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Abstract We give a necessary and sufficient condition such that the class of p-ary
binomial functions proposed by Jia et al. (IEEE Trans Inf Theory 58(9):6054–6063,
2012) are regular bent functions, and thus settle the open problem raised at the end
of that paper. Moreover, we investigate the bentness of the proposed binomials under
the case gcd( t

2 , p
n
2 + 1) = 1 for some even integers t and n. Computer experiments

show that the new class contains bent functions that are affinely inequivalent to known
monomial and binomial ones.
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1 Introduction

Boolean bent functions, introduced by Rothaus [19] in 1976, are maximally nonlinear
Boolean functions with even number of variables, that is, they achieve the maximal
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462 D. Zheng et al.

Hamming distance to the set of all affine Boolean functions. Besides wide application
in cryptography due to their high nonlinearity, they play an important role in sequences
and coding theory [2,3,8,16,17,20]. Moreover, they are also interesting combinatorial
objects [5,7]. The concept of Boolean bent functions was also generalized to the case of
functions over finite fields of odd characteristic by Kumar et al. [13]. People have paid
a lot of attention to this topic, however, the complete classification of bent functions is
still hopeless. Some research on constructions of bent functions focuses on monomial,
binomial and quadratic functions (see [1,4–6,9,10,12,14,18], and references therein).

Let p be an odd prime and n be an even positive integer. Let Fpn be the finite field
with pn elements and F

∗
pn = Fpn \{0}. Trn(·) is the trace function from Fpn to Fp,

i.e. Trn(x) = ∑n−1
i=0 x pi

for x ∈ Fpn . Helleseth and Kholosha [9] first characterized
the bentness of a class of p-ary Dillon monomial functions by a certain Kloosterman
sum. Recently, Jia et al. [12] considered a class of p-ary binomial functions which is
the sum of a Dillon monomial and a special monomial as follows,

fa,b,t (x) = Trn

(
axt (pm−1)

)
+ bx

pn−1
2 , a ∈ Fpn , b ∈ Fp, (1)

where n = 2m and t is a positive integer such that gcd(t, pm +1) = 1. Inspired by the
technique proposed in Jia et al. [10] established a relationship between Kloosterman
sums and some partial exponential sums (see Proposition 2), and used the result to
prove that fa,±b,t (x) are both regular bent functions if and only if

Km(a pm+1) = 1 − sec
2πb

p
,

where “sec” denotes the secant function and

sec
2πb

p
= 2

ωb + ω−b
,

here ω = exp(2π
√−1/p) is the complex primitive pth root of unity and an element

in Fp is viewed as an integer in Zp. At the end of Jia e al. [12] the authors improved
the above result for the cases pm ≡ 3 mod 4 or p = 3, and it was left an open problem
for the other cases.

The aim of this paper is to complete the improvement of Theorem 1 of [12] and
investigate the bentness of the p-ary binomial in (1) under different cases. Following
the idea in [12] we first reduce the characterization of bentness of the binomial in (1)
to determining a partial exponential sum (see Lemma 3). Based on the relationship
(see Proposition 2) between the derived partial exponential sum and Kloosterman
sums, and by using some symmetric properties of the derived partial exponential sum,
we solve the open problem in [12]. Moreover, we study the bentness of the function
fa,b,t (x) under the case gcd( t

2 , pm + 1) = 1 for some even integer t . Computer
experiments show that we can obtain bent functions that are affinely inequivalent to
all known monomial and binomial ones in this case.
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Binomial bent functions over the finite fields 463

The remainder of the paper is organized as follows. In Sect. 2 we introduce some
preliminaries. Section 3 discusses some partial exponential sums. Finally, the bentness
of the class of p-ary binomial functions proposed by Jia et al. [12] under two cases is
characterized in Sect. 4.

2 Preliminaries

Throughout this paper, let m, n be positive integers with n = 2m. Let Fpn be the finite
field with pn elements. The Walsh transform and its inverse of a p-ary function f :
Fpn → Fp are defined by

W f (λ) =
∑

x∈Fpn

ω f (x)−Trn(λx) and ω f (x) = 1

pn

∑

λ∈Fpn

W f (λ)ωTrn(λx).

The values W f (λ), λ ∈ Fpn are called the Walsh coefficients of f . The function f (x) is
called a p-ary bent function (or generalized bent function) if |W f (λ)|2 = pn for all λ ∈
Fpn . A bent function f (x) is called regular if for each λ ∈ Fpn , W f (λ) = p

n
2 ω f ∗(λ)

for some p-ary function f ∗ from Fpn to Fp. A bent function f (x) is called weakly
regular if there is a complex μ with unit magnitude such that W f (λ) = p

n
2 μω f ∗(λ)

for all λ ∈ Fpn . The function f ∗(x) is called the dual of f (x). Furthermore, the dual
of a (weakly) regular bent function is again a (weakly) regular bent function [9].

Let a ∈ Fpn , the Kloosterman sum Kn(a) [15] is defined as

Kn(a) =
∑

x∈Fpn

ωTrn(x+ax−1),

here x + ax−1 = 0 for x = 0.
For an integer d ∈ {0, 1, . . . , pn − 1}, it has the following p-ary expansion

d =
n−1∑

i=0

di pi , 0 ≤ di ≤ p − 1.

The number wp(d) = ∑n−1
i=0 di is called the p-weight of d. It is well known that each

function f (x) from Fpn to Fp can be represented by a univariate polynomial over
Fpn , and the algebraic degree of f (x) equals the maximal p-weight of the exponent
i of the term ai xi in f (x) with ai �= 0. Note that the maximal algebraic degree of a
Boolean bent function on F22m is equal to m. However, the algebraic degree of p-ary
bent functions has the following upper bound.

Proposition 1 [11] Let f (x) be a p-ary bent function on Fpn , then its algebraic

degree deg( f ) ≤ (p−1)n
2 + 1. Moreover, if f (x) is a (weakly) regular bent function

then deg( f ) ≤ (p−1)n
2 .
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Two p-ary functions f (x) and g(x) are called affinely equivalent [12] if there
exist some linearized permutation l(x) ∈ Fpn [x], a, c ∈ Fp and b ∈ Fpn such that
f (x) = ag(l(x) + b) + c. It is well known that algebraic degree, the set of absolute
values of Walsh coefficients and bentness of a p-ary function are affine invariants. It is
an interesting and challenging topic to find p-ary bent functions affinely inequivalent
to the known ones.

Let ξ be a primitive element of Fpn . For any ξ i , 0 ≤ i ≤ pn − 2, it can be uniquely
written as the from ξ (pm+1)k · ξ l , where 0 ≤ k ≤ pm − 2 and 0 ≤ l ≤ pm . As a
consequence, we have the following lemma.

Lemma 1 Let ξ be a primitive element of Fpn . For any element α ∈ F
∗
pn , there exists

a unique pair (x, u) ∈ F
∗
pm × U such that α = xu, where

U =
{
ξ i | i = 0, 1, . . . , pm

}
. (2)

An element α in F
∗
pn is called a square if α = x2 for some element x ∈ F

∗
pn .

Otherwise, α is called a non-square. Let C0 and C1 be the sets of squares and non-
squares in F

∗
pn , respectively, and they can be represented as follows:

Ci =
{

ξ2k+i | k = 0, 1, . . . ,
pn − 3

2

}

, i = 0, 1.

A subset of C0 is defined as

C+
0 =

{

a ∈ C0 | Trm(a
pm+1

2 ) �= 0

}

. (3)

Let G be the cyclic subgroup of F
∗
pn of order pm + 1 as

G =
{
ξ i(pm−1) | i = 0, 1, . . . , pm

}
. (4)

Two subsets of G are defined as follows:

G0 =
{

g ∈ G | g
pm+1

2 = 1

}

and G1 =
{

g ∈ G | g
pm+1

2 = −1

}

. (5)

It is clear that G = G0 ∪ G1. The following relationship between Kloosterman sums
and some partial exponential sums have been established in Lemma 7 of [12], which
is very important for our later discussions.

Proposition 2 [12] Let n = 2m and a ∈ F
∗
pn . Following the notations as above we

have

∑

x∈G0

ωTrn(ax) =
{

R + I
(
ωQ − ω−Q

)
, if a ∈ C+

0 ,

R, otherwise,
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Binomial bent functions over the finite fields 465

and

∑

x∈G1

ωTrn(ax) =
{

R − I
(
ωQ − ω−Q

)
, if a ∈ C+

0 ,

R, otherwise,

where Q = 2Trm(a
pm+1

2 ) and

R = 1 − Km(a pm+1)

2
, I =

⎧
⎨

⎩

(−1)
3m
2

2 p
m
2 , p ≡ 3 mod 4;

(−1)m

2 p
m
2 , otherwise.

3 Some partial exponential sums

To investigate the bentness of the functions defined by (1) we first consider the fol-
lowing partial exponential sum.

Sa,b,t =
∑

x∈G
ωTrn(axt )+bx

pm+1
2

, a ∈ F
∗
pn , b ∈ Fp, (6)

where n = 2m and G is the subgroup of F
∗
pn defined by (4).

Proposition 3 Let a ∈ F
∗
pn , b ∈ Fp. Let n, m, t be positive integers satisfying n = 2m

and gcd(t, pm + 1) = 1. We have

Sa,b,t =
{

R
(
ωb + ω−b

) + I
(
ωb − ω−b

) (
ωQ − ω−Q

)
, if a ∈ C+

0 ,

R
(
ωb + ω−b

)
, otherwise,

(7)

where Q, R, I is given in Proposition 2 and C+
0 is defined by (3).

Proof Since gcd(t, pm + 1) = 1 we have that t is odd and

Sa,b,t =
∑

x∈G
ωTrn(axt )+bx

pm+1
2 =

∑

x∈G
ωTrn(axt )+bx

t (pm+1)
2 = Sa,b,1. (8)

Next we determine Sa,b,1 as follows:

Sa,b,1 =
∑

x∈G
ωTrn(ax)+bx

pm+1
2

= ωb
∑

x∈G0

ωTrn(ax) + ω−b
∑

x∈G1

ωTrn(ax).

By Proposition 2 we know that (7) holds. 
�
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Proposition 4 Let a ∈ F
∗
pn , b ∈ Fp. Let n, m be numbers with n = 2m, and t be

an even number satisfying gcd( t
2 , pm + 1) = 1. Let R, Q, I be notations given in

Proposition 2 and C+
0 be defined by (3). We have

(1) If pm ≡ 1 mod 4 then

Sa,b,t =
{

(ωb + ω−b)
(
R + I (ωQ − ω−Q)

)
, if a ∈ C+

0 ,

(ωb + ω−b)R, otherwise.

(2) If pm ≡ 3 mod 4 then

Sa,b,t = ωb E0(a) + ω−b E1(a),

where

E0(a) =
∑

x∈G0

ωTrn(ax2), E1(a) =
∑

x∈G1

ωTrn(ax2). (9)

In particular, when b = 0, for two cases above we have

Sa,0,t =
{

2R + 2I (ωQ − ω−Q), i f a ∈ C+
0 ,

2R, otherwise.

Proof Because gcd( t
2 , pm +1) = 1, we know that t

2 is odd, and the mapping x �→ x
t
2

is a permutation on G. So,

Sa,b,t =
∑

x∈G
ωTrn(axt )+bx

pm+1
2 =

∑

x∈G
ω

Trn

(

a(x
t
2 )2

)

+bx
t
2

pm+1
2 = Sa,b,2. (10)

Furthermore, one easily has

Sa,b,2 =
∑

x∈G
ωTrn(ax2)+bx

pm+1
2 = ωb

∑

x∈G0

ωTrn(ax2) + ω−b
∑

x∈G1

ωTrn(ax2). (11)

(1) If pm ≡ 1 mod 4 then gcd(2,
pm+1

2 ) = 1, and so the x �→ x2 is a bijective
mapping from G0 or G1 to G0. By (11) and Proposition 2 we have

Sa,b,2 = (ωb + ω−b)
∑

x∈G0

ωTrn(ax)

=
{

(ωb + ω−b)
(
R + I (ωQ − ω−Q)

)
, if a ∈ C+

0 ,

(ωb + ω−b)R, otherwise.


�
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(2) By (11) one has

Sa,b,t = ωb E0(a) + ω−b E1(a).

When b = 0, by (10), (11) and Proposition 2 we have that

Sa,0,t = E0(a) + E1(a) = 2
∑

x∈G0

ωTrn(ax)

=
{

2R + 2I (ωQ − ω−Q), if a ∈ C+
0 ,

2R, otherwise.


�
We also need the following proposition for later usage.

Proposition 5 [12] Let α ∈ Fpm and b ∈ Fp. If

Km(α) = 1 − sec
2πb

p

then α is a non-square or a square with Trm(
√

α) = 0.

4 A class of binomial p-ary bent functions

In this section we discuss the bentness of the p-ary function fa,b,t from Fpn to Fp as
follows:

fa,b,t = Trn

(
axt (pm−1)

)
+ bx

pn−1
2 , a ∈ F

∗
pn , b ∈ Fp. (12)

When gcd(t, pm + 1) = 1 and b = 0, the bentness of the function fa,0,t (x) has been
investigated in [9] as follows.

Proposition 6 [9] Let n = 2m and t be a positive integer with gcd(t, pm + 1) = 1.
For a ∈ F

∗
pn , the p-ary function

fa,0,t (x) = Trn

(
axt (pm−1)

)

is a regular bent function if and only if Km(a pm+1) = 0.

When gcd(t, pm + 1) = 1 and b �= 0, Jia et al. have discussed the bentness of
fa,b,t (x) in Theorem 1 of [12] as follows.

Proposition 7 [12] Let n = 2m and t be a positive integer with gcd(t, pm + 1) = 1.
For a ∈ F

∗
pn and b ∈ Fp, the p-ary functions

fa,±b,t (x) = Trn

(
axt (pm−1)

)
± bx

pn−1
2

are both regular bent functions if and only if
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Km(a pm+1) = 1 − sec
2πb

p
.

To improve the result of Proposition 7 and investigate the bentness of fa,b,t (x)

defined by (12) under the case gcd
( t

2 , pm + 1
) = 1 for some even integer t , we first

give some preliminary lemmas.

Lemma 2 [9] Let n be a positive integer and f : Fpn → Fp be a regular bent function
satisfying f (x) = f (−x) and f (0) = 0, then f ∗(0) = 0 where f ∗ is the dual function
of f .

Lemma 3 Let fa,b,t (x) be a p-ary function defined by (12) and Sa,b,t be a partial
exponential sum given in (6). Then fa,b,t (x) is a regular bent function if and only if
Sa,b,t = 1.

Proof If f (x) is a regular bent function, by Lemma 2 we have that W fa,b,t (0) = pm .
On the other hand,

W fa,b,t (0) =
∑

x∈Fpn

ω
Trn

(
axt (pm−1)

)
+bx

pn−1
2

= 1 +
∑

u∈U

∑

y∈F
∗
pm

ω
Trn

(
aut (pm−1)

)
+bu

pn−1
2

= 1 + (pm − 1)
∑

x∈G
ωTrn(axt )+bx

pm+1
2

= 1 + (pm − 1)Sa,b,t . (13)

So, we have Sa,b,t = 1.

Conversely, assume that Sa,b,t = 1, by (13) we have W fa,b,t (0) = pm . For any
λ ∈ F

∗
pn , by Lemma 1 we have

W fa,b,t (λ) =
∑

x∈Fpn

ω
Trn

(
axt (pm−1)

)
+bx

pn−1
2 −Trn(λx)

= 1 +
∑

u∈U
ω

Trn

(
aut (pm−1)

)
+u

pn−1
2 ∑

y∈F
∗
pm

ω
Trm

(
−(λu+(λu)pm

)y
)

= 1 − Sa,b,t + pm
∑

u∈U ,λu+(λu)pm =0

ω f (u)

= pmω fa,b,t (uλ), (14)

where uλ is the unique solution of the equation λu +(λu)pm = 0 in U for any λ ∈ F
∗
pn .

By (13) and (14), fa,b,t (x) is a regular bent function. 
�
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4.1 p-ary bent functions for gcd(t, pm + 1) = 1

In this subsection we investigate the bentness of fa,b,t (x) defined by (12) under the
condition gcd(t, pm + 1) = 1, and complete improvement of Theorem 1 in [12].

Theorem 1 Let a ∈ F
∗
pn , b ∈ Fp, and m, n, t be positive integers such that n = 2m

and gcd(t, pm + 1) = 1. The p-ary function

fa,b,t (x) = Trn

(
ax (pm−1)t

)
+ bx

pn−1
2

is a regular bent function if and only if

Km(a pm+1) = 1 − sec
2πb

p
. (15)

Moreover, if fa,b,t is a regular bent function, then its dual function f ∗
a,b,t is given by

f ∗
a,b,t (λ) =

{
0, if λ = 0,

fa,b,t (uλ), otherwise,

where uλ denotes the unique solution of the equation λu + λpm
u pm = 0 in U which

is defined in (2).

Proof If the condition (15) holds then by Propositions 3 and 5 we have that Sa,b,t = 1.
So, fa,b,t (x) is a regular bent function by Lemma 3. Conversely, if fa,b,t (x) is a
regular bent function then Sa,b,t = 1 by Lemma 3. Next, we show that there is no
pair (a, b) ∈ F

∗
pn × Fp such that Sa,b,t = 1 for a ∈ C+

0 , thus by Propositions 3 the
condition (15) holds.

First, when pm ≡ 3 mod 4, i.e., m is odd and p ≡ 3 mod 4, by Proposition 3 we
know that Sa,b,t is an imaginary number. So there is no pair (a, b) ∈ F

∗
pn × Fp such

that Sa,b,t = 1.
Second, we consider the case pm ≡ 1 mod 4, and assume that a ∈ C+

0 , i.e., a is

a square in F
∗
pn and Trm(a

pm+1
2 ) �= 0. Furthermore, we assume that a is a square, but

not a 4th power of an element in F
∗
pn . (If a is a 4th power of an element in F

∗
pn then

the following proof is similar.) For a such fixed a, a
pm−1

2 x runs through the group G
when x runs through G, and so we have

Sa,b,t =
∑

x∈G
ωTrn(axt )+bx

pm+1
2 (8)=

∑

x∈G
ωTrn(ax)+bx

pm+1
2

=
∑

x∈G
ωTrn(a

pm+1
2 x)+ba

pn−1
4 x

pm+1
2

=
∑

x∈G0

ωTrm (a
pm+1

2 (x+x−1))−b +
∑

x∈G1

ωTrm (a
pm+1

2 (x+x−1))+b, (16)
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where G0,G1 are defined by (5). Denote by

Ni,k = #

{

x ∈ Gi | Trm

(

a
pm+1

2 (x + x−1)

)

= k, k ∈ Fp

}

, i = 0, 1.

It is clear that x ∈ Gi if and only if x−1 ∈ Gi for i ∈ {0, 1}, and the mapping
x �→ x + x−1 is 2-to-1 except for x = 1,−1. Since pm ≡ 1 mod 4 we have that
1 ∈ G0 and −1 ∈ G1. So, one can verify that N0,Q and N1,−Q are odd numbers, and

N0,k, k �= Q and N1,k, k �= −Q are even numbers where Q = 2Trm(a
pm+1

2 ) which is
viewed as an integer modulo p. Moreover, we have that N0,k = N1,−k for any k ∈ Fp.
By equality (16) we have

Sa,b,t − 1 = N0,b + N1,−b − 1 + (
N0,b+1 + N1,−b+1

)
ω

+ (
N0,b+2 + N1,−b+2

)
ω2 + · · · + (

N0,p−1+b + N1,p−1−b
)
ωp−1.

Based on above discussion we have that N0,b + N1,−b − 1 always must be an odd
number.

If p ≥ 5 then there exists i, 0 ≤ i ≤ 4 such that b + i �= Q and −b + i �= −Q, and
so we have that N0,b+i + N1,−b+i is an even number. So, all the coefficients of ω′

i s
can not be equal. Hence, there is no pair (a, b) ∈ F

∗
pn × Fp such that Sa,b,t = 1 since

x p−1 + x p−2 +· · ·+ x + 1 is the minimal polynomial of ω over the rational numbers.
If p = 3 then Theorem 2 in [12] has proven that there is no pair (a, b) ∈ F

∗
pn × Fp

such that Sa,b,t = 1. To sum up, fa,b,t (x) is a regular bent function if and only if
Km(a pm+1) = 1 − sec 2πb

p . Moreover, if fa,b,t (x) is a regular bent function then its
dual can be obtained from Lemma 3. 
�
Remark 1 When b = 0 in Theorem 1, we have that fa,0,t (x) defined by (12) is a
regular bent function if and only if Km(a pm+1) = 0. This is exact Theorem 2 of [9].
It has been verified in [12] that the algebraic degree of fa,b,t (x) is (p − 1)m.

4.2 p-ary bent functions for gcd
( t

2 , pm + 1
) = 1

In this subsection we discuss the bentness of the p-ary function fa,b,t (x) defined by
(12) under the condition gcd( t

2 , pm + 1) = 1 for some even integer t .

Theorem 2 Let n = 2m and t be an even number with gcd( t
2 , pm + 1) = 1. Let

a ∈ Fpn , b ∈ F
∗
p. If pm ≡ 1 mod 4 then the p-ary function

fa,b,t (x) = Trn

(
ax (pm−1)t

)
+ bx

pn−1
2 , gcd

(
t

2
, pm + 1

)

= 1,

is a regular bent function if and only if

Km(a pm+1) = 1 − sec
2πb

p
. (17)
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Proof When pm ≡ 1 mod 4, by Proposition 4 we have

Sa,b,t =

⎧
⎪⎪⎨

⎪⎪⎩

2cos 2πb
p (R + (−1)

3m+1
2 p

m
2 sin 2π Q

p ), if a ∈ C+
0 , p ≡ 3 mod 4,

2cos 2πb
p

(
R + (−1)m+ 1

2 p
m
2 sin 2π Q

p

)
, if a ∈ C+

0 , p ≡ 1 mod 4,

2cos 2πb
p R, otherwise,

(18)

where R = (1 − Km(a pm+1))/2.
If fa,b,t (x) is a regular bent function then Sa,b,t = 1 by Lemma 3. Since R is a real

number, when pm ≡ 1 mod 4, one can verify that Sa,b,t can not be a real number
under the first case or the second case in (18). So,

1 = Sa,b,t = 2cos
2πb

p
R, i.e., Km(a pm+1) = 1 − sec

2πb

p
.

Conversely, if the condition (17) holds then by Proposition 5 we have that a pm+1 is

a non-square in F
∗
pm or a square in F

∗
pm with Trm(a

pm+1
2 ) = 0. Note that a pm+1 is a

non-square (resp. square) in F
∗
pm if and only if a ∈ C0 (resp. C1). By (3) we have that

a /∈ C+
0 . From Eq. (18) we have that

Sa,b,t = 2cos
2πb

p
R = cos

2πb

p
sec

2πb

p
= 1.

Therefore, fa,b,t (x) is a regular bent function by Lemma 3. 
�
Example 1 Let F34 be generated by the primitive polynomial x4 + x3 + 2, and γ

be a primitive element of F34 . By a computer exhaustive search, we have found 30

binomial regular bent functions with the form fa,1,2(x) = Tr4(ax2(32−1)) + x
34−1

2

where a ∈ F
∗
34 . These functions can be classified into two equivalent classes whose

representatives are fγ,1,2(x) and fγ 4,1,2(x), respectively. It is known that in Example
1 of [12] there are also 30 binomial regular bent functions with the form fa,1,1(x) =
Tr4(ax32−1) + x

34−1
2 , which have been classified into two equivalent classes whose

representatives are fγ,1,1(x) and fγ 4,1,1(x), respectively. Moreover, it can be check
that fγ,1,2(x) is affinely inequivalent to fγ,1,1(x), and equivalent to fγ 4,1,1(x), and
fγ 4,1,2(x) is affinely inequivalent to both fγ,1,1(x) and fγ 4,1,1(x).

Example 2 Let F54 be generated by the primitive polynomial x4 + x3 + x +3. By help
of a computer we have found 208 pairs (a, b) ∈ F

∗
54 × F5 such that (17) holds, that is,

there are 208 binomial regular bent monomial functions with the form Tr4(ax2(52−1))+
bx

54−1
2 where a ∈ F

∗
54 , b ∈ F5.

Remark 2 It is easy to verify that the algebraic degree of the function proposed in
Theorem 2 is (p − 1)m. When b = 0, by Proposition 4 and Lemma 3 we can get a
characterization on a such that fa,0,t (x) is a regular bent function for gcd( t

2 , pm +
1) = 1. However, we can not find such regular bent monomials for p = 3, 5, 7 and
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n = 2, 4, 6, but we find a weakly regular bent monomials as in the following trivial
example.

Example 3 Let F32 be generated by the primitive polynomial x2 +1 and α be a primi-
tive element of F32 . With help of computer we found 6 weakly regular bent monomials
with the form Tr2(ax2(3−1)) for a ∈ {

1, α, α3, α4, α5, α7
}
. Unfortunately, we can not

find more examples of weakly regular bent monomials of the form Trn(ax2(pn/2−1))

for p = 3, n = 4, 6 and p = 5, 7, 11, n = 2, 4.

For an odd prime p, some known classes of p-ary binomial bent functions are
listed in Table 1, where a, c ∈ F

∗
pn , b ∈ Fp. Some abbreviation symbols in the Table

are explained as follows: ‘r” (respectively, “wr”) is short for “regular” (respectively,
“weakly regular”), “ar.” for “arbitrary”, “Deg.” for “algebraic degree”, “ H–K” for
“Helleseth–Kholosha” and “ J–Z–H–L” for “Jia–Zeng–Helleseth–Li”. As for known
classes of p-ary monomial bent functions, please refer to Table II in [12].

Recall that algebraic degree is one affine invariant. From Table II and Table III in
[12] together with Example 1, we claim that there exist bent functions with the form

Trn(axt (pn/2−1)) + x
pn−1

2 , gcd

(
t

2
, p

n
2 + 1

)

= 1,

which are affinely inequivalent to all known ones listed in Table II and Table III in
[12].

To investigate the bentness of fa,b,t (x) in (12) for gcd( t
2 , pm +1) = 1 and pm ≡ 3

mod 4, we need to discuss the partial exponential sums E0(a) and E1(a) defined
in (9).

Lemma 4 Let E0(a) and E1(a) be the partial exponential sums defined by (9), namely,

E0(a) =
∑

x∈G0

ωTrn(ax2), E1(a) =
∑

x∈G1

ωTrn(ax2).

Then if pm ≡ 7 mod 8 then E0(a) and E1(a) are real numbers.

Table 1 Some known classes of p-ary bent binomials

Bent binomials p n Forms Deg. Ref.

Gold (r,wr) Odd ar. Trn(ax pi +1 + cx p j +1), i �= j 2 [9]

H–K (wr) Odd 4m Trn(ax p3m+p2m−pm+1 + x2) m + 2 [10]

J–Z–H–L (r) Suitable 2m Trn(axt (pm−1)) + bx
pn−1

2

gcd(t, pm + 1) = 1

(p−1)n
2 [12]

This paper (r,wr) Suitable 2m Trn(axt (pm−1)) + bx
pn−1

2

gcd( t
2 , pm + 1) = 1

(p−1)n
2 Thm.2
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Proof (1) Let ξ be a primitive element of Fpn . Then ξ2(pm−1) is a generator of G0. If
pm ≡ 7 mod 8 then m+1

2 is a multiple of 4 and

E0(a) =
∑

x∈G0

ωTrn(ax2) = 2
∑

i∈I
ωTrn(aξ i(pm−1)),

where

I =
{

0, 4, . . . ,
pm + 1

2
− 4,

pm + 1

2
,

pm + 1

2
+ 4, . . . , pm − 3

}

. (19)

So, the terms ω
Trn

(
aξ i(pm−1)

)

and ω
Trn

(

aξ
(i+ pm+1

2 )(pm−1)

)

are one-to-one correspondence
for i = 0, 4, . . . ,

pm+1
2 − 4, and the sum of the two terms is a real number. Therefore,

E0(a) is a real number. By the same way we know that E1(a) is also a real number.
�
Theorem 3 Let n = 2m and t be an even number with gcd( t

2 , pm + 1) = 1. Let
a ∈ F

∗
pn , b ∈ F

∗
p. If pm ≡ 7 mod 8 then there is no pair (a, b) ∈ F

∗
pn × F

∗
p such that

the function fa,b,t (x) is a regular bent function.

Proof By Lemma 3 fa,b,t (x) is a regular bent function if and only if Sa,b,t = 1.
However, according to Proposition 4 we have

Sa,b,t = ωb E0(a) + ω−b E1(a)

= cos
2πb

p
(E0(a) + E1(a)) + isin

2πb

p
(E0(a) − E1(a)) .

By Lemma 4, E0(a) and E1(a) are real numbers, and so fa,b,t (x) is a regular bent
function if and only if

E0(a) = E1(a) and cos
2πb

p
(E0(a) + E1(a)) = 1. (20)

Next we show that there is no pair (a, b) ∈ F
∗
pn × F

∗
p such that (20) holds. Assume

that there exists a pair (a, b) satisfying (20), then we have

(ωb + ω−b)E0(a) = 1. (21)

Denote by

Na,k = �
{

i ∈ I | Trn(aξ i(pm−1)) = k, 0 ≤ k ≤ p − 1
}

,

where I is defined by (19). The equality (21) can be rewritten as

(

Na,p−b + Na,b − 1

2

)

+ (Na,p−b+1 + Na,b+1)ω

+ · · · + (Na,p−1−b + Na,b−1)ω
p−1 = 0.
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Then the coefficients in the equality above satisfy

Na,−b + Na,b − 1

2
= Na,b−1 + Na,b+1 = · · · = Na,p−1−b + Na,b−1,

since x p−1 + x p−2 + · · · + x + 1 is the minimal polynomial of ω over the rational
numbers. But this is impossible since all N ′

a,ks are integers, and so there is no pair
(a, b) ∈ F

∗
pn × F

∗
p such that (20) holds. 
�

Remark 3 When pm ≡ 3 mod 8 we can not find a concise characterization on the
pair (a, b) ∈ F

∗
pn × F

∗
p such that fa,b,t (x) for gcd( t

2 , pm + 1) = 1 is a regular bent
function. However, we also can not find such regular bent functions for small p and
n, except find only one weakly regular bent binomial which is given in the following
trivial example.

Example 4 Let F32 be generated by the primitive polynomial x2 + 2x + 2, and α be a
primitive element of F32 . By help of computer we found that 10 weakly regular bent

binomials over F32 with the form Tr2(ax2(3−1)) + bx
32−1

2 .
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