O(N · |X | · 2N)

time and O(N) space to detect if the vertex occurs in more than one top-cell of X .
The space usage is clearly not a concern in this case, but the problem is that corner
vertices can be rare: even for dimension 2 one can consider large rectangular spans
containing millions of top-cells but only four corner vertices. Therefore, just guessing
at vertices to test is unlikely to yield corner vertices in a reasonable amount of time,
even in the presence of parallelization.

123

Finite directed cubical complexes 159

A couple of lessons can be learned from these considerations:

1. the number of vertices O(|X |·2N) is a major limiting factor for the time-complexity
of any algorithm that must deal with them directly; and

2. attempting to store substructures of top-cells, such as vertices, is a losing game in
terms of memory efficiency.

An alternative approach based on these observations begins with

Lemma 5 Suppose X is a finite directed cubical complex and K1, K2 ⊂ X are sub-
complexes consisting of top-cells of X such that K1 ∪ K2 = X. Then if x ∈ K1\K2
then x is a corner vertex of X if and only if it is a corner vertex of K1.

Proof If x is a corner vertex of X then it is contained in a unique top-cell of X , so it
must be contained in a unique top-cell of K1 since K1 consists of top-cells of X by
assumption, hence it is a corner vertex of K1 as well. Conversely, if x ∈ K1 is a corner
vertex then it is contained in a unique top-cell of K1, but this is the only top-cell of X
that can contain x since x �∈ K2, hence x ∈ X must be a corner vertex. �

One therefore seeks subcomplexes Ki ⊂ X for which it is particularly efficient to
determine that a given vertex x ∈ Ki does not belong to the subcomplex X\Ki of
all top-cells of X whose vertices do not all belong to Ki . The subcomplexes Ki must
also have a feasible number of vertices so that their corner vertices may be efficiently
computed as above. One way to find such subcomplexes of X is via vertex spans. A
vertex span consists of a cubical subcomplex s(v,w) ⊆ C N whose cells c are exactly
those satisfying

v ≤ min(c) ≤ max(c) ≤ w

in the cubical partial ordering on the vertices of C N . One sees immediately that any
cubical cell c is a vertex span for (min(c), max(c)), but the structure is more general
since a vertex span may contain more than one top-cell.

Proposition 1 The morphism sets P(|s(v,w)|)(a, b) of the path category of a vertex
span s(v,w) ⊆ C N each contain at most one element. A path a � b exists in s(v,w)

if and only if a ≤ b in the cubical partial ordering on vertices.

Proof If w − v = (c1, . . . , cN) then the triangulation |s(v,w)| is the simplicial nerve
of a poset

s(v,w) ∼= c1 × · · · × cN

where ci is the poset 0 → · · · → ci with the total ordering. Thus

P(|s(v,w)|) ∼= P(c1) × · · · × P(cN)

since the path category functor preserves products. Given any two objects of the
latter category, there is at most one morphism between them since the same is true

123

160 M. D. Misamore

of any P(ci). If there is a path a � b in s(v,w) then clearly one must have a ≤ b
since the coordinates increment along any such path. Conversely, if a ≤ b then b =
a + (c1, . . . , cN), in which case one can consider the path

a → · · · → a + (c1, 0, . . . , 0) → · · · → a + (c1, c2, 0, . . . , 0) → · · · → b

which belongs to s(v,w). �
Detecting that a top-cell c of X belongs to a vertex span s(v,w) is easy: one simply

tests the above inequalities using O(N) integer comparisons and constant additional
space. Moreover, the vertices in the boundary of any vertex span can be efficiently
determined:

Lemma 6 A vertex x ∈ s(v,w) lies in the boundary of a vertex span s(v,w) ⊆ C N

if and only if there exists an i, 1 ≤ i ≤ N, such that xi ∈ {vi , wi }.
Proof The vertex x ∈ s(v,w) is interior if and only if 0 < xi − vi < ci for all
1 ≤ i ≤ N where w − v = (c1, . . . , cN). �

The following Proposition leads to a more memory-efficient method for detecting
corner vertices:

Proposition 2 Suppose X is a finite directed cubical complex, s(v,w) ⊆ C N a vertex
span consisting of top-cells, and K1 := X ∩s(v,w) the set of top-cells of X belonging
to s(v,w). Then if x ∈ K1 is a corner vertex of K1 and x �∈ ∂s(v,w), then x is a
corner vertex of X.

Proof Since x ∈ s(v,w) and x �∈ ∂s(v,w), the subcomplex X\K1 of top-cells cannot
contain x . Observing that K1 ∪ (X\K1) = X , one has that x ∈ X is a corner vertex
by Lemma 5. �

Given such a vertex span s(v,w), one can determine K1 = X ∩ s(v,w) in O(N ·
|X |) time by filtering the top-cells of X for those belonging to s(v,w). Once K1 is
determined it will have some fixed number |K1| of top-cells. The number of integer
operations required to determine the corner vertices of K1 will therefore be essentially
O(N · |K1| · 2N), and O(N · |K1| · 2N) bytes will have been consumed. Among the
corner vertices detected in K1, each of those in ∂s(v,w) can be detected in at most
O(N) time. If the top-cells of X are stored in memory (as must be assumed if top-cells
are being deleted and inserted as in the algorithms discussed below) then one is instead
looking at a space complexity of O(N · |X | + N · |K1| · 2N) bytes, which will tend
to be feasible if |K1| � |X |; the idea here is to minimize the size of the exponential
term.

Proposition 2 gives sufficient but not necessary conditions for a vertex x ∈ X to be
a corner vertex. For example, if s(v,w) ⊆ C N is a single top-cell then every vertex
of s(v,w) belongs to ∂s(v,w) so the Proposition will have nothing to say about the
corner vertices of X . Another problem arises when X itself has some vertices in ∂C N ,
in which case said vertices will have no chance of being contained in the interior of
any vertex span s(v,w) ⊆ C N . In terms of design this leads to two principles:

123

Finite directed cubical complexes 161

1. the vertex spans s(v,w) used to detect corner vertices of X should extend at least
three units along every coordinate;

2. X itself should be given an embedding where X ∩ ∂C N = ∅.

Taking these considerations into account leads to

Proposition 3 Suppose X ⊆ C N is a finite directed cubical complex such that X ∩
∂C N = ∅ and C = {0, . . . , 2s − 1} for s ≥ 2. Then the set S of vertex spans of the
form

s((2k1, . . . , 2kN), (2k1 + 3, . . . , 2kN + 3)) 0 ≤ ki ≤ 2s−1 − 2

cover X, and every vertex x ∈ X is an interior vertex of at least one such span. If
x ∈ X is a corner vertex then there exists at least one span s among this set which
detects it in the sense that x ∈ X ∩ s is a corner vertex and x �∈ ∂s.

Proof Since 2ki = 0 for ki = 0 and 2ki + 3 = 2s − 1 for ki = 2s−1 − 2, one sees that
every possible coordinate value in C N is covered by at least one of the spans, so X itself
is certainly covered since the spans consist of top-cells of C N . Since X ∩ ∂C N = ∅,
every vertex (x1, . . . , xN) ∈ X must have xi ∈ [1, . . . , 2s − 2] for all i , and it is clear
that there exist ki where xi ∈ {2ki + 1, 2ki + 2} so this yields a span s ∈ S where
x ∈ s is an interior vertex. If x ∈ X is a corner vertex then one has that it is also a
corner vertex of X ∩ s, and x �∈ ∂s so this property is detected on X ∩ s. �

The advantage here is that there are 2N vertices interior to each such span. The
time complexity for determining the corner vertices of X detected by such a span is
O(N · 3N · 2N) by the prior discussion; this improves on the naïve method whenever
3N < |X |, as is usually the case in large examples. The space complexity in this
case is O(N · 4N) bytes for a hash-table approach since the vertex span has O(4N)

vertices; this improves on the naïve general bound of O(N · 3N · 2N). There are
(2s−1 − 1)N ∼ O(2N (s−1)) such spans to consider in general. If one were to compute
corner vertices for these spans in parallel (as is certainly possible) for N = 8, say, then
each process would consume about 2·8·48 additional bytes in a compact representation,
or in other words 1 megabyte per process, so this is feasible at least in low dimensions.

The above algorithms work for arbitrary finite directed cubical complexes, but of
course one can do much better if X has a special form:

Proposition 4 The corner vertices of a vertex span s(v,w) ⊆ C N are exactly the
elements of the product

{v1, w1} × · · · × {vN , wN }

where N is the ambient dimension. In other words, they are the vertices which are
either minimal or maximal along every coordinate.

Proof First observe that if x is a vertex of s(v,w) and 1 ≤ i ≤ N then x −ei and x +ei

must belong to distinct top-cells where ei is the unit vector along the i th coordinate; this
is due to the fact that the embedding X ⊆ C N must satisfy c(n) − c(∅) = (1, . . . , 1)

123

162 M. D. Misamore

by definition. In particular, if x has the property that x − ei and x + ei both belong to
s(v,w) for some i then x cannot be a corner vertex; therefore if x is a corner vertex
then it must be minimal or maximal along every coordinate.

Conversely, if x is not a corner vertex of s(v,w) then it is contained in more than one
unique top-cell. It follows that there exist vertices a and b in s(v,w) such that a ≤ x ≤
b and b −a = (1, . . . , 1, 2, 1, . . . , 1) where 2 occurs at some index i and xi −ai = 1.
Then x ∈ s(a, a + (1, . . . , 1)) and also x ∈ s(a + (0, . . . , 0, 1, 0, . . . , 0), b), which
are distinct top-cells of s(v,w). In particular, x −ei ≥ a and x +ei ≤ b so x is neither
maximal nor minimal along the coordinate i . Therefore if x is minimal or maximal
along every coordinate then it must be a corner vertex of s(v,w). �

This ready-made description of corner vertices can be useful when X consists of a
cubical span with certain subspans deleted (e.g. applications to concurrency), as in that
case one immediately knows at least the corner vertices of the original span. From this
description one can also easily recover the corner cells of s(v,w), i.e. those top-cells
containing corner vertices.

Any algorithm that recursively removes corner vertices from finite directed cubical
complexes faces the challenge of identifying any new corner vertices that are cre-
ated. More precisely, if c ⊂ X is a top-cell with vertex x and Lx ⊂ c is the cubical
subcomplex supported away from x , one needs to efficiently determine the new cor-
ner vertices of X generated by replacing c with Lx . Assuming X ∩ ∂C N = ∅ and
C = {0, . . . , 2s − 1} for s ≥ 2, Proposition 3 establishes that there is a vertex span
sc := s(min(c) − (1, . . . , 1), max(c) + (1, . . . , 1)) containing c in its interior, so by
Proposition 2 it suffices to compute the corner vertices of sc ∩ X . The following result
determines the potential new corner vertices in advance:

Proposition 5 If c is a cubical n-cell and Lx ⊂ c is the subcomplex supported away
from some vertex x ∈ c, then each top-cell of Lx contains a unique corner vertex.

Proof If c has dimension 0 then Lx is empty so d cannot be a top-cell of Y and
the assertion is vacuously true, so suppose c has dimension n ≥ 1. Choosing local
coordinates for c where c(∅) = (0, . . . , 0) and c(n) = (1, . . . , 1), observe that the
two different types of top-cells of ∂c are of the form

s((0, . . . , 0, 1, 0, . . . , 0), (1, . . . , 1))

s((0, . . . , 0), (1, . . . , 1, 0, 1, . . . , 1))

so that the top-cells of Lx are exactly those given by vertex spans of the form

si = s((0, . . . , 0, 1 − xi , 0, . . . , 0), (1, . . . , 1, 1 − xi , 1, . . . 1))

for 1 ≤ i ≤ N . A vertex y ∈ Lx belongs to si exactly when yi = 1 − xi , so si is
the only top-cell of Lx containing y exactly when yi = 1 − xi and y j = x j for all
j �= i . Every top-cell si ⊂ Lx therefore contains a unique corner vertex of Lx given
by y = (x1, . . . , xi−1, 1 − xi , xi+1, . . . , xN). �

123

Finite directed cubical complexes 163

Since there are exactly N potential new corner vertices, the above algorithm for
corner vertices will require O(N · 3N · 2N) integer operations as usual but can be
modified to use only O(N 2) memory; this can be accomplished by prepopulating a
hash table with the known corner vertices and then ignoring any vertices which either
hash to an empty bucket or to a bucket containing no vertices equal to it. For purposes
of detection, the potential corner vertices that are not actual corner vertices need only
occur twice in the hash table; further insertion attempts can also be ignored.

Finally, it is useful to know when a set S of corner vertices can be removed from
a finite directed cubical complex X in parallel to produce a new complex X S (whose
“new” corner vertices can then be determined by parallel application of the above
algorithm and taking the union of the answers). Here is the basic result:

Proposition 6 Suppose X ⊆ C N is a finite directed cubical complex, x, y ∈ X corner
vertices of X belonging to distinct top-cells, and Xx , X y ⊂ X the subcomplexes
obtained by replacing the top-cells containing x and y with Lx and L y respectively.
Then (Xx)y = (X y)x . More generally, if S is a set of corner vertices of X such that
no two are contained in the same top-cell, then the subcomplex X S ⊂ X supported
away from S can be obtained by removing the elements of S from X in any order.

Proof Since x and y are corner vertices, neither can belong to both top-cells containing
x and y, thus the only vertices removed from either top-cell will be x and y, and
performing these removals in either order will yield the same subcomplex. The latter
result follows by induction. �

This raises the possibility that X could contain too many corner vertices to store
in memory, but this is easily mitigated in practice by placing an upper bound on the
number of corner vertices of X that are stored at any given time; this leads to a graceful
degradation in the effectiveness of the algorithm without yielding incorrect results. A
similar concern is that of creating too many new top-cells upon the removal of a corner
vertex (since ∂c could consist entirely of new top-cells in the worst case), but again this
can be mitigated by placing an upper bound on the total number of top-cells allowed
in memory at any given time and disallowing the removal of any corner vertex that
would cause this bound to be exceeded. So far these concerns have not manifested as
problems in practice.

5 Implementation and future work

To test the ideas presented in this paper, the author has implemented software for
representing finite directed cubical complexes and reducing them by removing corner
vertices. Indeed, these experiments directly led to the formulation of the definition
of a “corner vertex” as given here. To give a practical example, there is now a paral-
lelized algorithm for reducing [1, 2, 3, 4, 5, 6]5 to a chain of twenty-five 1-simplices
connecting [1, . . . , 1] to [6, . . . , 6]. On the author’s laptop this requires 43 s and 17
megabytes of memory using 8 cores, and a similar example on [1, . . . , 10]3 requires
about 0.5 s and 6 megabytes of memory. The source code is available through Github.

The primary application of interest at the moment is to concurrency theory, where
one has a finite directed cubical complex that is effectively a vertex span from which

123

164 M. D. Misamore

certain top-dimensional subspans called forbidden regions have been deleted. The
top-cells of such a complex X are easily computed, and then the algorithm can begin
to recursively remove corner vertices from it, producing new top-cells as needed and
deleting old ones (for these purposes a pair (a, b) of desired “endpoints” representing
the beginning and end of the computation are excluded from the list of corner vertices).
Presuming memory bounds are not exceeded, this results in a complex Y without any
corner vertices except a and b. In particular, the set of paths a � b in Y will usually
be much smaller than the corresponding set in X , and it is correspondingly easier
to compute P(|Y |)(a, b) than P(|X |)(a, b); code to perform this latter task already
exists, including an implementation in C written by the present author.

There are, of course, plenty of examples of finite directed cubical complexes which
contain no corner vertices at all. A particularly simple family of examples comes from
considering any cubical complex of the form

• �� • ��

=
• ··· ��

=
•

=

�� • �� •

• ��

•

�� •

··· �� •

�� •

�� •

where the equals signs indicate 2-cells and the remaining squares are boundaries of
2-cells. One can therefore “trap” arbitrarily many top-cells between “empty cells”, and
similar examples apply to higher-dimensional grids. Calling any such complex corner-
free, it remains to be seen if another homotopical simplification could be introduced
that 1) is easy to detect, compute, and parallelize; 2) applies to at least some corner-free
complexes; and 3) is fully faithful on path categories.

Acknowledgments I would like to thank Professor Rick Jardine for introducing me to these applications
of homotopy theory to computer science. The anonymous referee is also thanked for providing helpful
comments which improved the exposition.

References

1. Fritsch, R., Latch, D.M.: Homotopy inverses for nerve. Math. Zeitschrift 177(2), 147–179 (1981)
2. Jardine, J.F.: Categorical homotopy theory. Homol. Homotopy Appl. 8(1), 71–144 (2006)
3. Jardine, J.F.: Path categories and resolutions. Homol. Homotopy Appl. 12(2), 231–244 (2010)
4. Kahl, T.: Some collapsing operations for 2-dimensional precubical sets. J. Homotopy Relat. Struct. 7(2),

281–298 (2012)
5. Pratt, V.R.: Modeling concurrency with geometry. In: Proceedings of the 18th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pp. 311–322 (1991). ISBN: 0-89791-419-8

123

	Computing path categories of finite directed cubical complexes
	Abstract
	1 Introduction
	2 Background
	3 Avoiding vertices
	4 Algorithmic considerations
	5 Implementation and future work
	Acknowledgments
	References

