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Abstract Unit time-phase signal sets have many important applications in radar or
sonar systems. Upper bounds or lower bounds on the maximum cross ambiguity ampli-
tudes of (n,M) unit time-phase signal sets with M ≥ 2 have been presented in the
literature. In this paper, we use Gauss sums to determine the explicit maximum cross
ambiguity amplitudes of some infinite series of unit time-phase signal sets which were
constructed by Ding et al. (Cryptogr Commun 5:209–227, 2013).
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1 Introduction

Let Hn = C(Zn) be a set of all complex-valued functions on Zn = {0, 1, . . . , n − 1}
for an integer n > 1, which is a Hilbert space with the Hermitian product given by

〈φ, ϕ〉 =
∑

t∈Zn

φ(t)ϕ(t), for φ, ϕ ∈ Hn .
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394 C. Li, Q. Yue

Digital signals are complex-valued functions on Zn . The function φ ∈ Hn can be
viewed as a sequence via the following mapping

φ �→ (φ(0), φ(1), . . . , φ(n − 1)).

A subset S ⊂ Hn is called a signal set, and a unit signal set if the norm ‖ φ ‖�√〈φ, φ〉 = 1 for every signal φ ∈ S. In this paper, we only consider unit signal sets
because every signal can be normalized into a unit signal.

Signal sets with certain properties are required in some communication systems
(see [1–8,11,12,15]). During the transmission process, a signal φ might be distorted
in various ways. Two basic types of distortion are the time shift

φ(t) �→ Lτ φ(t) = φ(t + τ)

and the phase shift

φ(t) �→ Mωφ(t) = e
2π

√−1
n ωtφ(t),

where τ, ω ∈ Zn . To measure the capability of anti-distortion of a signal set S with
respect to the time and phase shift, Gurevich, Hadani and Sochen [7] defined the
maximum cross ambiguity amplitude λ of an (n,M) signal set by

λ = max{|〈φ,MωLτ ϕ〉| : either φ �= ϕ or (τ, ω) �= (0, 0)}.

Then we call S an (n,M, λ) time-phase signal set when both time and phase shifts
are considered, where M denotes the total number of signals in S. If only time shift
is considered (i.e., ω = 0), we call S an (n,M) time signal set or codebook (see
[1,8,15]).

In [7], the authors used the group representation theory to design signal sets which
were given by an algorithm. Unfortunately, the explicit form of these signal sets was
unknown. Based on their results, Wang and Gong [12] gave an elegant expression for
these time-phase signal sets by both multiplicative characters and additive characters of
finite fields and presented upper bounds on the maximum cross ambiguity amplitudes.
Schmidt [11] presented more constructions of such signal sets and easily obtained the
upper bounds by using Weil bound. Moreover, the upper bounds on the maximum
cross ambiguity amplitudes of some families of signal sets designed by multiplicative
characters or additive characters were given in [13]. Ding et al. [2] proved that the
famous Welch’s bound and the Levenstein’s bound on λ are not good for time-phase
signal sets. Moreover, they presented some better bounds from two one-way bridges
between time-phase signal sets and time signal sets.

Lemma 1 [2] For any (n,M, λ) unit time-phase signal set S with λ < 1 and M > 1,
we have the improved Levenstein’s bound:

λ ≥
√

2nM − n − 1

(n + 1)(nM − 1)
.
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Unit time-phase signal sets 395

Let H(n,q) be the set of all complex-valued functions f on Zn such that
√

n f (i)
is a qth root of unity for all i ∈ Zn . In [2], we have some better linear programming
bounds on M and λ from Levenstein’s results as follows.

Lemma 2 [2] Let S ⊂ H(n,q) be any (n,M, λ) unit time-phase signal set, where
q = 2. Then

nM ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−λ2

1−nλ2 , if 0 ≤ λ2 ≤ n−2
n2 ,

n2(1−λ2)

3n−2−n2λ2 , if n−2
n2 ≤ λ2 ≤ 3n−8

n2 ,

n(1−λ2)[(n−2)(n2−3n+8)−(n2−n+2)n2λ2]
6n(n−2)−4(3n−4)n2λ2+2n4λ4 , if 3n−8

n2 ≤ λ2 ≤ 3n−10+√
6n2−42n+76
n2 ,

n2(1−λ2)
6

3n3−23n2+90n−136−(n2−3n+8)n2λ2

15n2−50n+24−10(n−2)n2λ2+n4λ4 , if 3n−10+√
6n2−42n+76
n2 ≤ λ2

≤ 5(n−4)+√
10n2−90n+216
n2

Lemma 3 [2] Let S ⊂ H(n,q) be any (n,M, λ) unit time-phase signal set, where
q ≥ 3. Then

nM ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−λ2

1−nλ2 , if 0 ≤ λ2 ≤ n−1
n2 ,

n2(1−λ2)

2n−1−n2λ2 , if n−1
n2 ≤ λ2 ≤ 2n2−5n+4

n2(n−1)
,

n(1−λ2)[(n2−n+1)n2λ2−n3+3n2−5n+4]
n[4(n−1)n2λ2−n4λ4−2n2+3n] , if 2n2−5n+4

n2(n−1)
≤ λ2 ≤ 2n−2+√

2n2−5n+4
n2 .

When q ≥ 3 and n−1
n2 ≤ λ2 ≤ 2n2−5n+4

n2(n−1)
, an infinite series of optimal (n, 1) unit

time-phase signal sets were firstly constructed by Ding et al. [2], who also presented
(n,M > 1) unit time-phase signal sets and obtained the upper bounds on the maximum
cross ambiguity amplitudes. Based on the construction in [2], we study some infinite
series of (n,M > 1) unit time-phase signal sets for all cases in Lemmas 2 and 3 with
the exception of the second case in Lemma 3 and use the Stickelberger’s Theorem and
index 2 Gauss sums to give the explicit maximum cross ambiguity amplitudes.

The paper is organized as follows. In Sect. 2, we introduce some basic concepts
and results about Gauss sums. In Sect. 3, we use Gauss sums to determine the explicit
maximum cross ambiguity amplitudes of some infinite series of (n,M > 1) unit
time-phase signal sets.

For convenience, we introduce the following notations:

ZN ,Z
∗
N the ring of integers modulo N , the multiplicative group of ZN ,

〈p〉 the cyclic subgroup of Z
∗
N generated by p,

Φ(N ) the number of integers k with 1 ≤ k ≤ N such that gcd(k, N ) = 1,
ordN (p) the order of p modulo N ,
Fq the finite field of order q,
Tr the absolute trace from Fq to Fp,
ψ the additive character of Fq ,
χ the multiplicative character of Fq ,
o(χ) the order of the multiplicative character χ ,

123



396 C. Li, Q. Yue

G(χ) the Gauss sum over Fq ,
(

p1
p2
) the Legendre symbol.

2 Gauss sums

Let Fq be a finite field with q = p f elements, p a prime, and f a positive integer.
Define an additive character of Fq as follows:

ψb : Fq → C
∗, ψb(x) = ζTr(bx)

p , for b ∈ Fq , (1)

where ζp = e
2π

√−1
p is a pth primitive root of unity and Tr denotes the absolute trace

from Fq to Fp. For b = 1, ψ1 is called the canonical additive character of Fq . Let
χ : F

∗
q → C

∗ be a multiplicative character of F
∗
q . We have the Gauss sum:

G(ψb, χ) =
∑

x∈F∗
q

ψb(x)χ(x).

Now we recall some properties of Gauss sums.

Lemma 4 [10] Let ψ and χ be an additive character and a multiplicative character
of Fq , respectively. Then

G(ψ, χ) =
⎧
⎨

⎩

q − 1, if ψ = 1 and χ = 1,
−1, if ψ �= 1 and χ = 1,
0, if ψ = 1 and χ �= 1.

If ψ = ψb �= 1 (i.e., b �= 0) and χ �= 1, then

|G(ψ, χ)| = √
q,

and

G(ψb, χ) = χ(b)G(χ),

where

G(χ) = G(ψ1, χ) =
∑

x∈F∗
q

ψ1(x)χ(x) =
∑

x∈F∗
q

χ(x)ζTr(x)
p .

While it is easy to know the absolute value of a nontrivial Gauss sum G(ψ, χ) is equal
to

√
q , the explicit determination of Gauss sum is a difficult problem. However, the

Gauss sums can be explicitly evaluated in a few cases. For future use, we state the
Stickelberger’s Theorem.

Lemma 5 (Stickelberger’s Theorem [10]) Let q = p2l with p a prime and l a positive
integer, let χ be a nontrivial multiplicative character of Fq of order m dividing pl +1,
and let ψ1 be the canonical additive character of Fq . Then

123



Unit time-phase signal sets 397

G(χ) = G(ψ1, χ) =
{

pl , if m odd or pl+1
m even,

−pl , if m even and pl+1
m odd.

Below we introduce a result on one case of the index 2 Gauss sums which involves
class numbers of number fields. The definition of the class number can be found in
any algebraic number theory and we refer the readers to [6] and [9].

Lemma 6 [14] Let N = pr1
1 pr2

2 , where p1, p2 are distinct odd primes with p1 ≡ 3
(mod 4). Assume that p is a prime such that −1 �∈ 〈p〉 ≤ Z

∗
N and f = ordN (p) =

Φ(N )
2 , where f is the smallest positive integer such that p f ≡ 1 (mod N ). Let q = p f

and χ a multiplicative character of order N over Fq . Suppose that ordp
r1
1
(p) =

Φ(p
r1
1 )

2 , ordp
r2
2
(p) = Φ(pr2

2 ). For 0 ≤ t1 < r1, 0 ≤ t2 < r2, we have

G(χ p
t1
1 p

t2
2 ) =

⎧
⎨

⎩
p

f
2 , if ( p2

p1
) = 1,

p
f
2 −hp

t1
1 p

t2
2 (

b+c
√−p1
2 )2p

t1
1 p

t2
2 , if ( p2

p1
) = −1;

G(χ p
r1
1 p

t2
2 ) = p

f
2 ;

G(χ p
t1
1 p

r2
2 ) = −p

1
2 ( f −hp

t1
1 Φ(p

r2
2 ))

(
b + c

√−p1

2

)p
t1
1 Φ(p

r2
2 )

,

where h is the class number of Q(
√−p1) and b, c are determined by

⎧
⎨

⎩
(1) 4ph = b2 + p1c2,

(2) b ≡ 2p
p1−1+2h

4 (mod p1).

3 (n, M > 1) unit time-phase signal sets

In this section, we use Gauss sums to determine the explicit maximum cross ambiguity
amplitudes of some infinite series of unit time-phase signal sets which were constructed
by Ding et al. [2]. Now we introduce the results on their constructions of (n, 1) and
(n,M > 1) unit time-phase signal sets.

The construction of case (n, 1) can be described as follows [2]. Let q = p f , p a
prime, n = q − 1, Tr : Fq → Fp the trace mapping, and γ a primitive element of
Fq . Let

φ = 1√
n
(φ(0), φ(1), . . . , φ(n − 1)) ∈ C

n,

where

φ(i) = ζ
Tr(γ i )
p , 0 ≤ i ≤ n − 1.
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398 C. Li, Q. Yue

Then S = {φ} is an (n, 1,
√

n+1
n ) unit time-phase set. Moreover, S is optimal if p ≥ 3.

This is the first time that an infinite family of optimal time-phase signal sets was
constructed.

The construction of the case (n,M > 1) can be described in the following lemma.

Lemma 7 [2] Let q = p f , p a prime, q − 1 = en (e ≥ 2),Tr : Fq → Fp the trace
mapping, and γ a primitive element of Fq . For 0 ≤ i ≤ e − 1, let

φi = 1√
n
(φi (0), φi (1), . . . , φi (n − 1)) ∈ C

n,

where

φi (t) = ζ
Tr(γ i+et )
p , 0 ≤ t ≤ n − 1.

Then S = {φi : 0 ≤ i ≤ e − 1} is a ( q−1
e , e, λ) unit time-phase signal set with

λ ≤
√

en+1
n .

Proof For completeness, we give a proof here. For 0 ≤ i, j ≤ e − 1, 0 ≤ ω, τ ≤
n − 1, (i − j, ω, τ ) �= (0, 0, 0), we have

〈φi ,MωLτ (φ j )〉 = 1

n

n−1∑

t=0

ζ
Tr(γ i+et )
p ζ

Tr(γ j+e(t+τ ))
p ζ

ωt
n

= 1

n

n−1∑

t=0

ζ
Tr(γ et (γ i −γ j+eτ ))
p ζ

ωt
n

= 1

n

n−1∑

t=0

ζ
Tr(βγ et )
p χω(γ et ),

where β = γ i − γ j+eτ and χ is the multiplicative character of F
∗
q defined by χ(γ ) =

ζ q−1. Note that for 0 ≤ r ≤ q − 2, we have

e−1∑

s=0

χns(γ r ) =
e−1∑

s=0

ζ
rs
e =

{
e, if e | r
0, otherwise .

Thus

1

n

n−1∑

t=0

ζ
Tr(βγ et )
p χω(γ et ) = 1

en

∑

x∈F∗
q

ζTr(βx)
p χω(x)

e−1∑

s=0

χns(x)

= 1

en

e−1∑

s=0

∑

x∈F∗
q

χns+ω(x)ζTr(βx)
p .
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Unit time-phase signal sets 399

If ( j −i, τ ) = (0, 0), we have 1 ≤ ω ≤ n−1, β = γ i −γ j+τe = 0, andχns+ω �= 1
for all s, 0 ≤ s ≤ e − 1. Then

〈φi ,MωLτ (φ j )〉 = 1

en

e−1∑

s=0

∑

x∈F∗
q

χns+ω(x) = 1

en

e−1∑

s=0

0 = 0.

If ( j − i, τ ) �= (0, 0), i.e., β �= 0, then

〈φi ,MωLτ (φ j )〉 = 1

en

e−1∑

s=0

χns+ω(β)G(χns+ω)

≤ 1

en

e−1∑

s=0

|G(χns+ω)| ≤ e
√

q

en
=

√
en + 1

n
.

Therefore the upper bound on λ follows. ��
It is very difficult to compute the explicit value λ for the time-phase signal set

S in Lemma 7, and thus unable to know if it is optimal. In the following, we
determine the explicit values of λ in some special cases. For p ≥ 3, the case that
λ2 ∈ [ n−1

n2 ,
2n2−5n+4

n2(n−1)
] had been studied by Ding et al. [2]. In the following, we shall

consider all cases stated in Lemmas 2 and 3 with the exception of the above case.
(1) When p ≥ 3.
For the case λ2 ∈ [0, n−1

n2 ], we have

λ2 ≥ nM − 1

n2 M − 1

from the first bound of Lemma 3. Thus it is easily verified that n = M = 1, it is
trivial. Now we study the (n, 2) and (n, 3) unit time-phase signal sets for the case

λ2 ∈ [ 2n2−5n+4
n2(n−1)

, 2n−2+√
2n2−5n+4
n2 ].

Theorem 1 Let q = p2l , p ≡ 3 (mod 4) a prime, l odd, n = q−1
2 , Tr : Fq → Fp

the trace mapping, and γ a primitive element of Fq . For i = 0, 1, let

φi = 1√
n
(φi (0), φi (1), . . . , φi (n − 1)) ∈ C

n,

where

φi (t) = ζ
Tr(γ i+2t )
p , 0 ≤ t ≤ n − 1.

Then S = {φ0, φ1} is a ( q−1
2 , 2,

√
2n+1
n ) unit time-phase signal set, which falls into

the third case of Lemma 3.
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400 C. Li, Q. Yue

Proof From the proof of Lemma 7, we have

〈φi ,MωLτ (φ j )〉 = 1

2n
(χω(β)G(χω)+ χn+ω(β)G(χn+ω)),

for i, j ∈ {0, 1}, 0 ≤ ω, τ ≤ n − 1, (i − j, ω, τ ) �= (0, 0, 0), where β = γ i − γ j+2τ .
For arbitrary i ∈ {0, 1}, j ∈ {0, 1} and τ ∈ {0, . . . , n − 1}, we can always take

some (i0, j0, τ0) such that β = γ i0 −γ j0+2τ0 = 1, thus χω(β) = χn+ω(β) = 1. Take
ω = q−1

4 , then the orders of both χω and χn+ω are equal to 4. Since p ≡ 3 (mod 4)
and l is odd, 4 | (pl + 1). By Stickelberger’s Theorem, we have

G(χ
q−1

4 ) = G(χn+ q−1
4 )

and

λ ≥ |〈φi0 ,MωLτ0(φ j0)〉| = 2
√

q

2n
=

√
2n + 1

n
.

By Lemma 7, we have λ =
√

2n+1
n which falls into the third case of Lemma 3. Hence

S = {φ0, φ1} is a ( q−1
2 , 2,

√
2n+1
n ) unit time-phase signal set. ��

Example 1 Let q = 32, n = 4, and γ a primitive element of Fq . For i = 0, 1, let

φi = 1

2
(φi (0), φi (1), φ(2), φi (3)) ∈ C

4,

where

φi (t) = ζ
Tr(γ i+2t )
3 , 0 ≤ t ≤ 3.

Then S = {φ0, φ1} is an (4, 2, 3
4 ) unit time-phase signal set, which falls into the third

case of Lemma 3.

Theorem 2 Let q = p2l , p ≡ 2 (mod 3) an odd prime, l odd, n = q−1
3 , Tr : Fq →

Fp the trace mapping, and γ a primitive element of Fq . For 0 ≤ i ≤ 2, let

φi = 1√
n
(φi (0), φi (1), . . . , φi (n − 1)) ∈ C

n,

where

φi (t) = ζ
Tr(γ i+3t )
p , 0 ≤ t ≤ n − 1.

Then S = {φ0, φ1, φ2} is a ( q−1
3 , 3,

√
3n+1
n ) unit time-phase signal set, which falls

into the third case of Lemma 3.
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Unit time-phase signal sets 401

Proof From the proof of Lemma 7, we have

〈φi ,MωLτ (φ j )〉 = 1

3n
(χω(β)G(χω)+ χn+ω(β)G(χn+ω)+ χ2n+ω(β)G(χ2n+ω)),

for 0 ≤ i, j ≤ 2, 0 ≤ ω, τ ≤ n − 1, (i − j, ω, τ ) �= (0, 0, 0), where β = γ i −γ j+3τ .
For arbitrary i, j ∈ {0, 1, 2} and τ ∈ {0, . . . , n − 1}, we can always take some

(i0, j0, τ0) such that β = γ i0 − γ j0+3τ0 = 1, thus χω(β) = χn+ω(β) = χ2n+ω(β) =
1. Take ω = q−1

6 , then there are three orders:

o(χω) = 6, o(χ2n+ω) = 6 and o(χn+ω) = 2.

Since p ≡ 2 (mod 3) is an odd prime and l is odd, 6 | (pl + 1) and 2 | (pl + 1). By
Stickelberger’s Theorem, we have

G(χ
q−1

6 ) = G(χn+ q−1
6 ) = G(χ2n+ q−1

6 )

and

λ ≥ |〈φi0 ,MωLτ0(φ j0)〉| = 3
√

q

3n
=

√
3n + 1

n
.

By Lemma 7, we know that λ =
√

3n+1
n which falls into the third case of Lemma 3.

Hence S = {φ0, φ1, φ2} is a ( q−1
3 , 3,

√
3n+1
n ) unit time-phase signal set. ��

Example 2 Let q = 52, n = 8, and γ a primitive element of Fq . For 0 ≤ i ≤ 2, let

φi = 1

2
√

2
(φi (0), φi (1), . . . , φi (7)) ∈ C

8,

where

φi (t) = ζ
Tr(γ i+3t )

5 , 0 ≤ t ≤ 7.

Then S = {φ0, φ1, φ2} is an (8, 3, 5
8 ) unit time-phase signal set, which falls into the

third case of Lemma 3.

(2) When p = 2.
For the case λ2 ∈ [0, n−2

n2 ], we have

λ2 ≥ nM − 1

n2 M − 1

from the fist bound of Lemma 2. Thus it is easily verified that n = M = 1, it is trivial.

The (n, 1,
√

n+1
n ) unit time-phase signal set constructed in [2] falls into the second
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402 C. Li, Q. Yue

case of Lemma 2 when p = 2. In the following, we study the other cases in Lemma 2
using Stickelberger’s Theorem and index 2 Gauss sums.

For the third case of Lemma 2, we use Stickelberger’s Theorem to give the explicit
maximum cross ambiguity amplitude.

Theorem 3 Let q = 22l , l ≡ 5 (mod 10), n = q−1
3 , Tr : Fq → F2 the trace

mapping, and γ a primitive element of Fq . For 0 ≤ i ≤ 2, let

φi = 1√
n
(φi (0), φi (1), . . . , φi (n − 1)) ∈ C

n,

where

φi (t) = (−1)Tr(γ i+3t ), 0 ≤ t ≤ n − 1.

Then S = {φ0, φ1, φ2} is a ( q−1
3 , 3,

√
3n+1
n ) unit time-phase signal set, which falls

into the third case of Lemma 2.

Proof Since l ≡ 5 (mod 10), l = 5l1 and l1 is odd. Then q−1 = 22l−1 = (210−1)d1
and 2l + 1 = (25 + 1)d2, where d1, d2 are integers, so 33 | (q − 1) and 33 | (2l + 1).
Take ω = q−1

33 , then there are three orders:

o(χw) = o(χ2n+w) = 33 and o(χn+w) = 11.

By Lemma 7 and Stickelberger’s Theorem, we have λ =
√

3n+1
n which falls into the

third case of Lemma 2. Then we finish the proof. ��
Example 3 Let q = 210, n = q−1

3 = 341, and γ a primitive element of Fq . For
0 ≤ i ≤ 2, let

φi = 1√
341

(φi (0), φi (1), . . . , φi (340)) ∈ C
341,

where

φi (t) = (−1)Tr(γ i+3t ), 0 ≤ t ≤ 340.

Then S = {φ0, φ1, φ2} is a (341, 3, 32
341 ) unit time-phase signal set, which falls into

the third case of Lemma 2.

Theorem 4 Let q = 22l , l ≡ 6 (mod 12), n = q−1
5 , Tr : Fq → F2 the trace

mapping, and γ a primitive element of Fq . For 0 ≤ i ≤ 4, let

φi = 1√
n
(φi (0), φi (1), . . . , φi (n − 1)) ∈ C

n,

123



Unit time-phase signal sets 403

where

φi (t) = (−1)Tr(γ i+5t ), 0 ≤ t ≤ n − 1.

Then S = {φi : 0 ≤ i ≤ 4} is a ( q−1
5 , 5,

√
5n+1
n ) unit time-phase signal set, which

falls into the third case of Lemma 2.

Proof Since l ≡ 6 (mod 12), l = 6l1 and l1 is odd. Then q−1 = 22l−1 = (212−1)d1
and 2l + 1 = (26 + 1)d2, where d1, d2 are integers, so 65|(q − 1) and 65|2l + 1. Take
ω = q−1

65 , then there are five orders:

o(χ sn+w) = 65(s = 0, 1, 2, 4) and o(χ3n+w) = 13.

By Lemma 7 and Stickelberger’s Theorem, we have λ =
√

5n+1
n which falls into the

third case of Lemma 2. Then we finish the proof. ��
Example 4 Let q = 212, n = q−1

5 = 819, and γ a primitive element of Fq . For
0 ≤ i ≤ 4, let

φi = 1√
819

(φi (0), φi (1), . . . , φi (818)) ∈ C
819,

where

φi (t) = (−1)Tr(γ i+5t ), 0 ≤ t ≤ 818.

Then S = {φi : 0 ≤ i ≤ 4} is an (819, 5, 64
819 ) unit time-phase signal set, which falls

into the third case of Lemma 2.

In the following, we use the index 2 Gauss sums to study the fourth case of Lemma 2.

Theorem 5 Let q = 2 f , 30 | f, n = q−1
7 , Tr : Fq → F2 the trace mapping, and γ

a primitive element of Fq . For 0 ≤ i ≤ 6, let

φi = 1√
n
(φi (0), φi (1), . . . , φi (n − 1)) ∈ C

n,

where

φi (t) = (−1)Tr(γ i+7t ), 0 ≤ t ≤ n − 1.

Then S = {φi : 0 ≤ i ≤ 6} is a ( q−1
7 , 7,

√
7n+1
n ) unit time-phase signal set, which

falls into the fourth case of Lemma 2.

Proof Since 30 | f , we have f = 30 f1 and f1 is an integer. Then q − 1 = 2 f − 1 =
(230 − 1)d, where d is an integer, so 77 | (230 − 1) and 77 | (q − 1).
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From the proof of Lemma 7, we have

〈φi ,MωLτ (φ j )〉 = 1

7n

6∑

s=0

χns+ω(β)G(χns+ω)

for 0 ≤ i, j ≤ 6, 0 ≤ ω, τ ≤ n − 1, (i − j, ω, τ ) �= (0, 0, 0), where β = γ i − γ j+7τ .
For arbitrary i, j, τ , we can always take some (i0, j0, τ0) such that β = γ i0 −

γ j0+7τ0 = 1, thus χns+ω(β) = 1 for 0 ≤ s ≤ 6. Take ω = q−1
77 , then

o(χns+ω) = 77(s = 0, 1, 2, 3, 4, 6) and o(χ5n+ω) = 11.

Note that ord7(2) = φ(7)
2 , ord11(2) = φ(11), ord77(2) = φ(77)

2 , and the Legendre
symbol ( 11

7 ) = 1. By Lemma 6 and Davenport–Hasse Lifting Theorem (see [10]), we
have

G(χns+ q−1
6 ) = (−1) f1−1√q, s = 0, 1, . . . , 6.

Therefore

λ ≥ |〈φi0 ,MωLτ0(φ j0)〉| = 7
√

q

7n
=

√
7n + 1

n
.

By Lemma 7, we have λ =
√

7n+1
n which falls into the fourth case of Lemma 2. Hence

S = {φi : 0 ≤ i ≤ 6} is a ( q−1
7 , 7,

√
7n+1
n ) unit time-phase signal set. ��

Example 5 Let q = 230, n = 230−1
7 , and γ a primitive element of Fq . For 0 ≤ i ≤ 6,

let

φi = 1√
n
(φi (0), φi (1), . . . , φi (n − 1)) ∈ C

n,

where

φi (t) = (−1)Tr(γ i+7t ), 0 ≤ t ≤ n − 1.

Then S = {φi : 0 ≤ i ≤ 6} is an (n, 7, 215

n ) unit time-phase signal set, which falls into
the fourth case of Lemma 2.
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