
AAECC (2005) 16: 229–270
DOI 10.1007/s00200-005-0179-7

René Thiemann · Jürgen Giesl

The size-change principle and dependency
pairs for termination of term rewriting

Received: 6 September 2004 / Revised: 7 April 2005 / Published online: 22 June 2005
© Springer-Verlag 2005

Abstract In [24], a new size-change principle was proposed to verify termination
of functional programs automatically. We extend this principle in order to prove
termination and innermost termination of arbitrary term rewrite systems (TRSs).
Moreover, we compare this approach with existing techniques for termination anal-
ysis of TRSs (such as recursive path orders or dependency pairs). It turns out that
the size-change principle on its own fails for many examples that can be handled by
standard techniques for rewriting, but there are alsoTRSs where it succeeds whereas
existing rewriting techniques fail. Moreover, we also compare the complexity of
the respective methods. To this end, we develop the first complexity analysis for the
dependency pair approach. While the size-change principle is PSPACE-complete,
we prove that the dependency pair approach (in combination with classical path
orders) is only NP-complete. To benefit from their respective advantages, we show
how to combine the size-change principle with classical orders and with depen-
dency pairs. In this way, we obtain a new approach for automated termination
proofs of TRSs which is more powerful than previous approaches. We also show
that the combination with dependency pairs does not increase the complexity of
the size-change principle, i.e., the combined approach is still PSPACE-complete.

Keywords Termination · Term rewriting · Size-change principle · Dependency
pairs

1 Introduction

The size-change principle [24] is a new technique for automated termination anal-
ysis of functional programs, which raised great interest in the functional program-
ming and automated reasoning community. Moreover, a similar principle is also

R. Thiemann · J. Giesl (B)
LuFG Informatik II, RWTH Aachen, Ahornstrasse 55, 52074 Aachen, Germany
E-mail: {thiemann, giesl}@informatik.rwth-aachen.de

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

230 R. Thiemann, J. Giesl

used in approaches for termination analysis of logic programs, e.g., [8]. However,
up to now the connection between this principle and existing approaches for ter-
mination proofs of term rewriting was unclear. We introduce the basics of term
rewriting and the size-change principle in Section 2. Then we show in Section 3
which orders may be used in connection with the size-change principle in order to
yield a sound method for termination and innermost termination proofs of arbitrary
TRSs. This also illustrates how to combine the size-change principle with existing
orders from term rewriting.

In Section 4 we compare the size-change principle with classical simplification
orders and show that it can simulate a certain form of lexicographic and multiset
comparison. Hence, the size-change principle in connection with a very simple
order can often prove termination of TRSs where one would otherwise need more
complex orders like the lexicographic or the recursive path order. On the other hand,
there are also examples where termination can be proved with classical orders from
term rewriting, while the size-change principle does not succeed.

In Section 5 we compare the size-change principle and the dependency pair
approach [2] for termination of TRSs. Again, the size-change principle can simu-
late and encompass certain ingredients of the dependency pair method and there
are examples where a termination proof with the size-change principle is trivial,
whereas dependency pairs do not succeed with any classical order amenable to
automation. On the other hand, there are many TRSs where dependency pairs can
easily prove termination, whereas the size-change principle fails.

To combine their respective advantages, in Section 6 we develop a technique
which integrates the size-change principle and dependency pairs. The resulting
technique improves upon both original techniques, since the constraints generated
for termination proofs are considerably simplified. We show that in this way, one
can handle examples that could not be proved terminating before. Moreover, for
examples which could already be handled with dependency pairs, our new com-
bination technique often succeeds in connection with much simpler orders than
those required when using dependency pairs.

In contrast to other recent techniques for termination analysis, the complex-
ity of the size-change principle has been formally analyzed in [24]. In Section
7 we show that such a complexity analysis is also possible for both the depen-
dency pair approach and for the new technique from Section 6 which combines
dependency pairs with the size-change principle. More precisely, while the size-
change principle is PSPACE-complete, we show that the dependency pair approach
is NP-complete (provided one uses the dependency pair approach with argument
filterings, with base orders in NP, and with standard estimations of the dependency
graph). Moreover, our combination of dependency pairs and the size-change prin-
ciple is still PSPACE-complete (if one again uses argument filterings, base orders
in NP or PSPACE, and standard estimations of the dependency graph).

The combined technique has been implemented in the system AProVE [13]
resulting in a very efficient and powerful automated method which improves the
original dependency pair approach significantly. A description of the implementa-
tion and an empirical evaluation can be found in Section 8.

A preliminary version of this paper appeared in [30]. The current article extends
[30] by numerous new results and refinements: We prove that our definition of size-
change termination corresponds to the one of [24] (Lemma 6). Moreover, we give

The size-change principle and dependency pairs 231

formal proofs for the comparison of the size-change principle with standard rewrite
orders based on lexicographic or multiset comparison (Theorems 14 and 16). We
also present a large example to demonstrate the advantages of combining depen-
dency pairs and the size-change principle (Example 26). Another new contribution
is Section 7 where we present the first complexity results for the dependency pair
approach and examine the complexity of the combination with the size-change
principle. Finally, we added a section on the implementation and evaluation of our
results (Section 8).

2 Term rewriting and the size-change principle

We first recapitulate the basics of term rewriting in Section 2.1 and introduce the
size-change principle in Section 2.2.

2.1 Term rewriting

This section briefly introduces the basic notions of term rewriting. For further
details and explanations we refer to [4], for example.

A signature F is a set of function symbols and for a set of variables V , T (F, V)
denotes the terms built from F and V . For a term t , V(t) is the set of variables
occurring in t and for t /∈ V , the root symbol root(t) denotes the topmost symbol
of t (i.e., root(f (s1, . . . , sn)) = f). As usual, a ground term is a term without
variables and � denotes the proper subterm relation.

A term rewrite system (TRS) over a signature F is a set of rules l → r , where
l, r ∈ T (F, V), l /∈ V , and V(r) ⊆ V(l). Throughout the paper, we restrict our-
selves to finite signatures and TRSs.

For a TRS R, one can define the corresponding reduction relation →R on terms
(i.e., →R ⊆ T (F, V)×T (F, V)): for any s, t ∈ T (F, V) we have s →R t iff there
exists a position p in s and a rule l → r ∈ R such that s|p = lσ and t = s[rσ]p.
In other words, the left-hand side l matches the subterm s|p with the matching
substitution σ and t results from s by replacing this subterm by the right-hand side
of the rule instantiated by the matcher σ . Moreover, if no proper subterms of s|p
are reducible, then we speak of an innermost reduction step, denoted s i→R t . A
term s is a normal form if it cannot be reduced anymore, i.e., if s →R t does not
hold for any term t .

We denote the transitive closure of a relation → by →+ and the transitive and
reflexive closure is denoted by →∗. So s →∗

R t means that s can be reduced to t
in several (possibly zero) steps.

For a TRS R over a signature F , the defined symbols D are the root sym-
bols of the left-hand sides of rules and the constructors are C = F \ D. A TRS
is called a constructor system if the left-hand sides of its rules are terms of the
form f (s1, . . . , sn) where all si are constructor terms (i.e., si ∈ T (C, V)). For any
signature F we define the embedding rules EmbF = {f (x1, . . . , xn) → xi | f ∈
F where n = arity(f), 1 ≤ i ≤ n}. A TRS is non-overlapping if there are no rules
l → r and l′ → r ′ such that a non-variable subterm of l unifies with l′; however,
if the two rules are identical, then one only needs to consider proper subterms of l.

232 R. Thiemann, J. Giesl

A transitive and antisymmetric binary relation � is an order and a transi-
tive and reflexive binary relation is a quasi-order. A binary relation � is well
founded iff there exists no infinite decreasing sequence t0 � t1 � t2 � . . . A
binary relation � on terms is closed under substitutions (also called “stable”)
iff s � t implies sσ � tσ for all s, t ∈ T (F, V) and all substitutions σ . A
binary relation � on terms is closed under contexts (also called “monotonic”) if
si � ti implies f (s1, . . . , si , . . . , sn) � f (s1, . . . , ti , . . . , sn) for all f ∈ F , all
1 ≤ i ≤ arity(f), and all terms sj and tj .

A TRS R is terminating iff →R is well founded and it is innermost terminat-
ing iff i→R is well founded. The traditional method to prove termination of TRSs
works by generating a suitable order such that all rules are decreasing: a TRS R is
terminating iff there exists a well-founded order � closed under substitutions and
contexts such that l � r holds for all rules l → r ∈ R [25]. Most of the orders used
for automation are simplification orders. A simplification order is a well-founded
order � closed under substitutions and contexts which also satisfies the subterm
property f (x1, . . . , xn) � xi for all f ∈ F , all 1 ≤ i ≤ arity(f), and pairwise
different variables xj . Examples for such orders include lexicographic path orders
LPO [17], recursive path orders (possibly with status) RPO(S) [6], Knuth-Bendix
orders KBO [18], and many polynomial orders [22].

2.2 The size-change principle

In [24], the size-change principle was presented for a functional programming lan-
guage with eager evaluation strategy and without pattern matching. Such functional
programs are easily transformed into TRSs which are non-overlapping constructor
systems whose ground normal forms only contain constructors (i.e., all functions
are “completely” defined). In this section we introduce an extension of the original
size-change principle which is formulated for arbitrary TRSs.

We call (�, �) a reduction pair on T (F, V) if � is a quasi-order and � is a
well-founded order on terms where both � and � are closed under substitutions
and compatible (i.e., � ◦ � ⊆ � and � ◦ � ⊆ �, but � ⊆ � is not required). In
contrast to the definition of reduction pairs in [21], neither � nor � have to be closed
under contexts. If � is closed under contexts, we speak of a monotonic reduction
pair. In Section 3 we examine which additional conditions must be imposed on
(�, �) in order to use the size-change principle for (innermost) termination proofs
of TRSs. Size-change graphs denote how the size of function parameters changes
when going from one function call to another.

Definition 1 (Size-change graph) Let (�, �) be a reduction pair. For every rule
f (s1, . . . , sn) → r of a TRS R and every subterm g(t1, . . . , tm) of r where
g ∈ D, we define a size-change graph. The graph has n output nodes marked with
{1f , . . . , nf } and m input nodes marked with {1g, . . . , mg}. Output nodes are
nodes where one may have outgoing edges and input nodes may have incoming
edges. If si � tj , then there is a directed edge marked with “ �” from output node
if to input node jg . Otherwise, if si � tj , then there is an edge marked with “ �”
from if to jg . If f and g are clear from the context, then we often omit the sub-
scripts from the nodes. So a size-change graph is a bipartite graph G = (V , W, E)

The size-change principle and dependency pairs 233

where V = {1f , . . . , nf } and W = {1g, . . . , mg} are the labels of the output and
input nodes, respectively, and we have edges E ⊆ V × W × {�, �}.
Example 2 Let R consist of the following rules.

f(s(x), y) → f(x, s(x)) (1) f(x, s(y)) → f(y, x) (2)

R has two size-change graphs G(1) and G(2) resulting from the rules (1) and
(2). Here, we use the embedding order on constructors C, i.e., (�, �) = (→∗

EmbC ,

→+
EmbC).

G(1) : 1f
� ��
�
���

��
� 1f

2f 2f

G(2) : 1f �

���
��

� 1f

2f
�

������
2f

To trace the sizes of parameters along subsequent function calls, size-change
graphs (V1, W1, E1) and (V2, W2, E2) can be concatenated to multigraphs if W1 =
V2, i.e., if they correspond to arguments {1g, . . . , mg} of the same function g.

Definition 3 (Multigraph and concatenation) For a TRS R, every size-change
graph of R is a multigraph of R and if G = ({1f , . . . , nf }, {1g, . . . , mg}, E1) and
H = ({1g, . . . , mg}, {1h, . . . , lh}, E2) are multigraphs w.r.t. the same reduction
pair (�, �), then the concatenation G·H = ({1f , . . . , nf }, {1h, . . . , lh}, E) is
also a multigraph of R. For 1 ≤ i ≤ n and 1 ≤ k ≤ l, E contains an edge from if
to kh iff E1 contains an edge from if to some jg and E2 contains an edge from jg

to kh. If there is such a jg where the edge of E1 or E2 is labelled with “ �”, then
the edge in E is labelled with “ �” as well. Otherwise, it is labelled with “ �”. A
multigraph G is called maximal if its input and output nodes are both labelled with
{1f , . . . , nf } for some f and if it is idempotent, i.e., G = G·G.

Example 4 In Example 2 there are three maximal multigraphs (note that G(1)·G(1)

= G(1)·G(2)):

G(1)·G(2) : 1f
� ��

�
���

��
��

1f

2f 2f

G(2)·G(1) : 1f 1f

2f � ��

� �������
2f

G(2)·G(2) : 1f
� �� 1f

2f
� �� 2f

For termination, in every maximal multigraph some parameter must be decreas-
ing.1

Definition 5 (Size-change termination) A TRS R over the signature F is
size-change terminating w.r.t. a reduction pair (�, �) on T (F, V) iff every maxi-
mal multigraph contains an edge of the form i

�→ i.
1 Our definition of size-change termination generalizes the original one of [24] by permitting

arbitrary reduction pairs (�, �). If one is restricted to the reduction pairs used in [24], then
size-change termination implies termination for functional programs. However, if one may use
arbitrary reduction pairs, then size-change termination is no longer sufficient for termination.
Therefore, in Section 3 we identify classes of reduction pairs where size-change termination
indeed implies (innermost) termination of TRSs.

234 R. Thiemann, J. Giesl

In Example 4, each maximal multigraph contains the edge 1f
�→ 1f or 2f

�→ 2f.
So the TRS is size-change terminating w.r.t. the embedding order. Note that clas-
sical path orders from term rewriting fail on this example (see Section 4).

Since there are only finitely many possible multigraphs, they can be constructed
automatically. So for a given reduction pair (�, �) where � and � are decid-
able, size-change termination is decidable as well. While the formulation of size-
change termination in Definition 5 is suitable for automation and for a comparison
with techniques from term rewriting, size-change termination was defined in a
slightly different way in [24]. Here, instead of concatenating size-change graphs
G1, . . . , Gn, one builds (possibly infinite) graphs by identifying the input nodes of
a size-change graph Gi with the output nodes of the next size-change graph Gi+1.
Then a program is called size-change terminating iff there exists an infinite path in
this graph which contains infinitely many edges labelled with “ �”. The following
lemma (whose proof uses the same ideas as the proof of [24, Theorem 4]) states
that our definition is equivalent to the one of [24]. Here, for two size-change graphs
or multigraphs G and H where G’s input nodes have the same labels as H ’s output
nodes, let G ◦ H be the graph resulting from identifying G’s input and H ’s output
nodes. So G ◦ H differs from G·H in that these nodes are not dropped.

Lemma 6 (Infinite graphs correspond to multigraphs) Let � be a finite set of
size-change graphs. The following statements are equivalent.

(1) Every graph G1 ◦ G2 ◦ . . . with an infinite sequence G1, G2, . . . ∈ � has an
infinite path containing infinitely many edges labelled with “ �”.

(2) Every maximal multigraph G1·G2· . . .·Gn with G1, . . . , Gn ∈ � has an
edge of the form i

�→ i.

Proof We first prove “(1) ⇒ (2)”. Assume that there exists a maximal multigraph
G = G1· . . .·Gn which has no edge of the form i

�→ i. On the other hand, the
graph G1 ◦ . . .◦Gn◦G1 ◦ . . .◦Gn◦ . . . must have a path containing infinitely many
edges labelled with “ �”. Thus, this also holds for the infinite graph G ◦ G ◦ . . .
Obviously, for some i ∈ IN and f ∈ F , a node labelled with if must occur more
than once in this path such that an edge between these two occurrences is labelled
with “ �”. Let k be the length of the subpath from the first occurrence of if to the
next occurrence of if such that an �→-edge is on this subpath. Thus, there is a path
from if to if in the graph G ◦ G ◦ . . . ◦ G (where G is combined with itself k
times) and at least one edge of the path is labelled with “ �”. This means that the
multigraph G·G· . . .·G (where G is concatenated with itself k times) contains
an edge i

�→ i. Since G is idempotent, we have G·G· . . .·G = G and thus, this
contradicts the assumption that G does not have such edges.

Now we show “(2) ⇒ (1)”. Assume that there is an infinite graph G1 ◦G2 ◦ . . .
that does not contain an infinite path with infinitely many �→-edges. For all pairs
of numbers (n, m) with n < m let Gn,m be the multigraph resulting from the
concatenation of Gn, . . . , Gm−1, i.e., Gn,m = Gn· . . .·Gm−1. As there are only
finitely many possible multigraphs, by Ramsey’s theorem there is an infinite set
I ⊆ IN such that Gn,m is always the same graph for all n, m ∈ I with n < m. We
call this graph G. Note that G is a maximal multigraph: for n1 < n2 < n3 with
ni ∈ I , we have Gn1,n3 = Gn1· . . .·Gn2−1·Gn2· . . .·Gn3−1 = Gn1,n2·Gn2,n3 ,
and thus G = G·G.

The size-change principle and dependency pairs 235

Let I = {n1, n2, . . . } with n1 < n2 < . . . Thus, for our original infinite graph,
we have

G1 ◦ G2 ◦ . . . = G1 ◦ . . . ◦ Gn1−1 ◦ Gn1 ◦ . . . ◦ Gn2−1 ◦ Gn2 ◦ . . . ◦ Gn3−1 ◦ . . .

Since by assumption, this graph did not contain an infinite path with infinitely many�→-edges, this also holds for the graph

Gn1· . . .·Gn2−1 ◦ Gn2· . . .·Gn3−1 ◦ . . . = Gn1,n2 ◦ Gn2,n3 ◦ . . . = G ◦ G ◦ . . .

But since G is a maximal multigraph, G contains an edge i
�→ i. Thus, the above

infinite graph does contain an infinite path labelled with infinitely many �→-edges,
which contradicts the assumption.
�

3 Size-change termination and termination of TRSs

In [24], the authors use reduction pairs (�, �) where � and � are relations on con-
structor terms2 and where � is the reflexive closure of �. Then indeed, size-change
termination implies termination of the corresponding functional program.

However in general, one also has to compare terms containing defined symbols
when building size-change graphs. In particular, when regarding TRSs instead of
functional programs, defined symbols may occur both in the input arguments and
in the recursive arguments (i.e., in a rule f (s1, . . . , sn) → . . . f (t1, . . . , tn) . . . ,
any terms si or ti may contain defined symbols).

Therefore, in this section we investigate which reduction pairs may be used
in order to apply the size-change principle to TRSs. Unfortunately, in general
size-change termination does not imply termination if one may use arbitrary reduc-
tion pairs in Definition 5.

Example 7 Consider the TRS with the rules f(a) → f(b) and b → a. If we use the
lexicographic path order �LPO [17] with the precedence a > b, then the only max-
imal multigraph is 1f

�LPO−→ 1f. So size-change termination can be proved, although
the TRS is obviously not terminating.

In this section we develop conditions on the reduction pair in Definition 5 which
ensure that size-change termination indeed implies (innermost) termination. Then
the size-change principle can be combined with classical orders from term rewriting
and becomes a sound (innermost) termination criterion for TRSs.

Innermost termination is interesting, since then there are no infinite reductions
w.r.t. eager evaluation strategies. Moreover, for non-overlapping TRSs, innermost
termination already implies termination. Example 7 demonstrates that size-change
termination w.r.t. an arbitrary reduction pair does not imply innermost termina-
tion. Therefore, to obtain a sufficient criterion for innermost termination, we will
only use the restriction of the reduction pair to the constructors C when building
size-change graphs.

2 More precisely, they use an underlying well-founded order > on “values” (i.e., constructor
ground terms) and do not focus on the problem of comparing terms with defined symbols.

236 R. Thiemann, J. Giesl

Definition 8 (G-restriction) For a subset G ⊆ F and a relation � on T (F, V), its
G-restriction �′ is defined as s �′ t iff s � t and t ∈ T (G, V). For a reduction
pair (�, �) its G-restriction (�′, �′) consists of the G-restrictions of � and �,
respectively.

Strictly speaking, the G-restriction (�′, �′) is not a reduction pair since it is
only closed under substitutions with terms from T (G, V). Nevertheless, the defini-
tions of size-change graphs and size-change termination can of course be extended
to any pairs (�′, �′) of relations in a straightforward way. This leads to the fol-
lowing theorem which shows how to use the size-change principle for innermost
termination proofs of TRSs.

Theorem 9 (Innermost termination proofs) Let R be a TRS over the signa-
ture F with constructors C and let (�, �) be a reduction pair on T (F, V). If R
is size-change terminating w.r.t. the C-restriction of (�, �), then R is innermost
terminating.

Proof If R is not innermost terminating, then there is a minimal non-innermost
terminating term v0, i.e., all proper subterms of v0 are innermost terminating. Let

i→ε denote root reductions and let i→>ε denote reductions below the root. Then
v0’s infinite innermost reduction starts with v0

i→∗
>ε u1

i→ε w1 where all proper
subterms of u1 are in normal form. Since w1 is not innermost terminating, it has a
minimal non-innermost terminating subterm v1.

The infinite reduction continues in the same way. So for i ≥ 1, we have
vi−1

i→∗
>ε ui = liσ and vi = r ′

iσ for a rule li → ri , a subterm r ′
i of ri with

defined root, and a substitution σ which instantiates li’s variables with normal
forms. To ease readability we assume that different (occurrences of) rules li → ri
are variable disjoint. Then we can use the same substitution σ for all i ≥ 1.

For each step from ui to vi there is a corresponding size-change graph Gi . If R
is size-change terminating, by Lemma 6 the graph G1 ◦G2 ◦ . . . contains an infinite
path where infinitely many edges are labelled with “ �”. Without loss of generality
we assume that this path already starts in G1. For every i, let ai be the output node
in Gi which is on this path. So we have li |ai

� r ′
i |ai+1 for all i from an infinite set

I ⊆ IN and li |ai
� r ′

i |ai+1 for i ∈ IN \ I . As usual, “li |ai
” denotes the subterm of

li at the position ai . Note that li |ai
σ = ui |ai

and r ′
i |ai+1σ = vi |ai+1

i→∗ ui+1|ai+1 .
Recall that r ′

i |ai+1 ∈ T (C, V), as one only uses the C-restriction for the construction
of size-change graphs. Since σ instantiates li’s variables with normal forms, since
V(r ′

i) ⊆ V(li), and since r ′
i |ai+1 is a constructor term, we conclude that r ′

i |ai+1σ is
a normal form. Hence, in the above reduction we can replace “ i→∗” by “=” and
obtain r ′

i |ai+1σ = vi |ai+1 = ui+1|ai+1 .
Hence, we have ui |ai

� ui+1|ai+1 for all i ∈ I and ui |ai
� ui+1|ai+1 for all

i ∈ IN \ I . This is a contradiction to the well-foundedness of �.
�
For the TRS in Example 2, when using the C-restriction of the reduction pair

(→∗
EmbC , →+

EmbC), we obtain the size-change graphs G(1) and G(2). Example 4
shows that the TRS is size-change terminating w.r.t. this reduction pair and hence,
by Theorem 9, this proves innermost termination. However, a variant of Toyama’s
example [32] shows that Theorem 9 is not sufficient to prove full (non-innermost)
termination.

The size-change principle and dependency pairs 237

Example 10 Let R = {f(c(a, b, x)) → f(c(x, x, x)), g(x, y) → x, g(x, y) →
y}. We define � = →∗

S and � = →+
S , where S is the terminating TRS with the

rule c(a, b, x) → c(x, x, x). The only size-change graph is 1f
�→ 1f (since the

input argument c(a, b, x) is greater than the argument c(x, x, x) in the recursive
argument when compared w.r.t. the C-restriction of →+

S). Moreover, concatenat-
ing this size-change graph with itself yields 1f

�→ 1f again, i.e., this is the only
maximal multigraph. Thus, R is size-change terminating and by Theorem 9 it is
innermost terminating. However, R does not terminate as can be seen by the fol-
lowing cyclic reduction: f(c(a, b, g(a, b))) → f(c(g(a, b), g(a, b), g(a, b))) →∗
f(c(a, b, g(a, b))).

As in Example 10, reduction pairs (→∗
S , →+

S) can be defined using a termi-
nating TRS S. The following theorem shows that if S is a non-duplicating TRS
over C, then we may use the relation →S also on terms with defined symbols and
size-change termination even implies full termination. A TRS is non-duplicating
iff every variable occurs on the left-hand side of a rule at least as often as on the
corresponding right-hand side. So size-change termination of the TRS in Examples
2 and 4 using the reduction pair (→∗

EmbC , →+
EmbC) implies that the TRS is indeed

terminating.
In order to prove the theorem, we need a preliminary lemma which states that

minimal non-terminating terms w.r.t. R ∪ S cannot start with constructors of R.
Again, here S must be non-duplicating. Otherwise, Example 10 would be a coun-
terexample, since c(a, b, g(a, b)) is a minimal non-terminating term w.r.t. R ∪ S
that starts with a constructor of R.

Lemma 11 Let R be a TRS over the signature F with constructors C and let S be
a terminating non-duplicating TRS over the signature C.

If t1, . . . , tn ∈ T (F, V) are terminating w.r.t. R ∪ S and c ∈ C, then the term
c(t1, . . . , tn) is also terminating w.r.t. R ∪ S.

Proof For any term s ∈ T (F, V), let Ms be the multiset of the maximal subterms
of s whose root is defined, i.e., Ms = {s|p | root (s|p) ∈ D and for all p′ above p
we have root (s|p′) ∈ C}. Let �R∪S be the extension of (→R∪S ∪ �) to multisets
where M �R∪S M ′ iff M = N ∪ {s} and M ′ = N ∪ {t1, . . . , tn} with n ≥ 0 and
with s (→R∪S ∪ �) ti for all i. We prove the following conjecture.

Let s ∈ T (F, V) such that all terms in Ms are terminating w.r.t. R ∪ S
and let s →R∪S t . Then all terms in Mt are also terminating w.r.t. R ∪ S.
Moreover, Ms �+

R∪S Mt or both Ms ⊇ Mt and s →S t .
(3)

Note that if a term is terminating w.r.t. R ∪ S, then the term does not start
any infinite decreasing sequence w.r.t. →R∪S ∪ � either. Hence, �+

R∪S is well
founded on multisets like Ms which only contain terminating terms. Termination
of S implies that →S is also well founded and the lexicographic combination of
two well-founded orders preserves well-foundedness. Hence, (3) implies that if all
terms in Ms are terminating w.r.t. R∪S, then s is terminating w.r.t. R∪S as well.
So the lemma immediately follows from Conjecture (3).

To prove (3), we perform induction on s. If s has a defined root symbol then
we have Ms = {s} �R∪S {t} �∗

R∪S Mt , where in the step from {t} to Mt , t
is replaced by its maximal subterms with defined root. Otherwise, we have s =

238 R. Thiemann, J. Giesl

c(s1, . . . , sn) →R∪S t where c is a constructor. We distinguish two cases: If the
reduction is on the root position we must have used a rule of S and get s →S t and
Ms ⊇ Mt as S is non-duplicating. If the reduction is below the root then there must
be some si such that si →R∪S ti and t = c(s1, . . . , ti , . . . , sn). By induction we
conclude that Msi �+

R∪S Mti or both Msi ⊇ Mti and si →S ti .As c is a constructor
we know that Ms = Ms1 ∪· · ·∪Msi ∪· · ·∪Msn and Mt = Ms1 ∪· · ·∪Mti ∪. . . Msn .
In either case we easily obtain Ms �+

R∪S Mt or both Ms ⊇ Mt and s →S t .
�

Now we can show the desired theorem.

Theorem 12 (Termination proofs) Let R be a TRS over the signature F with
constructors C and let S be a terminating non-duplicating TRS over C. If R is
size-change terminating w.r.t. the reduction pair (→∗

S , →+
S) on T (F, V), then R

(and even R ∪ S) is terminating.

Proof We define R′ := R ∪ S. If R′ is not terminating, then as in the proof of
Theorem 9 we obtain an infinite sequence of minimal non-terminating terms ui, vi

with vi →∗
>ε,R′ ui+1 where the step from ui to vi corresponds to a size-change

graph of R′. Thus, for all i there is a rule li → ri in R′ with ui = liσ and vi = r ′
iσ

for a subterm r ′
i of ri and a substitution σ . The reason for vi = r ′

iσ is that by
the minimality of ui = liσ , σ instantiates all variables of li (and hence, of ri) by
terminating terms. Hence, any non-terminating subterm of riσ has the form r ′

iσ
for a non-variable subterm r ′

i of ri .
By Lemma 11, the roots of ui and vi are defined symbols of R. So all these

size-change graphs are from R.As in Theorem 9’s proof, there are ai with li |ai
→+

S
r ′
i |ai+1 for all i from an infinite set I ⊆ IN and li |ai

→∗
S r ′

i |ai+1 for i ∈ IN \ I with
i ≥ 1. Since →S is closed under substitution we also have ui |ai

→+
S vi |ai+1 or

ui |ai
→∗

S vi |ai+1 , respectively. Recall vi |ai+1 →∗
R′ ui+1|ai+1 and S ⊆ R′. So

for I = {i1, i2, . . . } with i1 < i2 < . . . we have ui1 |ai1
→+

R′ ui2 |ai2
→+

R′ . . .
contradicting the minimality of the terms ui .
�

With Theorems 9 and 12 we have two possibilities for automating the size-
change principle. Note that even for innermost termination, Theorem 9 and Theo-
rem 12 do not subsume each other. Innermost termination of Example 10 cannot be
shown by Theorem 12 and innermost termination of {g(f(a)) → g(f(b)), f(x) →
x} cannot be proved with Theorem 9, since f(a) ��′ f(b) for the C-restriction �′
of any order �. On the other hand, termination is easily shown with Theorem 12
using S = {a → b}. In fact, a variant of Theorem 12 also holds for innermost
termination if S is innermost terminating (and possibly duplicating). However, this
variant only proves innermost termination of R ∪ S and in general, this does not
imply innermost termination of R.

So Theorems 9 and 12 are new contributions that show which reduction pairs
are admissible in order to use size-change termination for termination or innermost
termination proofs of TRSs. In this way, size-change termination can be turned into
an automatic technique, since one can use classical techniques from termination
analysis of term rewriting to generate suitable reduction pairs automatically.

The size-change principle and dependency pairs 239

4 Comparison with orders from term rewriting

Most traditional techniques for termination of TRSs are based on simplification
orders. A TRS is simply terminating iff there is a simplification order � such that
l � r holds for all rules l → r of the TRS. Equivalently, a TRS R over a signature
F is simply terminating iff R∪EmbF terminates. We now show that similar to these
traditional techniques, the size-change principle only verifies simple termination.

Theorem 13 (a) states that the size-change principle cannot distinguish between
the termination behavior of R and of R ∪ EmbF . For this reason, the size-change
principle is not suitable for non-simply terminating TRSs (where R terminates and
R∪EmbF does not). More precisely by Theorem 13 (b), the size-change principle
for termination of TRSs from Theorem 12 can only prove simple termination if
the underlying base order (i.e., the relation →+

S) is a simplification order. In other
words, the size-change principle does not succeed when using simplification orders
for termination proofs of non-simply terminating systems.

Theorem 13 (Size-change principle and simple termination)

(a) A TRS R over a signature F is size-change terminating w.r.t. a reduction pair
(�, �) iff R ∪ EmbF is size-change terminating w.r.t. (�, �).

(b) Let S be a non-duplicating TRS as in Theorem 12. If S is simply terminating
and R is size-change terminating w.r.t. (→∗

S , →+
S) on T (F, V), then R ∪ S is

simply terminating.

Proof

(a) The “if” direction is obvious. For the “only if” direction, note that EmbF yields
no new size-change graphs. But due to EmbC , all constructors are transformed
into defined symbols. So from those R-rules with (former) constructors in their
right-hand side, we obtain additional size-change graphs whose input nodes are
labelled with constructors (i.e., 1c, . . . , nc for c ∈ C). However, since output
nodes are never labelled with constructors, this does not yield new maximal
multigraphs (since there, output and input nodes must be labelled by the same
function). Hence, size-change termination is not affected when adding EmbF .

(b) As in (a), adding EmbD to R yields no new size-change graphs and thus,
R ∪ EmbD is also size-change terminating w.r.t. (→∗

S , →+
S) and hence, also

w.r.t. (→∗
S∪EmbC , →+

S∪EmbC). Note that this is indeed a reduction pair, since
S ∪EmbC is terminating by simple termination of S. Now Theorem 12 implies
termination of R ∪ EmbD ∪ S ∪ EmbC , i.e., simple termination of R ∪ S.
�
The restriction to simple termination excludes many practically relevant TRSs.

Theorem 13 illustrates that the size-change principle cannot compete with new tech-
niques from term rewriting (e.g., dependency pairs [2] or the monotonic semantic
path order [5]) which can prove termination of non-simply terminating TRSs using
a simplification order as underlying base order. However, these new techniques still
require methods to generate such base orders. Hence, there is still an urgent need
for powerful simplification orders.

In the remainder of the section, we clarify the connection between size-change
termination and classical orders and show in Sections 4.1 and 4.2 that size-change
termination and classical simplification orders do not subsume each other in gen-
eral.

240 R. Thiemann, J. Giesl

4.1 Advantages of the size-change principle

A major advantage of the size-change principle is that it can simulate the basic
ingredients of LPO and RPO(S), i.e., the concepts of lexicographic and of multiset
comparison. Thus, by the size-change principle w.r.t. a very simple reduction pair
like the embedding order we obtain an automated method for termination analysis
which avoids the search problems of LPO and RPO(S) and which can still capture
the idea of comparing tuples of arguments lexicographically or as multisets. To sim-
plify the presentation, here we restrict ourselves to TRSs without mutual recursion.
Thus, we only regard TRSs where there exist no function symbols f �= g such that
f depends on g and g depends on f . Here, every function symbol depends on itself
and moreover, a function symbol f depends on g if some symbol h which depends
on g occurs in the right-hand side of an f -rule. If there is no mutual recursion, then
for size-change termination it is sufficient only to build size-change graphs which
compare the left-hand side of a rule f (s1, . . . , sn) → r with those subterms of r
whose root is f .

We first show in Theorem 14 that lexicographic orders can be simulated by the
size-change principle. For a reduction pair (�, �) and a permutation π of 1, . . . , n,
let �π

lex be the following order on n-tuples: (s1, . . . , sn) �π
lex (t1, . . . , tn) iff there

is an 1 ≤ i ≤ n such that sπ(i) � tπ(i) and sπ(j) � tπ(j) for all j < i.

Theorem 14 (Simulating lexicographic comparison) Let (�, �) be a reduc-
tion pair, let π be a permutation of 1, . . . , n. Moreover, let R be a TRS without
mutual recursion such that for every rule f (s1, . . . , sn) → r and every subterm
f (t1, . . . , tn) of r , we have (s1, . . . , sn) �π

lex (t1, . . . , tn). Then R is size-change
terminating w.r.t. (�, �).

Proof All size-change graphs for recursive calls of f have an edge π(i)f
�→ π(i)f

for some i and π(j)f
�→ π(j)f for all j < i. The concatenation of such graphs

again yields a graph of this form and thus, all maximal multigraphs are also of this
shape. Hence, they all contain an edge of the form π(i)f

�→ π(i)f which proves
size-change termination.
�

Thus, size-change termination w.r.t. the same reduction pair (�, �) can simu-
late �π

lex for any permutation π used to compare the components of a tuple.

Example 15 For instance, regard the TRS {ack(0, y) → s(y), ack(s(x), 0) →
ack(x, s(0)), ack(s(x), s(y)) → ack(x, ack(s(x), y))} computing the Acker-
mann function. By Theorem 14, the TRS is size-change terminating w.r.t. the
embedding order on constructors, whereas with traditional term rewriting tech-
niques, one would have to use the lexicographic path order.

The next theorem shows that size-change termination can also simulate multiset
comparison. For a reduction pair (�, �), let (s1, . . . , sn) �mul (t1, . . . , tn) hold
iff {s1, . . . , sn} �= {t1, . . . , tn} and for each t ∈ {t1, . . . , tn} \ {s1, . . . , sn} there is
an s ∈ {s1, . . . , sn} \ {t1, . . . , tn} with s � t . Here, {s1, . . . , sn} and {t1, . . . , tn}
denote multisets. So �mul compares tuples (s1, . . . , sn) and (t1, . . . , tn) by replac-
ing at least one si by zero or more components tj that are �-smaller than si .

Theorem 16 (Simulating multiset comparison) Let (�, �) be a reduction pair
and letRbe aTRS without mutual recursion such that for every rulef(s1, . . . , sn)→

The size-change principle and dependency pairs 241

r and every subterm f (t1, . . . , tn) of r , we have (s1, . . . , sn) �mul (t1, . . . , tn).
Then R is size-change terminating w.r.t. (�, �).

Proof In every size-change graph for recursive calls of f , one can select a sub-
set of edges with the following properties: (1) all input nodes have exactly one
selected incoming edge, (2) for each output node, if one selects an outgoing edge
labelled with “ �”, then no other edge starting in this node may be selected, (3)
at least one edge labelled with “ �” is selected. The reason is that for all ti ∈
{t1, . . . , tn} \ {s1, . . . , sn}, there is an �→-edge ending in if and all other input

nodes are reached by an
�→-edge.

It is easy to see that if one concatenates such size-change graphs G1 and G2
and selects those edges which result from the concatenation of two selected edges
in G1 and G2, then the selected edges in the resulting multigraph also satisfy the
conditions (1) – (3). Hence, the properties (1) – (3) also hold for the maximal
multigraphs. Due to (3), there exists a selected edge if

�→ jf in each maximal
multigraph. By (1), there is also a selected edge kf → if reaching the input node
marked with if . In the concatenation of the multigraph with itself, kf → if

�→ jf

would give rise to a (selected) edge kf
�→ jf . Since maximal multigraphs are idem-

potent, the multigraph itself must already contain the (selected) edge kf
�→ jf .

Then (1) implies that kf = if and hence, we have a selected edge kf = if → if .
Due to (2), this edge must be labelled with “ �” and thus, size-change termination
is proved.
�

The construction in the above proof is illustrated in Figure 1, where we only
depicted the selected edges of the graphs. Thus, every input node is reached by one
unique edge (1) and every output node may have at most one outgoing

�→-edge
(2). Moreover, there must be at least one �→-edge in each graph (3). The example
in Figure 1 demonstrates that the properties (1) – (3) are indeed preserved under
concatenation of graphs.

For example by Theorem 16, the TRS {plus(0, y) → y, plus(s(x), y) →
s(plus(y, x))} where plus permutes its arguments is size-change terminating w.r.t.

1

�
���

��
��

��
1 1

�
���

��
��

��
1 1

� �� 1

2

�
���

��
��

��
� 2 2

� ���������
2 2 2

3

� ����������������

�

���
��

��
��

� 3 · 3 3 = 3

�
����������

�

���
��

��
��

��
��

��
�

� �� 3

4 4 4

�
����������

����
��

��
��

4 4 4

5
� �� 5 5

� ���������
5 5

�

���������
5

Fig. 1 Multiset Comparison with Size-Change Graphs

242 R. Thiemann, J. Giesl

the embedding order on constructors, whereas in existing rewriting approaches one
would have to use the recursive (multiset) path order.

Since both lexicographic and multiset comparison are simulated by the size-
change principle using the same reduction pair, in this way one can also deal with
TRSs where traditional orders like RPOS, KBO, or polynomial orders fail.

Example 17 We extend the TRS of Example 2 by the rules for the Ackermann
function from Example 15.

f(s(x), y) → f(x, s(x)) ack(0, y) → s(y)
f(x, s(y)) → f(y, x) ack(s(x), 0) → ack(x, s(0))

ack(s(x), s(y)) → ack(x, ack(s(x), y))

Classical path orders like RPOS (or KBO) cannot prove termination of the
f-rules. The reason is that in the first rule f(s(x), y) → f(x, s(x)) the arguments of
f have to be compared lexicographically from left to right and in the second rule
f(x, s(y)) → f(y, x) they have to be compared as multisets. Moreover, due to the
rules for the Ackermann function, polynomial orders fail as well. In contrast, the
TRS is size-change terminating w.r.t. the embedding order on constructors.

4.2 Disadvantages of the size-change principle

However, compared to classical orders from term rewriting, the size-change prin-
ciple also has several drawbacks. One problem is that it can only simulate lexico-
graphic and multiset comparison for the arguments of the root symbol (provided
we again use a simple reduction pair like the embedding order which itself does not
feature lexicographic or multiset comparison). Hence, if one adds a new function
on top of all terms in the rules, this simulation is no longer possible. For example,
the TRS {f(plus(0, y)) → f(y), f(plus(s(x), y)) → f(s(plus(y, x)))} is no longer
size-change terminating w.r.t. the embedding order, whereas classical path orders
can apply lexicographic or multiset comparisons on all levels of the term. Thus,
termination would still be easy to prove with RPO.

Perhaps the most serious drawback is that the size-change principle lacks con-
cepts to compare defined function symbols syntactically. For example, consider
a TRS with the rule log(s(s(x))) → s(log(s(half(x)))) and rules for half such
that half(x) computes � x

2 �. Whenever a function (like log) calls another defined
function (like half) in the arguments of its recursive calls, one has to check whether
the argument half(x) is smaller than the term s(x) in the corresponding left-hand
side. The size-change principle on its own offers no possibility for that and its
mechanizable versions (Theorems 9 and 12) fail since they only compare terms
w.r.t. the C-restriction of an order or w.r.t. an order given by a TRS over C. In con-
trast, classical orders like RPO can easily show termination automatically using a
precedence log > s > half on function symbols.

Finally, the size-change principle has the disadvantage that it cannot measure
terms by combining the measures of subterms as in polynomial orders or KBO.

Example 18 Term measures (or weights) are particularly useful if one parameter is
increasing, but the decrease of another parameter is greater than this increase. So ter-
mination of the TRS {plus(s(s(x)), y) → s(plus(x, s(y))), plus(x, s(s(y))) →

The size-change principle and dependency pairs 243

s(plus(s(x), y)), plus(s(0), y) → s(y), plus(0, y) → y} is trivial to prove with
polynomial orders or KBO, but the TRS is not size-change terminating w.r.t. any
reduction pair.

This drawback of being unable to measure terms is partly solved in a recent
improvement of the size-change principle [1]. Up to now, size-change graphs and
multigraphs state whether a parameter is strictly or weakly decreasing, but they can-
not express how big this decrease is. In the new affine-based size-change principle
(AB-SCP) of [1], size-change graphs and multigraphs are annotated with Presbur-
ger constraints which give more detailed information on the amount of the decrease.
To illustrate this, consider the TRS {f(s(s(x))) → g(x), g(x) → f(s(x))}. The
size-change principle cannot capture that the big decrease of the parameter in the
first rule (from f to g) compensates the small increase of the parameter in the second
rule (from g to f). In contrast, termination can be proved easily with the AB-SCP.
However, the AB-SCP still fails for Example 18: one obtains a maximal multigraph
with Presburger constraints which state that the sum of the two parameters of plus
is strictly decreasing. But since no single parameter is guaranteed to decrease, the
graph contains no edges. (Both in the ordinary size-change principle and in the
AB-SCP, the output and input nodes of multigraphs correspond to the parameters
of the functions and an edge from one parameter to another parameter indicates a
(weak or strict) decrease.) Since the maximal multigraph does not contain any edges
(and hence, no edge of the form i

�→ i), the AB-SCP cannot prove termination.
Another advantage of the AB-SCP over the size-change principle is an analysis

that extracts and uses information about built-in arithmetic functions and predi-
cates. But the AB-SCP still has the drawback of the size-change principle that it
does not compare terms containing defined function symbols like half automati-
cally. However, this would be needed in order to prove termination of algorithms
like log above.

5 Comparison with dependency pairs

Now we compare the size-change principle with dependency pairs. In contrast
to other recent techniques from term rewriting (e.g., [5,9]), the dependency pair
approach has a direct relationship to the size-change principle. The reason is that
both dependency pairs and size-change graphs are built from function calls (i.e.,
from left-hand sides of rules and subterms of right-hand sides which have a defined
root symbol). This suggests to compare and to combine these approaches to benefit
from their respective advantages. In Section 5.1 we briefly recapitulate the depen-
dency pair approach and show in Section 5.2 that there are examples where the
size-change principle is advantageous to the dependency pair approach. Then in
Section 5.3 we discuss the drawbacks of the size-change principle compared to
dependency pairs.

5.1 Dependency pairs

We now introduce the dependency pair approach and refer to [2,10–12,16,31] for
refinements and motivations and to [12,15] for efficient algorithms to automate

244 R. Thiemann, J. Giesl

the approach. Let F� = {f � | f ∈ D} be a set of tuple symbols, where f � has the
same arity as f and we often write F for f �, etc. If t = g(t1, . . . , tm) with g ∈ D,
we write t� for g�(t1, . . . , tm). If l → r ∈ R and t is a subterm of r with defined
root symbol, then the rewrite rule l� → t� is called a dependency pair of R. So the
TRS R = {f(s(x), y) → f(x, s(x)), f(x, s(y)) → f(y, x)} from Example 2 has
the following dependency pairs.

F(s(x), y) → F(x, s(x)) (4) F(x, s(y)) → F(y, x) (5)

We always assume that different occurrences of dependency pairs are variable
disjoint. Then a TRS is (innermost) terminating iff there is no infinite (innermost)
chain of dependency pairs. A sequence s1 → t1, s2 → t2, . . . of dependency pairs
is a chain iff tiσ →∗

R si+1σ for all i and a suitable substitution σ . The sequence
is an innermost chain iff tiσ

i→∗
R si+1σ and all siσ are in normal form.

To estimate which dependency pairs may occur consecutively in (innermost)
chains, one builds a so-called (innermost) dependency graph whose nodes are the
dependency pairs and there is an edge from s → t to v → w iff s → t, v → w is
an (innermost) chain. Since it is undecidable whether two dependency pairs form
an (innermost) chain, for automation one constructs estimated graphs such that all
edges in the real graph are also edges in the estimated graph (see, e.g., [2,14,26]).
For the TRS of Example 2 we obtain the following dependency graph.

A non-empty set P of dependency pairs is a cycle iff for any pairs s → t
and v → w in P there is a non-empty path from s → t to v → w in the graph
which only traverses pairs from P . In our example we have the cycles {(4)}, {(5)},
and {(4), (5)}. If a cycle only contains dependency pairs resulting from the rules
R′ ⊆ R we speak of an R′-cycle of the dependency graph of R. For every cycle
of the graph, we generate a set of inequality constraints such that the existence of a
reduction pair (�, �) satisfying the constraints guarantees that there are no infinite
(innermost) chains of dependency pairs from the cycle. Since we only regard finite
TRSs, every infinite (innermost) chain would correspond to a cycle and hence, in
this way (innermost) termination is proved. Essentially, the constraints require that
at least one dependency pair from each cycle must be strictly decreasing (w.r.t.
�) and the remaining ones must be weakly decreasing (w.r.t. �). Moreover, when
going from the right-hand side of a dependency pair to the left-hand side of the
next dependency pair in a chain, we need a weak decrease. Therefore, we restrict
ourselves to monotonic quasi-orders � and require l � r for all rules l → r .

When proving innermost termination, we do not have to demand l � r for
all rules l → r , but only for those rules that are usable to reduce right-hand
sides of dependency pairs if their variables are instantiated by normal forms. For
f ∈ D we define its usable rules U(f) as the smallest set containing all f -rules
and all rules that are usable for function symbols occurring in right-hand sides of
f -rules. In our example, the usable rules for f are (1) and (2). For D′ ⊆ D let
U(D′) = ⋃

f ∈D′ U(f). Moreover, for a set of dependency pairs P , we define
U(P) = U({f | f ∈ D occurs in t for some s → t ∈ P }).

The size-change principle and dependency pairs 245

Theorem 19 (Dependency pair approach [11]) A TRS R is terminating iff for
each cycle P in the (estimated) dependency graph there is a monotonic reduction
pair (�, �) on T (F ∪ F�, V) such that

(a) s � t for at least one s → t ∈ P and s � t for all remaining s → t ∈ P
(b) l � r for all l → r ∈ R
R is innermost terminating if for each cycle P in the (estimated) innermost depen-
dency graph there is a monotonic reduction pair (�, �) on T (F ∪ F�,V) such
that

(c) s � t for at least one s → t ∈ P and s � t for all remaining s → t ∈ P
(d) l � r for all l → r ∈ U(P)

For the TRS in Example 2, in the cycle P = {(4), (5)} we have to find a
reduction pair such that one dependency pair is weakly decreasing and the other
one is strictly decreasing. Of course, we want to use standard techniques to syn-
thesize reduction pairs (�, �) satisfying the constraints of the dependency pair
approach. Most existing techniques generate monotonic orders �. However, for
the dependency pair approach only the quasi-order � must be monotonic, whereas
� does not have to be monotonic. For that reason, before synthesizing a suitable
order, some of the arguments of function symbols can be eliminated. To perform
this elimination of arguments resp. of function symbols, the concept of argument
filtering was introduced in [2] (here we use the notation of [21]).

Definition 20 (Argument filtering) An argument filtering π for a signature F
maps every n-ary function symbol to an argument position i ∈ {1, . . . , n} or to a
(possibly empty) list [i1, . . . , im] of argument positions with 1 ≤ i1 < . . . < im ≤
n. The signature Fπ consists of all function symbols f with π(f) = [i1, . . . , im],
where in Fπ the arity of f is m. Every argument filtering π induces a mapping
from T (F, V) to T (Fπ , V), also denoted by π , which is defined as:

π(t) =

t if t is a variable
π(ti) if t = f (t1, . . . , tn) and π(f) = i
f (π(ti1), . . . , π(tim)) if t = f (t1, . . . , tn) and π(f) = [i1, . . . , im]

An argument filtering with π(f) = i for some f ∈ F is called collapsing.

For an argument filtering on F ∪ F� and a relation � on T (Fπ ∪ F�
π , V),

let �π denote the relation on T (F ∪ F�, V) with s �π t iff π(s) � π(t). As
observed in [2], if (�, �) is a monotonic reduction pair on T (Fπ ∪ F�

π , V), then
(�π , �π) is a monotonic reduction pair on T (F ∪ F�, V). However, while �π is
monotonic, �π is usually not monotonic, even if � is monotonic. Thus, in order to
find monotonic reduction pairs in Theorem 19 one may first preprocess the terms
in the inequalities by an argument filtering and afterwards use standard techniques
to search for a reduction pair satisfying the filtered constraints.

5.2 Advantages of the size-change principle

To continue the termination proof of the TRS from Example 2 using Theorem 19,
we may eliminate the second argument position of F by choosing an argument fil-
tering with π(F) = [1] (and π(s) = [1]). In this way, F becomes unary and every

246 R. Thiemann, J. Giesl

term F(s, t) is replaced by F(π(s)). Then the constraint F(s(x)) � F(x) resulting
from the dependency pair (4) is easily satisfied but there is no reduction pair sat-
isfying the constraint F(x) � F(y) from the second dependency pair (5). Indeed,
there exists no argument filtering such that the constraints resulting from the depen-
dency pair approach would be satisfied by a standard path order like RPOS or KBO.
Moreover, if one adds the rules f(x, y) → ack(x, y), ack(s(x), y) → f(x, x), and
the rules for the Ackermann function ack from Example 15, then the dependency
pair constraints are not satisfied by any polynomial order either.

Thus, termination cannot be proved with dependency pairs in combination with
classical orders amenable to automation, whereas the proof is very easy with the
size-change principle and a simple reduction pair like the embedding order on
constructors. While the examples in [24] are easily handled by dependency pairs
and RPOS, this shows that there exist TRSs where the size-change principle is
preferable to dependency pairs and standard rewrite orders.

In fact, size-change termination encompasses the concept of argument filter-
ing for root symbols, since it concentrates on certain arguments of (root) function
symbols while ignoring others. This is an advantage compared to dependency
pairs where finding the argument filtering is a major search problem. Moreover,
the size-change principle examines sequences of function calls in a more sophis-
ticated way. Depending on the different “paths” from one function call to another,
it can choose different arguments to be (strictly) decreasing. In contrast, in the
dependency pair approach such choices remain fixed for the whole cycle.

5.3 Disadvantages of the size-change principle

However, the size-change principle also has severe drawbacks compared to depen-
dency pairs. In addition to the drawbacks mentioned in Section 4, a disadvantage of
the size-change principle is that it is not modular, i.e., one has to use the same reduc-
tion pair for the whole termination proof whereas the dependency pair approach
permits different orders for different cycles. The size-change principle also does
not analyze arguments of terms to check whether two function calls can follow each
other, whereas such a check is performed in the construction of (innermost) depen-
dency graphs. Again, the most severe drawback is that the size-change principle
offers no technique to compare terms with defined symbols, whereas dependency
pairs use inequalities of the form l � r for this purpose. For that reason, only very
restricted reduction pairs may be used for the size-change principle in Theorems
9 and 12, whereas one may use arbitrary monotonic reduction pairs for the depen-
dency pair approach. In fact, dependency pairs are a complete technique which
can prove termination of every terminating TRS, which is not the case for the
size-change principle (see e.g., Example 18).

6 Combination with dependency pairs

After having analyzed their respective advantages and drawbacks, we now intro-
duce a new technique to combine dependency pairs and the size-change principle.
A straightforward approach would be to use dependency pairs as a preprocessing
step and size-change termination as the “base order” when trying to satisfy the

The size-change principle and dependency pairs 247

constraints resulting from the dependency pair approach. However, this would be
very weak due to the restrictions on the reduction pairs in Theorems 9 and 12.

Instead, we incorporate the size-change principle into the dependency pair
approach and use it when generating the constraints. The resulting technique is
stronger than both previous approaches: If (innermost) termination can be proved
by the size-change principle or by dependency pairs using certain reduction pairs,
then it can also be proved with our new technique using the same reduction pairs.
Moreover, there are many examples which cannot be proved by the size-change
principle and where dependency pairs would require complicated reduction pairs
(that can hardly be generated automatically), whereas with our combined technique
the (automatic) proof works with very simple reduction pairs. Of course, if one uses
more advanced reduction pairs in the combined method one obtains an even more
powerful approach for automated termination proofs, cf. Section 8.

Size-change graphs and dependency pairs have a close correspondence, since
both represent a call of a defined symbol g in the right-hand side of a rule
f (s1, . . . , sn) → . . . g(t1, . . . , tm) . . . Since we only need to concatenate
size-change graphs which correspond to cycles in the (innermost) dependency
graph, we now label size-change graphs by the corresponding dependency pair
and multigraphs are labelled by the corresponding sequence of dependency pairs.
Then two size-change graphs or multigraphs labelled with (. . . , D) and (D′, . . .)
may only be concatenated (for termination proofs) if there is an arc from D to
D′ in the (estimated) dependency graph. If one proves innermost termination in-
stead of termination, then concatenation is allowed whenever there is an arc from
D to D′ in the (estimated) innermost dependency graph. Another problem is that
in size-change graphs one only has output nodes 1f , . . . , nf and input nodes
1g, . . . , mg to compare the arguments of f and g. Therefore, the size-change prin-
ciple cannot deal with TRSs like Example 18 where one has to regard the whole
term in order to show termination. For that reason we add another output node εf

and input node εg which correspond to the whole terms (or more precisely, to the
terms F(s1, . . . , sn) and G(t1, . . . , tm) of the corresponding dependency pair).

Definition 21 (Extended size-change graphs) Let (�, �) be a reduction pair on
T (F ∪ F�, V). For every rule f (s1, . . . , sn) → r of a TRS R and every subterm
g(t1, . . . , tm) of r with g ∈ D, the extended size-change graph has n + 1 output
nodes if and m + 1 input nodes jg where i ∈ {ε, 1, . . . , n}, j ∈ {ε, 1, . . . , m}.
Let s = F(s1, . . . , sn) and t = G(t1, . . . , tm). Then there is an edge if

�→
jg iff s|i � t |j and otherwise, there is an edge if

�→ jg iff s|i � t |j . More-
over, every extended size-change graph is labelled by a one-element sequence
(F (s1, . . . , sn) → G(t1, . . . , tm)).

Concatenation of extended size-change graphs to extended multigraphs works
as in Definition 3. However, if G is a multigraph labelled with the sequence
(D1, . . . , Dk) and H is labelled with (D′

1, . . . , D′
k′), then they can only be con-

catenated if there is an arc from Dk to D′
1 in the (estimated) dependency graph

or in the (estimated) innermost dependency graph, respectively. The concatenation
G·H is labelled with (D1, . . . , Dk, D

′
1, . . . , D′

k′).

As an example, reconsider the TRS for the Ackermann function from Example
15. The rule ack(s(x), 0) → ack(x, s(0)) gives rise to the following extended
size-change graph if we use the embedding order on constructors and tuple symbols.

248 R. Thiemann, J. Giesl

εack �
���

���
� εack

1ack � �� 1ack

2ack 2ack

This graph is labelled with the singleton sequence consisting of the dependency
pair ACK(s(x), 0) → ACK(x, s(0)). Thus, it cannot be concatenated with itself,
since there is no arc from this dependency pair to itself in the estimation of the
(innermost) dependency graph.

In the remainder, when we speak of size-change graphs or multigraphs, we
always mean extended graphs. Obviously, there may exist infinitely many multi-
graphs due to the labelling with a sequence of dependency pairs. However, two
multigraphs with labels (D1, . . . , Dk) and (D′

1, . . . , D′
k′) are identified if their

nodes and edges are identical and if D1 = D′
1, Dk = D′

k′ , and {D1, . . . , Dk} =
{D′

1, . . . , D′
k′ }. Thus, for the label only the set of dependency pairs and the first

and last dependency pair of the sequences is important. Then, there are again only
finitely many different multigraphs.

To combine dependency pairs and the size-change principle, now we only regard
multigraphs labelled with a cycle P of the (estimated) dependency or innermost
dependency graph, respectively (i.e., they are labelled with (D1, . . . , Dk) such
that P = {D1, . . . , Dk}). Moreover, one may use different reduction pairs for the
multigraphs resulting from different cycles. To benefit from the advantages of the
size-change principle (i.e., combining lexicographic and multiset comparison and
using different argument filterings and strict inequalities within one cycle), we do
not build inequalities but size-change graphs out of the dependency pairs.

The following theorem combines dependency pairs and the size-change princi-
ple (Theorem 12) for full termination. In contrast to Theorem 12 we now allow arbi-
trary reduction pairs. However, to handle defined symbols properly, then one has to
require that all rules are weakly decreasing (like in the dependency pair approach).
Alternatively, as in Theorem 12 one may also use reduction pairs (→∗

S , →+
S) for

a terminating non-duplicating TRS S over the constructors C of R and the tuple
symbols F� without requiring that R’s rules are weakly decreasing. For example,
in this way one can prove termination of the Ackermann TRS with the embedding
order (i.e., S = EmbC∪F�). However, in order to use (→∗

S , →+
S) for some cycles

and other reduction pairs (�, �) for other cycles, one has to prove termination of
R ∪ S instead of just R.

Example 22 To illustrate this, let R = {g(f(a)) → g(f(b)), f(b) → f(a)} and
S = {a → b}. The only cycle of R’s dependency graph is {G(f(a)) → G(f(b))}
and for this cycle, size-change termination can be shown using (→∗

S , →+
S). Thus,

if one only regards R instead of R ∪ S, one could falsely “prove” termination of
R. Instead, {F(b) → F(a)} must also be regarded, since it is an R-cycle of the
dependency graph of R ∪ S (because in R ∪ S, a is a defined symbol). Moreover,
for reduction pairs (�, �) �= (→∗

S , →+
S), one has to demand l � r not only for

the rules l → r of R, but for those of S as well. Otherwise, the constraints for the
cycle {F(b) → F(a)} would falsely be satisfiable.

The size-change principle and dependency pairs 249

By Theorem 23, the resulting termination criterion is sound, complete, and
more powerful than the size-change principle or dependency pairs on their own.

Theorem 23 (Termination proofs) Let R be a TRS over F with constructors C
and let S be a terminating non-duplicating TRS over C ∪F�. R∪S is terminating
iff for each R-cycle P in the (estimated) dependency graph of R ∪ S there is a
monotonic reduction pair (�, �) on T (F ∪ F�, V) such that

(a′) all maximal multigraphs w.r.t. (�, �) labelled with P
contain an edge i

�→ i

(b′) � = →∗
S and � = →+

S or l � r for all l → r ∈ R ∪ S

The termination criterion with the conditions (a′) and (b′) encompasses both
size-change termination and the dependency pair approach: If R is size-change
terminating w.r.t. a reduction pair (→∗

S , →+
S) as in Theorem 12, then the reduction

pair (�, �) := (→∗
S , →+

S) on T (F ∪ F�, V) also satisfies the conditions (a′) and
(b′) above. Moreover, if a reduction pair (�, �) satisfies Conditions (a) and (b) of
Theorem 19 for termination with dependency pairs, then (�, �) also satisfies the
conditions (a′) and (b′) above for S = ∅.

Proof The above criterion can simulate size-change termination (Theorem 12): if
every maximal multigraph contains an edge i

�→ i then this also holds for those
maximal multigraphs that are labelled with P . It can also simulate dependency pairs
by choosing S = ∅: Condition (a) in Theorem 19 implies that every multigraph
labelled with P must contain the edge ε

�→ ε. Since the dependency pair approach
is complete for termination (even with estimated or no dependency graphs), this
also proves the “only if” direction.

For the “if” direction, suppose that R ∪ S is not terminating. Since S termi-
nates, by Lemma 11 and the soundness of dependency pairs, there is an infinite
chain s1 → t1, s2 → t2, . . . of R-dependency pairs such that tiσ →∗

R∪S si+1σ for

all i and a substitution σ , and each si has the form l
�
i for a minimal non-terminating

term liσ w.r.t. R ∪ S. Those dependency pairs which occur infinitely often in this
chain must form a cycle P of the dependency graph of R ∪ S and since the chain
only contains R-dependency pairs, P is an R-cycle. Let i1 < i2 < . . . such that
{sij → tij , . . . , sij+1−1 → tij+1−1} = P for all j ≥ 1, i.e., we partition the
sequence into parts where all dependency pairs of P occur. For all j , let Gj be
the multigraph resulting from the concatenation of the size-change graphs cor-
responding to sij → tij , . . . , sij+1−1 → tij+1−1. Note that all Gj are labelled
with P .

Due to (a′), every multigraph H resulting from concatenation of size-change
graphs contains an edge of the form i

�→ i, provided that H = H·H and that H is
labelled with P . Hence, every idempotent multigraph H = H·H resulting from
concatenating graphs from G1, G2, . . . also contains an edge i

�→ i. The reason
is that since all Gj are labelled with P , H is also labelled with P .

Let � = {G1, G2, . . . }. Obviously, � is finite since there can only be finitely
many multigraphs (asF is finite). Since every maximal multigraphG1·G2· . . .·Gn

with G1, . . . , Gn ∈ � has an edge of the form i
�→ i, Lemma 6 implies that there

is an infinite path with infinitely many �→-edges in the graph G1 ◦G2 ◦ . . . Hence,
there is also such an infinite path in the infinite graph resulting from the size-change

250 R. Thiemann, J. Giesl

graphs corresponding to s1 → t1, s2 → t2, . . . Without loss of generality, we
assume that the infinite path already starts in the size-change graph corresponding
to s1 → t1. For every i, let ai be the output node in the size-change graph of
si → ti which is on this path. For infinitely many i we have si |ai

σ � ti |ai+1σ and
otherwise, we have si |ai

σ � ti |ai+1σ , since � and � are closed under substitutions.
If the reduction pair (�, �) is (→∗

S , →+
S), then we proceed as in the proof

of Theorem 12: We have si |ai
σ � ti |ai+1σ →∗

R∪S si+1|ai+1σ (i.e., si |ai
σ →+

S
ti |ai+1σ →∗

R∪S si+1|ai+1σ) for infinitely many i and si |ai
σ � ti |ai+1σ →∗

R∪S
si+1|ai+1σ (i.e., si |ai

σ →∗
S ti |ai+1σ →∗

R∪S si+1|ai+1σ) for all other i. Hence,

s1|a1σ = l
�
1|a1σ does not terminate w.r.t. R ∪ S. If a1 �= ε, then l

�
1|a1σ is a sub-

term of l1σ which contradicts the minimality of the latter term. If a1 = ε, then
Lemma 11 implies that l

�
1σ must have a proper subterm which is non-terminating

as well. This again contradicts the minimality of l1σ . Otherwise if (�, �) �= (→∗
S ,

→+
S), we have ti |ai+1σ � si+1|ai+1σ due to (b′) since ti |ai+1σ →∗

R∪S si+1|ai+1σ .
Hence, we obtain an infinite decreasing sequence w.r.t. � which contradicts its
well-foundedness.
�

For the automation of Theorem 23 we choose S = ∅ which results in the
following corollary. Of course, this corollary does not encompass the termination
criterion with the size-change principle of Theorem 12 anymore. For example,
in contrast to Theorem 12, this corollary can no longer prove termination of the
Ackermann TRS with the embedding order. Nevertheless, our experiments in Sec-
tion 8 show that this corollary (which only replaces Condition (a) of Theorem 19
by (a′)) already increases performance significantly.

Corollary 24 (Automated termination proofs) A TRS R is terminating iff for
each cycle P in the (estimated) dependency graph there is a monotonic reduction
pair (�, �) on T (F ∪ F�, V) such that

(a′) all maximal multigraphs w.r.t. (�, �) labelled with P
contain an edge i

�→ i
(b) l � r for all l → r ∈ R

In the corresponding approach for innermost termination, we integrate the tech-
nique of Theorem 9 with dependency pairs. In the dependency pair approach for
innermost termination, only the usable rules for defined symbols in right-hand
sides t of dependency pairs s → t have to be weakly decreasing. Here, one can
benefit from the size-change principle, which restricts the comparison of terms to
certain arguments. Function symbols of t which do not occur in the arguments
being compared do not have to be regarded as being “usable”. More precisely, if
one uses the restriction of a reduction pair where one can only compare s and t
if t’s symbols come from a subset D′ ⊆ D, then one only has to require weak
decreasingness of U(D′). Thus, here the size-change principle has the important
advantage that one can reduce the set of usable rules.

For example, the TRS for the Ackermann function from Example 15 has the
rule ack(s(x), s(y)) → ack(x, ack(s(x), y)) and therefore, we obtain the depen-
dency pair ACK(s(x), s(y)) → ACK(x, ack(s(x), y)). Since ack occurs in the
right-hand side of this dependency pair, in the dependency pair approach we would
have to require l � r for all ack-rules since they would be regarded as being

The size-change principle and dependency pairs 251

usable. For this reason, we would need a lexicographic comparison. However, in
our new technique, the ACK-dependency pairs are transformed into size-change
graphs and size-change termination can easily be shown using the embedding
order on constructor terms (i.e., D′ = ∅). In other words, the second argument
of ACK(x, ack(s(x), y)) is never regarded in this comparison and therefore, the
ack-rules are no longer usable. So instead of LPO we only need the embedding
order to satisfy the resulting constraints. Hence, in the combined technique one
can often use much simpler reduction pairs than the reduction pairs needed with
dependency pairs.

Theorem 25 (Innermost termination proofs) A TRS R is innermost terminating
if for each cycle P in the (estimated) innermost dependency graph there is a subset
D′ ⊆ D and a reduction pair on T (F ∪ F�, V) which is monotonic if D′ �= ∅,
such that for its (C ∪ D′ ∪ F�)-restriction (�, �) we have

(c′) all maximal multigraphs w.r.t. (�, �) labelled with P
contain an edge i

�→ i
(d′) l � r for all l → r ∈ U(D′)
The innermost termination criterion with the conditions (c′) and (d′) encompasses
both size-change termination and the dependency pair approach: If R is
size-change terminating w.r.t. the C-restriction (�, �) of a reduction pair as in
Theorem 9, then (�, �) also satisfies the conditions (c′) and (d′) above for D′ = ∅.
Moreover, if a reduction pair satisfies Conditions (c) and (d) of Theorem 19 for
innermost termination with dependency pairs, then its (C ∪ D′ ∪ F�)-restriction
(�, �) also satisfies the conditions (c′) and (d′) above, where D′ are the defined
symbols of the TRS U(P).

Proof Theorem 25 can simulate the size-change principle: As in Theorem 23,
size-change termination implies (c′). Moreover, if (�, �) is the C-restriction of a
reduction pair as in Theorem 9, then D′ = ∅ and thus, (d′) is also satisfied.

To show that Theorem 25 can simulate dependency pairs, let (�̂, �̂) be a reduc-
tion pair on T (F ∪ F�, V) satisfying Theorem 19 (c) and (d) for some cycle P .
By choosing D′ to consist of the defined symbols of the TRS U(P), we have
U(D′) = U(P) and all defined symbols occurring in some right-hand side t with
s → t ∈ P ∪ U(D′) are contained in D′. Thus, in (c′) and (d′) one only compares
terms s and t where t ∈ T (C ∪ D′ ∪ F�, V). Hence, Theorem 19 (c) and (d) do not
only imply that (c′) and (d′) hold for the original reduction pair (�̂, �̂), but also
for its (C ∪ D′ ∪ F�)-restriction (�, �).

The soundness of the above criterion is shown as for Theorem 23. If R is not
innermost terminating, then there is an infinite innermost chain s1 → t1, s2 →
t2, . . . with tiσ

i→∗
R si+1σ and all siσ are normal forms. As in Theorem 23’s

proof, this innermost chain corresponds to a cycle P of the innermost dependency
graph. Moreover, in the infinite graph resulting from the corresponding size-change
graphs there is an infinite path with infinitely many “ �” labels. For every i, let ai be
the output node in the size-change graph corresponding to si → ti which is on this
infinite path. Let (�̂, �̂) be the reduction pair on T (F∪F�, V) whose (C∪D′∪F�)-
restriction (�, �) satisfies (c′) and (d′). To conclude ti |ai+1σ �̂ si+1|ai+1σ , first
note that si |ai

� ti |ai+1 or si |ai
� ti |ai+1 . Recall that ti |ai+1 ∈ T (C ∪ D′ ∪ F�, V)

and that σ instantiates all variables of si (and hence, of ti) to normal forms. Thus,

252 R. Thiemann, J. Giesl

the only rules applicable to ti |ai+1σ are from U(D′). If D′ = ∅, then this implies
ti |ai+1σ = si+1|ai+1σ . Otherwise, (d′) ensures ti |ai+1σ �̂ si+1|ai+1σ by the stabil-
ity and monotonicity of �̂. Since we also have si |ai

�̂ ti |ai+1 for infinitely many
i and si |ai

�̂ ti |ai+1 for all remaining i, we obtain an infinite decreasing sequence
w.r.t. �̂ which contradicts its well-foundedness.
�

The combined technique handles TRSs where both original techniques fail,
since some rules require a lexicographic or multiset comparison and others require
polynomial orders. In the combined technique, a lexicographic or multiset com-
parison is implicit since the size-change principle is incorporated. Thus, the re-
sulting constraints are often satisfied by simple polynomial orders. For example,
we unite the plus-TRS (Example 18) with the ack-TRS (Example 15), where
ack(s(x), s(y)) → ack(x, ack(s(x), y)) is replaced by ack(s(x), s(y)) →
ack(x, plus(y, ack(s(x), y))). In the original dependency pair approach, both the
ack- and plus-rules are usable for the corresponding dependency pair and thus, no
standard order amenable to automation fulfills the resulting constraints. But in the
combined technique, there are no usable rules and hence, the innermost termination
proof works with the simple polynomial order on constructors and tuple symbols
where s(x) is mapped to x + 1 and PLUS(x, y) is mapped to x + y. In practice,
there are many TRSs where the combined technique simplifies the termination
proof significantly, cf. the following example and our experiments in Section 8.

Example 26 We consider the following TRS for sorting lists from [3, Example
3.10]. Here, nil denotes the empty list, cons(n, x) represents the insertion of the
element n in front of the list x, rm(n, x) removes all occurrences of n from the list
x, and sort(x, nil) returns a sorted version of the list x where duplicates are elim-
inated. To ease readability we use infix symbols “=”, “≤”, and “++” for equality,
comparison of natural numbers, and list concatenation, respectively.

0 = 0 → true
0 = s(x) → false
s(x) = 0 → false

s(x) = s(y) → x = y

0 ≤ y → true
s(x) ≤ 0 → false

s(x) ≤ s(y) → x ≤ y

nil ++ y → y

cons(n, x) ++ y → cons(n, x ++ y)

min(cons(n, nil)) → n

min(cons(n, cons(m, x))) → ifmin(n ≤ m, cons(n, cons(m, x)))

ifmin(true, cons(n, cons(m, x))) → min(cons(n, x))

ifmin(false, cons(n, cons(m, x))) → min(cons(m, x))

rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(n = m, n, cons(m, x))

The size-change principle and dependency pairs 253

ifrm(true, n, cons(m, x)) → rm(n, x)

ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))

sort(nil, nil) → nil
sort(cons(n, x), y) → ifsort(n = min(cons(n, x)), cons(n, x), y)

ifsort(true, cons(n, x), y) → cons(n, sort(rm(n, x) ++ y, nil))
ifsort(false, cons(n, x), y) → sort(x, cons(n, y))

To automate the dependency pair approach, the following algorithm was sug-
gested in [15]. One first solves the constraints of Theorem 19 for the strongly
connected components (SCC) of the (estimated) dependency graph. Here, an SCC
is a maximal cycle, i.e., a cycle that is not properly contained in any other cycle.
Afterwards, one deletes all dependency pairs s → t from the graph where the strict
constraints s � t were satisfied. After the deletion one computes SCCs again and
continues in this way.

Of course, it is particularly desirable for efficiency if already the deletion of
the dependency pairs s → t with s � t from the initial SCCs results in graphs
with no further cycles. In other words, it would be advantageous if the generated
reduction pair also satisfies the following constraints instead of just Constraint (a)
of Theorem 19 for every (initial) SCC P:

(a)1 s � t for all s → t ∈ P
(a)2 s � t for at least one s → t ∈ P ′ for each cycle P ′ ⊆ P

In our example, the most interesting part is to show termination of sort and
ifsort. The corresponding SCC consists of the following three dependency pairs and
has the following form.

SORT(cons(n, x), y) → IFsort(n = min(cons(n, x)), cons(n, x), y) (6)

IFsort(true, cons(n, x), y) → SORT(rm(n, x) ++ y, nil) (7)

IFsort(false, cons(n, x), y) → SORT(x, cons(n, y)) (8)

(6)

		�
��

�

		
		

(7)

��				
(8)

������

In order to prove the absence of infinite chains built from (6), (7), and (8), one
can show that in each cycle either the sum of the list sizes of both SORT-arguments
is reduced or the sum remains equal and the list in SORT’s first argument is short-
ened. So one uses two different measures to compare SORT’s arguments and
combines these measures lexicographically. The list sizes can be expressed by
simple linear polynomials, but the lexicographic combination of these measures
cannot be expressed with simple polynomials. Therefore in [3], polynomials of
degree 2 have been used to simulate the lexicographic comparison.

In contrast to this, with the combined approach of Corollary 24 we do not need
complex polynomials, even when using the same reduction pairs for all cycles
of an SCC. The reason is that the lexicographic combination can be simulated in

254 R. Thiemann, J. Giesl

the size-change graphs. We map cons(n, x) to n + x + 1, the symbols 0, true,
false, nil, =, ≤ are mapped to 0, we map rm(x, y) and ifrm(b, x, y) to y, we map
min(x) and ifmin(b, x) to x, and x ++ y, sort(x, y), SORT(x, y), ifsort(b, x, y),
and IFsort(b, x, y) are mapped to x + y. Then all constraints from the rules can be
oriented (i.e., we have l � r for all rules l → r) and we obtain the following three
size-change graphs.3 To ease readability, we denoted

�→-edges by dotted arrows
and �→-edges by solid arrows.

(6)

εsort �� εifsort

1ifsort

1sort ��

2ifsort

2sort ��

��

3ifsort

(7)

εifsort
�� εsort

1ifsort

��

2ifsort

���
��

�
1sort

3ifsort
�� 2sort

(8)

εifsort
�� εsort

1ifsort

2ifsort
�� 1sort

3ifsort 2sort

In this example, there are eight maximal multigraphs (where we again identify mul-
tigraphs with the labels (D1, . . . , Dk) and (D′

1, . . . , D′
k′) if D1 = D′

1, Dk = D′
k′ ,

and {D1, . . . , Dk} = {D′
1, . . . , D′

k′ }, provided that their nodes and edges are iden-
tical).

(6)·(7)

εsort �� εsort

1sort

����
��

1sort

2sort �� 2sort

(6)·(8)

εsort �� εsort

1sort �� 1sort

2sort 2sort

(6)·(7)·(6)·(8)

εsort �� εsort

1sort 1sort

2sort 2sort

(6)·(7)·(6)·(8)·(6)·(7)

εsort �� εsort

1sort 1sort

2sort 2sort

(7)·(6)

εifsort
�� εifsort

1ifsort
��

��

1ifsort

2ifsort

����
��

��

2ifsort

3ifsort
��

��

3ifsort

(8)·(6)

εifsort
�� εifsort

1ifsort 1ifsort

2ifsort
��

��

2ifsort

3ifsort 3ifsort

(7)·(6)·(8)·(6)

εifsort
�� εifsort

1ifsort 1ifsort

2ifsort 2ifsort

3ifsort 3ifsort

(8)·(6)·(7)·(6)·(8)·(6)

εifsort
�� εifsort

1ifsort 1ifsort

2ifsort 2ifsort

3ifsort 3ifsort

3 In addition to the edges above, the output nodes labelled with ε have edges to all input nodes.
We did not depict all of these edges to improve readability.

The size-change principle and dependency pairs 255

It is easy to see that all maximal multigraphs either contain an �→-edge between
their ε-nodes or there is an

�→-edge between the ε-nodes and an �→-edge between
the but-last argument nodes.

One should remark that in contrast to the approach for termination, the depen-
dency pair approach for innermost termination in Theorem 19 only provides a
sufficient, but not a necessary criterion. An example of an innermost terminating
TRS where the constraints (c) and (d) of Theorem 19 are unsatisfiable is given
in [2, Example 43]. Similarly, this example also shows that the combination of
dependency pairs and the size-change principle in Theorem 25 does not yield a
necessary criterion for innermost termination either.

To summarize, the combination of dependency pairs and the size-change prin-
ciple has two main advantages: First, one can now prove (innermost) termination of
TRSs automatically where up to now an automated proof was impossible. Second,
for many TRSs where up to now the termination proof required complicated reduc-
tion pairs involving a large search space, one can now use much simpler orders
which increases efficiency. These advantages are confirmed by our experiments in
Section 8.

7 Complexity

In [24] it was shown that proving size-change termination is PSPACE-complete. In
contrast, up to now there have been no results about the complexity of the depen-
dency pair approach. To allow a comparison between dependency pairs and the
size-change principle, we present new contributions analyzing the complexity of
both the dependency pair approach and of the new technique from Section 6 which
combines dependency pairs with the size-change principle.

Section 7.1 shows that while the size-change principle is PSPACE-hard, the
dependency pair approach is only in NP if one uses standard estimation tech-
niques for the dependency graph, argument filterings, and base orders in NP. Thus,
although our experiments in Section 8 show that the dependency pair approach is
more powerful for termination proofs of practical algorithms than the size-change
principle, dependency pairs belong to a lower complexity class, provided that NP �

PSPACE. (Nevertheless, these are only asymptotic worst-case complexities and
indeed, in our experiments the dependency pair approach required significantly
more runtime than the size-change principle, cf. Section 8.) Moreover, compared
to a direct application of NP-complete base orders like LPO and RPO(S), using
them together with the dependency pair approach improves power significantly
while the asymptotic worst-case complexity is not increased. To give a precise
description of the complexity of the dependency pair approach, we prove that
even if we are restricted to a simple reduction pair like the embedding order, the
dependency pair approach is NP-hard (and thus, NP-complete).

In Section 7.2, we show that the complexity of the size-change principle is not
increased when combining it with dependency pairs. In other words, with standard
estimations of the dependency graph and base orders in PSPACE, the combined
method is still in PSPACE although it is far more powerful than the size-change prin-
ciple on its own. Moreover, we show that every method that is at least as powerful as
the size-change principle is PSPACE-hard, which implies PSPACE-completeness

256 R. Thiemann, J. Giesl

of our combination technique. These results indicate that dependency pairs or the
combination with dependency pairs are not only advantageous because of increase
in power, but they are also advantageous as far as complexity is concerned.

7.1 Complexity of dependency pairs

We first show that the dependency pair technique (both for termination and inner-
most termination) is in NP if one uses standard approximations of the dependency
graph, argument filterings, and a class of reduction pairs RP such that for any set
of inequality constraints, satisfiability of the constraints by some reduction pair
from RP is in NP. Examples for such classes are reduction pairs based on LPO
and RPO (here this problem is NP-complete [20]) as well as the embedding order
and KBO (here the problem is in P [19]). For (general) polynomial orders, the
problem is undecidable. For the estimation of the (innermost) dependency graph,
in the following theorem we use an (innermost) dependency graph approximation
algorithm est which, given two dependency pairs s → t and v → w, can some-
times determine that these pairs do not form an (innermost) chain. So if est returns
“no”, then s → t, v → w is indeed no (innermost) chain. But if est returns “yes”,
then this does not guarantee that s → t, v → w is really an (innermost) chain.

One can estimate (innermost) dependency graphs by such an algorithm est by
drawing an edge from s → t and v → w whenever est returns “yes”. In this way,
one indeed obtains a graph containing the real (innermost) dependency graph. The
following theorem states that if est is in NP (i.e., if its non-deterministic runtime
is polynomial in the size of the TRS), then a termination proof using this estimated
graph can also be performed in NP.

Theorem 27 (Dependency pairs are in NP) Let RP be a class of reduction pairs
such that satisfiability of constraints by some reduction pair from the class is in NP.
Moreover, let est be an (innermost) dependency graph approximation algorithm in
NP. If one estimates (innermost) dependency graphs by est and if one is restricted
to reduction pairs resulting from arbitrary argument filterings and pairs from RP ,
then proving (innermost) termination by Theorem 19 is in NP.

Proof For every term t , let |t | be the size of t (i.e., the number of symbols) and let
n = ∑

l→r∈R |l|+|r| be the size of the TRS R. We show that the non-deterministic
complexity for an (innermost) termination proof with dependency pairs is polyno-
mial in n.

From each rule l → r ∈ R one obtains at most |r| dependency pairs. So the
overall number of dependency pairs is bounded by n and for each dependency pair
s → t we also have |s| + |t | ≤ n.

To compute the estimated (innermost) dependency graph, we have to check for
all dependency pairs s → t and v → w whether s → t should be connected to
v → w. To this end we call the algorithm est which is in NP. The input to est is
bounded by 3n (2n for the two dependency pairs and another n for R) and since
we perform at most n2 of these calls, the computation of the estimated graph can
be done in (non-deterministic) polynomial time.

Once we have obtained the estimated graph, we can compute all SCCs (i.e.,
all maximal cycles) in linear time using a standard graph algorithm. Note that we

The size-change principle and dependency pairs 257

do not compute every cycle in the graph, since there may be exponentially many.
Instead, we use the result of [15] that it is sufficient to inspect SCCs repeatedly. As
explained in Example 26, one first solves the constraints for an SCC and afterwards,
one deletes all dependency pairs s → t from the graph where the strict constraints
s � t were satisfied. After the deletion one computes SCCs again and continues
in this way. As there are at most n dependency pairs, we have at most n iterations
with the cost of a (linear) SCC analysis and the treatment of a single cycle. So it
only remains to show that handling one cycle can be done in NP.

In the innermost case, we first compute the set U(P) which can clearly be done
in polynomial time. Next, for both termination and innermost termination proofs,
we non-deterministically choose one dependency pair which we require to be
strictly decreasing.4 Then we choose the argument filtering non-deterministically
in linear time. Finally, for the set of filtered constraints, satisfiability by some
reduction pair of RP is in NP.
�

For the estimation techniques of the (innermost) dependency graph from [2,
14,26], the algorithm est to determine that two dependency pairs do not have to
be connected runs in polynomial time. Thus, with these standard estimations of
dependency graphs and base orders like LPO, RPO(S), KBO, or the embedding
order, by Theorem 27 the dependency pair approach is in NP.5

Next, we show that even if we are restricted to the embedding order, the depen-
dency pair approach (using argument filterings) is NP-hard. We prove this result
for any sound estimation of the (innermost) dependency graph which can at least
detect that two dependency pairs s → t and v → w cannot be connected if t and
v have different tuple symbols on their root positions. Together with the previous
theorem this implies NP-completeness of dependency pairs.

Theorem 28 (Dependency pairs are NP-hard) Both the termination and the
innermost termination technique of Theorem 19 are NP-hard if one uses reduc-
tion pairs based on argument filterings and the embedding order.

Proof We give a reduction from the NP-complete problem 3-SAT. Let ϕ = C0 ∧
. . .∧Cn be a formula in 3-conjunctive normal form over the variables {v0, . . . , vm}.
Every clause Ci has the form Ci = li,1 ∨ li,2 ∨ li,3 where each of the literals
li,1, li,2, li,3 is either a variable vj or a negated variable ¬vj with 0 ≤ j ≤ m. A
formula ϕ is satisfiable iff there exists a variable assignment τ : {v0, . . . , vm} →
{true, false} such that τ(ϕ) is equivalent to true using the standard semantics of
∨, ∧, and ¬. In this case, we also write “τ(ϕ) = true”.

We will present a polynomial-time translation of formulas ϕ into TRSs Rϕ

such that ϕ is satisfiable iff (innermost) termination of Rϕ can be proved by the
dependency pair approach with argument filterings and the embedding order. The
idea is to define Rϕ in such a way that there is a correspondence between vari-
able assignments τ and argument filterings π : the formula ϕ is satisfied under the
variable assignment τ iff (innermost) termination of Rϕ can be proved using the
corresponding argument filtering π .

4 Alternatively, we could loop over all dependency pairs, since there can be at most n of them.
5 The proof of Theorem 27 also reveals that if one uses a class of reduction pairs where satis-

fiability of constraints is in P, if est is in P, and if one does not use argument filterings, then the
dependency pair approach is in P as well.

258 R. Thiemann, J. Giesl

Let V be a set of fresh variables and let F be a signature with the binary function
symbols v0, . . . , vm and a constant ⊥. For any x ∈ V , we first define a translation
Tx from literals over {v0, . . . , vm} to terms from T (F, V).

Tx(vj) = vj (x, ⊥)
Tx(¬vj) = vj (⊥, x)

Now we can define our transformation from formulas ϕ as above to TRSs Rϕ .
For every clause Ci , we introduce two ternary symbols gi and hi and moreover,
our signature F must contain an additional unary symbol s.

Rϕ ={
vj (x, x) → x | 0 ≤ j ≤ m

} ∪{
gi (s(x1), s(x2), s(x3)) → hi (Tx1(li,1), Tx2(li,2), Tx3(li,3))

hi (x, x, x) → gi+1 mod n+1(x, x, x)

∣
∣
∣
∣ 0 ≤ i ≤ n

}

Clearly, the transformation from ϕ to Rϕ can be computed in polynomial time. It
remains to show that (innermost) termination of Rϕ can be proved by dependency
pairs with argument filterings and the embedding order iff ϕ is satisfiable.

Thus, we now analyze the structure of a possible (innermost) termination
proof of Rϕ . Due to the rules vj (x, x) → x, the dependency graph and the
innermost dependency graph have edges between the dependency pairs Gi (.) →
Hi (.) and Hi (.) → Gi+1 mod n+1(.). The reason is that by the substitution σ
that replaces every variable by ⊥, we obtain σ(Hi (Tx1(li,1), . . . , Tx3(li,3))) =
Hi (vi1(⊥, ⊥), . . . , vi3(⊥, ⊥)) i→3 Hi (⊥, ⊥, ⊥) = σ(Hi (x, x, x)) for some
i1, i2, i3 from {0, . . . , m}. Moreover, there is an edge from the dependency pair
Hi (.) → Gi+1 mod n+1(.) to the pair Gi+1 mod n+1(.) → Hi+1 mod n+1(.). Thus,
the TRS Rϕ has the cycle P = {G0(.) → H0(.), H0(.) → G1(.), . . . , Hn(.) →
G0(.)} in its (innermost) dependency graph. It is easy to see (and can be detected by
every approximation algorithm for the (innermost) dependency graph that inspects
at least the tuple symbols to estimate (innermost) chains) that there are no other
cycles in the graph of Rϕ . Hence, the (innermost) termination proof of Rϕ using
Theorem 19 is equivalent to solving the constraints arising from P . In the termina-
tion case, these have the following form if one uses an argument filtering π and the
embedding order �Emb (where �Emb = →+

EmbFπ ∪F�
π

and �Emb = →∗
EmbFπ ∪F�

π

).

π(vj (x, x)) �Emb π(x) (9)

π(gi (s(x1), s(x2), s(x3))) �Emb π(hi (Tx1(li,1), Tx2(li,2), Tx3(li,3))) (10)

π(hi (x, x, x)) �Emb π(gi+1 mod n+1(x, x, x)) (11)

π(Gi (s(x1), s(x2), s(x3))) �Emb π(Hi (Tx1(li,1), Tx2(li,2), Tx3(li,3))) (12)

π(Hi (x, x, x)) �Emb π(Gi+1 mod n+1(x, x, x)) (13)

Moreover, one of the dependency pair constraints of the form (12) or (13) has to
be strictly decreasing. In the innermost termination case, the constraints (10) and
(11) are missing.

As we use the embedding order as base order, in a successful proof we have to
filter away all symbols on the right-hand sides of the constraints that do not occur
in the corresponding left-hand side. This implies that we have to use a collapsing
argument filtering for the symbols Hi and Gi , i.e., π(Hi), π(Gi) ∈ {1, 2, 3}. In the

The size-change principle and dependency pairs 259

termination case, we also have to use a collapsing filtering for hi and gi due to the
constraints (10) and (11). Then the constraints (11) and (13) result in x �Emb x
which is obviously satisfied. This shows that one of the constraints (12) must be
strict.

Since ⊥ and the symbols vj do not occur in the left-hand sides of (12),
π(Hi (Tx1(li,1), Tx2(li,2), Tx3(li,3))) must not contain these symbols either. Hence,
π(Hi (Tx1(li,1), Tx2(li,2), Tx3(li,3))) has to be a variable from x1, x2, x3. This shows
that π(Gi) and π(Hi) are identical, i.e.,

π(Gi) = π(Hi) = ki with ki ∈ {1, 2, 3}. (14)

Moreover, we must have

π(s) = [1], (15)

since otherwise, none of the constraints (12) would be strictly decreasing. Similar
to (14), in the termination case we obtain the following requirements from (10):

π(gi) = π(hi) = k′
i with k′

i ∈ {1, 2, 3}. (16)

Now the constraints (12) have the form s(xki
) �Emb π(Txki

(li,ki
)). This is equiva-

lent to the requirement

π(Txki
(li,ki

)) = xki
. (17)

Similarly, in the termination case, the constraints (10) are equivalent to

π(Txk′
i

(li,k′
i
)) = xk′

i
. (18)

Finally, the constraints (9) are equivalent to

π(vj) �= []. (19)

Thus, termination of Rϕ can be shown by dependency pairs with argument filter-
ings and the embedding order iff there exists an argument filtering π satisfying
the requirements (14) – (19). Similarly, innermost termination can be shown if
π satisfies the requirements (14), (15), (17), and (19). To conclude the proof of
the theorem it remains to show that the existence of such an argument filtering is
equivalent to satisfiability of ϕ.

For the “if” direction, let τ be a variable assignment with τ(ϕ) = true. We
define π(vj) = 1 iff τ(vj) = true and π(vj) = 2 iff τ(vj) = false. Thus, (19)
is fulfilled and for any literal li,k , we obtain π(Tx(li,k)) = x iff τ(li,k) = true
and π(Tx(li,k)) = ⊥ iff τ(li,k) = false. For any clause Ci = li,1 ∨ li,2 ∨ li,3, we
have τ(Ci) = true and thus, there exists a ki such that τ(li,ki

) = true. Hence, by
defining π(gi) = π(Gi) = π(hi) = π(Hi) = ki ∈ {1, 2, 3}, the conditions (14),
(16), (17), and (18) are satisfied. Finally, we define π(s) = [1] to satisfy condition
(15) as well.

For the “only if” direction, let π be an argument filtering satisfying at least the
condition (17). For all variables vj in the literals li,ki

, (17) implies π(vj) ∈ {1, 2}.
If one defines a variable assignment τ with τ(vj) = true if π(vj) = 1 and
τ(vj) = false if π(vj) = 2, then by the condition (17) we obtain τ(li,ki

) = true.
Thus, every clause Ci contains a literal li,ki

which is true under the variable assign-
ment τ and hence, we have τ(ϕ) = true.
�

260 R. Thiemann, J. Giesl

7.2 Complexity of combined dependency pairs and size-change principle

We have shown that the dependency pair approach is NP-complete while the size-
change principle is PSPACE-complete [24]. In Section 6 we presented a new tech-
nique to combine these two approaches and we proved in Theorems 23 and 25 that
the combined approach is more powerful than both original techniques. We now
show that the combination does not increase the complexity. In the combination
technique for termination of a TRS R (Theorem 23), one may use a non-duplicating
TRS S over the tuple symbols and the constructors of R to compare terms accord-
ing to its rewrite relation →+

S . In order to implement Theorem 23 in PSPACE,
of course both the procedure to compute an appropriate TRS S and the decision
procedure for the relation →+

S may only require space that is polynomial in the size
of the TRS R to be proved terminating. For example, S = EmbC∪F� obviously
satisfies this requirement.

Theorem 29 (Dep. pairs & size-change principle is in PSPACE) Let RP be a
class of reduction pairs such that satisfiability of constraints by some reduction
pair from the class is in PSPACE. Moreover, let est be an (innermost) dependency
graph approximation algorithm in PSPACE. Finally, in the termination case, let
con be a PSPACE-algorithm that computes for a given TRS R another TRS S
such that the signature of S are the tuple symbols and the constructors of R, S
is non-duplicating and terminating, and →+

S is decidable in PSPACE. If one esti-
mates (innermost) dependency graphs by est, if one is restricted to reduction pairs
resulting from arbitrary argument filterings and pairs from RP , and if one chooses
the TRS S = con(R) in the termination case, then Theorems 23 and 25 can be
implemented by PSPACE-algorithms.

Proof We first regard the termination case (Theorem 23). To prove the termina-
tion of a TRS R, we first compute S = con(R) in PSPACE. Thus, the size of
the TRS R ∪ S is polynomial in the size of R (where we again define the size of
R as n = ∑

l→r∈R |l| + |r|). As in the proof of Theorem 27, we can compute
the estimated dependency graph of R ∪ S in PSPACE. In contrast to the proof of
Theorem 27 where we regarded SCCs instead of cycles, now we can just iterate
over all cycles of the estimated graph, since this iteration only requires polynomial
space.

So it remains to show that for a single cycle P , the conditions (a′) and (b′) of
Theorem 23 can be checked in PSPACE. Because of the restrictions on the reduc-
tion pairs in RP and on the size of S, checking l � r for all rules l → r ∈ R ∪ S
can be done in polynomial space. Thus, Condition (b′) can indeed be computed in
PSPACE.

For Condition (a′), we first show that building the extended size-change graphs
can be done in PSPACE. From each rule l → r ∈ R one obtains at most |r|
extended size-change graphs. So the overall number of extended size-change graphs
is bounded by n. In each extended size-change graph resulting from the rule l → r ,
one has at most |l|×|r| arrows and a label of size |l|+|r|. Hence, each extended size-
change graph has polynomial size. Finally, computing the arrows in the extended
size-change graphs can be done in PSPACE due to the requirements on the reduc-
tion pairs in RP and on the relation →+

S .
Finally, we have to show that one can decide in PSPACE whether every maximal

multigraph labelled with the cycle P contains an edge i
�→ i. The naive approach

The size-change principle and dependency pairs 261

of first computing all possible multigraphs (by building the transitive closure under
concatenation “·”) and then inspecting all maximal multigraphs labelled with P
cannot be done in PSPACE since there may be exponentially many multigraphs.
More precisely, the number of possible multigraphs is e := |P|2 ×2|P | ×3(ar+1)2

.
Here, |P| is the number of dependency pairs in the cycle P and ar is the max-
imal arity of all function symbols in R. The first part |P|2 × 2|P | describes the
number of different labels in multigraphs. As in Section 6, we identify multigraphs
with the labels (D1, . . . , Dk) and (D′

1, . . . , D′
k′) if D1 = D′

1, Dk = D′
k′ , and

{D1, . . . , Dk} = {D′
1, . . . , D′

k′ }. Then the quadratic term |P|2 describes all pos-
sible choices for the leftmost and the rightmost dependency pair in the label. The
exponential term 2|P | arises from all possible subsets of dependency pairs from P
which may occur in the label. Finally, a multigraph can have up to ar +1 nodes on
each side and so there are (ar + 1)2 possible combinations of output- and input-
nodes. For each of these combinations we have the possibility to connect them by
�→, by

�→, or by no edge. This leads to the base 3 in the factor 3(ar+1)2
.

To avoid the exponential space complexity of the above naive algorithm, we
now give a non-deterministic PSPACE-algorithm that decides if there is a maximal
multigraph labelled with P which does not contain an edge of the form i

�→ i.

Input: A cycle P and a set � of extended size-change graphs
labelled with dependency pairs from P

Output: “false”, if there is a maximal multigraph labelled with P
in the transitive closure of � that has no edge i

�→ i
“true”, otherwise

1. d := 0
2. Choose a size-change graph G ∈ �

3. e := |P|2 × 2|P | × 3(ar+1)2

4. While d < e do
(a) d := d + 1
(b) If G is maximal, labelled with P , and contains no edge i

�→ i,
then stop and return “false”

(c) Choose a size-change graph G′ ∈ �

(d) G := G·G′
5. Return “true”

The algorithm can construct and inspect every multigraph that can be obtained
by concatenating at most e extended size-change graphs, where these size-change
graphs do not have to be distinct.We show by contradiction that any of the e possible
different multigraphs can be constructed in this way. Assume that there is a multi-
graph G that can only be constructed by concatenating at least e + k size-change
graphs where k > 0. So G = G1· . . .·Ge+k with all Gi ∈ �. We define the graphs
G′

n = G1· . . .·Gn for all 1 ≤ n ≤ e + k. As there can only be at most e different
multigraphs, there must be two graphs G′

i , G
′
j ∈ {G′

n | 1 ≤ n ≤ e + k} with G′
i =

G′
j and i < j . Hence, G = G′

j·Gj+1· . . .·Ge+k = G′
i·Gj+1· . . .·Ge+k . This

is a contradiction to the assumption, since now G can be built by concatenating
only e + k − (j − i) size-change graphs. Hence, the above algorithm can indeed
construct every possible multigraph, which proves its correctness.

262 R. Thiemann, J. Giesl

For the space complexity of the algorithm, we look at the data that has to be
stored during its execution. It mainly consists of the two numbers d and e, the input
values P and �, and the multigraph G. Since e requires O(log e) space and since
log e is polynomial in |P| and ar , it is easy to see that the algorithm only uses
polynomial space.

Thus, we have a non-deterministic PSPACE-algorithm that decides if every
maximal multigraph labelled with P contains an edge i

�→ i. As NPSPACE =
PSPACE [27], there also exists such a decision procedure in PSPACE.

The proof for the innermost termination case (Theorem 25) is analogous. Here,
one needs the observations that usable rules can be computed in polynomial time
(and thus, in polynomial space) and that the iteration over all subsets D′ of D can
be done in polynomial space.
�

The size-change principle for functional programs is PSPACE-complete [24],
even if one uses a simple underlying well-founded order like the embedding order
on constructors. This result directly carries over to size-change termination for
TRSs. So the methods of Theorem 9 for innermost termination proofs with the C-
restriction of the reduction pair (→∗

EmbC , →+
EmbC) as well as the method ofTheorem

12 for termination proofs with S = EmbC are PSPACE-complete as well. Further-
more, we now show that any sound technique that is at least as powerful as the size-
change principle with the embedding order is PSPACE-hard. Here, we call a method
“more powerful” if it can at least verify innermost termination for those TRSs
where termination or innermost termination can be concluded from Theorem 12
using S = EmbC or from Theorem 9 using the C-restriction of (→∗

EmbC , →+
EmbC).

Since the combination with dependency pairs yields a more powerful technique
than the size-change principle by Theorems 23 and 25, this implies that this com-
bination technique is also PSPACE-hard and thus, PSPACE-complete by Theorem
29.

Theorem 30 (Improving size-change principle is PSPACE-hard) Any sound
technique for proving (innermost) termination of term rewriting is PSPACE-hard
if it is at least as powerful as the size-change principle with the embedding order on
constructors (i.e., if it can at least prove innermost termination of all TRSs which
are size-change terminating w.r.t. the C-restriction of (→∗

EmbC , →+
EmbC)).

Proof We can use the same proof idea as in [24, Theorem 5] by reducing the
PSPACE-complete problem of termination of boolean programs. In [24], a trans-
formation is given which translates every boolean program B into a functional
program (or TRS) PB such that

• if B terminates, then PB is not (innermost) terminating (20)

• if B does not terminate, then PB is size-change terminating (21)

Here, a reduction pair is used which compares data objects by their size (i.e., this
reduction pair corresponds to the C-restriction of (→∗

EmbC , →+
EmbC)).

If the size-change principle is replaced by a stronger method, a statement anal-
ogous to (21) would obviously still hold. More precisely, if B does not terminate,
then the stronger method can prove (innermost) termination of PB . On the other
hand, if the stronger method is sound then termination of B must lead to a TRS PB

The size-change principle and dependency pairs 263

that cannot be proved (innermost) terminating. Hence, B does not terminate iff the
stronger method can prove (innermost) termination of PB .
�

In [23], two polynomial-time algorithms are presented that approximate
size-change termination. So instead of the full size-change principle, these algo-
rithms could be used in combination with dependency pairs to decrease the com-
plexity. But of course, this would also decrease the power of the combined method.

The main idea of [23] is the identification of anchors: an anchor is a size-change
graph which yields an infinite descent if it occurs infinitely often in a sequence
G1 ◦ G2 ◦ . . . of size-change graphs. In other words, G is an anchor iff for any
graph G1 ◦ G2 ◦ . . . with Gi = G for infinitely many i, there is a path where
infinitely many edges are labelled with “ �”.

Since size-change termination is not affected when deleting anchors, the
approach of [23] repeatedly tries to identify and to remove anchors. If finally
all size-change graphs have been deleted, then one can conclude size-change ter-
mination. However, since [23] only uses sufficient criteria to find anchors, not all
size-change terminating systems can be detected by this approach.

The two algorithms in [23] differ in their criterion to identify anchors. The first
algorithm has a runtime of O(n2) (where n is the size of the program or TRS).
However, this approach is not useful in combination with dependency pairs: it can
be shown that if this algorithm succeeds then dependency pairs on their own can
prove termination using a reduction pair based on linear polynomial interpretations
with coefficients from {0, 1}.

This is not the case for the second algorithm which has a runtime of O(n3).
However, our experiments in Section 8.2 show that in practice, the size-change
principle is not the bottleneck of the combined method. Therefore, in the combi-
nation with dependency pairs, we use the full size-change principle instead of this
(weaker) approximation.

8 Implementation and experiments

We developed a system AProVE (Automated Program Verification Environment)
for mechanized verification of functional programs and TRSs which is available
from http://www-i2.informatik.rwth-aachen.de/AProVE. To
perform automated (innermost) termination proofs, the system offers LPO, RPO(S),
KBO, polynomial orders, and dependency pairs. The tool is written in Java and ter-
mination proofs can be performed via a graphical user interface. For a description
of the system, the reader is referred to [13].

To evaluate the results developed in the paper, we also integrated the size-change
principle and our technique to combine dependency pairs with the size-change prin-
ciple into the system. For the (pure) size-change principle, we implemented the
criterion of Theorem 12 using a reduction pair based on the embedding order. The
implementation of our combination technique for both termination (Theorem 23
and Corollary 24) and innermost termination (Theorem 25) is described in Sec-
tion 8.1. Subsequently, in Section 8.2, we give an empirical evaluation in order to
compare the size-change principle, dependency pairs, and the combination of both
techniques.

264 R. Thiemann, J. Giesl

8.1 Implementing the size-change- and dependency pair-combination

We first present our algorithm to verify innermost termination of a TRS R with
defined symbols D according to Theorem 25 and give a detailed explanation after-
wards:

1. Compute the estimated innermost dependency graph of R.
2. For each SCC P in the graph:

2.1. Let CP be the set of the constructors occurring in P ,
let DP be a subset of the defined symbols
occurring in right-hand sides of P ,
let π be an argument filtering
which only filters symbols from CP ∪ DP .
If all such DP and argument filterings π have already
been examined without success,
then abort with “No Success”.

2.2. Let s � t iff t ∈ T (CP ∪ DP , V) and π(s) →+
EmbFπ

π(t).
Let s � t iff t ∈ T (CP ∪ DP , V) and π(s) →∗

EmbFπ
π(t).

2.3. Try to show that all maximal multigraphs w.r.t. (�, �)
contain an edge i

�→ i.
2.4. If Step 2.3 fails, then go to Step 2.1 and examine

the next argument filtering π resp. the next subset DP .
2.5. Otherwise, let D′ consist of the defined symbols of U(DP).

Try to extend π to an argument filtering on F
and try to find a reduction pair (�′, �′) with (quasi-)
simplification orders �′, �′ ⊆ T (Fπ , V) × T (Fπ , V)
such that π(l) �′ π(r) for all l → r ∈ U(D′).

2.6. If Step 2.5 fails, then go to Step 2.1 and examine
the next argument filtering π resp. the next subset DP .
Otherwise, continue with the next SCC P in Step 2.

3. Finish with “Innermost Termination Proved”.

For reasons of efficiency, in our implementation we did not extend size-change
graphs by nodes labelled with ε, cf. Definition 21. These nodes would be necessary
to simulate dependency pairs with the combined technique. Thus, if our implemen-
tation of the combined technique fails, then it can still be useful to try an innermost
termination proof with dependency pairs.

Moreover, instead of labelling multigraphs by sequences (D1, . . . , Dk) of
dependency pairs, in our implementation we only label them by the first and the
last pair in the sequence. In this way, many former multigraphs are identified, i.e.,
we obtain significantly less multigraphs which increases efficiency.

With this representation of the labels, it suffices only to regard the initial SCCs
instead of cycles of the estimated innermost dependency graph. This improves
efficiency even further, since there are typically far less initial SCCs than cycles.6

Note that when examining only the initial SCCs P , it is no longer sufficient just

6 When implementing the pure dependency pair approach, instead of inspecting all cycles, it
is preferable to use the technique of [15] to compute new SCCs repeatedly from weakly decreas-
ing dependency pairs (see the proof of Theorem 27). However, this technique of [15] cannot be
adapted to the combination of dependency pairs with the size-change principle.

The size-change principle and dependency pairs 265

to regard maximal multigraphs labelled with P in Theorem 25 (c′). Instead, one
has to investigate all maximal multigraphs. In other words, one also has to regard
multigraphs whose label only consists of a subset of P (i.e., of the dependency pairs
from an arbitrary subcycle). For all these maximal multigraphs one has to check
whether they contain an edge of the form i

�→ i. However, this is already taken
into account in our implementation, since we represent labels (D1, . . . , Dk) by
only storing their first and their last pair. Thus, we do not check anymore whether
{D1, . . . , Dk} contains all pairs from the SCC P . Instead, now the labels are only
used to determine which multigraphs may be concatenated and for this purpose,
one only has to know D1 and Dk .

As in Theorem 25, we only regard a reduction pair on a subset D′ of the defined
symbols. To this end, we choose a subset DP of the defined symbols in right-hand
sides of P’s dependency pairs and define D′ to consist of all defined symbols of
the TRS U(DP). The motivation for this is as follows: if two terms s and t have
to be compared when computing the edges of size-change graphs, then t can only
contain defined symbols which occur in right-hand sides of P’s dependency pairs.7

Moreover, the set D′ contains all defined symbols which occur in the right-hand
sides of the usable rules, since they have to be oriented according to Theorem 25
(d′).

Now we have to generate a suitable monotonic reduction pair. As in the
dependency pair approach, we use argument filterings π in combination with sim-
plification orders on T (Fπ , V) × T (Fπ , V) for this purpose. (Different from The-
orem 25, we do not compare terms with tuple symbols from F�, since we do not
regard nodes labelled with ε.) When computing size-change graphs, we already
fix a part of the argument filtering, viz., we determine how π operates on function
symbols from CP ∪ DP ∪ Dleft

P . Here, Dleft
P are the defined symbols occurring

on left-hand sides in P . For CP ∪ DP , the argument filtering is chosen in Step
2.1 and the symbols in Dleft

P \ DP are not filtered. But we do not yet fix π on
F \ (CP ∪ DP ∪ Dleft

P), since these symbols are not compared when computing
edges of size-change graphs. Moreover, at this point, we still leave the simplifica-
tion order open. Thus, for the size-change graphs we use a reduction pair (�, �)
where s � t holds iff t ∈ T (CP ∪ DP , V) and π(s) →+

EmbFπ
π(t). Moreover,

s � t iff t ∈ T (CP ∪ DP , V) and π(s) →∗
EmbFπ

π(t). The reason for only using
the embedding order when comparing the arguments in the size-change graphs
is efficiency. More sophisticated orders have several parameters (e.g., status and
precedence in RPOS). When using such orders for ordinary termination proofs
(possibly with dependency pairs), these parameters are determined incrementally.
However, it is not clear how to transfer such an incremental approach to the size-
change principle, since one would have to draw conclusions from an unsuccessful
size-change analysis to modify the parameters of the order (e.g., by extending the
precedence).

After computing the size-change graphs we have to calculate the maximal mul-
tigraphs and check whether all of them have an edge of the form i

�→ i. In case of
success, the current reduction pair is refined. To this end, π is also determined on

7 Defined symbols that only occur on left-hand sides of dependency pairs or usable rules do not
have to be included in D′, since the (C ∪D′ ∪F �)-restriction is a relation from T (F ∪ F �,V)×
T (C ∪ D′ ∪ F �,V), i.e., the “greater” term may be from the full signature F ∪ F �.

266 R. Thiemann, J. Giesl

the remaining symbols from F \ (CP ∪DP ∪Dleft
P) and the reduction pair (�, �) is

refined such that s � t iff π(s) �′ π(t) and s � t iff π(s) �′ π(t) for some quasi-
simplification order �′ and simplification order �′ on T (Fπ , V) × T (Fπ , V).8

Note that the relations used for computing the size-change graphs are indeed con-
tained in these refined relations since π(s) →EmbFπ

π(t) implies π(s) �′ π(t)

and π(s) �′ π(t). The reason is that any (quasi-)simplification order contains the
embedding order. As (�′, �′) is a reduction pair and as �′ is monotonic, (�, �)
is a monotonic reduction pair, too. Since the size-change graphs were computed
with a subset of the final refined reduction pair (�, �), some edges in the graphs
may be missing, but this only affects the power, not the soundness of the approach.
Hence, building the size-change graphs with the embedding order instead of other
efficient orders has the advantage that the size-change graphs are correct w.r.t. any
simplification order. So one may indeed use any (quasi-) simplification order when
orienting the usable rules. For example, in our experiments in Section 8.2 we used
LPO.

We also implemented a hybrid variant of the above combination algorithm.
Here, if Step 2.1 returns “No Success”, then we try to solve the constraints
resulting from the original dependency pair approach. If this succeeds, then we
continue with the next SCC in the hybrid algorithm. Otherwise we return a final
“No Success”.

The combination algorithm for termination is like the innermost termination
algorithm except for two differences: In Step 2.1 we always let DP consist of
all defined symbols occurring in P and in Step 2.5 we have to analyze all rules
l → r ∈ R instead of just those of U(D′). This implementation of Theorem 23
always chooses S = ∅, i.e., we use Corollary 24 for the automation.

8.2 Empirical evaluation

Now we describe our experiments to evaluate the performance of the three
approaches discussed in the paper (size-change principle, dependency pairs, and the
combination of the two techniques). To this end, we tested our implementation on
the large collection of examples from [3,7,28] (108 TRSs for termination, 151 TRSs
for innermost termination). More precisely, we used the following algorithms for
(innermost) termination proofs:

– SCP is the size-change principle for TRSs according to Theorem 12.
– DP is the original dependency pair approach.
– DP_SCP is the combination of dependency pairs and the size-change principle

as described in Section 8.1. To increase efficiency, we only tried sets DP with
|DP | ≤ 2 in the algorithm for innermost termination and we only allowed
an argument filtering of at most two function symbols in Step 2.1 (i.e., when
building size-change graphs). Later, when orienting the rules in Step 2.5, we
permitted arbitrary filterings on F \ (CP ∪ DP ∪ Dleft

P).
8 The relation �′ itself is not needed in the implementation. Instead, one only has to determine

a quasi-simplification order �′ which forms a reduction pair with some simplification order. The
reason is that the reduction pair (�′, �′) is only needed to ensure that the usable rules are weakly
decreasing w.r.t. the (C ∪D′)-restriction of � (where � = �′

π). To this end, it suffices to require
π(l) �′ π(r) for all l → r ∈ U(D′) in Step 2.5 since r only contains defined symbols from D′
by the construction of D′.

The size-change principle and dependency pairs 267

Table 1 Performance of the Different Techniques on the Examples of [3,7,28].

Algorithm Order Power Time Avg. Time
Termination (108 examples)

SCP EMB 22 [20.4 %] 0.1s [0.0 s, 0.0 s, 0.0 s]
DP EMB 40 [37.0 %] 19.1 s [0.2 s, 0.0 s, 0.3 s]

DP_SCP EMB 46 [42.6 %] 19.3 s [0.2 s, 0.1 s, 0.2 s]
DP LPO 68 [63.0 %] 144.9 s [1.3 s, 0.3 s, 3.1 s]

DP_SCP LPO 69 [63.9 %] 21.4 s [0.2 s, 0.1 s, 0.3 s]
H_DP_SCP LPO 73 [67.6 %] 93.1 s [0.9 s, 0.2 s, 2.3 s]
Innermost Termination (151 examples)

SCP EMB 22 [14.6 %] 0.0 s [0.0 s, 0.0 s, 0.0 s]
DP EMB 77 [51.0 %] 28.3 s [0.2 s, 0.0 s, 0.3 s]

DP_SCP EMB 87 [57.6 %] 25.6 s [0.2 s, 0.1 s, 0.3 s]
DP LPO 98 [64.9 %] 204.0 s [1.4 s, 0.2 s, 3.5 s]

DP_SCP LPO 101 [66.9 %] 35.3 s [0.2 s, 0.2 s, 0.2 s]
H_DP_SCP LPO 106 [70.2 %] 113.5 s [0.8 s, 0.3 s, 1.9 s]

– H_DP_SCP is the hybrid version of DP_SCP.

In the experiments, we used the following base orders (or reduction pairs).

– EMB is the embedding order.
– LPO is the lexicographic path order where arguments are compared lexico-

graphically from left to right. The required precedence is determined automat-
ically and different symbols may be equal in precedence.

In the “power” column, Table 1 shows the number and percentage of exam-
ples where the respective approach was successful. Here, proofs were interrupted
after 30 seconds.9 In the “time” column, it shows the time required for the proof
attempts. Moreover, in square brackets we give the average time needed per exam-
ple, the average time for examples where the proof succeeds, and the average time
for examples where the proof fails. For further details (e.g., individual runtimes
and results for each example) the reader is referred to [29]. Our experiments were
performed on a Pentium IV with 2.4 GHz and 1 GB memory.

The first rows for the SCP technique indicate clearly that the size-change prin-
ciple on its own has only very limited power. Comparing the dependency pair
approach with the combined technique leads to two observations. If one uses weak
but very efficient orders like EMB, then the main benefit is power. The combined
technique can show (innermost) termination for at least 13 % more examples in
about the same time. For more powerful orders like LPO the main advantage of
the combined technique is efficiency, since here, the combination is approximately
6 times faster while power is increased slightly. Note that this increase in effi-
ciency is indeed due to our combination technique (and not just due to the heuristic
restrictions on DP and on the argument filterings in the DP_SCP-algorithm): even
without these heuristic restrictions (i.e., even if one regards all possible subsets DP
and all possible argument filterings when building size-change graphs), the combi-
nation of dependency pairs and the size-change principle is still at least three times
faster than the pure dependency pair approach. Finally, with the hybrid algorithm

9 There are five examples where some of the algorithms and orders in Table 1 resulted in
timeouts.

268 R. Thiemann, J. Giesl

and LPO, runtimes are decreased by 35 – 45 % compared to the dependency pair
technique and we can show (innermost) termination of at least 7 % more examples.

The dependency pair technique as described in Section 5 can be improved in
several ways (e.g., by transforming dependency pairs by narrowing, rewriting, and
instantiation [2,10,12], by reducing the set of constraints in Theorem 19 (b) and (d)
[12,16,31], by removing rules that do not influence the termination behavior [31],
etc.). All these refinements also carry over to the new technique which combines
the size-change principle with dependency pairs. However, in order to measure the
effects of the combination, in our experiments we used the “pure” dependency pair
method and disabled all these improvements. As shown in [29], the combination
with the size-change principle also yields similar advantages if improvements like
dependency pair transformations are enabled.

We also analyzed the examples where the hybrid algorithm still fails if one uses
dependency pair transformations. It turns out that then the failure is mainly due to
the underlying reduction pairs. If one uses other reduction pairs based on KBO,
polynomial interpretations, and RPOS, we can apply our technique successfully on
almost all examples. These results show that the techniques presented in the paper
are indeed very powerful for mechanized (innermost) termination proofs.

9 Conclusion

In this paper, we adapted the size-change principle from functional programs to
arbitrary TRSs and developed a technique to use it for possibly automated (inner-
most) termination proofs of TRSs. Then we compared this principle with classical
simplification orders from term rewriting. We showed that it is also restricted to
proving simple termination, it incorporates lexicographic and multiset comparison
for root symbols (although not below the root), but it cannot handle defined symbols
or term measures and weights. Nevertheless, there are even examples where the
size-change principle is advantageous to dependency pairs, since it can simulate
argument filtering for root symbols and it can investigate how the size of arguments
changes in sequences of subsequent function calls. On the other hand, the size-
change principle is not modular and it lacks a concept like the dependency graph
to analyze which function calls can follow each other. For that reason, we devel-
oped a new approach which combines the size-change principle with dependency
pairs. This combined approach is more powerful than both previous techniques
and it has the advantage that it often succeeds with much simpler base orders than
the dependency pair approach. We analyzed the complexity of the dependency
pair approach and of the new technique combining dependency pairs with the
size-change principle. While the size-change principle is PSPACE-complete, the
dependency pair approach is only NP-complete. The combination with dependency
pairs does not increase the complexity of the size-change principle, i.e., it is still
PSPACE-complete.

We have implemented both the original dependency pair approach and the
combined approach in the system AProVE and found that this combination often
increases efficiency dramatically. With this combination (using the refinement of
dependency pair transformations) and with an underlying reduction pair based on
the lexicographic path order, 137 of the 151 examples in the collections of [3,7,28]
could be proved innermost terminating fully automatically. Most of these proofs

The size-change principle and dependency pairs 269

took less than a second and the longest proof took about 11 seconds. When regard-
ing termination, the proof succeeded for 87 of the 108 examples and the longest
proof took 4.7 seconds.

Acknowledgements We are grateful to the referees for many helpful suggestions and remarks.

References

1. Anderson, H., Khoo, S. C.: Affine-based size-change termination. In: Proc. 1st APLAS,
LNCS 2895, 2003, pp 122–140

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Com-
puter Science, 236, 133–178 (2000)

3. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using depen-
dency pairs. Technical ReportAIB-2001-09, RWTHAachen, Germany, 2001.Available from
http://aib.informatik.rwth-aachen.de

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, 1998
5. Borralleras, C., Ferreira, M., Rubio, A.: Complete monotonic semantic path orderings. In:

Proc. 17th CADE, LNAI 1831, 2000, pp 346–364
6. Dershowitz, N.: Termination of rewriting. Journal of Symbolic Computation, 3, 69–116

(1987)
7. Dershowitz, N.: 33 examples of termination. In: Proc. French Spring School of Theoretical

Computer Science, LNCS 909, 1995, pp 16–26
8. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: A general framework for auto-

matic termination analysis of logic programs. Applicable Algebra in Engineering, Commu-
nication and Computing, 12(1,2), 117–156 (2001)

9. Fissore, O., Gnaedig, I., Kirchner, H.: Cariboo:An induction based proof tool for termination
with strategies. In: Proc. 4th PPDP, pp 62–73. ACM Press, 2002

10. Giesl, J., Arts, T.: Verification of Erlang processes by dependency pairs. Applicable Algebra
in Engineering, Communication and Computing, 12(1,2), 39–72 (2001)

11. Giesl, J.,Arts, T., Ohlebusch, E.: Modular termination proofs for rewriting using dependency
pairs. Journal of Symbolic Computation, 34(1), 21–58 (2002)

12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Improving dependency pairs. In:
Proc. 10th LPAR, LNAI 2850, 2003, pp 165–179

13. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination proofs with
AProVE. In: Proc. 15th RTA, LNCS 3091, 2004, pp 210–220

14. Hirokawa, N., Middeldorp, A.: Approximating dependency graphs without using tree auto-
mata techniques. In: Proc. 6th WST, 2003

15. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. In: Proc. 19th
CADE, LNAI 2741, pages 32–46, 2003. Full version to appear in Information and Compu-
tation

16. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: Proc. 15th RTA, LNCS 3091,
2004, pp 249–268

17. Kamin, S., Lévy, J. J.: Two generalizations of the recursive path ordering. Unpublished
Manuscript, University of Illinois, IL, USA, 1980

18. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.),
Computational Problems in Abstract Algebra, pp 263–297. Pergamon Press, 1970

19. Korovin, K., Voronkov,A.: Orienting rewrite rules with the Knuth-Bendix order. Information
and Computation, 183, 165–186 (2003)

20. Krishnamoorthy, M. S., Narendran, P.: On recursive path ordering. Theoretical Computer
Science, 40, 323–328 (1985)

21. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In: Proc. 1st
PPDP, LNCS 1702, 1999, pp 48–62

22. Lankford, D.: On proving term rewriting systems are Noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA, 1979

23. Lee, C. S.: Program termination analysis in polynomial time. In: Proc. 1st GPCE, LNCS
2487, 2002, pp 218–235

270 R. Thiemann, J. Giesl

24. Lee, C. S., Jones, N. D., Ben-Amram, A. M.: The size-change principle for program termi-
nation. In: Proc. 28th POPL, 2001, pp 81–92

25. Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Proc. 3rd Hawaii Inter-
national Conference on System Science, 1970, pp 789–792

26. Middeldorp, A.: Approximations for strategies and termination. In: Proc. WRS ’02, ENTCS
70(6), 2002

27. Savitch, J. W.: Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2), 177–192 (1970)

28. Steinbach, J.: Automatic termination proofs with transformation orderings. In: Proc. 6th
RTA, LNCS 914, 1995, pp 11–25. Full version appeared as Technical Report SR-92-23,
Universität Kaiserslautern, Germany

29. Thiemann, R., Giesl, J.: Empirical evaluation of the size-change principle for
term rewriting. Available from http://www-i2.informatik.rwth-aachen.de/
AProVE/empiricalSCP.ps

30. Thiemann, R., Giesl, J.: Size-change termination for term rewriting. In: Proc. 14th RTA,
LNCS 2706, 2003, pp 264–278

31. Thiemann, R., Giesl, J., Schneider-Kamp, P.: Improved modular termination proofs using
dependency pairs. In: Proc. 2nd IJCAR, LNAI 3097, 2004, pp 75–90

32. Toyama,Y.: Counterexamples to the termination for the direct sum of term rewriting systems.
Information Processing Letters, 25, 141–143 (1987)

