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Abstract We describe a method for classifying the Novikov algebras with a given
associated Lie algebra. Subsequently we give the classification of the Novikov algebras
of dimension 3 over R and C, as well as the classification of the 4-dimensional Novikov
algebras over C whose associated Lie algebra is nilpotent. In particular this includes
a list of all 4-dimensional commutative associative algebras over C.
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1 Introduction

Novikov algebras arise in many areas of mathematics and physics. They form a special
class of pre-Lie algebras which arise among other things in the study of rooted
trees (Cayley), convex homogeneous cones (Vinberg), affinely flat manifolds and
their fundamental groups (Auslander, Milnor) and renormalization theory (Connes,
Kreimer, Kontsevich). Novikov algebras in particular were considered in the study of
Hamiltonian operators, Poisson brackets of hydrodynamic type (Balinskii, Novikov),
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2 D. Burde, W. de Graaf

operator Yang–Baxter equations and left-invariant affine structures on Lie groups [5].
We refer to [4], and the references therein, for more information on these topics.

The theory of Novikov algebras and its classification has been started by Zelmanov
[15]. Further structure theory has been developed in [6]. There have been several
efforts to classify complex Novikov algebras in low dimensions: Bai and Meng
classify the Novikov algebras over C of dimension up to 3 in [1], and complete
Novikov algebras over C that have a nilpotent associated Lie algebra in [2]. We
recall that a Novikov algebra is said to be complete, or transitive, if the right mul-
tiplication by any element is a nilpotent linear map. Also we note that Novikov
algebras are Lie admissible algebras, i.e., the commutator defines the structure of
a Lie algebra on them. In this paper we outline a systematic method to classify the
Novikov algebras with a given associated Lie algebra. Using it we obtain classifi-
cations that extend the ones by Bai and Meng in several ways. Firstly, we get the
classification of the 3-dimensional Novikov algebras over R and C (Sect. 4). pg
Secondly (Sect. 5) we have classified all 4-dimensional Novikov algebras over C

that have a nilpotent associated Lie algebra (not just the complete ones). Furthermore,
using our method we obtain a list of Novikov algebras that is ordered with respect to
the associated Lie algebra, i.e., all Novikov algebras with the same Lie algebra are
grouped together.

If the associated Lie algebra of a Novikov algebra is abelian, then the Novikov
algebra is nothing other than a commutative and associative algebra. This is an inter-
esting class of algebras in its own. It also appears as a subclass of other classes of
algebras being of interest in geometry; as an example we name LR-algebras [7].
Hence an explicit classification of associative, commutative algebras in low dimen-
sion is also very desirable. Over the past century many classifications of commutative
associative algebras have appeared in the literature. Here we mention [3,12–14]. The
last three of these references have classifications of nilpotent associative algebras. In
Sect. 3 we describe an elementary way to obtain the classification of all commutative
associative algebras from the classification of the nilpotent commutative associative
algebras. We apply this method to obtain a list of commutative associative algebras
of dimensions 3 (over R and C) and 4 (over C; the latter is contained in Sect. 5). The
list of commutative associative algebras of dimension 3 over C is also contained in
[3]. For completeness we also include it in this paper. Although the classification of
the commutative associative algebras can be deduced from the classification of the
nilpotent commutative associative algebras, no such classification in dimension 4 has
explicitly been done, to the best of our knowledge.

We start, in the next section, by describing the method that we use for classify-
ing Novikov algebras. In order to compute isomorphisms between these algebras, we
rely on computer calculations, using the technique of Gröbner bases. Using this tech-
nique we have also established the correspondence between our list of 3-dimensional
Novikov algebras over C and the list in [1]; therefore, the two classifications are
equivalent.

Finally we remark that it turned out that the problem of classifying all 4-dimensional
Novikov algebras is far too complex to be undertaken. Therefore, we have restricted
ourselves to the Novikov algebras with a nilpotent associated Lie algebra. We remark
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Classification of Novikov algebras 3

that many of the Novikov algebras that we get are not complete (for example Nh1
17 in

Table 10). Therefore our classification substantially extends the one in [2].

2 Classifying Novikov algebras with given Lie algebra

Let F be a field. An algebra A over F is called Novikov if

x · (y · z) − (x · y) · z = y · (x · z) − (y · x) · z (1)

(x · y) · z = (x · z) · y, (2)

for all x, y, z ∈ A. Let A be a Novikov algebra, and define a bracket on A by

[x, y] = x · y − y · x .

Then it is straightforward to see that (A, [ , ]) is a Lie algebra. The problem considered
here is to find, up-to isomorphism, all Novikov algebras that have a given Lie algebra
as associated Lie algebra.

Let g be a finite-dimensional Lie algebra. Let θ : g × g → g be a bilinear map.
Then we define an algebra A(g, θ) as follows. The underlying vector space of A(g, θ)

is g. Furthermore, for x, y ∈ g we set x · y = θ(x, y). We define T (g) to be the set
of all bilinear θ such that [x, y] = θ(x, y) − θ(y, x) for all x, y ∈ g and such that
A(g, θ) is a Novikov algebra.

The automorphism group, Aut(g), of g acts on T (g) by φθ(x, y) = φ−1(θ(φ(x),

φ(y))), for φ ∈ Aut(g), and θ ∈ T (g).

Lemma 2.1 Let θ1, θ2 ∈ T (g). Then A(g, θ1) and A(g, θ2) are isomorphic if and only
if there is a φ ∈ Aut(g) with φθ1 = θ2.

Proof If φθ1 = θ2, then φ(θ2(x, y)) = θ1(φ(x), φ(y)). Hence φ : A(g, θ2) →
A(g, θ1) is an isomorphism.

On the other hand, if φ : A(g, θ2) → A(g, θ1) is an isomorphism of Novikov
algebras, then φθ2(x, y) = θ1(φ(x), φ(y)) for all x, y ∈ g. Hence φθ1 = θ2. This
also implies that φ is an automorphism of g. ��

Set n = dim g, and let e1, . . . , en be a basis of g. Then an element in T (g) is given
by a sequence of n×n-matrices L1, . . . , Ln , where Li describes the left multiplication
of ei . More precisely, if θ ∈ T (g) satisfies θ(ei , e j ) = ∑n

k=1 ck
i j ek , then for the Li we

have Li (k, j) = ck
i j .

This way we view T (g) is an affine variety in Fn3
. We get equations for this variety

by plugging x = ei , y = e j , z = ek in (1) and (2), for 1 ≤ i, j, k ≤ n, and by
requiring that ei · e j − e j · ei = [ei , e j ] for i < j . The equations corresponding to
this last requirement will be linear. The equations corresponding to (1) and (2) will be
polynomial; however we can reformulate (2) such that it leads to linear equations as
well. This works as follows. Let A be an algebra. For x ∈ A let L(x) : A → A be
the linear map given by L(x)(y) = x · y. Similarly we define R(x)(y) = y · x . The
adjoint map is defined by ad(x) = L(x) − R(x). Now assume that A satisfies (1).
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4 D. Burde, W. de Graaf

Then (2) holds as well if and only if [R(x), R(y)] = 0 for all x, y ∈ A. Furthermore,
(1) implies that [L(x), L(y)] = L([x, y]). Now, using R(x) = L(x) − ad(x) we get
that [R(x), R(y)] = 0 is equivalent to

L([x, y]) + ad([x, y]) − [L(x), ad(y)] − [ad(x), L(y)] = 0. (3)

If in this equation we set x = ei , y = e j , and noting that the maps adek are given by
the Lie multiplication on g, we get that (3) is equivalent to a set of linear equations.

Example 2.2 Consider the 2-dimensional Lie algebra g over F = C with basis e1, e2
and Lie bracket [e1, e2] = e1. Write Li = L(ei ) and

L1 =
(

a11 a12
a21 a22

)

, L2 =
(

b11 b12
b21 b22

)

.

Then (3) with x = e1, y = e2 is equivalent to the equations a21 = 0, a11 = b21, a22 =
−b21, b22 = b11 + 1. Furthermore, L(e1)(e2) − L(e2)(e1) = [e1, e2] is tantamount
to a22 = b21, a12 = b11 + 1. So the linear equations that we get imply that

L1 =
(

0 b22
0 0

)

, L2 =
(

b22 − 1 b12
0 b22

)

. (4)

These matrices already define a Novikov structure, i.e., (1) is automatically satisfied.

By Lemma 2.1, classifying the Novikov algebras with associated Lie algebra equal
to g is the same as listing the Aut(g)-orbits on T (g). In order to carry this out we
write an element of Aut(g) as an n × n-matrix, with indeterminates as entries that
satisfy some polynomial equations. Then we try and work out what the orbits are. We
illustrate this by example.

Example 2.3 We consider the situation of Example 2.2. An element of Aut(g) is given
by

φ =
(

a b
0 1

)

,

where a �= 0. (Here we use the column convention, so φ(e1) = ae1, φ(e2) = be1+e2).
Let a θ ∈ T (g) be given by the matrices (4). Then a short calculation shows that φθ

corresponds to two matrices of the same shape, where b22 is unchanged, but where
b12 is changed into

a−1(b(b22 − 1) + b12).

We now distinguish two cases. In the first case b22 �= 1. Then we can choose b so that
b12 is mapped to 0. So we get a 1-parameter family of Novikov algebras given by

e1 · e2 = b22e1, e2 · e1 = (b22 − 1)e1, e2 · e2 = b22e2.

Algebras corresponding to different values of the parameter b22 are not isomorphic.
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Classification of Novikov algebras 5

In the second case we have b22 = 1. Here we have two subcases. If b12 = 0 then
we get an algebra which is included in the above parametric family. On the other hand,
if b12 �= 0 then we can choose a = b12 and we see that it is changed to 1. So we get
one more algebra, given by

e1 · e2 = e1, e2 · e2 = e1 + e2.

Summarising, our procedure to classify the Novikov algebras with given associated
Lie algebra g consists of two steps:

(1) Find the equations for T (g).
(2) List the orbits of Aut(g) on T (g).

The last step is by far the most difficult one. And we are not always able to carry
it out in full; in other words, sometimes we obtain two Novikov algebras that are
isomorphic without us being able to show that the corresponding bilinear maps in T (g)

lie in the same Aut(g)-orbit. To deal with a situation of this kind we use a method
based on the algorithmic technique of Gröbner bases (cf. [9]). For this again we write
an element of Aut(g) as a matrix with entries that are indeterminates, satisfying some
polynomial equations. Let R denote the ring containing these indeterminates. Let
θ1, θ2 ∈ T (g) be given. Then we compute the matrices Li corresponding to φθ1; they
have entries that are polynomials in the coefficients of φ (which are indeterminates).
Then the requirement that φθ1 = θ2 leads to a set of polynomial equations p = 0
where p ∈ P ⊂ R. Let I be the ideal of R generated by P . Now, solving p = 0
for p ∈ P is the same as solving g = 0 for any generating set G of I . For this a
Gröbner basis is particularly convenient. In particular if the Gröbner basis is computed
relative to a lexicographical order, then the resulting polynomial equations have a
triangular structure, which makes them easier to solve. A second feature of this method
is that if the algebras corresponding to the θi happen not to be isomorphic, then the
reduced Gröbner basis is {1}. So in this case no hand calculations are necessary. For
the computation of the Gröbner bases we used the computer algebra system Magma
[8]. We illustrate this with an example.

Example 2.4 Let g be the 3-dimensional Lie algebra with basis e1, e2, e3 and nonzero
bracket [e1, e2] = e3. Consider a family of Novikov algebras Nα

1 given by e1 · e2 =
(α + 1)e3, e2 · e1 = αe3. Denote the corresponding element of T (g) by θα . The
elements of Aut(g) are given by

φ =
⎛

⎝
x11 x12 0
x21 x22 0
x31 x32 δ

⎞

⎠ ,

with δ = x11x22 − x12x21. The Novikov algebra corresponding to φθα has nonzero
products

e1 · e1 = (2Dx11x21α + Dx11x21)e3

e1 · e2 = (2Dx12x21α + Dx12x21 + α + 1)e3
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6 D. Burde, W. de Graaf

e2 · e1 = (2Dx12x21α + Dx12x21 + α)e3

e2 · e2 = (2Dx12x22α + Dx12x22)e3,

where D = δ−1.
Now let Nβ

2 be the family of Novikov algebras given by e1 · e1 = βe3, e1 · e2 =
e3, e2 · e2 = e3. Then Nα

1
∼= Nβ

2 if and only if the following polynomial equations are
satisfied

2Dx11x21α + Dx11x21 − β = 0

2Dx12x21α + Dx12x21 + α = 0

2Dx12x22α + Dx12x22 − 1 = 0.

We let I be the ideal of the polynomial ring C[D, x11, x12, x21, x22, α, β] generated by
the left hand sides of these equations along with the polynomial D(x11x22−x12x21)−1.
A reduced Gröbner basis of I with respect to the lexicographical order with D > x11 >

x12 > · · · > α > β consists of the polynomials

Dx12x22α + 1
2 Dx12x22 − 1

2 ,

Dx12x22β − 1
4 Dx12x22 + 1

2α + 1
4 ,

x11 − x12α − x12,

x21 + x22α,

α2 + α + β.

It follows that Nα
1

∼= Nβ
2 if and only if these polynomial equations have a solution. So

from the last polynomial we see that Nα
1

∼= Nβ
2 implies that β = −α2 −α. Conversely,

suppose that this is satisfied. From the third and fourth elements of the Gröbner basis
we get that an isomorphism φ has to be of the form

⎛

⎝
(α + 1)u u 0
−αv v 0
x31 x32 δ

⎞

⎠.

The determinant of the 2 × 2-block in the upper left corner is (2α + 1)uv. Now if
α �= − 1

2 then we choose u = v = 1, and x31 = x32 = 0 and get the linear map

φ : N−α2−α
2 → Nα

1 given by

⎛

⎝
α + 1 1 0
−α 1 0
0 0 2α + 1

⎞

⎠.

It is straightforward to check that in fact this is an isomorphism.
There remains the case where α = − 1

2 . Adding the polynomial α + 1
2 to the

generating set of the ideal we get that the Gröbner basis is {1}. Hence in this case the
algebras are not isomorphic.
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Classification of Novikov algebras 7

3 Novikov algebras with an abelian Lie algebra

If the associated Lie algebra of a Novikov algebra is abelian, then the Novikov algebra
is a commutative associative algebra (CAA). Conversely, every CAA is a Novikov
algebra with abelian Lie algebra. In this section we describe how to obtain a classifi-
cation of the CAA’s of dimension 3 over R and C.

First we introduce some notation, and recall some facts on associative algebras. We
refer to [10] for an in-depth account of these matters.

Let A be an associative algebra over a field F of characteristic 0. If A does not
have a 1, then we write Ã for the algebra A ⊕ 〈1〉 (with a · 1 = 1 · a = a for
all a ∈ A). If there are nontrivial proper ideals B, C of A such that A = B ⊕ C
(direct sum of vector spaces), then A is said to be a direct sum. (Note that necessarily
BC = C B = 0.) The algebra A is said to be nilpotent if there is an m > 0 such
that a1 . . . am = 0 for all a1, . . . , am ∈ A. The radical R of A is its largest nilpotent
ideal; and A is said to be semisimple if R = 0. More generally, if A has a one,
then there exists a semisimple subalgebra S of A such that A = S ⊕ R (direct sum
of vector spaces), and S ∼= A/R. Furthermore, if S is a semisimple commutative
algebra, then it is a direct sum: S = K1 ⊕· · ·⊕ Km , where each Ki is a field extension
of F . This decomposition corresponds to a decomposition of the identity element:
1 = ε1 + · · · + εm , where the εi are orthogonal primitive idempotents and Ki = εi S.
In particular, if the base field is R, then Ki is either isomorphic to R or to C. We
write C for the commutative associative algebra over R with basis e1, e2 and non-zero
products e2

1 = e1, e1e2 = e2e1 = e2, e2
2 = −e1.

Lemma 3.1 Let A be a commutative associative algebra over R. Suppose that A is
not a direct sum of proper non-trivial ideals. Then A is either

• nilpotent, or
• equal to B̃ for a nilpotent B, or
• equal to C ⊕ R, where R is the radical.

Proof If A has a 1 then A = S ⊕ R, where S is semisimple, and R is the radical. As
above S = K1⊕· · ·⊕Km , where the Ki are field extensions of R. Let 1 = ε1+· · ·+εm

be the corresponding decomposition of 1, where Ki = εi S. Then A is the direct sum
of the ideals εi A. If m > 1, they are all nontrivial and proper. Hence it follows that
m = 1 and S is a field. If S ∼= R then A ∼= R̃. If S ∼= C then we are in the third case.

If A has no 1, then we consider Ã. Again we get a decomposition Ã = S ⊕ R, and
m orthogonal idempotents εi . Writing εi = μi · 1 + ai , with μi ∈ R and ai ∈ A we
see that the fact that the εi are orthogonal idempotents with sum 1 implies that m − 1
of them (say ε1, . . . , εm−1) lie in A, and εm does not. Again we get that A is the direct
sum of the ideals εi A. If εi A = A for some i ≤ m − 1 then εi is an identity element in
A. So this cannot happen. Again it follows that m = 1. If S ∼= R then A is nilpotent.
If S ∼= C then a basis of S is e1 = 1, e2 with e2

2 = −e1. However, we can also write
e2 = μ · 1 + a for some μ ∈ R and a ∈ A. From this we get that μ2 = −1. We
conclude that this case cannot occur (Table 1). ��

From [12] we get all real nilpotent CAA’s of dimensions ≤ 3. They are
Here, over C the algebras A3,4 and A3,5 are isomorphic.

123



8 D. Burde, W. de Graaf

Table 1 Nilpotent CAA’s
of dimensions ≤3 over R

Dim Name Multiplication table

0 A0

1 A1

2 A2,1

2 A2,2 e2
1 = e2

3 A3,1

3 A3,2 e2
1 = e2

3 A3,3 e2
1 = e2, e1e2 = e3

3 A3,4 e2
1 = e3, e2

2 = e3

3 A3,5 e2
1 = −e3, e2

2 = e3

Now, using Lemma 3.1, we get all CAA’s of dimension 3 over R. They are: A3,i

for 1 ≤ i ≤ 5, Ã2,i , i = 1, 2, Ã0 ⊕ Ã0 ⊕ Ã0, Ã0 ⊕ Ã0 ⊕ A1, Ã0 ⊕ A1 ⊕ A1, Ã1 ⊕
A1, Ã1 ⊕ Ã0, C ⊕ A1, C ⊕ Ã0, A2,2 ⊕ Ã0.

So we get 15 algebras in total. Over C we get 12 of them, as the pairs A3,4, A3,5
and Ã0 ⊕ Ã0 ⊕ Ã0, C⊕ Ã0 and Ã0 ⊕ Ã0 ⊕ A1, C⊕ A1 become isomorphic and there
are no other isomorphisms.

4 Novikov algebras of dimension three over R and C

A simple Lie algebra of dimension 3 does not have Novikov structures. The Novikov
algebras of dimension 3 with abelian Lie algebra were classified in the previous section.
So this leaves the classification of the Novikov algebras of dimension 3, where the
associated Lie algebra is solvable and non-abelian.

From [11] we get that over R and C there are the following solvable Lie algebras
(Table 2):

Name Nonzero brackets

g1 [e1, e2] = e2, [e1, e3] = e3

gα
2 [e1, e2] = e3, [e1, e3] = αe2 + e3

g3 [e1, e2] = e3

g4 [e1, e2] = e3, [e1, e3] = e2

g5 [e1, e2] = e3, [e1, e3] = −e2

Among these algebras there are no isomorphisms, except that g4 and g5 are iso-
morphic over C, but not over R.

Next are the tables of Novikov algebras that we get. On some occasions we give a
parametrised class of algebras. In those cases, if nothing is stated about isomorphisms,
then different values of the parameter give non-isomorphic Novikov algebras. More-
over, the classification that we give is over R. Over C some isomorphisms between
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Classification of Novikov algebras 9

Table 2 Novikov algebras with Lie algebra g1

Name Multiplication table

N
g1
1 (a) e1e1 = ae1, e1e2 = (a + 1)e2, e1e3 = (a + 1)e3, e2e1 = ae2, e3e1 = ae3

N
g1
2 e1e1 = −e1 + e2, e2e1 = −e2, e3e1 = −e3

Table 3 Novikov algebras with Lie algebra gα
2

Name Multiplication table

N
gα

2
1 (a) e1e1 = ae1, e1e2 = ae2 + e3, e1e3 = αe2 + (a + 1)e3, e2e1 = ae2, e3e1 = ae3

N
ga2+a

2
2 (a) e1e1 = ae1 + e2, e1e2 = ae2 + e3, e1e3 = (a2 + a)e2 + (a + 1)e3, e2e1 = ae2,

e3e1 = ae3

Table 4 Novikov algebras with Lie algebra g
− 2

9
2

Name Multiplication table

N
g

− 2
9

2
3 e1e1 = − 1

3 e1, e1e2 = 8
3 e2 − 8e3, e1e3 = 7

9 e2 − 7
3 e3, e2e1 = 8

3 e2 − 9e3,

e3e1 = e2 − 10
3 e3

Novikov algebras corresponding to g
− 2

9
2

N
g

− 2
9

2
4 e1e1 = − 1

3 e1 + e2, e1e2 = 8
3 e2 − 8e3, e1e3 = 7

9 e2 − 7
3 e3, e2e1 = 8

3 e2 − 9e3,

e3e1 = e2 − 10
3 e3

N
g

− 2
9

2
5 (a) e1e1 = 3ae1 + (−3a2 − 1

3 a)e2, e1e2 = 6ae2 + (−9a + 1)e3,

e1e3 = (a − 2
9 )e2 + e3, e2e1 = 6ae2 − 9ae3, e2e2 = −3e2 + 9e3,

e2e3 = −e2 + 3e3, e3e1 = ae2, e3e2 = −e2 + 3e3, e3e3 = − 1
3 e2 + e3

N
g

− 2
9

2
6 e1e1 = − 2

3 e1 − 8
27 e2 + 2

3 e3, e1e2 = − 4
3 e2 + 3e3, e1e3 = − 4

9 e2 + e3,

e2e1 = − 4
3 e2 + 2e3, e2e2 = −3e2 + 9e3, e2e3 = −e2 + 3e3, e3e1 = − 2

9 e2,

e3e2 = −e2 + 3e3, e3e3 = − 1
3 e2 + e3

N
g

− 2
9

2
7 e1e1 = − 2

3 e1 − 11
27 e2 + e3, e1e2 = − 4

3 e2 + 3e3, e1e3 = − 4
9 e2 + e3,

e2e1 = − 4
3 e2 + 2e3, e2e2 = −3e2 + 9e3, e2e3 = −e2 + 3e3, e3e1 = − 2

9 e2,

e3e2 = −e2 + 3e3, e3e3 = − 1
3 e2 + e3

elements of the list arise, and those are explicitly given. The Novikov algebras with
associated Lie algebra g will be denoted Ng

i , i = 1, 2, . . .. For the Lie algebra gα
2 we

have three tables with associated Novikov algebras. In Table 3 we list the Novikov
algebras that we get for generic values of the parameter α. Table 4 contains the extra
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10 D. Burde, W. de Graaf

Table 5 Novikov algebras with Lie algebra g0
2

Name Multiplication table

N
g0

2
8 (a) e1e1 = ae1, e1e2 = (a + 1)e3, e1e3 = (a + 1)e3, e2e1 = ae3, e3e1 = ae3

N
g0

2
9 e1e1 = −e1 + e3, e2e1 = −e3, e3e1 = −e3

N
g0

2
10 (a) e1e1 = ae1, e1e2 = ae2 + e3, e1e3 = (a + 1)e3, e2e1 = ae2, e2e2 = −e2 + e3,

e3e1 = ae3

N
g0

2
11 e1e1 = −e1 + e3, e1e2 = −e2 + e3, e2e1 = −e2, e2e2 = −e2 + e3, e3e1 = −e3

Table 6 Novikov algebras with Lie algebra g3

Name Multiplication table

N
g3
1 (a) e1e1 = e2, e1e2 = (a + 1)e3, e2e1 = ae3

N
g3
2 (a) e1e1 = ae3, e1e2 = e3, e2e2 = e3

N
g3
3 e1e1 = e3, e1e2 = e1, e2e1 = e1 − e3, e2e2 = e2, e2e3 = e3, e3e2 = e3

N
g3
4 e1e2 = e1, e2e1 = e1 − e3, e2e2 = e2, e2e3 = e3, e3e2 = e3

N
g3
5 e1e2 = 1

2 e3, e2e1 = − 1
2 e3

Novikov algebras that we get when α = − 2
9 . And in Table 5 we give the extra algebras

that arise when α = 0.

Remarks • The algebras from Table 3, N
gα

2
1 (a) for α = − 2

9 and N
ga2+a

2
2 (a) for

a2 + a = − 2
9 are not in Table 4. The latter condition means a = − 1

3 or a = − 2
3 .

This yields two non-isomorphic algebras.

• Over C the algebra N
g

− 2
9

2
7 is isomorphic to N

g
− 2

9
2

5 (− 2
9 ). To describe the isomor-

phism, let ei be the basis elements of N
g

− 2
9

2
5 (− 2

9 ) and yi those of N
g

− 2
9

2
7 . Then

e1 → y1 + −2 − √−2

9
y2

e2 → 1 − 2
√−2

2
y2 + −3 + 3

√−2

2
y3

e3 → 1 − √−2

3
y2 + −2 + √−2

2
y3

defines an isomorphism N
g

− 2
9

2
5 (− 2

9 ) → N
g

− 2
9

2
7 . Over R they are not isomorphic.

Remark N
g0

2
8 (0) is N

g0
2

1 (0); so for the first algebra we take a �= 0 (Tables 6, 7).
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Table 7 Novikov algebras with Lie algebra g4

Name Multiplication table

N
g4
1 (a) e1e1 = ae1, e1e2 = ae2 + e3, e1e3 = e2 + ae3, e2e1 = ae2, e3e1 = ae3

N
g4
2 e1e1 = e1 + e3, e1e2 = e2 + e3, e1e3 = e2 + e3, e2e1 = e2, e3e1 = e3

Table 8 Novikov algebras over R with Lie algebra g5

Name Multiplication table

N
g5
1 (a) e1e1 = ae1, e1e2 = ae2 + e3, e1e3 = −e2 + ae3, e2e1 = ae2, e3e1 = ae3

Remark Ng4
1 (a) is isomorphic to Ng4

1 (b), if and only if a = b or a = −b. (In the
latter case, φ(e1) = −x1, φ(e2) = x2, φ(e3) = −x3 defines an isomorphism. Here
the xi are the basis elements of Ng4

1 (b)).

Remarks • Let ei denote the basis elements of Ng5
1 (a), and let the base field be C.

Then setting x1 = ie1, x2 = e2, x3 = ie3, we see that the xi satisfy the mul-
tiplication table of Ng4

1 (ia). Hence, over C we have that Ng5
1 (a) is isomorphic

to Ng4
1 (ia). Over R such an isomorphism does not exist as the underlying Lie

algebras are not isomorphic.
• Table 8 gives a list of all Novikov algebras over R, with Lie algebra g5. Over C

there would be an extra algebra isomorphic to Ng4
2 ; however over R this algebra

does not exist.
• Also here Ng5

1 (a) is isomorphic to Ng5
1 (b) if and only if a = b or a = −b.

5 Novikov algebras over C of dimension four with a nilpotent Lie algebra

In this section we give the classification of the 4-dimensional Novikov algebras over
C such that the associated Lie algebra is nilpotent.

First of all there are the Novikov algebras that have an abelian associated Lie
algebra. Again those are commutative associative algebras. They can be classified
using the same procedure as in Sect. 3, using the classification of nilpotent CAA’s
up to dimension 4. This can be obtained from [14], or [12]. For the nilpotent CAA’s
of dimensions up to 3 we use the multiplication tables of Table 1. The multiplication
tables of the nilpotent CAA’s of dimension 4 are taken from [12]. We get the following
list of CAA’s of dimension 4 (Table 9).

There are the following non-abelian nilpotent Lie algebras of dimension 4:

Name Nonzero brackets

h1 [e1, e2] = e3

h2 [e1, e2] = e3, [e1, e3] = e4
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12 D. Burde, W. de Graaf

Table 9 CAA’s of dimension 4

Name Multiplication table

A4,1

A4,2 e2
1 = e2

A4,3 e2
1 = e3, e2

2 = e3

A4,4 e2
1 = e2, e1e2 = e3

A4,5 e2
1 = −e3, e1e2 = e4, e2

2 = e3

A4,6 e1e2 = e4, e2
2 = e3

A4,7 e2
1 = e4, e2

2 = e4, e2
3 = e4

A4,8 e2
1 = e2, e1e2 = e4, e2

3 = e4

A4,9 e2
1 = e2, e1e2 = e3, e1e3 = e4, e2

2 = e4

4 Ã0 e2
1 = e1, e2

2 = e2, e2
3 = e3, e2

4 = e4

2 Ã0 + Ã1 e2
1 = e1, e2

2 = e2, e2
3 = e3, e3e4 = e4

2 Ã1 e2
1 = e1, e1e2 = e2, e2

3 = e3, e3e4 = e4

Ã0 + Ã2,1 e2
1 = e1, e2

2 = e2, e2e3 = e3, e2e4 = e4

Ã0 + Ã2,2 e2
1 = e1, e2

2 = e2, e2e3 = e3, e2e4 = e4, e2
3 = e4

Ã3,1 e2
1 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4

Ã3,2 e2
1 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4, e2

2 = e3

Ã3,3 e2
1 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4, e2

2 = e3, e2e3 = e4

Ã3,4 e2
1 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4e2

2 = e4, e2
3 = e4

3 Ã0 + A1 e2
1 = e1, e2

2 = e2, e2
3 = e3

Ã0 + Ã1 + A1 e2
1 = e1, e2

2 = e2, e2e3 = e3

Ã2,1 + A1 e2
1 = e1, e1e2 = e2, e1e3 = e3

Ã2,2 + A1 e2
1 = e1, e1e2 = e2, e1e3 = e3, e2

2 = e3

2 Ã0 + A2,1 e2
1 = e1, e2

2 = e2

2 Ã0 + A2,2 e2
1 = e1, e2

2 = e2, e2
3 = e4

Ã1 + A2,1 e2
1 = e1, e1e2 = e2

Ã1 + A2,2 e2
1 = e1, e1e2 = e2, e2

3 = e4

Ã0 + A3,1 e2
1 = e1

Ã0 + A3,2 e2
1 = e1, e2e3 = e4

Ã0 + A3,3 e2
1 = e1, e2

2 = e3

Ã0 + A3,4 e2
1 = e1, e2

2 = e3, e2e3 = e4

Tabel 10 contains the Novikov algebras with associated Lie algebra h1. Table 11
has those with Lie algebra h2.

Among these algebras there are precisely the following isomorphisms:

• Nh1
1 (α) ∼= Nh1

1 (β) if and only if α = β or β = −α − 1. In the latter case,
φ(e1) = −y2, φ(e2) = y1, φ(ei ) = yi , i = 3, 4 defines an isomorphism φ:
Nh1

1 (α) → Nh1
1 (−α − 1).

123



Classification of Novikov algebras 13

• Nh1
10 (α) ∼= Nh1

10 (β) if and only if α = β or β = −α − 1. In the latter case,
φ(e1) = −y2, φ(e2) = y1, φ(ei ) = yi , i = 3, 4 defines an isomorphism φ:
Nh1

10 (α) → Nh1
10 (−α − 1).

Table 10 Novikov algebras with Lie algebra h1

Name Multiplication table

N
h1
1 (α) e1e2 = (α + 1)e3, e2e1 = αe3

N
h1
2 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e2e2 = e4

N
h1
3 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e2e2 = e1

N
h1
4 e1e1 = e3, e1e2 = e3, e2e2 = e4

N
h1
5 e1e2 = e3, e2e2 = e4, e2e4 = e3, e4e2 = e3

N
h1
6 e1e2 = e3, e2e4 = e3, e4e2 = e3

N
h1
7 (α) e1e2 = e3, e2e2 = e1 + αe4, e2e4 = e3, e4e2 = e3

N
h1
8 e1e1 = e3, e1e2 = e3, e2e2 = e4, e2e4 = e3, e4e2 = e3

N
h1
9 e1e1 = e3, e1e2 = e3, e2e4 = e3, e4e2 = e3

N
h1
10 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e4e4 = e3

N
h1
11 e1e2 = 1

2 e3, e2e1 = − 1
2 e3, e2e2 = e3, e4e4 = e3

N
h1
12 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e2e2 = e1, e4e4 = e3

N
h1
13 e1e2 = e3 + e4, e2e1 = e4

N
h1
14 e1e2 = e3 + e4, e2e1 = e4, e2e2 = e1

N
h1
15 (α) e1e1 = e3, e1e2 = e3 + e4, e2e1 = e4, e2e2 = αe3

N
h1
16 e1e1 = e3, e1e2 = e3 + e4, e2e1 = e4, e2e2 = e1, e2e4 = e3, e4e2 = e3

N
h1
17 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e2e1 = e2, e2e2 = e3, e3e1 = e3

N
h1
18 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e2e1 = e2, e3e1 = e3

N
h1
19 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e3e1 = e3, e4e1 = e4

N
h1
20 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e2 = e2, e3e1 = e3,

e4e1 = e4

N
h1
21 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e2 = e4, e3e1 = e3,

e4e1 = e4

N
h1
22 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e4 = e3, e3e1 = e3,

e4e1 = e4, e4e2 = e3

N
h1
23 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e2 = e4, e2e4 = e3,

e3e1 = e3, e4e1 = e4, e4e2 = e3

N
h1
24 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e2e2 = e3, e3e1 = e3,

e4e1 = e4, e4e4 = e3

N
h1
25 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e1e4 = e4, e2e1 = e2, e3e1 = e3, e4e1 = e4,

e4e4 = e3
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Table 10 continued

Name Multiplication table

N
h1
26 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e2e2 = e1, e4e4 = e4

N
h1
27 (α) e1e2 = (α + 1)e3, e2e1 = αe3, e4e4 = e4

N
h1
28 e1e2 = 1

2 e3, e2e1 = − 1
2 e3, e2e2 = e3, e4e4 = e4

N
h1
29 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e2e1 = e2, e2e2 = e3, e3e1 = e3, e4e4 = e4

N
h1
30 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3, e2e1 = e2, e3e1 = e3, e4e4 = e4

Table 11 Novikov algebras with Lie algebra h2

Name Multiplication table

N
h2
1 e1e2 = e3, e1e3 = e4

N
h2
2 e1e1 = e2, e1e2 = e3, e1e3 = e4

N
h2
3 e1e2 = e3 + e4, e1e3 = e4, e2e1 = e4

N
h2
4 e1e1 = e2, e1e2 = e3 + e4, e1e3 = e4, e2e1 = e4

N
h2
5 e1e3 = 1

2 e4, e2e1 = −e3, e3e1 = − 1
2 e4

N
h2
6 e1e1 = e4, e1e3 = 1

2 e4, e2e1 = −e3, e3e1 = − 1
2 e4

N
h2
7 e1e1 = e2, e1e3 = 1

2 e4, e2e1 = −e3, e3e1 = − 1
2 e4

N
h2
8 (α) e1e1 = (2α2 + α)e2, e1e2 = (2α + 1)e3, e1e3 = (α + 1)e4, e2e1 = 2αe3, e2e2 = e4,

e3e1 = αe4

N
h2
9 e1e1 = e3, e1e2 = e3, e1e3 = e4, e2e2 = e4

N
h2
11 e1e1 = e3, e1e3 = 1

2 e4, e2e1 = −e3, e2e2 = e4, e3e1 = − 1
2 e4

N
h2
12 e1e1 = e4, e1e2 = e3, e1e3 = e4, e2e2 = 2e3, e2e3 = e4, e3e2 = e4

N
h2
13 e1e2 = e3, e1e3 = e4, e2e2 = 2e3, e2e3 = e4, e3e2 = e4

N
h2
14 (α) e1e1 = αe4, e1e2 = e3, e1e3 = e4, e2e2 = 2e3 + e4, e2e3 = e4, e3e2 = e4

N
h2
15 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3 + e4, e1e4 = e4, e2e1 = e2, e3e1 = e3,

e4e1 = e4

N
h2
16 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3 + e4, e1e4 = e4, e2e1 = e2, e2e2 = e4,

e3e1 = e3, e4e1 = e4

N
h2
17 e1e1 = e1, e1e2 = e2 + e3, e1e3 = e3 + e4, e1e4 = e4, e2e1 = e2, e2e2 = 2e3 + αe4,

e2e3 = e4, e3e1 = e3, e3e2 = e4, e4e1 = e4
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