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Abstract A new algorithm for modular multiplication in the residue number system
(RNS) is presented. Modular reduction is performed using a sum of residues. As all
of the residues can be evaluated simultaneously, the algorithm permits a highly paral-
lel implementation and is suitable for performing public-key cryptography operations
with very low latency.

Keywords Modular multiplication · Public-key cryptography ·
Residue number systems · RNS

1 Introduction

We consider the multiplication C = A × B followed by the modular reduction C mod
N = 〈C〉N where A, B and N are all long integers. This operation is critical for pub-
lic-key cryptosystems including RSA [10] and Elliptic Curve Cryptography (ECC)
over a prime finite field [4]. Operands larger than 1024-bits are common for RSA;
for ECC operands larger than 128-bits are common. In this paper we describe an
algorithm for modular multiplication within the Residue Number System (RNS) [11].
Our goal is a highly parallel algorithm which can be exploited by a massively parallel
implementation to perform public-key operations with exceptionally low latency.
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Existing algorithms for RNS modular multiplication [1,3,5,8] are based on Mont-
gomery reduction [7]. Montgomery reduction of C modulo N proceeds by adding a
multiple of N according to 〈C〉R . This approach works well in the RNS as 〈C〉R can
be found easily for some values of R. It can also be carefully arranged so that most
operations only occur in half of the RNS channels [1,5].

Outside of the RNS, in a positional number system, Montgomery’s algorithm is only
one of the published alternatives. Early publications reduced C by finding a sum of res-
idues modulo N [2,6,9]. If C = ∑

i Ci then we can write
∑

i 〈Ci 〉N ≡ C (mod N ).
This approach has the advantage that all of the residues 〈Ci 〉N can be evaluated in
parallel.

1.1 Contribution

Section 3 presents a new algorithm for modular multiplication in the RNS. Unlike pre-
viously published work, the new algorithm uses a sum of modular residues to perform
modular reduction. Comparisons with existing algorithms presented in Sect. 4.2 show
that the new algorithm has fewer dependent sequential steps, but more steps in total.
Hence it is appropriate for very-high performance implementations based on parallel
hardware.

2 Residue number systems

A Residue Number System is characterized by a set of n co-prime moduli
{m1, m2, . . . , mn}. A number X is represented in the RNS by its residues with
respect to the co-prime moduli:

X = [x1, x2, . . . , xn] = [〈X〉m1 , 〈X〉m2 , . . . , 〈X〉mn ].

Within the RNS there is a unique representation for each integer in the range
0 ≤ X < M where M = ∏n

i=1 mi . M is known as the dynamic range of the RNS.
An advantage of RNS is that addition, subtraction and multiplication can be con-

currently performed on the n residues within n parallel channels. For example, given
RNS representations of A and B,

A = [a1, a2, . . . , an] = [〈A〉m1 , 〈A〉m2 , . . . , 〈A〉mn ]
B = [b1, b2, . . . , bn] = [〈B〉m1 , 〈B〉m2 , . . . , 〈B〉mn ],

the product C = A × B can be performed as

C = [〈a1 × b1〉m1 , 〈a2 × b2〉m2 , . . . , 〈an × bn〉mn ]
= [c1, c2, . . . , cn] = [〈C〉m1 , 〈C〉m2 , . . . , 〈C〉mn ].
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3 Sum of residues reduction

To derive an RNS algorithm for sum of residues reduction we begin with the Chinese
remainder Theorem [11]:

C =
n∑

i=1

〈ci M−1
i 〉mi Mi mod M

=
n∑

i=1

γi Mi mod M

=
n∑

i=1

γi Mi − αM (1)

where Mi = M/mi , γi = 〈ci M−1
i 〉mi and α is an unknown correction term.

Reducing Eq. 1 modulo N gives

Z =
n∑

i=1

γi 〈Mi 〉N − 〈αM〉N

=
n∑

i=1

Ci − 〈αM〉N

≡ C (mod N ) (2)

where we have defined Ci = γi 〈Mi 〉N . Thus C can be reduced modulo N using a sum of
the residues Ci and a correction factor 〈αM〉N . Note that if we define � = [γ1, . . . , γn]
and M̂ = [〈M−1

1 〉m1 , . . . , 〈M−1
n 〉mn ] then � = C × M̂ mod M . Hence we can find

the γi terms using a single RNS multiplication by a precomputed constant.

3.1 Finding α

A solution for the unknown α in Eq. 2 is provided by [5]. This assumes the RNS
moduli are ordered such that mi < m j for all i < j and that the moduli are each k
bits long such that 2k−1 ≤ mi < 2k .

Equation 6 from [5] gives an estimate for α as

α̂ =
⎢
⎢
⎢
⎣

n∑

i=1

⌊
γi

2k−q

⌋

2q
+ ∆

⎥
⎥
⎥
⎦ . (3)

In this equation ∆ is a fixed-point correction term and q is an integer parameter which
defines the number of bits truncated from the γi terms in the sum. Theorem 1 from
[5] states that this estimate will be exact, so that α = α̂, when we choose ∆ and q to
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satisfy

0 ≤ n(ε + ∆) ≤ ∆ < 1

0 ≤ C < (1 − ∆)M

given

ε = max

(
2k − mi

2k

)

= 2k − m1

2k

δ = max

⎛

⎝
γi −

⌊
γi

2k−1

⌋
× 2k−q

mi

⎞

⎠ = 2k−q − 1

m1
.

3.2 Bounds

Note that the result Z in Eq. 2 may be greater than the modulus N and would require
subtraction of a multiple of N to be fully reduced. Instead we can ensure that the
dynamic range M of the RNS is large enough that the results of modular multi-
plications can be used as operands for subsequent modular multiplications without
overflow.

Given that γi < mi < 2k , 〈Mi 〉N < N and 〈αM〉N ≥ 0 we know

Z =
n∑

i=1

γi 〈Mi 〉N − 〈αM〉N < n2k N .

So we take operands A < n2k N and B < n2k N such that C = A × B < n222k N 2.
We also need to ensure that C does not overflow M . If we assume that N can be

represented in h channels so that N < 2kh , then C < n222hk+2k . We require C < M
for M > 2n(k−1) which will be satisfied if

n > 2h + 2 + 2 log2 n + n

k
. (4)

For example, for k ≥ 32 and n < 128, it will be sufficient to choose n ≥ 2h + 7. Note
that this bound is conservative and fewer channels may be required for a particular
RNS.

3.3 The algorithm

The preceding results are expressed as an algorithm for modular multiplication in
Algorithm 1.
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Algorithm 1 Sum of residues RNS modular multiplication

Require: k, N , n, h, ∆, q, [m1, . . . , mn ], M̂ as described above.
Require: precomputed table 〈Mi 〉N for i = 1 . . . n
Require: precomputed table 〈αM〉N for α = 1 . . . n
Require: A < n2k N , B < n2k N
Ensure: Z ≡ A × B mod N , Z < n2k N
1: C := A × B � 1 RNS multiplication in n channels
2: � := C × M̂ � 1 RNS multiplication in n channels
3: loop for i = 1 to n
4: Ci := γi × 〈Mi 〉N � 1 RNS multiplication in n channels
5: end loop
6: Z := ∑n

i=1 Ci � (n − 1) RNS additions in n channels

7: α :=
⌊∑n

i=1

⌊
γi

2k−q

⌋
/2q + ∆

⌋
� sum of n q-bit terms

8: Z := Z − 〈αM〉N � 1 RNS addition in n channels

4 Discussion

4.1 An example

To demonstrate the applicability of this scheme to, for example, 1024-bit RSA cryptog-
raphy [10], consider the set of consecutive 32-bit prime moduli [m1, m2, . . . , m69] =
[4294965131, 4294965137, . . . , 4294966427]. For h = 33,

⌊
log2

(∏h
i=1 mi

)⌋
=

1055 and the RNS has over 1024 bits of dynamic range for the modulus N . Choosing
n = 69 gives �log2(M)� = 2207 bits of dynamic range. The maximum value of the

intermediate product C is
(∑n

i=1(mi − 1)(
∏h

i=1 mi − 1)
)2

such that �log2(C)� ≤
2188 and C < M as required.

Selecting q = 7 and ∆ = 0.75 ensures 0 ≤ n(ε + ∆) ≤ ∆ < 1 and 0 ≤ C <

(1 − ∆)M as required for exact determination of α.

4.2 Evaluation

If there are sufficient hardware resources, the residues Ci in the algorithm above can all
be computed in parallel. Also, the sum Z := ∑n

i=1 Ci can occur in (n − 1) sequential
steps as indicated above, or an accumulation tree can be used to reduce the number
of steps. For example, a binary tree would require only

⌈
log2 n

⌉
sequential steps. The

correction term α is not required until the last step and can be computed in parallel
with the sum of the residues.

Precomputed tables are required for 〈Mi 〉N and 〈αM〉N but the memory for these
tables is not excessive. Each table contains n entries, where each entry is an RNS
constant in n channels.

Table 1 compares the number of operations for the new algorithm with RNS Mont-
gomery multiplication algorithms due to [1] and [5]. The table shows: the number
of sequential RNS steps assuming sufficient hardware to execute steps in parallel
wherever possible; the total number of RNS operations; and the total number of chan-
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Table 1 Operation counts for the new algorithm compared with RNS Montgomery multiplication due to
[1] and [5]

Operation New Bajard Kawamura

Min. sequential RNS steps

RNS multiplications 3 9 10

RNS additions 2h + a 2h 2h + 3

Total RNS operations

Multiplications in 2h + a channels 2h + a + 2 0 0

Additions in 2h + a channels 2h + a 0 0

Multiplications in h channels 0 2h + 8 2h + 9

Additions in h channels 0 2h 2h + 1

Multiplications in 1 channel 0 2h + 4 0

Additions in 1 channel 0 2h 0

Total channel-width operations

Modular multiplications (2h + a)(2h + a + 2) 2h2 + 10h + 4 2h2 + 9h

Modular additions (2h + a)2 2h2 + 2h 2h2 + h

q-bit additions 2h + a 0 2h

The modulus is h channels long in every case such that 2(k−1)(h−1) < N < 2kh . For the new algorithm
we take n = 2h + a. The term a varies according to the RNS but in the 1024-bit example above a = 3

nel-width operations. The new algorithm can complete in fewer parallel RNS steps
than these predecessors but involves more channel-width operations.

5 Conclusion

Using RNS for modular multiplication provides a significant degree of independence
across the RNS channels; using sum of residues reduction makes many of the RNS
operations down the channels independent. By combining these techniques we have
developed an algorithm for modular multiplication with very few dependent sequen-
tial steps. Where sufficient hardware is available, it can complete in the time required
for 3 channel-width modular multiplications and the modular accumulation of 2h + a
channel-width terms. Here h is the minimum number of channels required to repre-
sent the modulus and a is a small integer term (around 3). It should be possible to
exploit this algorithm with massively parallel hardware for an extremely low latency
implementation of RSA cryptography.
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