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Abstract The conjugacy search problem in a group G is the problem of recov-
ering an x ∈ G from given g ∈ G and h = x−1gx . This problem is in the core
of several recently suggested public key exchange protocols, most notably the one
due to Anshel, Anshel, and Goldfeld, and the one due to Ko, Lee et al. In this note,
we make two observations that seem to have eluded most people’s attention. The
first observation is that solving the conjugacy search problem is not necessary for
an adversary to get the common secret key in the Ko–Lee protocol. It is sufficient
to solve an apparently easier problem of finding x, y ∈ G such that h = ygx for
given g, h ∈ G. Another observation is that solving the conjugacy search problem
is not sufficient for an adversary to get the common secret key in the Anshel–An-
shel–Goldfeld protocol.

Keywords Public key exchange · Conjugacy search problem · Decomposition
problem

1 Introduction

One of the possible generalizations of the discrete logarithm problem to arbitrary
groups is the so-called conjugacy search problem (CSP): given two elements g, h
of a group G and the information that gx = h for some x ∈ G, find at least one par-
ticular element x like that. Here gx stands for x−1gx . The (alleged) computational
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difficulty of this problem in some particular groups (namely, in braid groups) has
been used in several group based public key protocols, most notably in [1] and [8].

In this note, we show that solving the conjugacy search problem is unneces-
sary for an adversary to get the common secret key in the Ko–Lee (or any similar)
protocol. This was mentioned, in passing, in the paper [8], but the significance
of this observation was downplayed there. On the other hand, we show that solv-
ing the conjugacy search problem (or even the simultaneous conjugacy search
problem) is insufficient to get the common secret key in the more sophisticated
Anshel–Anshel–Goldfeld protocol because an adversary would also have to solve
either the membership search problem or the membership decision problem for
a subgroup of the platform group. This raises the stock of the latter protocol and
makes one think there might be more to it than meets the eye.

2 Why solving CSP is unnecessary

First we recall the (generalized) Ko–Lee protocol. A group G (with efficiently
solvable word problem) and two commuting subsets A, B ⊆ G (i.e., ab = ba for
any a ∈ A, b ∈ B) are public. An element w ∈ G is public, too.

1. Alice selects a private a ∈ A and sends the element a−1wa to Bob.
2. Bob selects a private b ∈ B and sends the element b−1wb to Alice.
3. Alice computes K A = a−1b−1wba, and Bob computes K B = b−1a−1wab.

Since ab = ba (and therefore, a−1b−1 = b−1a−1) in G, one has K A = K B =
K (as an element of G), which is now Alice’s and Bob’s common secret key.

Note that since we want the key space to be as big as possible, we may assume,
to simplify the language in what follows, that, say, the set A is maximal with the
property ab = ba for any a ∈ A, b ∈ B.

Now suppose an adversary finds a1, a2 such that a1wa2 = a−1wa and b1, b2
such that b1wb2 = b−1wb. Suppose also that both a1, a2 commute with any b ∈ B.
Then the adversary gets

a1b1wb2a2 = a1b−1wba2 = b−1a1wa2b = b−1a−1wab = K .

We emphasize that these a1, a2 and b1, b2 do not have to do anything with the
private elements originally selected by Alice or Bob, which simplifies the search
substantially. We also point out that, in fact, it is sufficient for the adversary to find
just one pair, say, a1, a2 ∈ A, to get the common key:

a1(b
−1wb)a2 = b−1a1wa2b = b−1a−1wab = K .

In summary, to get the secret key K , the adversary does not have to solve the
conjugacy search problem, but instead, it is sufficient to solve an apparently easier
problem which some authors (e.g., [2,8]) call the decomposition problem:

Given two elements w and w′ of a group G, find any elements x and y that
would belong to a given subset A ⊆ G and satisfy x · w · y = w′.

Obviously, some x and y satisfying the latter equality always exist
(e.g., x = 1, y = w−1w′), so the point is to have them satisfy the condition
x, y ∈ A. We note that this condition may not be easy to verify for some subsets A;
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the corresponding problem is known as the membership (decision) problem. We
address a ramification of this problem, which we call the membership search prob-
lem, in the next section 3; here we point out that even in the particular situation
considered in [8], it is not immediately clear how to solve the membership decision
problem. The authors of [8] do not address this problem; instead they mention, in
justice, that if one uses a “brute force” attack by simply going over elements of
A one at a time, the above condition will be satisfied automatically. This however
may not be the case with other, more practical, attacks.

We also note that the conjugacy search problem is a special case of the decom-
position problem where w′ is conjugate to w and x = y−1. The claim that the
decomposition problem should be easier than the conjugacy search problem is
intuitively clear since it is generally easier to solve an equation with two unknowns
than a special case of the same equation with just one unknown.

3 Why solving CSP is insufficient

The protocol that we describe below, due to Anshel et al. [1], is more complex than
the protocol in the previous section, but it is more general in the sense that there
are no requirements on the group G other than to have efficiently solvable word
problem. This really makes a difference and gives a big advantage to the protocol
of [1] over that of [8].

A group G and elements a1, . . . , ak, b1, . . . , bm ∈ G are public.

1. Alice picks a private x ∈ G as a word in a1, . . . , ak (i.e., x = x(a1, . . . , ak))
and sends bx

1 , . . . , bx
m to Bob.

2. Bob picks a private y ∈ G as a word in b1, . . . , bm and sends ay
1 , . . . , ay

k to
Alice.

3. Alice computes x(ay
1 , . . . , ay

k ) = x y = y−1xy, and Bob computes
y(bx

1 , . . . , bx
m) = yx = x−1 yx . Alice and Bob then come up with a common

private key K = x−1 y−1xy (called the commutator of x and y) as follows:
Alice multiplies y−1xy by x−1 on the left, while Bob multiplies x−1 yx by y−1

on the left, and then takes the inverse of the whole thing: (y−1x−1 yx)−1 =
x−1 y−1xy.

It appears to be a common belief (e.g., [6,7]) that solving the (simultaneous)
conjugacy search problem for bx

1 , . . . , bx
m; ay

1 , . . . , ay
k in the group G would allow

an adversary to get the secret key K . However, if we look at step (3) of the pro-
tocol, we see that the adversary would have to know either x or y not simply as a
word in the generators of the group G, but as a word in a1, . . . , ak (respectively,
as a word in b1, . . . , bm); otherwise, he would not be able to compose, say, x y of
ay

1 , . . . , ay
k . That means the adversary would also have to solve the membership

search problem:
Given elements x, a1, . . . , ak of a group G, find an expression (if it exists) of x

as a word in a1, . . . , ak.
We note that the membership decision problem is to determine whether or

not a given x ∈ G belongs to the subgroup of G generated by given a1, . . . , ak .
This problem turns out to be quite hard in most groups. For instance, the member-
ship decision problem in a braid group Bn is algorithmically unsolvable if n ≥ 6
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because such a braid group contains subgroups isomorphic to F2 × F2 (that would
be, for example, the subgroup generated by σ 2

1 , σ 2
2 , σ 2

4 , and σ 2
5 , [3]), where F2 is

the free group of rank 2. In the group F2 × F2, the membership decision problem
is algorithmically unsolvable by an old result of Mihailova [9].

We also note that if the adversary finds, say, some x ′ ∈ G such that bx
1 =

bx ′
1 , . . . , bx

m = bx ′
m , there is no guarantee that x ′ = x in G. Indeed, if x ′ = cbx ,

where cbbi = bi cb for all i (in which case we say that cb centralizes bi ), then
bx

i = bx ′
i for all i , and therefore bx = bx ′

for any element b from the subgroup
generated by b1, . . . , bm ; in particular, yx = yx ′

. Now the problem is that if x ′
(and, similarly, y′) does not belong to the subgroup A generated by a1, . . . , ak
(respectively, to the subgroup B generated by b1, . . . , bm), then the adversary may
not obtain the correct common secret key K . On the other hand, if x ′ (and, sim-
ilarly, y′) does belong to the subgroup A (respectively, to the subgroup B), then
the adversary will be able to get the correct K even though his x ′ and y′ may be
different from x and y, respectively. Indeed, if x ′ = cbx , y′ = ca y, where cb
centralizes B and ca centralizes A (elementwise), then

(x ′)−1(y′)−1x ′y′ = (cbx)−1(ca y)−1cbxca y

= x−1c−1
b y−1c−1

a cbxca y

= x−1 y−1xy = K

because cb commutes with y and with ca (note that ca belongs to the subgroup B,
which follows from the assumption y′ = ca y ∈ B, and, similarly, cb belongs to
A), and ca commutes with x .

We emphasize that the adversary ends up with the corrrect key K (i.e., (x ′)−1

(y′)−1x ′y′ = x−1 y−1xy) if and only if cb commutes with ca . The only visible way
to ensure this is to have x ′ ∈ A and y′ ∈ B. Without verifying at least one of these
inclusions, there seems to be no way for the adversary to make sure that he got the
correct key.

Therefore, it appears that if the adversary chooses to solve the conjugacy search
problem in the group G to recover x and y, he will then have to face either the
membership search problem or the membership decision problem; the latter may
very well be algorithmically unsolvable in a given group. The bottom line is that
the adversary should actually be solving a more difficult version of the conjugacy
search problem:

Given a group G, a subgroup A ≤ G, and two elements g, h ∈ G, find x ∈ A
such that h = x−1gx, given that at least one such x exists.

Finally, we note that what we have said in this section does not affect some
heuristic attacks on the Anshel–Anshel–Goldfeld protocol suggested by several
authors [4,5,7] because these attacks, which use “neighbourhood search” type (in
a group-theoretic context also called “length based”) heuristic algorithms, are tar-
geted, by design, at finding a solution of a given equation (or a system of equations)
as a word in given elements. The point that we make in this section is that even if a
fast (polynomial-time) deterministic algorithm is found for solving the conjugacy
search problem in braid groups, this will not be sufficient to break the Anshel–
Anshel–Goldfeld protocol by a deterministic attack. As for heuristic attacks, their
limitations are explained in [10].
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