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Abstract Narrowing extends rewriting with logic capabilities by allowing logic
variables in terms and by replacing matching with unification. Narrowing has been
widely used in different contexts, ranging from theorem proving (e.g., protocol ver-
ification) to language design (e.g., it forms the basis of functional logic languages).
Surprisingly, the termination of narrowing has been mostly overlooked. In this work,
we present a novel approach for analyzing the termination of narrowing in left-lin-
ear constructor systems—a widely accepted class of systems—that allows us to reuse
existing methods in the literature on termination of rewriting.
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1 Introduction

The narrowing principle [62] generalizes term rewriting by allowing logic variables
in terms—as in logic programming [49]—and by replacing pattern matching with
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unification in order to (non-deterministically) reduce them. Narrowing, originally
introduced as an E-unification mechanism in equational theories, has been mostly
used as the operational semantics of so-called functional logic programming languages
[37,59]. Examples of such languages based on narrowing are, e.g., LPG [15], SLOG
[31], ALF [36], Babel [55], and the most recent Curry [27] and Toy [50]. Currently,
narrowing is regaining popularity in a number of other areas, like protocol verification
[19,29,43,52], model checking [30], partial evaluation [1,58], refining methods for
proving the termination of rewriting [11,12], type checking in the language Ωmega
[61], etc.

As witnessed by the extensive literature on the subject, termination is a fun-
damental problem in both term rewriting (see, e.g., the surveys of Dershowitz
[24] and Steinbach [63]) and in logic programming (see, e.g., [18,22,48,64], and
references therein). Surprisingly, the termination of narrowing has been mostly over-
looked so far. We note that, although functional logic programs combine a func-
tional syntax for programs (namely, term rewrite systems are usually considered) with
a logic programming-like evaluation mechanism, no existing technique for proving
the termination of either rewrite systems or logic programs is applicable to proving
the termination of functional logic programs. Indeed, only a few approaches to this
subject can be found in the literature (see a detailed account in Sect. 7). Further-
more, only very recently some implementations of a termination prover for narrowing
have been introduced (the first one being our own tool, TNT, originally introduced
in [65]).

Analyzing the termination of narrowing is not only of theoretical interest but has a
number of useful application domains. On the one hand, it can be used to check the ter-
mination of functional logic programs. We note that, although current functional logic
languages like Curry [27] and Toy [50] consider some narrowing strategy (i.e., some
variant of lazy narrowing [20,54,59] like needed narrowing [8]), our termination anal-
ysis techniques provide a sufficient condition for the termination of these programs.
Moreover, it would not be difficult to extend our approach following the ideas in [33]
in order to get more accurate results. Termination analysis is also essential for ensuring
the finiteness of partial evaluation [44]. For instance, they can be very useful within
the so-called narrowing-driven partial evaluation [1], a partial evaluation scheme for
both functional and functional logic programs where narrowing is used to perform
symbolic computations at partial evaluation time. In general, termination analysis can
be useful in almost every transformation technique in order to guarantee the finiteness
of the process.

In this work, we are primarily interested in analyzing the termination of narrowing
by reusing the large body of techniques and tools for analyzing the termination of
rewriting. The key idea is to consider variables as data generators in the context of
rewriting. This means that one can analyze the termination of narrowing for the term
add(x, z), where add is a defined function, x is a logic variable, and z is a constructor
constant, by analyzing the termination of rewriting for the terms add(t, z), where
t stands for any arbitrary—possibly infinite—ground (i.e., without variables) term.
Intuitively speaking, we want t to take any possible value that could be computed by
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narrowing for the logic variable x in any derivation issuing from add(x, z), even if it
goes on infinitely.

This relation between logic variables and (possibly infinite) terms has been pointed
out by Dershowitz [25], who advocated a form of stream programming based on logic
variables. A similar idea has taken up recently in order to eliminate logic variables from
functional logic computations [9,21]. The closest approach, though, is the termination
analysis for logic programs by Schneider-Kamp et al. [60], where logic programs are
transformed to rewrite systems and logic variables are replaced with infinite terms (cf.
Sect. 7).

In contrast to [60], we model data generators by means of rules (as in [9,21]). For
instance, a data generator for natural numbers built from z (zero) and s (successor) is
defined as follows:

gen → z

gen → s(gen)

Note that data generators are, by definition, nonterminating. In particular, one of our
main contributions is a result that relates the termination of narrowing for a term t to
the relative termination [45] of rewriting for a term t̂ , where t̂ is obtained from t by
replacing its variables with occurrences of the data generator gen. Here, the relative
termination of rewriting implies that only finitely many steps with the rules of the
original rewrite system are performed (but the occurrences of gen could be reduced
infinitely).

However, a main drawback of this approach is that analyzing the relative termina-
tion of rewriting is a difficult problem that requires non-standard techniques and tools.
In order to overcome this problem, we introduce the use of argument filterings to get
rid of data generators in rewrite derivations. In this way, we are able to reduce the
analysis of relative termination in a rewrite system with data generators to the analysis
of termination in this rewrite system without data generators. Essentially, we consider
two alternative approaches:

– The first technique is based on the well-known dependency pair framework [11,35]
for proving the termination of rewriting. We will show that only a few modifications
are required in order to be applicable in our setting.

– The second technique is based on the argument filtering transformation of [47]
and, given a rewrite system R, produces a new rewrite system R ′, so that the ter-
mination of rewriting in R ′ implies the termination of narrowing in R. Therefore,
any method or termination tool for rewrite systems can directly be applied to prove
the termination of narrowing.

In order to make our approach useful in practice, we also introduce an algorithm for
inferring appropriate argument filterings. Finally, we present a number of extensions
and refinements to the basic technique and report on a prototype implementation of
a termination tool, TNT, that follows the second approach above. Roughly speaking,
the user introduces a rewrite system and an abstract call indicating the entry function
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to the program and its modes.1 The tool first computes an argument filtering from
the abstract call and, then, transforms the input system using this argument filtering
according to the second approach above. The termination of the transformed system
is currently checked by using the AProVE tool [32].

The main contributions of this work can be summarized as follows:

1. We introduce, in Sect. 3, a sufficient and necessary condition for the termination of
narrowing over left-linear constructor systems, a widely accepted class of systems
in functional and functional logic programming. The condition is formulated in
terms of the (relative) termination of rewriting.

2. We then present two alternative approaches for analyzing the termination of nar-
rowing w.r.t. a given argument filtering. The first approach (cf. Sect. 4.2) is based
on adapting the dependency pair method [11] and the second one (cf. Sect. 4.3)
on applying a program transformation similar to that in [47]. Furthermore, both
approaches can be easily automated.

3. Section 5 introduces an algorithm for computing appropriate argument filterings
so that the previous methods can be applied in practice. Finally, Sect. 6 presents
several applications and refinements, together with a description of an automatic
tool (called TNT) for proving the termination of narrowing which follows the
transformational approach. To the best of our knowledge, TNT is the first fully
automatic tool for proving the termination of narrowing.

2 Preliminaries

In this section, we introduce some basic concepts of term rewriting and narrowing.
We refer the reader to, e.g., [13] and [37] for further details.

2.1 Terms and substitutions

A signature F is a set of function symbols. We often write f/n ∈ F to denote that
the arity of function f is n. Given a set of variables V with F ∩ V = ∅, we denote
the domain of terms by T (F ,V ). We assume that F always contains at least one
constant f/0. We often use f, g, . . . to denote functions and x, y, . . . to denote vari-
ables.As it is common practice, a position p in a term t is represented by a finite
sequence of natural numbers, where ε denotes the root position; we denote by p.q the
concatenation of positions p and q. Positions are used to address the nodes of a term
viewed as a tree. Positions are partially ordered by the prefix ordering �, i.e., p � q
if there exists an r such that p.r = q. We write p < q if p � q and p �= q. The root
symbol of a term t is denoted by root(t). We let t |p denote the subterm of t at position
p and t[s]p the result of replacing the subterm t |p by the term s. Var(t) denotes the
set of variables appearing in t . A term t is ground if Var(t) = ∅. We write T (F ) as
a shorthand for the set of ground terms T (F , ∅). We only consider finite terms in

1 We follow the terminology from logic programming, where modes are used to specify the degree of
instantiation of the arguments of a predicate.
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this paper, i.e., terms with a finite number of symbols (equivalently, trees with finitely
many branches).

A substitution σ : V �→ T (F ,V ) is a mapping from variables to terms such
that Dom(σ ) = {x ∈ V | x �= σ(x)} is its domain. Substitutions are extended to
morphisms from T (F ,V ) to T (F ,V ) in the natural way. We denote the applica-
tion of a substitution σ to a term t by tσ (rather than σ(t)). The identity substitution
is denoted by id. A variable renaming is a substitution that is a bijection on V . A
substitution σ is more general than a substitution θ , denoted by σ � θ , if there is a
substitution δ such that δ ◦σ = θ , where “◦” denotes the composition of substitutions
(i.e., σ ◦ θ(x) = xθσ ). The restriction θ |̀V of a substitution θ to a set of variables
V is defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise. We say that
θ = σ [V ] if θ |̀V = σ |̀V .

A term t2 is an instance of a term t1 (or, equivalently, t1 is more general than t2),
in symbols t1 � t2, if there is a substitution σ with t2 = t1σ . Two terms t1 and t2 are
variants (or equal up to variable renaming) if t1 = t2ρ for some variable renaming ρ.
A unifier of two terms t1 and t2 is a substitution σ with t1σ = t2σ ; furthermore, σ is
the most general unifier of t1 and t2, denoted by mgu(t1, t2) if, for every other unifier
θ of t1 and t2, we have that σ � θ .

2.2 Term rewriting

A set of rewrite rules (or oriented equations) l → r such that l is a non-variable term
and r is a term whose variables appear in l is called a term rewriting system (TRS for
short); terms l and r are called the left-hand side and the right-hand side of the rule,
respectively. We restrict ourselves to finite signatures and TRSs. Given a TRS R over
a signature F , the defined symbols D are the root symbols of the left-hand sides of
the rules and the constructors are C = F\D .

We use the notation F = D�C to point out that D are the defined function symbols
and C are the constructors of a signature F , with D ∩C = ∅. The domains T (C ,V )

and T (C ) denote the sets of constructor terms and ground constructor terms, respec-
tively. A substitution σ is (ground) constructor, if xσ is a (ground) constructor term
for all x ∈ Dom(σ ).

A TRS R is a constructor system if the left-hand sides of its rules have the form
f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C ,V ), for all i = 1, . . . , n.
A term t is linear if every variable of V occurs at most once in t . A TRS R is left-linear
(resp. right-linear) if l (resp. r ) is linear for every rule l → r ∈ R.

For a TRS R, we define the associated rewrite relation →R as follows: given terms
s, t ∈ T (F ,V ), we have s →R t iff there exists a position p in s, a rewrite rule
l → r ∈ R and a substitution σ with s|p = lσ and t = s[rσ ]p; the rewrite step is
often denoted by s →p,l→r t to make explicit the position and rule used in this step.
The instantiated left-hand side lσ is called a redex.

A term t is called irreducible or in normal form w.r.t. a TRS R if there is no term
s with t →R s. A derivation is a (possibly empty) sequence of rewrite steps. Given
a binary relation →, we denote by →+ the transitive closure of → and by →∗ its
reflexive and transitive closure. Thus t →∗

R s means that t can be reduced to s in zero
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or more steps; we also use t →n
R s to denote that t can be reduced to s in exactly n

rewrite steps.

2.3 Narrowing

The narrowing principle [62] mainly extends term rewriting by replacing pattern
matching with unification, so that terms containing logic variables can also be reduced
by non-deterministically instantiating these variables (analogously to SLD resolution
in logic programming). Formally, given a TRS R and two terms s, t ∈ T (F ,V ), we
have that s �R t is a narrowing step iff there exist

– a non-variable position p of s,
– a variant R = (l → r) of a rule in R such that Var(l) ∩ Var(s) = ∅,
– a substitution σ = mgu(s|p, l) which is the most general unifier of s|p and l,

and t = (s[r ]p)σ . We often write s �p,R,θ t (or simply s �θ t in R) to make explicit
the position, rule, and substitution of the narrowing step, where θ = σ |̀Var(s) (i.e.,
we label the narrowing step only with the bindings for the variables in the narrowed
term).

A narrowing derivation t0 �∗
σ tn denotes a sequence of narrowing steps t0 �σ1

. . . �σn tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id). Due to the presence of free
variables, a term may be reduced to different values after instantiating these variables
to different terms. Given a narrowing derivation s �∗

σ t , we say that σ is a computed
answer for s.

Example 1 Consider the following TRS R defining the addition add/2 on natural
numbers built from z/0 and s/1:

add(z, y) → y (R1)

add(s(x), y) → s(add(x, y)) (R2)

Given the term add(x, s(z)), we have infinitely many narrowing derivations issuing
from add(x, s(z)), e.g.:

add(x, s(z)) �ε,R1,{x �→z} s(z)

add(x, s(z)) �ε,R2,{x �→s(y1)} s(add(y1, s(z))) �1,R1,{y1 �→z} s(s(z))

. . .

with computed answers {x �→ z}, {x �→ s(z)}, etc.

3 Termination of narrowing via termination of rewriting

In this section, we introduce a precise characterization of the termination of narrowing
in terms of the termination of rewriting.
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3.1 A simple characterization of narrowing termination

Let us first introduce our notion of termination, which is parameterized by a given
binary relation:

Definition 1 (termination) Let T be a set of terms. Given a binary relation ∝ on terms,
we say that T is ∝-terminating iff there is no term t1 ∈ T such that an infinite sequence
of the form t1 ∝ t2 ∝ t3 ∝ . . . exists.

We say that a term t is ∝-terminating iff the set {t} is ∝-terminating.

The usual notion of termination can then be formulated as follows: a TRS is ter-
minating iff T (F ) is →R-terminating. As for narrowing, we say that a TRS R is
terminating w.r.t. narrowing iff T (F ,V ) is �R-terminating.

In general, however, only rather trivial TRSs are terminating w.r.t. narrowing.2 Con-
sider, for instance, the TRS of Example 1 defining the addition on natural numbers:
R = {add(z, y) → y, add(s(x), y) → s(add(x, y))}. Although every ground term
of the form add(t1, t2) has a finite rewrite sequence, we can easily find a term, e.g.,
add(x, z), such that an infinite narrowing derivation exists:

add(x, z) �{x �→s(x1)} add(x1, z) �{x1 �→s(x2)} add(x2, z) �{x2 �→s(x3)} . . .

Therefore, in the remainder of the paper, we focus on the termination of narrowing
w.r.t. a given set of terms, which explains our formulation of termination in Definition 1
above.

It must be clear that, since rewriting is a particular case of narrowing,3 the termi-
nation of narrowing implies the termination of rewriting, i.e., if there is no infinite
narrowing derivation issuing from a term t then all rewrite derivations issuing from t
are also finite (clearly, the opposite is not true).

The following result provides a first—sufficient but not necessary—condition for
the termination of narrowing in terms of the termination of rewriting.

Theorem 1 Let R be a TRS and T be a finite set of terms. Let T ∗ = {tσ | t ∈
T and t �∗

σ s in R}. T is �R-terminating if T ∗ is finite (modulo variable renaming)
and →R-terminating.

Proof We prove the claim by contradiction. Assume that T ∗ is finite (modulo variable
renaming) and→R -terminating but T is not�R-terminating. Then, there exists a term
t ∈ T such that there exists an infinite derivation of the form t �σ1 t1 �σ2 t2 �σ3 . . .

Then, we have two possibilities. First, if the term tσ1σ2 . . . grows infinitely with the
application of every σi , then the set T ∗ must be infinite, which contradicts our initial
assumption.

Otherwise, there must be some finite j > 0 such that σk = id for all k > j ; note
that this is possible because every σk is restricted to Var(tk) and because we can always

2 Actually, we are not aware of any termination analysis for logic programs—where logic variables are
also allowed, as in narrowing—that does not consider some restriction on the possible calls.
3 Note that, when the considered term is ground, unification reduces to matching and, thus, the definitions
of rewriting and narrowing become essentially equivalent.
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choose a matching substitution that binds the fresh variables of the applied rules to
the variables of the reduced term. Then, we can write the infinite narrowing derivation
as t �σ1 t1 �σ2 . . . �σ j t j �id t j+1 �id t j+2 �id . . . By the soundness of
narrowing (see, e.g., [53, Lemma 3.3]), we have tσ1 . . . σ j →R . . . →R t j . Finally,
since tk �id tk+1 iff tk →R tk+1, the previous rewrite derivation goes on infinitely:
t j →R t j+1 →R t j+1 →R . . ., which contradicts our initial assumption. ��
The following example illustrates why the above condition is not necessary:

Example 2 Consider the following TRS: R = {f(a) → b, a → a}. Given the set
of terms T = {f(x)}, we have that T is �R -terminating since the only narrowing
derivation is f(x) �{x �→a} b. However, T ∗ = {f(a)} is finite but not →R-terminating:
f(a) → f(a) → . . .

Verifying the finiteness and →R-termination of T ∗ is generally, not only undecid-
able, but also rather difficult to approximate since one should consider all possible
narrowing derivations issuing from the terms in T . Therefore, we now introduce an
alternative—easier to check—condition.

For this purpose, a key observation is that variables in narrowing can be seen as
generators of possibly infinite terms from the point of view of rewriting. The basic idea
is then to replace in T ∗ = {tσ | t ∈ T and t �∗

σ s in R} every answer σ computed by
narrowing with any possible substitution mapping variables to possibly infinite terms:

Example 3 Consider again the TRS R of Example 1 and the term add(x, z). Clearly,
add(x, z)σ is →R-terminating for any substitution σ mapping x to a finite term.
However, if σ maps x to an infinite term of the form s(s(. . .)), then the derivation for
add(x, z)σ is now infinite:

add(s(s(. . .)), z) →R s(add(s(s(. . .)), z)) →R s(s(add(s(s(. . .)), z))) →R . . .

Indeed, add(x, z) is not �R -terminating.

Unfortunately, proving that the set

T ∗ = { tσ | t ∈ T and σ maps variables to possibly infinite terms }

is →R-terminating is often an unnecessarily strong condition in order to prove that T
is �R-terminating:

Example 4 Consider the following TRS: R = {a → a, f(x) → x}. While the term
f(x) is clearly �R -terminating, there exists a substitution σ = {x �→ a} such that
f(x)σ is not →R-terminating. Here, an infinite computation f(a) →R f(a) →R . . .

has been introduced by σ .

In order to avoid this problem, one could forbid the reduction of redexes introduced
by σ (as well as their descendants [40]). However, such a restriction on rewriting
derivations would make the previous condition unsound:
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Example 5 Consider the following TRS: R = {a → a, f(a) → c(b, b)}. Given
the term t = c(y, f(y)), we have that tσ is →R-terminating if the reduction of the
terms introduced by σ (and their descendants) is forbidden. However, t is not �R-
terminating since there exists an infinite narrowing derivation: c(y, f(y)) �{y �→a}
c(a, c(b, b)) �id c(a, c(b, b)) �id . . .

Clearly, the problem comes from the fact that narrowing does allow the reduction of
terms introduced by instantiation.

These problems, though, can be overcome by considering a narrowing strategy over
a class of TRSs in which the terms introduced by instantiation cannot be narrowed.
Many useful narrowing strategies fulfill this condition, e.g., basic narrowing [41] and
innermost basic narrowing [39] over arbitrary TRSs, lazy narrowing [20,54,59] and
needed narrowing [8] over left-linear constructor TRSs, etc. Actually, any narrowing
strategy over left-linear constructor systems fulfills the following well-known property
(see, e.g., [55, Theorem 4.1], where it is stated without proof):

Proposition 1 Let F = D � C be a signature and t = f(t1, . . . , tn) be a linear term
with f ∈ D and t1, . . . , tn ∈ T (C ,V ). Given a term s = f(s1, . . . , sn) ∈ T (F ,V )

with Var(t)∩Var(s) = ∅, we have that mgu(t, s)|̀Var(s) is a constructor substitution.

The proof can be found in the appendix.
Intuitively speaking, this proposition ensures that, given a left-linear constructor

system R and an arbitrary term t , the substitution labeling every narrowing step issu-
ing from t (i.e., the restriction of the computed mgu to the variables of the narrowed
term) is a constructor substitution.4

Thus we restrict ourselves to left-linear constructor systems in the remainder of
this paper, a large class of TRSs which forms the (first-order) basis of many functional
and functional logic programming languages.

With a similar aim, [56,57] introduced the TRAT property w.r.t. narrowing. Basi-
cally, a TRS has the TRAT property w.r.t. narrowing when, for every infinite narrowing
derivation where all strict subterms are terminating w.r.t. narrowing, at least one reduc-
tion at the topmost position is performed. Since this property is undecidable, several
sufficient conditions are given: (i) every constructor TRS has the TRAT property, and
(ii) every right-linear TRS has the TRAT property when the initial term is linear.

The interest in TRSs with the TRAT property comes from the fact that, in these
TRSs, no infinite rewrite sequence can be introduced by instantiation. Therefore, their
condition is slightly weaker than requiring left-linear constructor TRSs.

3.2 Using data generators to characterize narrowing termination

As mentioned before, we can relate the termination of narrowing and the termina-
tion of rewriting by replacing variables with possibly infinite terms. Unfortunately,
an important drawback of this approach is that existing results relating rewriting and

4 Although needed narrowing [8] does not compute mgu’s (basically, some bindings are anticipated to
ensure that all narrowing steps are needed), it computes constructor substitutions (see [6, Lemma 11]) and,
thus, our forthcoming results also apply.
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narrowing derivations (e.g., the lifting lemma) are no longer applicable to rewrite der-
ivations with infinite terms. Therefore, we follow a different (and simpler) approach:
we replace logic variables by data generators (as in [9]).

For this purpose, we assume a fixed fresh function symbol “gen” which does not
appear in the signature of any TRS. The following definition is a simplified version
of the original notion of a generator in [9]:

Definition 2 (data generator, gen) Let R be a TRS over a signature F = D � C .
We denote by GEN(R) the following set of rewrite rules:

GEN(R) = { gen → c(

n times
︷ ︸︸ ︷

gen, . . . , gen) | c/n ∈ C , n � 0 }

where constants c() are simply denoted by c.
We also denote by Rgen a TRS over F �{gen} resulting from augmenting R with

GEN(R), in symbols Rgen = R ∪ GEN(R).

Example 6 For instance, for the TRS R of Example 1 with C = {z/0, s/1}, we have
Rgen = R ∪ {gen → z, gen → s(gen)}.
Trivially, the function gen can be (non-deterministically) reduced to any ground con-
structor term by using the constructor symbols of C . We note that, in contrast to [9],
we do not consider a different function gen for every type. This decision does not
affect the correctness of the approach but only introduces some useless derivations.
Nevertheless, these generators are only used as a theoretical device but the actual
techniques for proving the termination of narrowing (see Sect. 4) do not use them and,
thus, there is no loss of efficiency involved in their use.

Variables are replaced by generators in the obvious way:

Definition 3 (variable elimination, t̂ , ̂T ) Given a term t ∈ T (F ,V ) over a signature
F , we let t̂ = tσ , with σ = {x �→ gen | x ∈ Var(t)}. Analogously, given a set of
terms T ⊆ T (F ,V ), we let ̂T = {̂t | t ∈ T } ⊆ T (F � {gen}).
Note that t̂ is ground for any term t since all variables occurring in t are replaced by
the function gen.

Now, we state the correctness of the variable elimination. Although it is an easy
consequence of the results in [9], we provide detailed proofs for completeness. Basi-
cally, the main differences come from the fact that we consider that each narrowing
step computes a most general unifier between the selected subterm and the left-hand
side of a rule, while [9] considers that narrowing can compute arbitrary unifiers (i.e.,
according to [9], s �p,R,σ t is a narrowing step if sσ →p,R t).

Our first result shows that every narrowing computation can be mimicked by a
rewrite derivation if logic variables are replaced with gen in the initial term:

Lemma 1 (completeness) Let R be a left-linear constructor TRS over a signature
F = D � C and s ∈ T (F ,V ) be a term. If s �p,R,σ t in R, then ŝ →∗

GEN(R)

ŝσ →p,R t̂ in Rgen.
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Proof By Proposition 1, σ is a constructor substitution. By the definition of func-
tion gen, we have that x̂ →∗

GEN(R)
c holds for every variable x ∈ V and ground

constructor term c ∈ T (C ). Now, since rewriting is closed under contexts, we have
ŝ →∗

GEN(R)
ŝσ . Also, since s �p,R,σ t , we have that R = (l → r) ∈ R and

θ = mgu(l, s|p), with σ = θ |̀Var(s), δ = θ |̀Var(l), s|pσ = lδ, and t = sσ [rδ]p.
Therefore, we have sσ →p,R sσ [rδ]p. Since rewriting is closed under instantiation,

we also have ŝσ →p,R ̂sσ [rδ]p = t̂ and the claim follows. ��
Unfortunately, variable elimination is not generally sound5 because repeated variables
must have the same value in a narrowing computation, while different occurrences of
gen, though arising from the replacement of the same variable, can be reduced to
different terms:

Example 7 Consider again the TRS R of Example 1 and the term t = add(x, x).
Clearly, it can only be narrowed to an even number: z, s(s(z)), . . . However, t̂ can
also be reduced to an odd number, e.g., t̂ = add(gen, gen) → add(z, gen) →
gen → s(gen) → s(z).

In order to avoid such derivations, we use the notion of admissible derivation:

Definition 4 (admissible derivation [9]) Let R be a TRS over F and t ∈ T (F ,V )

a term. A derivation for t̂ in Rgen is called admissible iff all the occurrences of gen
originating from the replacement of the same variable are reduced to the same term in
this derivation.

A formalism for ensuring that only admissible derivations are possible, based on rep-
resenting terms by means of pairs term/substitution, can be found in [9].

When the considered derivation is admissible, w.l.o.g., we consider that all occur-
rences of gen associated to the same variable are reduced to the same term con-
secutively. As a trivial consequence we have that, if s →∗ t →p,R u →∗ v is an
admissible derivation in Rgen, with R ∈ R, then s →∗ u and u →∗ v are also
admissible derivations in Rgen.

Now, we can already state the soundness of variable elimination:

Lemma 2 (soundness) Let R be a left-linear constructor TRS over a signature F
and let s′ ∈ T (F � {gen},V ) be a term. If s′ →∗

Rgen
s′′ →p,R t ′ is an admissible

derivation and R ∈ R, then s �+
R t with ŝ = s′ and t̂σ = t ′ for some constructor

substitution σ .

In order to prove this lemma, we first need two auxiliary results (their proofs can be
found in the appendix):

Lemma 3 Let R be a left-linear constructor TRS over a signature F and let t ∈
T (F ,V ) be a term. If t̂ →+

GEN(R)
s is an admissible derivation, then there is a

constructor substitution σ such that t̂σ = s.

5 Here, by sound we mean that every rewrite derivation issuing from the term t̂ can be mimicked with a
narrowing derivation issuing from t .
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Lemma 4 Let R be a left-linear constructor TRS over a signature F = D � C and
let t ∈ T (F ,V ) be a term. If t̂ →p,R s′ with R ∈ R, then t →p,R s such that
ŝ = s′.

Now, we can already proceed with the proof of Lemma 2:

Proof We prove a slightly more general claim: Let s′ →∗
Rgen

s′′ →p,R t ′ be an

admissible derivation with R ∈ R and let ̂sϑ = s′ for some constructor substitution
ϑ . Then, we have s �+

R t with ̂tθ = t ′ for some constructor substitution θ . Note that
the original lemma is an instance of this claim by considering ϑ the empty substitution.

We prove the claim by induction on the number k of steps in s′ →∗
Rgen

s′′ →p,R t ′
in which the reduced function is not gen.

Base case (k = 1). In this case, only occurrences of gen are reduced in s′ →∗
Rgen

s′′.
Therefore, by Lemma 3, there exists a constructor substitution σ such that ŝϑσ = s′′.
Moreover, by Lemma 4, since s′′ →p,R t ′, there exists a term t such that sϑσ →p,R t
in R with t̂ = t ′. Since both ϑ and σ are constructor substitutions, s|p is not a var-
iable and, thus, by definition of narrowing (see, e.g., the completeness result of [53,
Lemma 3.4]), we have s �R u with uθ = t for some constructor substitution θ .

Inductive case (k > 1). Let s′ →+
Rgen

v′ be a strict prefix of s′ →∗
Rgen

s′′ such that

all steps but the last one are reductions of function gen. Note that, since s′ →∗
Rgen

s′′ →p,R t ′ is admissible, so are s′ →+
Rgen

v′ and v′ →∗
Rgen

s′′. By following a similar
argument as in the base case, we have that there is a term v such that s �R v with
ŝϑσ = s′ and ̂vθ = v′, where σ and θ are constructor substitutions. By applying the
inductive hypothesis to the remaining derivation v′ →∗

Rgen
s′′ →p,R t ′ with ̂vθ = v′,

we have v �+
R u with ̂uθ ′ = t ′ for some constructor substitution θ ′. Putting all pieces

together, we have s �+
R u with ̂uθ ′ = t ′. ��

Obviously, given a TRS R, no set of terms containing occurrences of gen is
generally →Rgen -terminating because of the nonterminating definition of function
gen. Luckily, we are interested in a weaker property: we may allow infinite deri-
vations in Rgen, as long as the number of functions different from gen reduced in
these derivations is kept finite. This idea is formalized by using the notion of relative
termination [45]:

Definition 5 (relative termination) Given two relations →R and →P we define the
compound relation →R/→P as →∗

P · →R · →∗
P .

Given two TRSs R and P , we say that the set of terms T is relatively →R-ter-
minating w.r.t. P if the relation →R/→P is terminating for the terms of T , i.e., if
every (possibly infinite) →R ∪ →P derivation issuing from the terms of T contains
only finitely many →R steps.

The following theorem states one of the main results of this paper:6

6 We note that the use of relative termination does not add an additional complexity since the techniques
presented in the next section will filter away the occurrences of gen.
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Theorem 2 Let R be a left-linear constructor TRS over a signature F = D �C and
let T ⊆ T (F ,V ) be a set of terms. Then, T is �R-terminating iff ̂T is relatively
→R-terminating w.r.t. GEN(R) when only admissible derivations are considered.

Proof (⇐) We prove the claim by contradiction. Assume that ̂T is relatively →R-
terminating w.r.t. GEN(R) but T is not �R -terminating. Then, there must be a term
t ∈ T with an associated infinite narrowing derivation t �p1,R1,σ1 t1 �p2,R2,σ2

t2 �p3,R3,σ3 . . . By Lemma 1, there exists an infinite rewrite sequence of the form
t̂ →∗ t̂σ1 →p1,R1 t̂1 →∗ t̂1σ2 →p2,R2 t̂2 →∗ t̂2σ2 →p2,R2 . . . which is admissible.
Therefore, ̂T is not relatively →R-terminating w.r.t. GEN(R), which contradicts our
initial assumption.

(⇒) By contradiction. Assume that T is �R-terminating but ̂T is not relatively
→R-terminating w.r.t. GEN(R), so that we can construct an infinite admissible
→Rgen -derivation with infinite →R steps for some t̂1 ∈ ̂T . By definition of rel-
ative termination, we can denote this infinite sequence as follows: t̂1 →∗

GEN(R)

t ′1 →p1,R1 t̂2 →∗
GEN(R)

t ′2 →p2,R2 t̂3 →∗
GEN(R)

. . . with Ri ∈ R, i > 0. By
Lemma 2, we can construct an associated infinite narrowing derivation of the form
s1 �+

R s2 �+
R s3 �+

R . . . with s1 = t1 and siθi = ti , i > 1, which contradicts the
initial assumption. ��
The following corollary introduces a (simpler) sufficient condition for the termination
of narrowing by removing the restriction to admissible rewrite derivations.

Corollary 1 Let R be a left-linear constructor TRS over a signature F = D � C
and let T ⊆ T (F ,V ) be a set of terms. Then, T is �R-terminating if ̂T is relatively
→R-terminating w.r.t. GEN(R).

The above results lay the ground for analyzing the termination of narrowing by reusing
existing techniques for proving the termination of rewriting. The next section presents
two such approaches.

4 Automating the termination analysis

In this section, we first introduce the use of abstract terms to specify a termination
problem, together with the corresponding argument filterings in order to allow the
automation of the analysis. Then, Sect. 4.2 introduces a direct approach to proving
the termination of narrowing by adapting the well-known dependency pair method
[11]. Finally, Sect. 4.3 presents a transformational approach based on the so-called
argument filtering transformation of [47].

4.1 From abstract terms to argument filterings

In general, we do not want the user to specify a termination problem by providing a
TRS and a set of terms T , since this would be very difficult when T is a large set (or
even an infinite set). Rather, it is much more convenient to allow the user to provide
a higher-level specification of the function calls which she is interested in. For this
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purpose, we introduce the notion of an abstract term, which is inspired by the mode
declarations of logic programming [23].

Definition 6 (abstract term) Let F = D � C be a signature. An abstract term over
F has the form f(m1, . . . , mn), where f ∈ D and mi is either g (definitely ground) or
v (possibly variable), for all i = 1, . . . , n.

Any abstract term implicitly induces a (possibly infinite) set of terms:

Definition 7 (concretization, γ ) Let F be a signature and tα an abstract term over
F . The concretization of tα , in symbols γ (tα), is obtained as follows:

γ (f(m1, . . . , mn)) = {f(t1, . . . , tn) ∈ T (F ,V ) | ti ∈ T (C ) if mi = g and

ti ∈ T (C ∪ V ) if mi = v, i = 1, . . . , n}

Observe that, in the definition above, we consider that g only approximates ground
constructor terms. In principle, we could relax this condition so that arbitrary ground
terms would be allowed as far as these terms have only finite rewrite sequences. Since
this is not decidable, we prefer to keep the restriction to constructor terms.

Furthermore, we observe that requiring abstract terms to have only one (outer-
most) defined function is not a real restriction. In particular, given an arbitrary term
t , one could add the rule foo(x1, . . . , xn) → t to the TRS, where foo is a fresh func-
tion symbol and x1, . . . , xn are the variables of t . Then, abstract terms of the form
foo(m1, . . . , mn) would actually represent the corresponding concretizations of t .

Consider the TRS of Example 1 and the abstract term add(g, v). Then,

γ (add(g, v)) = {add(z, x), add(z, z), add(s(z), x),

add(s(z), z), add(s(z), s(x)), add(s(z), s(z)), . . .}

Thanks to Corollary 1, given an abstract term tα , we can prove that γ (tα) is �R-
terminating by proving that γ̂ (tα) is relatively →R-terminating to GEN(R). The
main drawback of this approach, however, is that proving relative termination requires
non-standard techniques and tools.7

In order to overcome this problem, similarly to [60], we introduce the use of argu-
ment filterings [11,47]. Intuitively speaking, we use argument filterings to get rid of
non-ground arguments in a narrowing derivation or, equivalently, occurrences of gen
in the corresponding rewrite derivation, so that techniques for standard termination
can then be used.

7 We note that there already exist several tools for proving relative termination of TRSs (e.g., Jambox [28]
and TPA [46]). Unfortunately, they are not useful in our context since they do not allow us to specify a set of
initial terms and, more importantly, some restriction on the values of their arguments. Consider, e.g., R =
{add(z, y) → y, add(s(x), y) → s(add(x, y))} with Rgen = R ∪ {gen → z, gen → s(gen)}. Here,
given the abstract term add(g, v) representing the calls to add with a ground constructor term as a first argu-
ment, we have that γ (add(g, v)) is relatively →R-terminating w.r.t. GEN(R). However, R is not relatively
terminating w.r.t. GEN(R) in general (i.e., for any arbitrary term) since we may have infinite derivations like
add(gen, z) →Rgen add(s(gen), z) →Rgen s(add(gen, z)) →Rgen s(add(s(gen), z)) →Rgen . . .

where the initial argument of add is a “variable” represented by gen.
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First, we need some preparatory definitions. Let l → r be a rule. We denote its
extra variables 8 by EV (l → r) = Var(r)\Var(l). Also, we denote by [l → r ]⊥ the
rule that results from l → r by instantiating its extra variables with a fresh constant
function ⊥, i.e., [l → r ]⊥ = l → rσ , where σ = {x �→ ⊥ | x ∈ EV (l → r)}.
Definition 8 (argument filtering, π ) An argument filtering over a signature F =
D � C is a function π such that, for every function or constructor symbol f/n ∈ F ,
we have π(f) ⊆ {1, . . . , n}.

Argument filterings are extended to terms as follows:9

– π(x) = x for all x ∈ V ,
– π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim )) for all f/n ∈ F , n ≥ 0,

where π(f) = {i1, . . . , im} and 1 ≤ i1 < . . . < im ≤ n.

Given a TRS R, argument filterings are extended to TRSs as follows:

π(R) = { [π(l) → π(r)]⊥ | l → r ∈ R }

We note that the original concept of argument filtering in [11,47] may also return a
single argument position so that π( f (t1, . . . , tn)) = π(ti ) if π( f ) = i (which are usu-
ally called collapsing argument filterings). We use argument filterings to specify the
function arguments that will definitely be ground in a narrowing derivation (or, equiv-
alently, different from gen in a rewrite derivation). Therefore, an argument filtering
with π( f ) = i would have no meaning in our context.

The main difference, though, comes from the filtering of rewrite rules. Usually,
we find the following simpler notion in the literature: π(l → r) = π(l) → π(r).
Intuitively speaking, our extended definition will become useful when the filtered
rules contain extra variables but they are not used in the considered computations. In
our approach, all extra variables in the filtered rules are replaced with a special fresh
symbol. Then, when the considered argument filtering fulfills some conditions (see
Definition 12 below), we can guarantee the correctness of the approach.

Example 8 Consider the following TRS R defining the function append over lists
built from nil (the empty list) and cons:

append(nil, y) → y

append(cons(x, xs), y) → cons(x, append(xs, y))

Given the argument filtering π = {append �→ {1}, nil �→ ∅, cons �→ {1, 2}}}, the
filtered TRS π(R) is as follows:

8 Our definition of TRS requires Var(r) ⊆ Var(l) for all rules l → r . However, the filtering process may
introduce extra variables, thus the need to deal with this situation.
9 By abuse of notation, we keep the same symbol for the original function and the filtered function with a
possibly different arity.
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append(nil) → ⊥
append(cons(x, xs)) → cons(x, append(xs))

Note that the right-hand side of the first rule is ⊥ because y ∈ EV (append(nil) → y).

4.2 A direct approach to termination analysis

In this section, we present a direct approach for proving the termination of narrowing
by extending the well-known dependency pair technique [11].

The remainder of this section adapts and extends some of the developments in [11].
Given a TRS R over a signature F = D � C , for each f/n ∈ D , we let f�/n be a

fresh tuple (constructor) symbol; we often write F instead of f� in the examples. We
denote by F � the set F ∪ { f �/n | f/n ∈ D}. Given a term f(t1, . . . , tn) with f ∈ D ,
we let t� denote f�(t1, . . . , tn).

Definition 9 (dependency pair [11]) Given a TRS R over a signature F = D � C ,
the associated set of dependency pairs, DP(R), is defined as follows:10

DP(R) = {l� → t� | l → r ∈ R, r |p = t, and root(t) ∈ D}

Example 9 Consider the following TRS R defining the functions append and
reverse:

append(nil, y) → y

append(cons(x, xs), y) → cons(x, append(xs, y))

reverse(nil) → nil

reverse(cons(x, xs)) → append(reverse(xs), cons(x, nil))

Here, we have the following dependency pairs DP(R):

APPEND(cons(x, xs), y) → APPEND(xs, y) (1)

REVERSE(cons(x, xs)) → REVERSE(xs) (2)

REVERSE(cons(x, xs)) → APPEND(reverse(xs), cons(x, nil)) (3)

In order to prove termination, we should try to prove that there are no infinite chains
of dependency pairs. The standard notion of chain [11], however, cannot be used
because we are interested in the termination of narrowing (i.e., the relative termina-
tion of rewrite sequences in which variables are replaced by gen) and, moreover, we
are only concerned with those chains that are reachable from the initial abstract term.

In order to define our notion of chain, we first need to formalize the following notion
of reachable calls.

10 Note that if R is a TRS, so is DP(R), i.e., Var(t�) ⊆ Var(l�) for all rules l → t ∈ DP(R).
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Definition 10 (reachable calls) Let R be a TRS over a signature F = D � C and
t be a term. We define the set of reachable calls callsR(t) from t in R as follows:
callsR(t) = { s|p | t →∗

R s, with root(s|p) ∈ D for some position p }. We say that
a term s is reachable from t in R if s ∈ callsR(t).

Intuitively speaking, the set of reachable calls are the subterms rooted by a defined
function symbol (thus the name call) that occur in the rewrite derivations issuing from
a given term. Note that, in particular, every subterm t |p rooted by a defined function
symbol is reachable from the term t itself.

Definition 11 (chain) Let R and P be TRSs over the signatures F = D � C and
F �, respectively. Let π be an argument filtering over F that is extended over tuple
symbols so that π( f �) = π( f ) for all f ∈ D and let tα be an abstract term. A (possibly
infinite) sequence of pairs s1 → t1, s2 → t2, …from P is a (tα,P,R, π)-chain if
there is a substitution σ : V �→ T (F ,V ) such that the following conditions hold:11

– there exists a term s ∈ callsRgen( t̂ ) for some t ∈ γ (tα) such that s� = ŝ1σ and
– t̂iσ →∗

Rgen
ŝi+1σ for every two consecutive pairs in the sequence and, moreover,

π(ŝiσ), π(t̂iσ) ∈ T (F �) for all i > 0 (i.e., π filters away all occurrences of gen).

The following example illustrates our notion of chain.

Example 10 Consider the TRS R of Example 9 and its dependency pairs DP(R),
where Rgen = R ∪ {gen → nil, gen → cons(gen, gen)}. Given the abstract term
tα = append(v, g), we have that “(1), (1), . . .” is an infinite (tα, DP(R),R, π)-
chain for any argument filtering in which π(append) = π(APPEND) = {2} since
there is a substitution σ = {y �→ nil} such that (we denote the dependency pair (1)

by s1 → t1)

t̂1σ = APPEND(gen, nil) →Rgen APPEND(cons(gen, gen), nil) = ŝ1σ

andπ(APPEND(gen, nil)) = π(APPEND(cons(gen, gen), nil)) = APPEND(nil)
∈ T (F �). Note that it would not be a chain in the standard dependency pair frame-
work.

Observe that it is not difficult to check the first condition in the definition of
chain above, e.g., given the term append(nil, y) ∈ γ (tα), we have that s =
append(nil, gen) ∈ callsRgen(append(nil, gen)) (since every subterm rooted by
a defined function is reachable from itself) and s� = ŝ1σ = APPEND(nil, gen).

Unfortunately, not all argument filterings are useful in our context. In the follow-
ing, we focus on what we call safe argument filterings. We denote by s →>p,R t any
rewrite step s →q,R t with p < q, i.e., any rewrite step where a strict subterm s|q
of s|p is reduced. This notation is extended to rewrite derivations in the natural way.
Safe argument filterings are then formalized as follows:

11 As in [11], we assume fresh variables in every (occurrence of a) dependency pair and that the domain
of substitutions may be infinite.
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Definition 12 (safe argument filtering) Let R be a TRS over a signature F = D �C .
Let π be an argument filtering over F that is extended over tuple symbols so that
π( f �) = π( f ) for all f ∈ D and let tα = f(m1, . . . , mn) be an abstract term. We say
that π is safe for tα in R if the following conditions hold:

(1) mi = g for all i ∈ π(f);
(2) Var(π(t)) ⊆ Var(π(s)) for all dependency pairs s → t ∈ DP(R);
(3) s →∗

>ε,Rgen
s′ implies π(s) →∗

>ε,π(R)
π(s′) for all s ∈ callsRgen( t̂ ) with

t ∈ γ (tα).

The first condition in the definition above should be clear: a safe argument filtering
must remove all non-ground arguments of the initial abstract term. The second con-
dition ensures that the ground arguments of filtered terms are correctly propagated
from one call to the next one. The third condition, though, is more subtle. Basically, it
allows us to ensure that the chains of dependency pairs are correctly preserved by the
argument filtering (despite replacing extra variables with ⊥); this will become clear
in the proof of Theorem 4 below, where this condition is essential.

Example 11 Consider the following TRS R = {f(s(x), y) → f(y, x)} over F =
{f/1} � {z/0, s/1} and the abstract term tα = f(g, v).

– Clearly, the argument filtering π1 = {f �→ {1, 2}, s �→ {1}, z �→ ∅} is not safe
because it violates the first condition, i.e., π(f(g, v))|2 = v.

– The argument filtering π2 = {f �→ {1}, s �→ {1}, z �→ ∅} is not safe because the
filtered dependency pairs contain some extra variable, i.e., we have a dependency
pair f(s(x), y) → f(y, x) ∈ DP(R) with π2(f(s(x), y)) = f(s(x)), π2(f(y, x)) =
f(y), and Var(f(y)) �⊆ Var(f(s(x))).

– In contrast, the argument filtering π3 = {f �→ ∅, s �→ {1}, z �→ ∅} is safe.

Example 12 Consider now the following TRS

R = {b → h(g(a, a)), h(c(a)) → b, g(x, y) → c(y)}

over F = {b/0, h/1, g/2} � {a/0, c/1} and the abstract term tα = b. Consider an
argument filtering π = {b �→ ∅, h �→ {1}, g �→ {1}, a �→ ∅, c �→ {1}}. Then, we
have

π(R) = {b → h(g(a)), h(c(a)) → b, g(x) → c(⊥)}

This argument filtering π is not safe because, although the first and second conditions
in the definition of a safe argument filtering hold, the third one does not hold. In partic-
ular, we can find a reachable call, namely h(g(a, a)), such that h(g(a, a)) →>ε,Rgen

h(c(a)) but π(h(g(a, a))) = h(g(a)) �→>ε,π(R) h(c(a)) = π(h(c(a))) because the
only applicable rule is [π(g(x, y)) → π(c(y))]⊥ = g(x) → c(⊥). Note that, in this
case, we could recover safeness by having π(c) = ∅ instead of π(c) = {1}.
In the following, we consider that the input for the termination analysis is a left-linear
constructor TRS together with a safe argument filtering for some abstract term. We
will discuss the generation of safe argument filterings in Sect. 5.
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Before we proceed with the main result of this section, we need the following
auxiliary result for safe argument filterings (the proof can be found in the appendix):

Lemma 5 Let R be a TRS over a signature F = D � C . Let π be an argument
filtering over F that is extended over tuple symbols so that π( f �) = π( f ) for all
f ∈ D , and let tα be an abstract term. If π is safe for tα in R, then π(s) ∈ T (F )

for all terms s ∈ callsRgen( t̂ ) with t ∈ γ (tα).

Intuitively speaking, this result allows us to conclude that safe argument filterings
actually remove all occurrences of gen in those rewrite sequences issuing from a
concretization of the abstract term.

The following result states the soundness of our approach:

Theorem 3 Let R be a left-linear constructor TRS over a signature F = D � C
and let tα be an abstract term. Let π be a safe argument filtering for tα in R that is
extended over tuple symbols so that π( f �) = π( f ) for all f ∈ D . If there exists no
infinite (tα, DP(R),R, π)-chain, then γ (tα) is �R -terminating.

Proof We proceed by contradiction.
Let us assume that there exists no infinite (tα, DP(R),R, π)-chain, but γ (tα) is

not �R -terminating. By Corollary 1, we have that γ̂ (tα) is not relatively →R-termi-
nating to GEN(R). Therefore, there exists an infinite rewrite derivation for some term
t̂ ∈ γ̂ (tα) in which an infinite number of rules from R are used. In the following, we
denote by s a finite sequence of terms of the form s1, . . . , sn .

Let t̂ = f1(s1). Since s1 does not contain defined function symbols (apart from gen),
the infinite derivation starts as follows: f1(s1) →∗

>ε,GEN(R)
f1(u1) →ε,R1 r1σ1, with

R1 = (f1(w1) → r1) ∈ R and f1(w1)σ1 = f1(u1). Since σ1 cannot introduce defined
function symbols from D (only constructors or occurrences of gen), all defined func-
tion symbols of r1σ1 occur on positions of r1. Therefore, there must be a subterm r ′

1 of
r1 with a defined root such that r ′

1σ1 also starts an infinite rewrite derivation. Assume
that r ′

1 is the smallest such subterm (i.e., for all proper subterms r ′′
1 of r ′

1, the term
r ′′

1 σ1 is relatively →R-terminating w.r.t. GEN(R)). Then, f1(w1) → r ′
1 is the first

dependency pair of the infinite chain that we construct.
Since t̂ = f1(s1) →∗

>ε,GEN(R)
f1(u1) →ε,R1 r1σ1, we have f1(u1), r ′

1σ1 ∈
callsRgen (̂t). Now, since π is a safe argument filtering, by Lemma 5, we have
π(f1(u1)), π(r ′

1σ1) ∈ T (F ).
Now, since r ′

1σ1 is the smallest subterm that starts an infinite rewrite sequence where
infinitely many rules of R are applied, the infinite derivation continues as follows:
r ′σ1 →∗

>ε,Rgen
f2(u2) →ε,R2 r2σ2, with R2 = (f2(w2) → r2) ∈ R and f2(w2)σ2 =

f2(u2). Here, we have that the terms u2 cannot introduce infinite rewrite sequences
where infinitely many rules of R are applied (which is safe since all proper subterms of
r ′

1σ1 are relatively →R-terminating w.r.t. GEN(R) by assumption). Therefore, there
must be a subterm r ′

2 of r2 with a defined root such that r ′
2σ2 also starts an infinite

rewrite derivation. Assume that r ′
2 is the smallest such subterm. Then, f2(w2) → r ′

2 is
our second dependency pair.

Since t̂ = f1(s1) →∗
>ε,Rgen

f1(u1) →ε,R1 r1σ1 and r ′
1σ1 →∗

>ε,Rgen
f2(u2) →ε,R2

r2σ2, with r ′
1σ1 a subterm of r1σ1 and r ′

2σ2 a subterm of r2σ2, we have f2(u2), r ′
2σ2 ∈
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callsRgen (̂t). Hence, since π is a safe argument filtering, by Lemma 5, we have
π(f2(u2)), π(r ′

2σ2) ∈ T (F ) too.
The infinite sequence continues by rewriting r ′

2σ2’s proper subterms repeatedly.
Since π is safe, all occurrences of gen are filtered away by π . Eventually, a rewrite
step at the root position is performed again. Repeating this construction infinitely
many times results in an infinite (tα, DP(R),R, π)-chain, which contradicts our ini-
tial assumption. ��

It is worthwhile to observe that the �R-termination of γ (tα) does not imply the
absence of (tα, DP(R),R, π)-chains because rewrite sequences are not required to
be admissible in Definition 11. The following example illustrates this point.

Example 13 Consider the TRS R = {f(x) → h(x, x), h(a, b) → h(a, b)} over
F = {f/1, h/2} � {a/0, b/0}, together with the abstract term tα = f(v). Then, we
have Rgen = R ∪ {gen → a, gen → b}.

Here, all narrowing derivations issuing from the terms in γ (tα) = {f(x), f(a), f(b)}
are terminating since, given an arbitrary term f(t) ∈ γ (tα) with t ∈ T (C ,V ) a con-
structor term, we have f(t) �R h(t, t) but h(t, t) does not unify with the left-hand
side h(a, b) of the second rule no matter the value of t .

In contrast, given the argument filtering π = {f �→ ∅, h �→ ∅, a �→ ∅, b �→ ∅},
one can easily construct an infinite (tα, DP(R),R, π)-chain since there exists a term

h(a, b) ∈ callsRgen (̂f(x)) = callsRgen(f(gen)), with f(x) ∈ γ (tα), such that h�(a, b)

is the left-hand side of the first dependency pair in the infinite sequence: h�(a, b) →
h�(a, b), h�(a, b) → h�(a, b), …

Our next result further clarifies the relation between the non-termination of narrowing
and the existence of infinite chains (the proof can be found in the appendix):

Lemma 6 Let R be a TRS over the signature F = D �C and let P ⊆ DP(R) be a
set of dependency pairs. Let π be an argument filtering over F that is extended over
tuple symbols so that π( f �) = π( f ) for all f ∈ D and let tα be an abstract term. For
every (tα,P,R, π)-chain of the form s�

1 → t�1, s�
2 → t�2, . . ., there exists a rewrite

derivation of the form

t̂ →∗
Rgen

t ′[̂s1σ ]p →p,R t ′[ ̂r1σ [t1σ ]p1 ]p

→∗
>p.p1,Rgen

t ′[ ̂r1σ [s2σ ]p1 ]p →p.p1,R t ′[ ̂r1σ [r2σ [t2σ ]p2 ]p1 ]p

→∗
>p.p1.p2,Rgen

. . .

for some substitution σ .

As a consequence of this result we have that, for every infinite chain, there exists an
associated infinite rewrite sequence in Rgen. Hence, if this sequence is admissible, we
can lift it to a corresponding narrowing derivation and, thus, the converse of Theorem 3
holds when only admissible rewrite derivations are considered.

Now, in order to show the absence of (tα, DP(R),R, π)-chains automatically, one
could adapt the DP framework [34] or, alternatively, reduce the termination problem
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to a standard dependency pair problem. In this work, we consider the second approach,
i.e., we introduce a sufficient condition for the termination of narrowing in terms of a
standard dependency pair problem. This approach allows us to reuse all the existing
body of techniques and tools for proving the termination of rewriting within the DP
framework.

Let us first summarize some basic notions from the DP framework [34]. In this
context, a DP problem is a tuple (P,R) where P and R are TRSs. A (P,R)-chain
is a (possibly infinite) sequence of pairs s1 → t1, s2 → t2, . . . from P such that there
is a substitution σ with tiσ →∗

R si+1σ for all i > 0. A DP problem (P,R) is finite if
there are no infinite (P,R)-chains. Termination methods are then formulated as DP
processors that take a DP problem and return a new set of DP problems that should
be solved instead. A DP processor Proc is sound if, for all DP problems d, we have
that d is finite if all DP problems in Proc(d) are finite. Therefore, a termination proof
starts with the initial DP problem (DP(R),R) and applies sound DP processors until
an empty set of DP problems is obtained.

Theorem 4 Let R be a left-linear constructor TRS over a signature F = D � C ,
let P ⊆ DP(R) be a set of dependency pairs, and let tα be an abstract term. Let π

be a safe argument filtering for tα in R that is extended over tuple symbols so that
π( f �) = π( f ) for all f ∈ D . If the DP problem (π(P), π(R)) is finite, then there
are no infinite (tα,P,R, π)-chains.

Proof We proceed by contradiction.
Let us assume that there exists no infinite (π(P), π(R))-chain but there is an infi-

nite (tα,P,R, π)-chain of the form s�
1 → t�1, s�

2 → t�2, . . . By definition, neither
π(P) nor π(R) contain extra variables (since they are all replaced by ⊥). Moreover,
since π is safe, we have that Var(π(t)) ⊆ Var(π(s)) for all s → t ∈ DP(R) and,
thus, π(P) contains no occurrences of ⊥. Now, by Lemma 6, there exists an infinite
rewrite sequence of the form

t̂ →∗
Rgen

t ′[ŝ1σ ]p →p,R t ′[ ̂r1σ [t1σ ]p1 ]p

→∗
>p.p1,Rgen

t ′[ ̂r1σ [s2σ ]p1 ]p →p.p1,R t ′[ ̂r1σ [r2σ [t2σ ]p2 ]p1 ]p

→∗
>p.p1.p2,Rgen

. . .

for some substitution σ . By Definition 10, we have ŝ1σ , t̂1σ , ŝ2σ , t̂2σ , . . . ∈
callsRgen (̂t). Since π is safe, by Lemma 5, we have π(ŝ1σ), π(t̂1σ), π(ŝ2σ), π(t̂2σ),

. . . ∈ T (F ). Finally, since π is safe (third condition), we have that t̂iσ →∗
>ε,Rgen

ŝi+1σ implies that π(tiσ) →∗
>ε,π(R)

π(si+1σ) also holds for all i > 0. Therefore,

there exists an infinite (π(P), π(R))-chain of the form π(s�
1) → π(t�1), π(s�

2) →
π(t�2), . . ., which contradicts our initial assumption. ��
Example 14 Consider the TRS of Example 9, the abstract term tα = append(g, v),
and the argument filtering π = {append �→ {1}, reverse �→ {1}, nil �→ ∅, cons �→
{1, 2}} which is safe for tα . Here, Theorem 4 reduces the termination of narrowing to
the termination of the following DP problem:
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– Dependency pairs π(DP(R)):

APPEND(cons(x, xs)) → APPEND(xs) (1)

REVERSE(cons(x, xs)) → REVERSE(xs) (2)

REVERSE(cons(x, xs)) → APPEND(reverse(xs)) (3)

– Rewrite system π(R):

append(nil) → ⊥
append(cons(x, xs)) → cons(x, append(xs))

reverse(nil) → nil

reverse(cons(x, xs)) → append(reverse(xs))

The derived DP problem can be proved terminating using standard techniques. It is
worthwhile to note that the elimination of the extra variable in the first rule of π(R)

is crucial to be able to prove termination in this example.

Unfortunately, in some cases, the filtering of both the TRS and its dependency pairs
may introduce an over approximation that prevents us from proving the termination
of narrowing.

Example 15 Consider the following TRS R = {f(x) → g(a, b), g(a, y) → g(b, y)}
and the abstract term f(v). Here, we have the following dependency pairs: DP(R) =
{F(x) → G(a, b), G(a, y) → G(b, y)}.

The argument filtering π = {f �→ ∅, g �→ {2}, a �→ ∅, b �→ ∅} is safe for f(v).
Clearly, there are no infinite (tα, DP(R),R, π)-chains since the only possible chain
would be G(a, y) → G(b, y), G(a, y) → G(b, y), . . . but we have

̂G(b, y)σ �→∗
Rgen

̂G(a, y)σ

no matter the value of the substitution σ .
However, by using Theorem 4, we get a DP problem with the following set of

dependency pairs: π(DP(R)) = {F → G(b), G(y) → G(y)}. Clearly, the resulting
DP problem is infinite (no matter the rules of π(R) since the left- and right-hand sides
of the dependency pair G(y) → G(y) are equal) and, thus, cannot be used to prove
the termination of narrowing in the original TRS.

In order to overcome this drawback, we adapt a well-known DP processor based on
the construction of the estimated dependency graph [34], a graph that can be used
to estimate which dependency pairs can follow each other in chains.12 By using this
graph, some potential chains can be safely ignored. Therefore, it can be applied to the
initial TRS and its dependency pairs as a pre-processing stage in order to increase the
accuracy of the analysis.

12 We note that the estimated dependency graph is similar to the notion of loop-check in [3], where it is
used to remove unfeasible narrowing derivations.
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Definition 13 (estimated dependency graph [11]) Let R be a TRS. The estimated
dependency graph of R is the directed graph whose nodes (vertices) are the depen-
dency pairs of R and there is an arc (directed edge) from s → t to u → v iff
REN(CAP(t)) and u are unifiable, where

– CAP(t) replaces all proper subterms of t that are rooted by a defined symbol by
different fresh variables, and

– REN(t ′) replaces all variables in t ′ by different fresh variables.

The estimated dependency graph of R is denoted by E DG(R). In the following,
we denote by SCC(E DG(R)) the set of strongly connected components (SCC) of
E DG(R).

Let tα be an abstract term and let P ∈ SCC(E DG(R)) be a strongly connected
component of E DG(R). Then, we say that P is reachable from tα if there exists a
path in E DG(R) from a node s� → t� with root(s) = root(tα) to a node of P .

Our next result shows that it is enough to consider those chains that are built using the
dependency pairs of some strongly connected component of the estimated dependency
graph:

Theorem 5 Let R be a left-linear constructor TRS over a signature F = D �C and
tα be an abstract term. Let π be a safe argument filtering for tα in R that is extended
over tuple symbols so that π( f �) = π( f ) for all f ∈ D . If there is no infinite
(tα,P,R, π)-chain for any strongly connected component P ∈ SCC(E DG(R))

which is reachable from tα , then there are no infinite (tα, DP(R),R, π)-chains.

Proof We provide a proof of this result for completeness, but it is essentially equivalent
to that of Theorem 21 in [11].

In the following, we prove that, if the dependency pairs s1 → t1 and s2 → t2 are
part of a (tα, DP(R),R, π)-chain, then there is a corresponding arc in E DG(R),
i.e., REN(CAP(t1)) and s2 are unifiable. This suffices for this theorem, since then
every infinite (tα, DP(R),R, π)-chain corresponds to an infinite path in the graph.
This path ends in some strongly connected component P and, thus, there is also an
infinite (tα,P,R, π)-chain that is a postfix of the infinite (tα, DP(R),R, π)-chain
where P is reachable from tα . Hence, if there are no infinite (tα,P,R, π)-chains,
then there are no (tα, DP(R),R, π)-chains too.

Let the dependency pairs s1 → t1 and s2 → t2 be part of a (tα, DP(R),R, π)-
chain, i.e., t̂1σ →∗

Rgen
ŝ2σ . for some substitution σ . Let p1, . . . , pk be the top (par-

allel) positions where t1 has defined symbols (including gen) or variables. Then, we
have REN(CAP(t1)) = t1[y1]p1 · · · [yk]pk for some fresh variables y1, . . . , yk . Since
t̂1σ →∗

Rgen
ŝ2σ and both t1 and s2 are rooted by (constructor) tuple functions, we have

that t1µ = ŝ2σ for some substitution µ such that yiµ = ŝ2σ |pi for all i = 1, . . . , k.
Furthermore, since REN(CAP(t1))only contains fresh variables, then REN(CAP(t1))
and s2 are unifiable with a substitution δ = µ ∪ σ ∪ {x ∈ Var(s2σ) | x �→ gen}. ��
The following corollary is a consequence of Theorems 3, 4 and 5 above:

Corollary 2 Let R be a left-linear constructor TRS over a signature F = D �C and
tα be an abstract term. Let π be a safe argument filtering for tα in R that is extended
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over tuple symbols so that π( f �) = π( f ) for all f ∈ D . If (π(P), π(R)) is finite for
every strongly connected component P ∈ SCC(E DG(R)) which is reachable from
tα , then γ (tα) is �R -terminating.

4.3 A transformational approach

In this section, we present an alternative approach for proving the termination of nar-
rowing. The basic idea is similar to that in the previous section: reduce the termination
of narrowing to the (relative) termination of rewriting using data generators and then
use some argument filtering to eliminate those subterms that might be bound to a data
generator.

Now, however, our aim is to transform the original TRS R into a new TRS R ′ so
that narrowing terminates in R if rewriting terminates in R ′. As a consequence, every
termination technique for rewrite systems can be applied to prove the termination of
narrowing. This allows one to easily reuse the extensive literature on termination of
rewriting as well as the associated termination tools.

Our transformation is based on the argument filtering transformation of [47], that
we simplify because, in our case, an argument filtering never returns a single argument
position (i.e., we do not accept collapsing argument filterings). Roughly speaking our
program transformation generates, for every rule l → r of the original program,

– a filtered rule π(l) → π(r) and
– an additional rule π(l) → π(r ′) for each subterm r ′ of r that is filtered away in

π(r) and such that π(r ′) is not a constructor term.

Definition 14 (argument filtering transformation) Let R be a TRS over a signature
F and let π be an argument filtering over F . The argument filtering transformation
AFTπ is defined as follows:

AFTπ (R) = π
(

R ∪ {l → r ′ | l → r ∈ R, r ′ ∈ decπ (r), π(r ′) �∈ T (C ,V )})

where the auxiliary function decπ is defined inductively as follows:

decπ (x) = ∅ (x ∈ V )

decπ ( f (t1, . . . , tn)) = ⋃

i �∈π( f ){ti } ∪ ⋃n
i=1 decπ (ti ) ( f ∈ F )

Example 16 Consider the TRS R of Example 9. If we consider the argument filtering
π1 = {append �→ {1}, reverse �→ {1}, nil �→ ∅, cons �→ {1, 2}} of Example 14,
then AFTπ1(R) returns the same filtered rewrite system π(R) of Example 14.
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Consider now the argument filtering π2 = {append �→ {2}, reverse �→
{1}, nil �→ ∅, cons �→ {1, 2}}. Then, AFTπ2(R) returns the following TRS:

append(y) → y

append(y) → cons(⊥, append(y))

reverse(nil) → nil

reverse(cons(x, xs)) → append(cons(x, nil))

reverse(cons(x, xs)) → reverse(xs)

Note that the last rule is introduced because we have

decπ2(append(reverse(xs), cons(x, nil))) = {reverse(xs)}

The following auxiliary results are needed for proving the soundness of the AFT
transformation (the proofs can be found in the appendix). Our first result states a basic
property of argument filterings and function decπ :

Lemma 7 Let π be an argument filtering and let r be a term. Then, for every subterm
r |p of r rooted by a defined symbol, either π(r |p) is a subterm of π(r) or there exists
a term r ′ ∈ decπ (r) such that π(r |p) is a subterm of π(r ′).

Our second result is essential to relate the chains in a TRS R and in AFTπ (R):

Lemma 8 Let R be a left-linear constructor TRS, tα be an abstract term, and π be
a safe argument filtering for tα in R. Then, π(DP(R)) ⊆ DP(AFTπ (R)).

Now we prove the soundness of the AFT transformation, the main contribution of this
section:

Theorem 6 Let R be a left-linear constructor TRS and let tα be an abstract term. Let
π be a safe argument filtering for tα in R. If AFTπ (R) is terminating, then there are
no infinite (tα, DP(R),R, π)-chains.

Proof We proceed by contradiction. Assume that AFTπ (R) is terminating but there
exists an infinite (tα, DP(R),R, π)-chain. By Theorem 4, we have that the DP prob-
lem (π(D P(R)), π(R)) is not finite and, as a consequence, there must be an infinite
(π(D P(R)), π(R))-chain. Trivially, by definition of the AFT transformation, we
have π(R) ⊆ AFTπ (R). Furthermore, by Lemma 8, we have that π(D P(R)) ⊆
DP(AFTπ (R)) holds. Hence there must be an infinite (DP(AFTπ (R)), AFTπ (R))-
chain, which contradicts our initial assumption. ��

A straightforward consequence of the previous result is the following corollary that
shows that the termination of narrowing in a TRS R can be analyzed by using standard
techniques and tools over AFTπ (R):

Corollary 3 Let R be a left-linear constructor TRS and let tα be an abstract term.
Let π be a safe argument filtering for tα in R. If AFTπ (R) is terminating, then γ (tα)

is �R-terminating.
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Unfortunately, the AFT transformation is generally less precise than the direct
approach that we introduced in the previous section, as the following example illus-
trates:

Example 17 Consider again the TRS from Example 15:

R = {f(x) → g(a, b), g(a, y) → g(b, y)}

the abstract term f(v), and the argument filtering π = {f �→ ∅, g �→ {2}, a �→
∅, b �→ ∅}, which is safe for f(v).

Here, the AFT transformation returns the following TRS:

AFTπ (R) = {f → g(b), g(y) → g(y)}

which is clearly non-terminating. In contrast, by using the original TRS, one can easily
prove that there are no infinite (tα, DP(R),R, π)-chains (e.g., by using the estimated
dependency graph).

Therefore, the only advantage of the AFT transformation over the direct approach of
the previous section lies in the fact that it can be more easily implemented and that,
moreover, the transformed TRS can be used as the input of any termination tool (not
necessarily based on the DP framework).

5 Safe argument filterings

In this section, we consider the generation of safe argument filterings that can be used
to analyze the termination of narrowing. In general, though, determining if an argu-
ment filtering is safe (according to Definition 12) is undecidable. Therefore, in the
following we introduce sufficient—but not necessary—conditions.

5.1 Sufficient conditions for safe argument filterings

In the following, we say that an argument filtering π over a signature F = D � C is
trivial iff π( f ) = ∅ for all f ∈ D . Our first sufficient condition for the safeness of
an argument filtering is defined as follows:

Lemma 9 Let R be a TRS over a signature F = D � C and let tα be an abstract
term. Let π be a non-trivial argument filtering π that fulfills the following conditions:

– if π(tα) = f(m1, . . . , mn), then mi = g, for all i = 1, . . . , n;
– for all narrowing step s1 �R s2, if π(s1|p) ∈ T (F ) for all subterm s1|p with

root(s1|p) ∈ D , then π(s2|q) ∈ T (F ) for all subterm s2|q with root(s2|q) ∈ D .

Then, π is safe for tα in R.

In order to prove this result, we first prove that it is equivalent to the “variable condi-
tion” of [60], i.e., that Var(π(r)) ⊆ Var(π(l)) for all l → r ∈ (DP(R) ∪ R).
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Lemma 10 Let R be a TRS over a signature F = D � C and let tα be an abstract
term. Let π be a non-trivial argument filtering π that fulfills the conditions of Lemma 9.
Then, we have Var(π(r)) ⊆ Var(π(l)) for all l → r ∈ (DP(R) ∪ R).

Proof We prove the claim by contradiction. Assume that π is a non-trivial argument
filtering for tα in R that fulfills the conditions of Lemma 9 but there exists a rule
l → r ∈ (DP(R) ∪ R) such that Var(π(r)) �⊆ Var(π(l)). Let us consider that
l = f(l1, . . . , ln) for some f ∈ D .

Since π is non-trivial, we assume that there exists some defined symbol h ∈ D
such that π(h) �= ∅. Let us consider, for simplicity, that π(h) = { j}.

Since π fulfills the second condition of Lemma 9, we have that, for any narrowing
step s1 �p,l→r,σ s2, if π(s1|p) ∈ T (F ) for all subterm s1|p with root(s1|p) ∈ D ,
then π(s2|p) ∈ T (F ) for all subterm s2|p with root(s2|p) ∈ D .

We choose s1 = h(x1, . . . , x j−1, f(u1, . . . , un), x j+1, . . . , xm) such that ui ∈
T (F ) if i ∈ π(f) and ui ∈ V if i �∈ π(f); we also consider that both
x1, . . . , x j−1, x j+1, . . . , xm and the variable arguments of f are fresh. Trivially, for
all subterms s′ of s1 rooted by a defined function, we have π(s′) ∈ T (F ) by con-
struction (since π(h) = { j}). Consider now the following narrowing step:

s1 = s1[f(u1, . . . , un)] j � j,l→r,σ s1[rθ ] j = s2

with f(u1, . . . , un)σ = lθ for some substitution θ . Observe that σ needs not be applied
to s1[rθ ] j since the variables of s1 are fresh and, thus, they only occur once.

Since Var(π(r)) �⊆ Var(π(l)), there exists a variable x ∈ Var(π(r)) such that
x �∈ Var(π(l)). Assume that x occurs at position p of r , i.e., r |p = x . Now, we
consider two possibilities:

– If r |pθ is not ground, we also have that π(s2) = h(π(rθ)) is not ground, which
contradicts the second condition of Lemma 9.

– If r |pθ is ground, then x is bound to a ground term by θ . Assume that x �→ tx ∈ θ

and tx ∈ T (F ). Since R does not contain extra variables, x must occur in one of
the arguments of f(l1, . . . , ln). Assume that x ∈ Var(lk) with k ∈ {1, . . . , n}. Since
x �∈ Var(π(l)), we have k �∈ π(f) and, thus, uk is a variable, which contradicts the
fact that tx is ground. ��

Therefore, non-trivial argument filterings fulfilling the conditions of Lemma 9 respect
the variable condition. Now, we proceed with the proof of Lemma 9 above:

Proof The first condition of safe argument filtering is trivially implied by the condi-
tions of Lemma 9. Regarding the second condition, it is an immediate consequence
of Lemma 10. Finally, we proceed to check the third condition of safe argument
filtering. By Lemma 10, we have that π(R) = {π(l) → π(r) | l → r ∈ R}
since Var(π(r)) ⊆ Var(π(l)) for all l → r ∈ R. Moreover, trivially, we have that
Var(π(r)) ⊆ Var(π(l)) for all l → r ∈ Rgen since the rules for the data generators
contain no variables in their right-hand sides. Therefore, we have that s →∗

>ε,Rgen
s′

implies π(s) →∗
>ε,π(Rgen)

π(s′) (see, e.g., Lemma 3 in [2]) for all s ∈ callsRgen (̂t)

with t ∈ γ (tα). Now, by Lemma 5, we have that s do not contain occurrences of gen
and, thus, we have π(s) →∗

>ε,π(R)
π(s′), which concludes the proof. ��
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Our first sufficient condition is similar to the one required in [60]. Unfortunately, it is
often too strong in our context:

Example 18 Consider the TRS of Example 9, the abstract term tα = append(g, v),
and the argument filtering π = {append �→ {1}, reverse �→ {1}, nil �→ ∅, cons �→
{1, 2}} of Example 14. Although π is safe for tα , it does not fulfill the sufficient
condition of Lemma 9, since there is a narrowing step like

append(append(nil, x1), x2) �1,append(nil,y)→y,id append(x1, x2)

where both

π(append(append(nil, x1), x2)) = append(append(nil))

and

π(append(nil, x1), x2)) = append(nil)

are ground, but π(append(x1, x2)) = append(x1) is not ground.
Alternatively, there is a rule append(nil, y) → y ∈ R such that Var(π(y)) =

{y} �⊆ ∅ = Var(app(nil)) = Var(π(append(nil, y))), i.e., the variable condition is
not satisfied.

Now, we introduce a weaker sufficient condition for argument filterings that still guar-
antees its safeness. For this purpose, we first introduce the notion of graph of functional
dependencies:

Definition 15 (graph of functional dependencies) Given a TRS R over F = D � C ,
its graph of functional dependencies, in symbols G (R), contains nodes labeled with
the defined symbols in D and there is an arrow from node f to node g iff there is a
subterm rooted by g in the right-hand side of a rule whose left-hand side is rooted by f.

We say that g is reachable from f in R if there is a path from f to g in G (R).

In the following, we denote by inner(t) the set of defined symbols of t that occur
nested inside some other defined symbols, i.e.,

inner(t) = { f | root(t |p) ∈ D and root(t |p.q) = f ∈ D with q �= ε }

Our second sufficient condition is then formalized as follows:

Lemma 11 Let R be a TRS over a signature F = D � C and let tα be an abstract
term. Let π be an argument filtering π that fulfills the following conditions:
(1) if π(tα) = f(m1, . . . , mn), then mi = g, for all i = 1, . . . , n;
(2) Var(π(t)) ⊆ Var(π(s)) for all s → t ∈ DP(R);
(3) for all rules l → r, l ′ → r ′ ∈ R such that root(l) is reachable from root(tα)

and root(l ′) is reachable from some defined symbol in inner(π(r)), we have
Var(π(r ′)) ⊆ Var(π(l ′)).

Then, π is safe for tα in R.
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Proof The first two conditions of the claim are the same as those in the definition of
safe argument filtering. Hence we focus only on the third condition, i.e., we prove that
s →∗

>ε,Rgen
s′ implies π(s) →∗

>ε,π(R)
π(s′) for all s ∈ callsRgen (̂t) with t ∈ γ (tα).

First, if s ∈ callsRgen (̂t) with t ∈ γ (tα), then root(s) is reachable from root(tα).
Therefore, by condition (3) we have that, for every step in s →∗

>ε,Rgen
s′ either

the rewrite rule l ′ → r ′ ∈ R used at this step fulfills the condition Var(π(r ′)) ⊆
Var(π(l)) or this step cannot occur in π(s) →∗

>ε,π(R)
π(s′) (by Lemma 3 in [2]),

and the claim follows. ��
Intuitively speaking, the third condition in Lemma 11 implies the third condition in
the definition of safe argument filtering since, for all applicable rules l → r in the
subderivations s →∗

>ε,Rgen
s′, we have that the filtered rules π(l) → π(r) contain no

extra variables and, thus, the corresponding rules in π(R) contain no occurrences of
⊥. Then, one can lift this subderivation to π(R) so that π(s) →∗

>ε,π(R)
π(s′) holds.

Example 19 Consider again the TRS of Example 9, the abstract term tα =
append(g, v), and the argument filtering π = {append �→ {1}, reverse �→
{1}, nil �→ ∅, cons �→ {1, 2}} of Example 14. Here, one can easily check that π

fulfills the conditions of Lemma 11 since only append is reachable from append and
the set inner(r) is empty for the right-hand sides of the two rules of append, which
means that the third condition of Lemma 11 holds by vacuity.

5.2 An algorithm for computing safe argument filterings

In this section, we focus on defining an automatic algorithm to construct a safe argu-
ment filtering. For this purpose, we consider the sufficient condition of Lemma 11 in
the previous section. Basically, our algorithm proceeds as follows:

1. The input of the algorithm is a left-linear constructor TRS R, together with an
abstract term tα that specifies a (possibly infinite) set of terms.

2. Then, we adapt a simple binding-time analysis (BTA) [44], which is often used
in partial evaluation to propagate static (i.e., ground) and dynamic (i.e., possibly
non-ground) values through a program, in order to compute an argument filter-
ing that fulfills the first two conditions of Lemma 11 (that, in turn, come from
Definition 12 of safe argument filtering).

3. Finally, we construct a graph of functional dependencies (cf. Definition 15) and
check the third condition of Lemma 11. If it holds, the the computed argument
filtering is safe; otherwise, no safe argument filtering is produced and, thus, the
termination of narrowing cannot be proved.13

13 Of course, there is a loss of precision because we are using a sufficient condition for the safeness of
argument filterings. Nevertheless, there are cases where no safe argument filtering exists. Consider, e.g.,
the TRS R = {b(x) → f(g(a, c(x))), f(c(x)) → x, g(x, y) → y}. Given the abstract term b(v), there
exists no safe argument filtering for b(v) in R.
Intuitively speaking, the problem comes from the fact that the right-hand sides of the second and third
rules are variables that cannot be filtered away. Removing this kind of extra variables is an interesting open
problem for further research that is left out of the scope of this paper.
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Now, we introduce the simplified BTA that is used in step (2) above to propagate
the static/dynamic values of the abstract term through all the functions in the TRS.
Observe that we use g (ground) and v (possibly variable) as binding-times, rather than
the more traditional S (static) and D (dynamic). Note also that the BTA only considers
defined functions; in our approach, no argument of a constructor symbol is filtered.

The output of the binding-time analysis is a division which includes a mapping
f/n �→ (m1, . . . , mn) for every defined function f/n ∈ D , where each mi is a binding-
time. A binding-time environment is a substitution mapping variables to binding-times.
The least upper bound over binding-times is defined as follows:

g � g = g g � v = v v � g = v v � v = v

The least upper bound operation can be extended to sequences of binding-times and
divisions in the natural way, e.g.,

(g, v, g) � (g, g, v) = (g, v, v)

{f �→ (g, v), h �→ (g, v)} � {f �→ (g, g), h �→ (v, g)} = {f �→ (g, v), h �→ (v, v)}

Following [44], our binding-time analysis includes two auxiliary functions, Bv and
Be. Function Bv takes a term t (usually the right-hand side of some rule), a defined
function symbol f/n, a binding-time environment ρ for the variables of the considered
rule and a division div, and returns a sequence of n binding-times for function f/n
(roughly speaking, they denote the least upper bound of the binding-times of the calls
to f/n that occur in t). Function Be takes a term t , a binding-time environment ρ and
a division div, and returns a binding-time for the given term (roughly speaking, it
returns v if xρ = v for some variable x of t and g otherwise).

Functions Bv and Be are defined in our context as follows (with x ∈ V , c ∈ C and
f ∈ D):

Bv[[x]] h/n ρ div = (

n times
︷ ︸︸ ︷

g, . . . , g)

Bv[[c(t1, . . . , tk)]] h/n ρ div = Bv[[t1]] h/n ρ div � . . . � Bv[[tk]] h/n ρ div

Bv[[f(t1, . . . , tk)]] h/n ρ div =
{

bt � (Be[[t1]] ρ div, . . . , Be[[tk]] ρ div) if f = h
bt if f �= h

where bt = Bv[[t1]] h/n ρ div � . . . � Bv[[tk]] h/n ρ div

Be[[x]] ρ div = xρ

Be[[c(t1, . . . , tk)]] ρ div = Be[[t1]] ρ div � . . . � Be[[tk]] ρ div

Be[[f(t1, . . . , tk)]] ρ div = Be[[ti1]] ρ div � . . . � Be[[tik ]] ρ div

where πdiv( f ) = {i1, . . . , ik}

Here, we denote by πdiv the argument filtering obtained by filtering away the positions
of non-ground arguments in div, i.e., if the considered division is
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div = {f1 �→ (m1
1, . . . , m1

n1
), . . . , fk �→ (mk

1, . . . , mk
nk

)}

then we have

πdiv = {f1 �→ {i | m1
i = g}, . . . , fk �→ {i | mk

i = g}}

Roughly speaking, an expression (Bv[[t]] h/n ρ div) returns a sequence of n binding-
times that denote the (least upper bound of the) binding-times of the arguments (not
filtered by πdiv) of the calls to h/n that occur in t in the context of the binding-time
environment ρ. An expression (Be[[t]] ρ div) then returns g if the filtered term πdiv(t)
contains no variable which is bound to v in ρ, and v otherwise.

The only difference w.r.t. the original definitions of Bv and Be is that we take into
account the current division div so that those function arguments that would be filtered
away by the argument filtering πdiv associated to div are not considered in Be.

The binding-time analysis is computed as the fixpoint of an iterative process.
Assuming that the input abstract term is f1(m1, . . . , mn1), the initial division is

div0 = {f1 �→ (m1, . . . , mn1), f2 �→ (g, . . . , g), . . . , fk �→ (g, . . . , g)}

where f1/n1, . . . , fk/nk are the defined functions of the TRS. Then, given a division
divi = {f1 �→ b1, . . . , fk �→ bk}, the next division in the sequence is obtained as

divi+1 = {f1 �→ b1 � Bv[[r1]] f1/n1 e(divi , l1) divi

� . . .

� Bv[[r j ]] f1/n1 e(divi , l j ) divi ,

. . . ,

fk �→ bk � Bv[[r1]] fk/nk e(divi , l1) divi

� . . .

� Bv[[r j ]] fk/nke(divi , l j ) divi }

where l1 → r1, . . . , l j → r j , j ≥ k, are the rules of R and the auxiliary function
e(div, l) for computing a binding-time environment from a division and the left-hand
side of a rule is defined as follows:

e(div, f(t1, . . . , tn)) = {x �→ m1 | x ∈ Var(t1)} ∪ . . . ∪ {x �→ mn | x ∈ Var(tn)}
where div(f) = (m1, . . . , mn)

Once we get a fixpoint,14 i.e., divi+1 = divi for some i ≥ 0, the corresponding argu-
ment filtering πdivi , augmented with π(c/k) = {1, . . . , kc} for all constructor symbol
c/k, is returned as a result.

14 It is well-known in partial evaluation that this fixpoint computation always terminates since the domain
of possible divisions is finite and the computation of a new division is monotone (i.e., some ‘v’ arguments
may be replaced by ‘g’ but not vice versa).
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This argument filtering fulfills the first two conditions of Lemma 11 since the com-
puted division divi is congruent [44] (i.e., a function argument is classified as g only
when every call to this function has a ground term in this argument position). The
following result states this result:

Lemma 12 Let R be a left-linear constructor TRS and let tα = f(m1, . . . , mn) be
an abstract term. Let πdiv be the argument filtering associated to the division div
computed by the BTA shown above. Then, the following conditions hold:

(1) mi = g for all i ∈ πdiv(f);
(2) Var(πdiv(t)) ⊆ Var(πdiv(s)) for all dependency pairs s → t ∈ DP(R).

Proof Condition (1) holds trivially by construction since the computation of a new
division is monotone.

Now, we prove condition (2) by contradiction. Assume that there is some depen-
dency pair s → t ∈ DP(R) and a variable x ∈ Var(πdiv(t)) such that x �∈
Var(πdiv(s)). Let us consider s = g(s1, . . . , sm) and t = h(t1, . . . , tl). Since
x ∈ Var(πdiv(t)), we have that div(h) = (b1, . . . , bl) with bi = g for some i such that
x ∈ Var(ti ). Also, since x �∈ Var(πdiv(s)), we have that div(g) = (b′

1, . . . , b′
m) with

b′
j = v for some j such that x ∈ Var(s j ). However, this means that the computed

binding-time environment for this rule would contain the mapping x �→ v which
contradicts the fact that bi = g according to the definition of functions Bv and Be. ��
Example 20 Consider the following TRS R defining the addition and multiplication
of natural numbers:

mult(z, y) → z add(z, y) → y
mult(s(x), y) → add(mult(x, y), y) add(s(x), y) → s(add(x, y))

Given the abstract term mult(g, v), the associated initial division is

div0 = {mult �→ (g, v), add �→ (g, g)}

The next division, div1, is obtained from the following expression:

div1 = {mult �→ (g, v) � Bv[[z]] mult/2 {y �→ v} div0

� Bv[[add(mult(x, y), y)]] mult/2 {x �→ g, y �→ v} div0

� Bv[[y]] mult/2 {y �→ g} div0

� Bv[[s(add(x, y))]] mult/2 {x �→ g, y �→ g} div0,

add �→ (g, g) � Bv[[z]] add/2 {y �→ v} div0

� Bv[[add(mult(x, y), y)]] add/2 {x �→ g, y �→ v} div0

� Bv[[y]] add/2 {y �→ g} div0

� Bv[[s(add(x, y))]] add/2 {x �→ g, y �→ g} div0}

Therefore, by evaluating the calls to Bv , we get

div1 = {mult �→ (g, v), add �→ (g, v)}
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Note that the change in the binding-times of add comes from the evaluation of

Bv[[add(mult(x, y), y)]] add/2 {x �→ g, y �→ v} div0

which proceeds as follows (the reduced subexpression is underlined):

Bv[[add(mult(x, y), y)]] add/2 {x �→ g, y �→ v} div0

= Bv[[mult(x, y)]] add/2 {x �→ g, y �→ v} div0

�Bv[[y]] add/2 {x �→ g, y �→ v} div0

�(Be[[mult(x, y)]] {x �→ g, y �→ v} div0, Be[[y]] {x �→ g, y �→ v} div0)

= Bv[[x]] add/2 {x �→ g, y �→ v} div0

�Bv[[y]] add/2 {x �→ g, y �→ v} div0

� Bv[[y]] add/2 {x �→ g, y �→ v} div0

� (Be[[mult(x, y)]] {x �→ g, y �→ v} div0, Be[[y]] {x �→ g, y �→ v} div0)

= (g, g) � Bv[[y]] add/2 {x �→ g, y �→ v} div0

�Bv[[y]] add/2 {x �→ g, y �→ v} div0

� (Be[[mult(x, y)]] {x �→ g, y �→ v} div0, Be[[y]] {x �→ g, y �→ v} div0)

= (g, g) � (g, g) � Bv[[y]] add/2 {x �→ g, y �→ v} div0

� (Be[[mult(x, y)]] {x �→ g, y �→ v} div0, Be[[y]] {x �→ g, y �→ v} div0)

= (g, g) � (g, g) � (g, g)

� (Be[[mult(x, y)]] {x �→ g, y �→ v} div0, Be[[y]] {x �→ g, y �→ v} div0)

= (g, g) � (g, g) � (g, g) (since πdiv0(mult) = {1})
� (Be[[x]] {x �→ g, y �→ v} div0, Be[[y]] {x �→ g, y �→ v} div0)

= (g, g) � (g, g) � (g, g) � (g, Be[[y]] {x �→ g, y �→ v} div0)

= (g, g) � (g, g) � (g, g) � (g, v)

= (g, v)

If we compute div2 we get the same result and, thus, div1 is already a fixpoint. From
this division, the associated argument filtering is

πdiv1 = { mult �→ {1}, add �→ {1}, z �→ ∅, s �→ {1} }

6 Practical applicability and extensions

In this section, we discuss the practical applicability of our termination analysis and
propose a number of useful extensions that allow us to get more accurate results.
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6.1 Applications

There are several interesting applications of our termination analysis. As mentioned
in the introduction, it can be particularly useful as a basis to prove the termination
of so-called functional logic programs. Other applications include partial evaluation,
termination of functional programs, etc.

6.1.1 Termination of functional logic programs

Functional logic languages combine the operational principles of the most important
declarative programming paradigms, namely functional and logic programming [38].
The operational semantics of such languages is usually based on narrowing. The essen-
tial component of modern functional logic languages like Curry [27] or TOY [50] is
an inductively sequential rewrite system [5], a subclass of the left-linear constructor
systems that we consider in this work. These languages also include some additional
features like higher-order functions, variable sharing, local declarations, (concurrent)
constraints, etc., but most of these features are translated into a simpler core syntax
called the flat representation of a program, which basically amounts to a first-order
left-linear constructor system. Therefore, our results in this paper are straightforwardly
applicable to analyze the termination of functional logic programs without constraints
nor extra variables.

Essentially, the main difference between functional logic programming and a term
rewriting is not the syntax of programs but the associated evaluation mechanism. While
only ground terms are evaluated in a term rewriting setting, terms containing variables
can also be non-deterministically evaluated in a functional logic setting, similarly to
a logic programming language based on SLD resolution. Consider, for instance, the
following functional logic program to perform pattern matching in strings:

data Letter = A | B

match :: [Letter] -> [Letter] -> Bool
match p s = loop p s p s

loop :: [Letter] -> [Letter] -> [Letter] -> [Letter] ->
Bool

loop [] _ _ _ = True
loop (_:_) [] _ _ = False
loop (p:ps) (s:ss) op os = if (eq p s) then loop ps ss

op os
else next op os
next :: [Letter] -> [Letter] -> Bool
next _ [] = False
next op (_:ss) = loop op ss op ss

eq :: Letter -> Letter -> Bool
eq A A = True

123



Termination of narrowing via termination of rewriting 211

Fig. 1 A TRS denoting the
string pattern matcher

eq B B = True
eq A B = False
eq B A = False

Here, every function definition is preceded by a type declaration (using Haskell’s syn-
tax), the underscore “(_)” denotes an anonymous variable, i.e., a variable that appears
only once in the rule, (Bool) is the predefined type containing the Boolean constants
(True) and(False), and the conditional sentence(if_then_else) is implicitly
defined by the rules

if :: Bool -> a -> a -> a
if True then x else y = x
if False then x else y = y

where (a) is a type variable. For simplicity, we consider that strings can only contain
letters A or B.

This program can easily be translated into a left-linear constructor TRS. It is shown
in Fig. 1, where we consider the TRS format of the Termination Problem Data Base
(TPDB), see http://www.lri.fr/~marche/tpdb/.

Now, we assume that the programmer is interested in proving that all calls to
(match) with a known string and a partially unknown pattern (the case, e.g., when
only a prefix of the pattern is known) terminate. We can specify these calls using the
abstract term match(v, g). Then, by using the techniques of Sect. 5, we compute the
following safe argument filtering:

π = {match �→ {2}, loop �→ {2, 4}, next �→ {2}, ite �→ {1, 2},
eq �→ {2}, nil �→ ∅, cons �→ {1, 2}}

The AFT transformation for the TRS of Fig. 1 using the argument filtering π above
is shown in Fig. 2, where (nullVar) is a special constant that denotes ⊥. The ter-
mination of this TRS can easily be proved using standard techniques for proving the
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Fig. 2 The output of the AFT
transformation

termination of rewriting (e.g., it can be proved terminating using the AProVE tool
[32]). Of course, its termination could also be proved using the direct approach of
Sect. 4.2.

Clearly, there is some loss of precision in our analysis since it ignores the following
language features:

– First, programs are evaluated using a lazy variant of narrowing called needed
narrowing [8]. As a consequence, a program might terminate even if there exist
non-terminating derivations that are not lazy.

– Almost all implementations consider some form of variable sharing to avoid
recomputing the same expression.

Furthermore, there are some language features that we have not considered yet, like
(concurrent) constraints or extra variables in the original programs. These are inter-
esting extensions that are the subject of ongoing work.

6.1.2 Other applications

Our results can also be used within the narrowing-driven partial evaluation scheme [1]
for functional and functional logic programs in order to infer the right annotations for
function calls. The most recent approach to narrowing-driven specialization is intro-
duced in [4], where needed narrowing [8] is used to perform symbolic computations
at partial evaluation time.

In particular, within the so-called offline approach to partial evaluation, one should
first annotate every function call of the source program (namely, a left-linear con-
structor TRS in [4]) with either unfold (i.e., all calls to this function terminate for the
considered terms) and memo (i.e., the calls to this function might not terminate). In
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this context, our termination analysis is clearly useful to infer the right annotations for
the partial evaluation process.

Another related application is concerned with the termination analysis of Haskell
programs introduced in [33]. In this work, a restricted form of partial evaluation based
on a narrowing-like mechanism is used to encode the lazy strategy of Haskell. Then,
dependency pairs are extracted from the partial computations rather than from the
rules of the original program. Here, our termination analysis could be used to drive the
construction of the partial computations so that the search space is kept finite while
avoiding too much generalization.

6.2 Extensions

In this section, we introduce several extensions that may improve the accuracy of our
termination analysis.

6.2.1 Multiple abstract terms

Let us now consider that the user wants to check termination w.r.t. a set of abstract
terms. In order to illustrate this issue, consider, e.g., the following TRS defining the
equality on natural numbers:

eq(z, z) → true

eq(s(x), s(y)) → eq(x, y)

and the set of abstract terms T α = {eq(g, v), eq(v, g)}. In this case, we could straight-
forwardly extend the method in Sect. 5.2 so that the initial division maps eq to the
least upper bound of the arguments of all abstract terms rooted by eq:

div0 = { eq �→ (g, v) � (v, g) } = { eq �→ (v, v) }
Unfortunately, despite narrowing terminates for every term in γ (T α),15 our method
would infer the safe argument filtering π = {eq �→ ∅, z �→ ∅, s �→ {1}} and,
therefore, termination could not be proved.

This problem, though, can easily be solved. Basically, the idea is to consider the
termination of every abstract term separately. The following trivial lemma justifies
this approach:

Lemma 13 Let R be a TRS and T α be a finite set of abstract terms. γ (T α) is �R-
terminating iff γ (tα) is �R-terminating for all tα ∈ T α .

In this way, we can prove termination of T α above by proving the termination for
eq(g, v) and eq(v, g) separately (using the inferred safe argument filterings πgv =
{eq �→ {1}, z �→ ∅, s �→ {1}} and πvg = {eq �→ {2}, z �→ ∅, s �→ {1}},
respectively.

15 We assume that the concretization function γ is extended over sets of terms in the natural way: γ (T α) =
{γ (tα) | tα ∈ T α}.
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6.2.2 Non well-moded TRSs

Even if we prove termination for every abstract term separately, we may still find some
problems. Consider, e.g., the following variation of function eq above:

eq(z, z) → true

eq(s(x), s(y)) → eq(y, x)

Observe that the only difference is that the arguments of eq are switched in the right-
hand side of the second rule. In this case, if we consider the abstract term eq(g, v),
the only safe argument filtering has π(eq) = ∅ (and, in fact, this is the case with
the algorithm of Sect. 5.2). Now, the problem comes from the fact that the program is
not “well-moded” (using terminology from logic programming; see, e.g., [22]).16 In
order to overcome this drawback, we proceed as follows.

First, we duplicate the problematic rules (i.e., the rules that define functions which
are used with multiple modes) by introducing different labels denoting possible g/v
combinations:

eqgg(z, z) → true eqgv(z, z) → true
eqgg(s(x), s(y)) → eq(y, x) eqgv(s(x), s(y)) → eq(y, x)

eqvg(z, z) → true eqvv(z, z) → true
eqvg(s(x), s(y)) → eq(y, x) eqvv(s(x), s(y)) → eq(y, x)

Now, we replace every call in the right-hand sides of the rules by the appropriate call
to the new labeled function (according to the instantiation degree of its arguments):

eqgg(z, z) → true eqgv(z, z) → true
eqgg(s(x), s(y)) → eqgg(y, x) eqgv(s(x), s(y)) → eqvg(y, x)

eqvg(z, z) → true eqvv(z, z) → true
eqvg(s(x), s(y)) → eqgv(y, x) eqvv(s(x), s(y)) → eqvv(y, x)

Note that this program returns the same values as the original one. The only difference
is that every function is now well-moded.

Now, given the abstract term eqgv(g, v), our algorithm infers the right safe argu-
ment filtering where π(eqgv) = {1} and π(eqvg) = {2}}. A similar approach has
recently been introduced in [60] in order to improve the termination analysis of logic
programs.

6.2.3 Removing non-reachable functions

Another source of improvement for the transformation of Sect. 4.3 comes from the
removal of those functions which are not reachable from the considered abstract term.

16 Roughly speaking, a logic program is well-moded when the input positions of predicate calls are always
filled by ground terms when considering the leftmost selection rule.
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Let us consider, for instance, the following simple TRS:

a → a

b → c

c → d

Here, although narrowing clearly terminates for the abstract term b, we fail to prove
termination because of the non-terminating function a.

In this case, we can improve the termination analysis by first removing the rules
defining those function symbols that are not reachable from the function symbol of
the abstract term. For this purpose, we can use the graph of functional dependencies
introduced in Definition 15.

For instance, for the example above, we get the following graph:

��������a
��

��������b ����������c

Therefore, we can safely skip the rule defining the function a and, thus, the termination
of narrowing for the abstract term b can easily be proved.

In general, we could consider more refined graphs of functional dependencies like
those in [3] and [11].

6.3 The termination tool TNT

Now, we describe the implementation of the AFT transformation of Sect. 4.3, including
the algorithm of Sect. 5.2 for the inference of safe argument filterings. The termination
tool, called TNT, is publicly available from

http://german.dsic.upv.es/filtering.html

The tool is written in Prolog and SML/NJ and includes a parser for rewrite systems
that accepts the TRS format of the Termination Problem Data Base. It also includes the
pre-processing transformation of Sects. 6.2.2 and 6.2.3. The tool is available through
a web interface:

– The user can either write down a (left-linear constructor) TRS or choose it from a
selection of TRSs (which can then be freely modified).

– The user also provides an abstract term tα so that the termination of narrowing is
analyzed w.r.t. the set of initial terms γ (tα).

– Finally, the user can also select whether labeling of functions (cf. Sect. 6.2.2)
should be applied and/or elimination of non-reachable functions (cf. Sect. 6.2.3).

The tool returns a transformed TRS R ′ whose termination w.r.t. standard rewriting
implies the termination of narrowing for γ (tα) in the original TRS R. The termination
of R ′ can then be analyzed using any tool for proving the termination of rewriting. In
particular, the web interface allows the user to check the termination of the transformed
TRS using the AProVE tool [32].

We do not provide run times for the AFT transformation since it is rather simple
(a few milliseconds for the considered TRSs). Actually, the most expensive part of
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the process lies generally in the application of the AProVE tool over the transformed
TRSs. We note that the fact that AProVE demonstrates the infiniteness of the trans-
formed TRS does not imply the non-termination of narrowing since the converse of
Theorem 3 does not always hold.

7 Related work

Despite the relevance of narrowing as a symbolic computation mechanism, we find in
the literature only a few works devoted to analyze its termination.

For instance, Dershowitz and Sivakumar [26] defined a narrowing procedure that
incorporates pruning of some unsatisfiable goals. Similar approaches have been pre-
sented by Chabin and Réty [16], where narrowing is directed by a graph of terms, and
by Alpuente et al. [3], where the notion of loop-check is introduced to detect some
unsatisfiable equations. Also, Antoy and Ariola [7] introduced a sort of memoization
technique for functional logic languages so that, in some cases, a finite representation
of an infinite narrowing space can be achieved. All these approaches are basically
related with pruning the narrowing search space rather than analyzing the termination
of narrowing.

On the other hand, Christian [17] introduced a characterization of TRSs for which
narrowing terminates. Basically, he requires the left-hand sides to be flat, i.e., all
arguments are either variables or ground terms. Unfortunately, as we discussed at the
beginning of Sect. 3, the termination of narrowing for arbitrary terms is quite a strong
property that almost no TRS fulfills.

Recent approaches include [10,58]. However, both of them consider a form of
quasi-termination analysis, i.e., they analyze whether only finitely many different
function calls are reachable. Moreover, only needed narrowing is considered.

Nishida, Sakai and Sakabe [57] adapted the dependency pair method for proving
the termination of narrowing for TRSs with extra variables. Nishida and Miura [56]
then extended the method with the use of a dependency graph. These methods consti-
tute a direct adaptation of the dependency pair approach to the case of narrowing. The
main results in [56,57] consider TRSs with the TRAT property. Although the class of
TRSs with the TRAT property is slightly more general than the class of left-linear con-
structor systems, our notion is simpler, easy to check, and still widely applicable. The
main differences w.r.t. [56,57] are the following: we have considered the termination
of narrowing via the termination of rewriting rather than defining a direct termination
analysis for narrowing (which greatly simplifies the formal proofs), we have presented
also a transformational approach based on the argument filtering transformation, we
have presented several refinements of the basic technique (cf. Sect. 6), and we have
implemented a tool for the termination analysis of narrowing. Furthermore, regarding
the dependency pair approach, our technique and that of [56,57] are in principle not
comparable since one can find examples where our technique is not applicable (e.g.,
when the TRS is not a left-linear constructor TRS) and the technique of [56,57] is, and
examples where our technique is able to prove termination (e.g., thanks to the removal
of some extra variables which are replaced by ⊥) and the technique of [56,57] is not.

123



Termination of narrowing via termination of rewriting 217

The closest approach is perhaps that of Schneider-Kamp et al. [60], who present an
automated termination analysis for logic programs. In their approach, logic programs
are first translated into TRSs and, then, logic variables are replaced by possibly infinite
terms. An extension of the dependency pair framework for dealing with argument fil-
terings is presented, which is similar to our extension in Sect. 4.2. Besides considering
a different target (proving termination of SLD resolution vs proving termination of
narrowing), there are a number of differences between both approaches. First, [60]
considers the replacement of logic variables by infinite terms, while we use data gen-
erators (so that we could reuse existing results relating narrowing and standard finitary
rewriting). Also, they consider arbitrary argument filterings but require the variable
condition (i.e., that the filtered TRS contains no extra variables). In our case, argument
filterings must be safe which, in principle, do not always imply that the variable con-
dition holds in filtered TRSs.17 Actually, we allow extra variables above the defined
functions of the right-hand sides of the filtered rules in some cases. Furthermore,
we introduce a simple binding-time analysis in order to automate the generation of
safe argument filterings from higher-level abstract terms. Finally, we also present a
transformational approach to proving termination, while [60] only introduces a direct
approach based on the dependency pair framework.

Alpuente, Escobar and Iborra extended the dependency pair framework to proving
the termination of narrowing for arbitrary TRSs [2], adding pairs for echoing of nar-
rowing into the dependency pairs. In principle, their framework is similar to ours when
left-linear constructor TRSs are considered. In contrast to our approach, however, they
do not specify a set of initial terms. As a consequence, their argument filterings are
required to satisfy the variable condition for filtered rewrite systems, which is stron-
ger than our notion of safe argument filtering that takes into account an abstract term
specifying the possible initial terms and some extra variables are safely replaced by ⊥.

Finally, regarding the preliminary version of this work [65], we have made a number
of extensions and improvements. In particular, we now consider a more relaxed notion
of safe argument filtering (the one in [65] was basically equivalent to the variable con-
dition of [60]). Furthermore, we have introduced a number of additional results (e.g.,
Theorem 5, Lemma 11) that allow us to obtain more accurate results.

8 Conclusions

In this paper, we have presented novel techniques for proving the termination of nar-
rowing in left-linear constructor systems, a widely accepted class of systems that forms
the (first-order) basis of many functional and functional logic programming languages.
Our approach allows one to analyze the termination of narrowing by analyzing the ter-
mination of rewriting, so that one can reuse existing methods and tools in the extensive
literature on termination of rewriting.

Regarding future work, we find it interesting to investigate the required extensions
to cope with realistic functional logic languages like Curry [27] and TOY [50], e.g., to
consider functional logic programs including (concurrent) constraints, guarded rules,

17 In fact, this is only a sufficient condition in our case, as shown in Lemmas 9 and 10.
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Fig. 3 Simplified unification rules

extra variables, etc. Also, it would be useful to improve the accuracy of our current
technique by taking into account the particular operational semantics of these lan-
guages, i.e., needed narrowing with sharing of variables. For this purpose, we could
follow the approach of [33] for analyzing the termination of Haskell programs. Finally,
we have opened an alternative line of research (see [42]) based on extending the depen-
dency pair framework to only consider derivations from a given initial set of terms,
and then using the extended framework to solve relative termination problems (and,
hence, narrowing termination problems).
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A Proofs of technical results

In this section, we provide the proofs of those technical results that do not appear in
the body of the paper.

Proposition 1 Let F = D � C be a signature and t = f(t1, . . . , tn) be a linear term
with f ∈ D and t1, . . . , tn ∈ T (C ,V ). Given a term s = f(s1, . . . , sn) ∈ T (F ,V )

with Var(t)∩Var(s) = ∅, we have that mgu(t, s)|̀Var(s) is a constructor substitution.

Proof In order to prove this claim, we consider a rule-based unification algorithm [14]
(basically, a variant of the Martelli & Montanari unification algorithm [51]). We let
mgu(f(t1, . . . , tn), f(s1, . . . , sn)) = σ iff

{t1 = s1, . . . , tn = sn}; { } �⇒∗ { }; {x1 = u1, . . . , xm = um}

and σ = {x1 �→ u1, . . . , xm �→ um}, where the unification relation �⇒ is defined
by the rules shown in Fig. 3. We note that, in these rules, we ignore the failure cases
and only return the bindings for the variables in f(s1, . . . , sn) (the term bindings) since
these are the only relevant bindings for our proof.

Now, we prove a slightly more general claim. For any (possibly incomplete) deri-
vation {t1 = s1, . . . , tn = sn}; { } �⇒∗ P; S the following invariants hold:
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(I1) for all x = s′ ∈ S, we have that s′ is a constructor term;
(I2) for all t ′=s′, t ′′=s′′ ∈ P (not necessarily distinct), we have Var(t ′) ∩

Var(s′′)= ∅;
(I3) for all t ′ = s′ ∈ P , we have that t ′ is a linear constructor term;
(I4) for all t ′ = s′, t ′′ = s′′ ∈ P , if t ′ �= t ′′ then Var(t ′) ∩ Var(t ′′) = ∅.

Clearly, invariant I1 implies the desired claim when P = {}. We proceed by induction
on the number k of rules applied in the considered derivation.

Base case (k = 0). Then, the claim follows trivially since S is empty, f(t1, . . . , tn)

is linear, t1, . . . , tn are constructor terms, and f(t1, . . . , tn) and f(s1, . . . , sn) do not
share variables.

Inductive case (k > 0). Assume a derivation of the form

{t1 = s1, . . . , tn = sn}; { } �⇒k−1 P ′; S′ �⇒ P; S

By the inductive hypothesis, we have that the above invariants hold in P ′; S′. Now,
we prove that they hold in P; S too. We distinguish the following cases depending on
the selected equation of P ′:
– Let P ′ = {g(a1, . . . , a j ) = g(b1, . . . , b j )} ∪ P ′′, where the equation selected to

be reduced in the next step is g(a1, . . . , a j ) = g(b1, . . . , b j ).
Then, we have P = {a1 = b1, . . . , a j = b j } ∪ P ′′ and S = S′, and all invariants
hold trivially in P; S since they hold in P ′; S′.

– Let P ′ = {t = x} ∪ P ′′, where the equation selected to be reduced in the next step
is t = x .
Then, we have P = P ′′{x �→ t} and S = S′{x �→ t} ∪ {x = t}. Now, we prove
that the desired invariants hold in P; S:
– Since I3 holds in P ′; S′, we have that t is a constructor term; therefore, since

invariant I1 holds in P ′; S′, it also holds in P; S.
– Since invariants I2 and I4 hold in P ′; S′, we have that the variables of t occur

only once in P ′. Therefore, invariants I2 and I4 also hold in P .
– Since invariant I2 holds in P ′; S′, we have that variable x does not occur in the

left-hand side of any equation of P ′. Therefore, invariant I3 trivially holds in
P since it holds in P ′; S′.

– Let P ′ = {x = s} ∪ P ′′, where the equation selected to be reduced in the next step
is x = s.
Then, we have P = P ′′{x �→ s} and S = S′{x �→ s}. Since invariants I2 and I4
hold in P ′; S′, we have that P = P ′′. Therefore, invariants I2, I3, and I4 trivially
hold in P; S. Finally, since invariant I3 holds in P ′; S′, we have that s is a linear
constructor term and, thus, invariant I1 holds in P; S. ��

Lemma 3 Let R be a left-linear constructor TRS over a signature F and let t ∈
T (F ,V ) be a term. If t̂ →+

GEN(R)
s is an admissible derivation, then there is a

constructor substitution σ such that t̂σ = s.

Proof Since the considered derivation is admissible, w.l.o.g., we consider that all
occurrences of gen associated to the same variable are reduced consecutively. We
prove the claim by induction on the number k of steps in t̂ →+

GEN(R)
s.
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Base case (k = 1). Then, t̂ →GEN(R) s and we have t |p = x ∈ V for some
position p, (gen → c(gen, . . . , gen)) ∈ Rgen, and s = t̂[c(gen, . . . , gen)]p. Since
the derivation is admissible, x occurs only once in t . Therefore, the claim follows with
σ = c(y, . . . , y), with y a fresh variable, since tσ = t[c(y, . . . , y)]p and, trivially,
t̂σ = s.

Inductive case (k > 1). In this case, we consider a prefix t̂ →+
GEN(R)

t ′ of the

derivation t̂ →+
GEN(R)

s such that in t̂ →+
GEN(R)

t ′ all occurrences of gen associated

to the same variable are reduced one step (thus, both t̂ →+
GEN(R)

t ′ and t ′ →+
GEN(R)

s
are trivially admissible). Therefore, there exists positions p1, . . . , pn , n > 0, such that
t |pi = x ∈ V , i = 1, . . . , n, (gen → c(gen, . . . , gen)) ∈ Rgen, and

t ′ = t̂[c(gen, . . . , gen)]p1 . . . [c(gen, . . . , gen)]pn

Similarly to the base case, we consider a constructor substitution of the form σ =
c(y, . . . , y), with y a fresh variable. Hence, tσ = t[c(y, . . . , y)]p1 . . . [c(y, . . . , y)]pn

and, trivially, t̂σ = t ′. The claim follows by applying the inductive hypothesis to
t ′ →∗ s. ��
Lemma 4 Let R be a left-linear constructor TRS over a signature F = D � C and
t ∈ T (F ,V ) a term. If t̂ →p,R s′ with R ∈ R, then t →p,R s such that ŝ = s′.

Proof Since t̂ →p,R s′, by the definition of a rewrite step, we have R = (l → r) ∈ R,
t |p = lσ for some substitution σ , and s′ = t̂[rσ ]p. The fact that there are no occur-
rences of gen in R implies that t |p is also an instance of l. Let σ ′ be a substitution such
that t |p = lσ ′. Then, t →p,R t[rσ ′]p = s. Moreover, since σ and σ ′ only differ in

the replacement of some variables by gen, we have that ŝ = ̂t[rσ ′]p = t̂[rσ ]p = s′,
and the claim follows. ��
Lemma 5 Let R be a TRS over a signature F = D � C . Let π be an argument
filtering over F that is extended over tuple symbols so that π( f �) = π( f ) for all
f ∈ D , and let tα be an abstract term. If π is safe for tα in R, then π(s) ∈ T (F )

for all terms s ∈ callsRgen (̂t) with t ∈ γ (tα).

Proof We prove the claim by induction on the length n of the rewrite derivation from
t̂ to s.

Base case (n = 0). In this case, we have that s = t̂ (since t only contains a defined
symbol at the root) and, thus, the claim follows straightforwardly by condition (1) of
safe argument filtering.

Inductive case (n > 0). Let us consider some term s ∈ callsRgen (̂t) such that the
rewrite sequence t̂ →∗

Rgen
t ′, with s a subterm of t ′ rooted by a defined symbol,

performs exactly n steps. W.l.o.g., we assume that the rewrite sequence has this form:
t̂ →∗

Rgen
t ′[lσ ]p →p,l→r t ′[rσ ]p for some rule l → r ∈ Rgen, position p, and sub-

stitution σ . Let us consider that s occurs in t ′[rσ ]p at position q, i.e., (t ′[rσ ]p)|q = s.
Now, we distinguish the following cases:

– Consider first that p ≤ q, i.e., that s is a subterm of rσ . By the inductive hypothesis,
we have that π(lσ) ∈ T (F ). By condition (2) in the definition of safe argument
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filtering, we have that Var(π(s)) ⊆ Var(π(l)). Therefore, all the bindings of σ

that can affect the variables of π(s) come from π(s′) and, hence, π(s) ∈ T (F )

and the claim follows.
– Otherwise, we have p > q and thus s occurs above rσ . We prove this case by con-

tradiction. Assume that π(s) contains some occurrence of gen. Let (t ′[lσ ]p)|q = s′
and p.u = q. Since we have t̂ →∗

Rgen
t ′[lσ ]p and s′ is rooted by a defined symbol

by assumptions, then s′ ∈ callsRgen (̂t). Therefore, we have a derivation of the
form s′ →>ε,Rgen s′[rσ ]u = s and π(s′[rσ ]u) contains some occurrence of gen.
However, by condition (3) in the definition of safe argument filtering, there must
be a derivation π(s′) →>ε,π(R) π(s′[rσ ]u), which is not possible since neither
π(s′) nor π(R) contain occurrences of gen. Hence we get a contradiction and the
claim follows. ��

Lemma 6 Let R be a TRS over the signature F = D �C and let P ⊆ DP(R) be a
set of dependency pairs. Let π be an argument filtering over F that is extended over
tuple symbols so that π( f �) = π( f ) for all f ∈ D and let tα be an abstract term. For
every (tα,P,R, π)-chain of the form s�

1 → t�1, s�
2 → t�2, . . ., there exists a rewrite

derivation of the form

t̂ →∗
Rgen

t ′[̂s1σ ]p →p,R t ′[ ̂r1σ [t1σ ]p1 ]p

→∗
>p.p1,Rgen

t ′[ ̂r1σ [s2σ ]p1 ]p →p.p1,R t ′[ ̂r1σ [r2σ [t2σ ]p2 ]p1 ]p

→∗
>p.p1.p2,Rgen

. . .

for some substitution σ .

Proof By the definition of chain, there exists a substitution σ : V �→ T (F ,V ) such
that the following conditions hold:

1. there exists a term s ∈ callsRgen (̂t) for some t ∈ γ (tα) such that s = ŝ1σ and
2. t̂iσ →∗

>ε,Rgen
ŝi+1σ for every two consecutive pairs in the sequence for all i > 0.

By definition of dependency pair we have that, for all s�
i → t�i ∈ DP(R), there exists

a rule Ri = si → ri ∈ R with ri |pi = ti a subterm of ri rooted by a defined function
symbol. Thus, by the stability of rewriting, we have siσ →R riσ [tiσ ]pi for all i > 0.

Again by the stability of rewriting, we have ŝiσ →R ̂riσ [tiσ ]pi for all i > 0. Now,
by using condition (2) above, we have:

ŝ1σ →ε,R ̂r1σ [t1σ ]p1 →∗
>p1,Rgen

̂r1σ [s2σ ]p1

→p1,R
̂r1σ [r2σ [t2σ ]p2 ]p1 →∗

>p1.p2,Rgen
. . .

Finally, by using condition (1) above, we have that t̂ →∗
Rgen

t ′, with t ′ = t ′[s]p for
some position p, and that s = ŝ1σ , which completes the proof. ��
Lemma 7 Let π be an argument filtering and let r be a term. Then, for every subterm
r |p of r rooted by a defined symbol, either π(r |p) is a subterm of π(r) or there exists
a term r ′ ∈ decπ (r) such that π(r |p) is a subterm of π(r ′).
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Proof We prove this claim by induction on the structure of r . Since the base case (i.e.,
r |p = r ) is trivial, we only consider the inductive case. Then, we consider that r |p is
a proper subterm of r . Let us assume that r = f(t1, . . . , tn) and that r |p is a subterm
of ti , 1 � i � n. By the induction hypothesis, we have that either π(r |p) is a subterm
of π(ti ) or there exists a term r ′ ∈ decπ (ti ) such that π(r |p) is a subterm of π(r ′).
Now, we distinguish the following cases:

1. Let i ∈ π( f ). Here, we have that π(r) = f(. . . , π(ti ), . . .) and decπ (ti ) ⊆
decπ (r) and, thus, the claim follows by the inductive hypothesis.

2. Let i �∈ π( f ). Here, we have that ti ∈ decπ (r). By the inductive hypothesis, either
π(r |p) is a subterm of π(ti ) or there exists a term r ′ ∈ decπ (ti ) such that π(r |p)

is a subterm of π(r ′). Assume first that π(r |p) is a subterm of π(ti ). Therefore,
we have that π(r |p) is a subterm of π(ti ) and ti ∈ decπ (r). Assume now that
there exists a term r ′ ∈ decπ (ti ) such that π(r |p) is a subterm of π(r ′). Since r ′
is a subterm of ti and ti ∈ decπ (r), the claim follows. ��

Lemma 8 Let R be a left-linear constructor TRS, tα be an abstract term, and π be
a safe argument filtering for tα in R. Then, π(DP(R)) ⊆ DP(AFTπ (R)).

Proof By the definition of safe argument filtering (second condition), there are no
occurrences of extra variables in the filtered dependency pairs, i.e., Var(π(s)) ⊇
Var(π(t)) for all s → t ∈ DP(R). Therefore, we have π(DP(R)) = {π(s) → π(t) |
s → t ∈ DP(R)}, i.e., [π(s) → π(t)]⊥ = π(s) → π(t) for all s → t ∈ DP(R).

Consider an arbitrary filtered dependency pair π(l�) → π(u�) ∈ π(DP(R)). By
definition of dependency pair, there must be a rule l → r ∈ R such that u is a subterm
of r rooted by a defined symbol. By Lemma 7, we have that either

– π(u) is a subterm of π(r) or
– there is a term r ′ ∈ decπ (r) such that π(u) is a subterm of π(r ′).

Now we show that, in both cases, we have [π(l�) → π(u�)]⊥ ∈ DP(AFTπ (R)) for
every filtered dependency pair π(l�) → π(u�) ∈ π(DP(R)):

– Consider first that π(u) is a subterm of π(r). Then, π(l)� → π(u)� is a depen-
dency pair obtained from some rule [π(l) → π(r)]⊥ ∈ π(R). Therefore, we have
[π(l�) → π(r ′�)]⊥ ∈ DP(AFTπ (R)) and the claim follows.

– Consider now that there exists a term r ′ ∈ decπ (r) such that π(u) is a subterm
of π(r ′). Then, [π(l) → π(r ′)]⊥ ∈ AFTπ (R) and, thus, π(l)� → π(u)� is a
dependency pair obtained from [π(l) → π(r ′)]⊥ ∈ AFTπ (R)\π(R). Therefore,
[π(l�) → π(u�)]⊥ ∈ DP(AFTπ (R)). ��
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