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Abstract Governing the ever growing complexity of artificial systems on the one
hand requires a number of expressive abstractions and different levels of interpre-
tation, on the other hand suggests the adoption of formal / mathematical tools to
(at least partially) model and predict the system behaviour. By adopting agent-
oriented abstractions as the starting point, we argue that organisation, coordination
and security all insist on the same conceptual space – that is, static / dynamic rela-
tions / interactions among agents –, which also represents one of the main sources
of complexity for MAS, and for artificial systems in general, as well.

The notion of ACC (agent coordination context) is used in this paper as the uni-
fying core abstraction of a framework that encompasses all such issues, promoting
the integration of organisation, coordination, and security. Such a framework, called
RBAC-MAS, is expressed through a process algebraic model which integrates the
classic organisational issues of role-based models (like RBAC) and the more recent
works on interaction and coordination in MAS.

1 Introduction

The many ways of interaction among system components represent the main source
of complexity within non-trivial systems of any sort. This is why so many research
and technology efforts in the area of computational systems have been devoted in
the last years to the issue of “harnessing the space of interaction” between com-
ponents [35]: coordination, organisation, security, computer networks, workflow
management, computer-supported cooperative work, are only some of the many
tags that have labelled the scientific work in such a broad area of interest.
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Coordination can be considered as one of the main topics in the area: as such,
it has been the subject of several investigations within a multiplicity of different
research areas, and, correspondingly, has been differently conceived and defined
[31]. Quite generally, coordination can be defined as the management of interac-
tion – interaction among the components of a system, whichever the components,
whichever the system. According to this general acceptation, coordination comes
hand in hand with two other key issues in complex (computational) systems: secu-
rity and organisation.

Security represents in some sense a dual aspect with respect to coordination: as
discussed in [6], coordination could be seen as the constructive counterpart of secu-
rity in the dynamics of interaction. That is, whereas security focuses on preventing
undesired / incorrect system behaviours – which may result in problems like denial
of services or unauthorised access to resources – coordination is mostly concerned
with enabling desirable / correct system behaviours – typically the meaningful,
goal-directed interaction between different system components.

On the other hand, organisation strictly relates to both security and coordi-
nation. Apart from organisation abstractions typically used in the security field
– such as roles in RBAC approaches [33], used as both organisation and secu-
rity abstractions –, organisation deals with the static aspects of interaction, while
coordination (and security, dually) mainly deals with the dynamics of interaction.
Roughly speaking, the organisation of a system (whether a human or an artificial
one) defines the admissible interactions among system components at design time,
while coordination and security mostly deal with governing interaction at execution
time. Then, it comes not as unexpected that organisational sciences have provided
some powerful conceptual tools for effectively interpreting and framing the role of
coordination within complex systems of any sort: this is the case, for instance, of
Activity Theory, as discussed in [32].

As discussed in [23], infrastructures are the most natural loci where to embody
a uniform framework accounting for organisation, coordination and security alto-
gether. In order to support fundamental engineering practices like incremental
development, on-line verification, corrective / adaptive / evolutive maintenance,
in fact, infrastructures are today required to provide systems at run time with the
same abstractions used at the design stage. So, for instance, the design abstractions
typically used to model organisation, coordination and security – such as roles,
access lists, and coordination media like monitors or tuple spaces – are nowadays
to be provided as run-time abstractions by the system infrastructures.

By their very nature, infrastructures intrinsically encapsulate key portions of
systems, often in charge of critical system behaviours; as a result, infrastructures
also represent an effective approach to the general problem of formalisability of
complex systems. Formal specification of infrastructures – and in particular of the
abstractions they embody – is then a key issue for the discovery and proof of critical
system properties.

Along the above lines, in this paper we focus on Multi-Agent Systems (MAS) as
a relevant class of complex computational systems. In Section 2, we first introduce
the notion of ACC (Agent Coordination Context) [22] as an infrastructure abstrac-
tion encompassing organisation, security and coordination, then we provide some
examples of theACC expressive power. Then, in Section 3 we first give an overview
of RBAC (Role-Based Access Control) models, then we show how a role-based
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approach to security can be adapted and extended to agent-based organisations, by
informally presenting our RBAC-MAS model. The formal discussion of both the
ACC notion and the full RBAC-MAS model is delegated to Section 4, where we
exploit the potential of algebraic approaches to denote MASs and their evolution;
first we introduce our ontology (what is an agent, a MAS, an organisation, an agent
action, an ACC, and all the essential ingredients of RBAC-MAS) in terms of the
elements of a process algebra, then we present the transition systems that define the
semantics of ACC and RBAC-MAS. Finally, Section 5 provides for final remarks
and conclusion.

2 Agent coordination contexts

Introduced in [22], the notion of ACC (agent coordination context) aims at facing
the many static and dynamic issues that arise from the relation between the indi-
vidual agent and the MAS as a whole. In particular, ACCs have been conceived so
as to uniformly frame the agent-vs-MAS issues that are usually expressed in terms
of organisation, coordination and security.

In the remaining of this section, we first introduce the notion of ACC by mov-
ing from its motivations and conceptual foundations, then we discuss ACC as an
infrastructure abstraction. Finally, we provide some examples of the ACC use and
expressive power, by anticipating some of the syntax defined in the rest of the
paper. The formal definition of the ACC notion is in fact delegated to Section 4,
where a general framework for modelling MASs with ACCs and RBAC-MAS is
introduced as a process-algebraic specification.

2.1 ACC basics

Generally speaking, anACC is meant to represent the conceptual boundary between
the agent and the environment (or, the rest of the MAS), encapsulating the inter-
face toward the environment from the agent viewpoint. As an interface, the ACC
both (i) works as a model of the environment for the agent, and (ii) enables and
rules the agent interactions with the environment. The ACC abstraction models the
presence of an agent within a multi-agent organisation, by defining its admissible
actions (including perception) with respect to the organisation resources, as well
as its admissible communication acts toward the other agents belonging to the
organisation.

An ACC works both as a specification for the rules that constrain agent inter-
action with the environment, and also as a means to enact such rules. The ACC is
meant to encapsulate such rules, to enforce them, and also to make them available
for agent run-time inspection and, possibly, meta-level reasoning over the MAS
state and behaviour.

In order to provide the reader with a better intuition of the concept, an ACC
could be basically thought as a control room made available to each agent entering
a MAS [22]. According to this metaphor (sketched in Fig. 1), an agent enter-
ing a new organisation is assigned its own control room. The control room of-
fers the agent a set of admissible inputs (lights, screens, . . . ) and admissible
outputs (buttons, cameras, . . . ), which are the only way the agent can perceive
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Fig. 1 ACC as a control room [22]

the environment, as well as the only way the agent can interact with the envi-
ronment and affect it. How many input and output devices are available to an
agents, of what sort, and for how much time – this is what defines the con-
trol-room configuration, that is, out of metaphor, the specific ACC configura-
tion. On the other hand, the control room (so, the ACC) is the only way the
agent is perceived by its surrounding environment, that is, by the rest of the
MAS.

For instance, in the context of MASs based on direct communication models,
such as KQML [17] or FIPA ACL [12], the ACC would work by enabling and
ruling agent speech acts and conversations. When exploited in the context of agent
coordination infrastructures such as TuCSoN – as studied in [24] – an ACC works
by governing agent interactions with the coordination media (such as tuple cen-
tres), expressed in terms of primitives of the underlying coordination model (such
as in, out, rd, . . . ).

In general, the ACC is meant to enable and rule agent actions of any sort.
According to that, the general model for ACC cannot assume any specific action
model – which would depend on the specific MAS – and relies instead on a generic,
non-specific notion of agent action. Dually, any given MAS defines its own spe-
cific action model, which ACCs are then required to enable and rule: so the specific
MAS action model determines the specific ACC model on a case-by-case basis.

2.2 Organisation, security, coordination & the ACC

2.2.1 Organisation

Two basic stages characterise the life-time of an ACC: ACC negotiation and ACC
use. In order to take part actively to a multi-agent organisation, to access its
resources as well as to interact with its members, an agent must first negotiate
to get an ACC from the supporting multi-agent infrastructure. In this stage, the
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agent typically specifies the structure (society, group) it aims at entering, and the
role(s) it aims at playing. In the case of a successful negotiation – i.e. the agent
request is compatible with the organisation rules –, an ACC is configured to contain
all the rules applying to the requesting agent (specialised according to the specific
agent request), and then released to the agent itself. From then on, the agent works
as an active part of the society/group, and can use the ACC to act and interact
according to the organisation rules defined in the ACC configuration, and enforced
by the ACC at run time.

Which precise acceptations of organisation, structure, society, or group are
required by the very notion of ACC, it does not come along with the definition
of ACC – and this also should explain why the lines above could appear vague
under that respect. Per se, the requirements for the ACC notion from an organisa-
tional viewpoint are mostly a notion of agent identity (and a procedure to make it
known and certain), and the existence of an organisational model (if any) defin-
ing roles for agents, and associating admissible actions to roles through some
organisation (security, coordination) policies. That is why the integration of the
ACC notion within the RBAC-MAS framework is seamless, as formally shown in
Section 4.

2.2.2 Security

When dealing with agents within a MAS, two basic stages can be devised out that
frame security issues: agent entrance into a multi-agent organisation, and agent
interaction within the organisation itself. The two stages can be mapped directly
on the two basic stages that concern the life cycle of an ACC, i.e. ACC negotiation
and use, respectively.

Security policies governing agent entrance affect ACC negotiation, through
the constraints specified as agent-role and inter-role relationships. Such policies
determine whether an agent can join a society, based on the agent identity – authen-
tication is typically required here – as well as on the roles that the agent is possibly
already playing within the multi-agent organisation.

Security policies governing agent interaction within an organisation are enforced
at execution time by the ACC working as a run-time abstraction, ruling agent com-
munication and access to the organisation resources according to the permissions
granted to the agent role(s). Such permissions are expressed in terms of the patterns
of actions and interaction protocols that an agent is allowed to perform within the
organisation.

BothACC negotiation and use stages deal with crucial security issues. However,
in this paper we mostly neglect the ACC negotiation stage, since it is a quasi-static
process whose complexity is not much higher than the typical authentication and
role-assignment phases of any role-based system: how an agent and a specific
MAS actually negotiate the initial configuration of the ACC released to the agent
is not really relevant here. Instead, complexity lays in the dynamics of the agent
(inter)acting within a multi-agent organisation, and specifically on how an ACC
controls, constraints, filters – one may say secures – the agent observable behav-
iour within the organisation: that is why in the following we focus on the ACC
use stage.



156 A. Omicini et al.

2.2.3 Coordination

In the gray area where coordination policies are not so easy to distinguish from
security policies, it should be first of all noted that ACCs promote a notion of
admissible agent action which is not (necessarily) statically defined. In fact, gen-
erally speaking, the actions that an agent is allowed to perform by its ACC are not
assigned statically to the agent by virtue of its initial role assignment: instead, they
may dynamically depend on a number of factors such as agent interaction history,
time constraints, general system status and behaviour, and many others.

For instance, the capability of specifying the set of admissible actions by vir-
tue of the agent interaction history can be used to bound the agent behaviour to
some given interaction protocol, defined according to the current agent role. A
well-known example in the MAS field is the Contract Net Protocol [34]: through
suitably configured ACCs, it is possible to constrain the interactive behaviour of
agents to follow any of the possible action sequences established for the auctioneer
and bidder roles involved in the protocol. This capability is almost mandatory for
MAS models and infrastructures, especially in those contexts where the enforce-
ment of interaction protocols and social norms is strictly required, as in the case
of computational institutions.

ACCs also help bridging the traditional dualism between subjective and objec-
tive coordination approaches – where coordination is interpreted as either an agent
activity, or an activity over the agents, respectively [29]. In fact, an ACC on the
one hand specifies and constrains the space of actions that are objectively avail-
able to a specific agent (role) within a MAS; on the other hand it makes such
a space available to the subjective understanding and deliberative process of the
individual agent.

For instance, in the case of a coordination infrastructure like TuCSoN, it com-
pletes the coordination tools that engineers need in order to govern the agent inter-
action space: laws and policies meant to manage the interaction among a group of
agents are to be enforced by coordination media; instead, laws and policies meant
to rule the individual actions and perceptions with respect to the ensemble are to be
enforced by the ACC [25]. In other terms, an ACC is meant to be a local abstrac-
tion, complementing coordination media that work as global abstractions. In fact,
an ACC contains and manages information related only to the interaction state of
the specific agent owning it. Dually, a coordination medium typically manages
information about the interaction and coordination state of the whole ensemble of
agents that use the medium itself.

2.3 ACC Examples

Inspectability is one of the key features of abstractions handling interaction in open
systems [28]. The ability of reading an ACC configuration, and understanding the
admissible behaviours it allows for, is fundamental for intelligent agents which aim
at entering a multi-agent organisation – first, to decide if joining the organisation
could be of some interest, then to help elaborating plans of action.

From this viewpoint, which language is used to describe the ACC configura-
tion, and make it available to the agent, is a relevant issue indeed. Making such
a language be the same actually used to enforce the ACC configuration, and also
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match the syntax used in the formal specification of the ACC (Section 4), actu-
ally promotes conceptual integrity throughout the whole MAS engineering process
(from design to deployment and execution time). The syntax for ACC configura-
tion adopted is then not only a means to describe the behaviour of ACC, but also
a language for the specification of security properties – to be exploited both at
design time to a-priori shape the space of agent interaction, and at run time to enact
security policies and also to make them explicitly available to agents for inspection.

So, in the following we anticipate the syntax and semantics for ACC con-
figurations described Section 4 – and in particular the fragment for ACC policy
definition, as defined in Fig. 7 on page 168 –, and exploit it to provide the readers
with some simple but intuitive examples of how ACCs can be used to define and
enforce a number of security policies that go beyond the naive idea of permissions
(i.e., enabling a subset of actions). In fact, we show how an ACC can be used to
enable protocols, enforce concurrency policies, measure and rule resource access,
and allow for dynamic access control.

In order to gain the required expressive power, the language adopts features that
are borrowed from well-known and deeply-studied foundational calculi for inter-
action, such as CCS [18] and ACP [2]. Also, in the illustration of examples below
we first refer to abstract actions, then use Linda [13] coordination primitives over
tuple spaces – in, rd, and out1 – as concrete instances of abstract operations.
This choice on the one hand prevents us from being excessively abstract, on the
other hand allow us to give evidence to some subtle issues, such as the ones related
to substitutions.

2.3.1 Filtering

The simplest security policy that ACC policies should be able to express is the
ability of discerning admissible agent actions, namely, which actions an agent is
actually allowed to execute. This is the typical approach to security of systems
based on ACLs (access control lists): once an agent has been authenticated – in our
framework, once it has successfully negotiated an ACC – it has limited permissions
to act on the available resources.

A general definition of the kind

D := (a1 + a2 + . . . + an); D

implements the idea: theACC policy expressed by D can repeatedly and indefinitely
execute any of the actions a1, a2, . . . , an, whereas any other action is not allowed.
Hence, the choice operator + is used here to enable a subset of actions, while
sequential composition ; along with the recursive definition D makes it possible
to iterate this behaviour indefinitely. In fact, any (either finite or infinite) sequence
of the actions a1, . . . , an is an admissible action history for an agent ruled by the
ACC policy D above.

By using substitutions, admissible actions can be filtered in a more flexible
way. In the Linda case, for instance, we can define the policy

D := (out(id , t (X, 1)) + in(id , t (X, 1)) + rd(id , t (X, 1))); D
1 In particular, in(id, t) / rd(id, t) respectively consumes / reads a tuple matching template

t from the tuple space id , whereas out(id, t) puts tuple t in the tuple space id .
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which allows only tuples of the kind t (X, 1) to be actually inserted, read, and
removed from tuple space id .2

2.3.2 Protocols

The mechanisms ofACLs is indeed a static one: the subset of the admissible actions
for an agent is determined after the agent authentication, during a successful ACC
negotiation, and is typically left unmodified thereafter. Instead, our language for
ACC policies is expressive enough to allow for the definition of protocols of actions,
that is, to impose the order in which an agent is allowed to perform a sequence of
actions. For instance, by the ACC policy defined by

D := (a1 + a2); (a3 + a4); a5

the agent is only allowed to execute a sequence of three actions: first, either a1 or a2,
then either a3 or a4, finally a5. In general, by composition of the operators + and ;
a policy can specify as admissible any finite subsequence of actions, such as e.g.

D := (a1 + a2; a3) + a1; a1; (a2 + a3)

The same mechanism can be fruitfully exploited along with recursive definition
and substitutions, as in the following Linda case:

D ::= in(id , t (X, 1));out(id , t (X, 1)); D

The above ACC policy on the one hand specifies that the agent should alternately
consume and produce tuples of the kind t (X, 1); on the other hand, by exploit-
ing the substitution mechanism, it forces the agent to insert the same tuple just
after its removal. For instance, one can easily verify that the sequence of actions
〈in(id , t (1, 1)),out(id , t (1, 1)),in(id , t (2, 1)),out(id , t (2, 1))〉 is allowed by
theACC policy above, whereas 〈in(id , t (1, 1)),out(id , t (2, 1))〉 is not. This kind
of specification is particularly useful when the occurrence of a tuple in the shared
space stands for the availability of a shared resource: using the above policy would
ensure that agents release the resource used before accessing the others.

2.3.3 Fine-grained policies

Besides the basic mechanisms for filtering admissible actions and enforcing pro-
tocols, ACC policies allow for a finer-grained control of agent actions.

As a first example, suppose that actions consist of accesses to resources. In
some cases, it might be sensible to a-priori restrain agent access to resources by
limiting the number of actions allowed to the agent: the composition operator ‖
can be exploited to this end. By the ACC policy defined as

D ::= a1‖a1‖a1‖a2‖a3

an agent can invoke a1 at most three times, a2 and a3 only once – in whichever
order.

2 By the way, this example also shows why we make the substitution operator not affect
definitions (see Fig. 7 on page 168): otherwise, inserting tuple t (1, 1) would have caused the
substitution of X with 1 from then on, preventing the subsequent insertion of e.g. tuple t (2, 1).
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When this mechanism is used along with protocols, it can be exploited to allow
an agent to participate in more than one simultaneous conversation of the same
protocol. The Linda example shown above can be extended as

D ::= (in(id , t (X, 1));out(id , t (X, 1)))‖D

allowing the agent to exploit more than one resource at the same time. In this case,
on the one hand the agent is no longer required to release a resource before asking
for another; on the other hand the agent still cannot insert tuples that it had not
previously removed – which at least ensures safety of the coordination medium.

2.3.4 Dynamic controls and non-determinism

An interesting subtlety comes in when interpreting the meaning of the choice oper-
ator within ACC policies. Consider a policy of the kind a1; C1 + . . .+an; Cn, with
all the ai different from each other. This policy allows an agent to choose which
action ai to execute; after execution, the corresponding policy continuation Ci car-
ries on. In this case, the agent choice deterministically determines the prosecution
of the ACC – and of the corresponding agent admissible interaction history as well.

Everything changes when the ai are not all distinct. Given an ACC policy of the
form a; C + a; D, an agent is bound to choose action a; however, after a execu-
tion, the policy may be either move to continuation C or D, non-deterministically,
independently of the agent choice.An interesting interpretation of this form of non-
determinism is that this sort of ACC policy allows the infrastructure to dynamically
control the behaviour of an ACC at run time, so as to possibly change the policies
ruling agent interaction during execution. For instance, this would allow an infra-
structure to dynamically tune up access control policies based on run-time aspects
such as the availability of resources, or the required quality of service.

As an example, consider the following (generic) definition of an ACC policy:

D ::= start; (resource(r) + resource(r ′)); D

Each time an agent needs to access a resource, it first executes the initialisation
action start , then the infrastructure is allowed to determine at run time which
resource between r and r ′ is to be made available to the agent, by suitably govern-
ing the subsequent evolution of the ACC policy (resource(r) + resource(r ′)).

Another interesting case is related to the Linda protocol mentioned above. The
following variation of it

D ::= in(id , t (X, 1));out(id , t (X, 1)) + in(id , t (X, 1));out(id , t (X, 1)); D

makes it possible for the infrastructure to choose at any time if a given ACC has to
be terminated, after any number of action pairs in(id , t (X, 1));out(id , t (X, 1))
executed by the agent. In fact, each time the tuple removed by the primitive in is
restored by the dual invocation of the primitive out, the policy allows the infra-
structure to either choose to make it be the last agent operation (left choice), or to
permit other agent actions thereafter (definition recursion, right choice).

As an alternative and equivalent formulation, the above protocol can be written as

D ::= in(id , t (X, 1));out(id , t (X, 1)); (� + D)
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where term � is used to denote a state where the protocol can be quit: hence, after
executing the in and out operations, the protocol can be quit or keep with other
new operations.

3 From RBAC to RBAC-MAS

When engineering complex software systems with agent-oriented abstractions,
organisation emerges as a fundamental dimension [37], strictly related to coordi-
nation and security – as already discussed above. The connection between organi-
sation and security is also quite apparent in RBAC (Role-Based Access Control)
models / architectures, which are currently considered as the most promising
approach to the engineering of security – in particular of access control – in com-
plex information systems [33]. On the one side, RBAC major properties are the
ability to articulate and enforce enterprise (system) specific security policies and
to streamline the burdensome process of security management [10]: with respect
to previous approaches (such as discretionary and mandatory access control), they
allow for a more flexible and detailed control and management of security. On
the other side, RBAC approaches make it possible to specify security policies in
terms of organisation abstractions – such as roles, role permissions and inter-role
relationships –, so as to easily integrate security in contexts where organisation
is explicitly defined with such abstractions. Recent works have also emphasised
how effective RBAC approaches are in supporting organisation and security at the
infrastructure level for system heavily based on coordination: among the others,
the most relevant example are Workflow Management Systems [14,4,1].

In [27] we showed how RBAC-like models can be suitably introduced in a
MAS context, integrating a high-level role-based security approach with agent-
based coordination and organisation, where the role abstraction is already at play.
While MAS organisational models based on roles are typically exploited at design
time, a RBAC-like model in a MAS context extends its scope to execution time:
roles, sessions, policies become run-time aspects of a MAS organisation, which
are dynamically manageable by means of suitable services provided by the infra-
structure. So, in the same way as RBAC approaches brings at the infrastructure
level security issues that were previously faced (in a similar way) by each indi-
vidual applications, we aim at factoring out security issues that frequently emerge
in the engineering of agent systems, and extending the MAS infrastructure with
the corresponding services – suitably integrated with the MAS organisation and
coordination model.

In the overall, RBAC models are gaining interest also within the MAS field for
a number of good reasons. First of all, they promote conceptual integrity in MAS
engineering, by framing security issues so that the basic bricks of the organisation
model (roles, policies, etc) can be adopted as viable security abstractions. Also,
RBAC approaches allow security policies to be defined and enforced despite the
typical MAS heterogeneity and openness: on the one side, the same model can be
applied in the context of systems composed by agents with heterogeneous compu-
tational models, from reactive to cognitive based ones; on the other side, the model
supports the openness that is a typically desired MAS feature, in terms of dyna-
mism of the system structure (e.g., the set of agents), and of the organisational /
coordination policies as well.



An Algebraic Approach for Organisation & Roles in MAS 161

In the remainder of this section, we first give an overview of RBAC models
(Subsection 3.1), along with a reference architecture (Subsection 3.2), then we
discuss our RBAC-MAS model (Subsection 3.3) informally, by mainly discussing
its peculiarity with respect to traditional RBAC approaches. The formal discussion
of the full RBAC-MAS model is instead delegated to the next section.

3.1 RBAC models overview

In RBAC, a role is properly viewed as a semantic construct around which access
control policy is formulated, bringing together a given collection of users and
permissions, in a transitory way [33]. The role concept assumes several manifes-
tations, which RBAC aims at accommodating and capturing. A role can represent
competency to do specific tasks, such as a physician or a pharmacist; but also
the embodiment of authority and responsibility, such as in the case of a project
supervisor. Authority and responsibility are distinct from competency.

The RBAC approach makes it possible to establish relations between roles,
between permissions and roles, and between users and roles. For example, two
roles can be established as mutually exclusive, so that the same user is not allowed
to take on both roles at the same time. By means of inheritance relations, one role
can inherit permissions assigned to a different role. These inter-role relations can
be used to enforce security policies that include separation of duties and delegation
of authority. Separation of duties is achieved by ensuring that mutually-exclusive
roles are invoked to complete a sensitive task, such as requiring an accounting clerk
and an accounting manager to participate in issuing a check.

With separation of duty, RBAC directly supports other two well-known secu-
rity principles: least privilege and data abstraction. Least privilege is supported
because RBAC can be configured so that only those permissions required for the
tasks conducted by members of the role are assigned to the role. Data abstraction is
supported by means of abstract permissions such as credit and debit for an account
object, rather than the read, write, execute permissions typically provided at the
operating system level. However, RBAC is also said to be policy neutral, since it
does not enforce itself any specific access policy.

Summing up, RBAC allows for encapsulation of security policies. Access con-
trol strategy is encapsulated in various RBAC components such as role-permis-
sion, user-role and role-role relationships. Altogether, such components, which are
dynamically configurable by system administrators, determine whether a particular
user will be allowed to access a particular piece of data or a resource in the system.
Moreover, RBAC approach makes it possible and easy to incrementally evolve the
access control policy during the system life-cycle, so as to meet the ever-changing
needs of a complex organisation.

3.2 The RBAC reference architecture

According to the reference architecture formally defined in [11], the main com-
ponents of a RBAC model are depicted in Fig. 2, defined in terms of basic ele-
ment sets and their relationships. The basic element sets are users (USERS), roles
(ROLES), objects (OBJS), operations (OPS), permissions (PERMS) and sessions
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USERS ROLES

SESSIONS

OPS OBJSOPS

PERMS

SSD

User 
assignment

Role
Hierarchy

DSD

Session 
roles

User 
sessions

Role
permissions

Fig. 2 RBAC Reference Model [11]

(SESSIONS). Users are assigned to roles and permissions to roles. A role is under-
stood as a job function within the context of an organisation with some associated
semantics regarding the authority and responsibilities conferred to the user assigned
to the role [11]. A permission is an approval to perform an operation on one or more
protected objects. The semantics of the term operation and object depends on the
specific cases. Each session is a mapping between a user and an activated subset
of roles that are assigned to the users. Each session is associated with a single user
and each user is associated with one or more sessions. Hierarchies are a natural
means for structuring roles so as to reflect the line of authority and responsibilities
within an organisation, and define an inheritance relationship among the roles: role
R1 inherits role R2 if all the privileges of R2 are also privileges of R1.

Security policies are defined in terms of relationships between the element
sets. User-assignment relationships define which users are assigned a specific role,
which means that they are allowed to play it inside the organisation; permission
assignment defines which permissions are assigned to each role. Static separation
of duty properties (SSD) are obtained by enforcing constraints on the assignment
of users to roles; instead, dynamic separation of duty properties (DSD) are obtained
by placing constraints on the roles that can be activated within or across a user’s
sessions.

3.3 From RBAC to RBAC-MAS: the main issues

In [27] we provided the conceptual foundations to RBAC-MAS, by taking the
basics of the RBAC model, and bringing them to the MAS field. The MAS per-
spective, in fact, introduces a new view over interaction – which are the entities
interacting, and how they interact –, and so, over security, organisation and coordi-
nation. As a result, when coming to MAS, RBAC has to be suitably amended and
extended to suit the nature of the agent-oriented abstractions.

Accordingly, in the rest of this section we shortly introduce RBAC-MAS by
pointing out the main differences between RBAC-MAS and the original RBAC,
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Fig. 3 A Possible Reference Model for RBAC-MAS

and leaving the formal RBAC-MAS definition to the next section. In fact, the main
peculiarities of RBAC-MAS with respect to RBAC, as they emerge by comparing
Fig. 2 with Fig. 3, can be summarised as follows:

Agent Classes – Instead of RBAC users, RBAC-MAS has agent classes, each one
characterised by a unique identifier. To each identifier, a cardinality (even infi-
nite) is associated, stating how many agents at most can belong to the class –
which gives RBAC-MAS a finer control over system openness.

Actions – Operations and objects are not unrelated in MAS. Therefore RBAC-
MAS introduces a notion of action, which is an operation over a given object.
Actions are terms with variables, and a notion of substitution is introduced,
mainly to cope with issues like action completion, perceptive actions, and so on.

Policies – Instead of permissions, which are subsets of the cartesian product of the
set of the operations and the set of objects, RBAC-MAS introduces policies,
which are protocols (possibly infinite, concurrent, and non-deterministic) of ac-
tions – as illustrated by the examples in Subsection 2.3. Policies are first-class
entities, with their own unique identifier.

ACCs and Sessions – In the RBAC-MAS approach, the ACC abstraction also ac-
counts for the RBAC notion of session. Since each agent is assigned its own
ACC within an organisation, RBAC-MAS allows only one session per agent
(per organisation). Getting rid of an ACC and asking for a new one corresponds
then to an agent closing a session and trying to open a new one.

A number of further features of RBAC-MAS are worth to be pointed out:

Static / Dynamic Enforcement of Policies – In the RBAC-MAS approach, poli-
cies are dynamically enforced via ACCs, which work as both design time and
run time abstractions. Correspondingly, no conceptual distinction can be made
any longer between SSD and DSD. Also, given that the same abstraction that
mediates all the agent interactions (ACC) is used to design, contain and enforce
security policies, any agent is structurally prevented from executing prohibited
actions within an organisation.
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Role Activation / Deactivation – Policies constrain which roles can be activated or
deactivated by an agent given its current state of actions and active rolesets. So,
for instance, policies can be specified not only to ensure a given path of actions
for an agent, but also to enforce an allowed sequence of role activation and
deactivation. An ACC can be left only when all its roles have been deactivated.

No Default Roleset – RBAC-MAS does not provide a notion of default roleset to
an agent. Instead, the agent initially enters a void ACC, and can subsequently
activate roles on a step-by-step basis, according to the role activation/deactiva-
tion policies it has been assigned.

Finally, in order to keep the RBAC-MAS presentation simpler, and make the
formalism more manageable and understandable by the reader, in this paper we
stick to the simpler case of one organisation per MAS – the more general case
where a MAS contains more than one separate organisation structure would bring
nothing new from a conceptual viewpoint here. For the same reason, we neglect in
the following the issue of role hierarchies – merely for the fact that RBAC-MAS
adds nothing to this RBAC notion.

4 The algebraic approach

In this section, we formalise our conceptual framework, by using an algebraic
approach to denote MASs and their evolution. In Subsection 4.1, we first introduce
some basic notation, then we implicitly define our ontology by formally represent-
ing the essential ingredients of RBAC-MAS – an agent, an organisation, a MAS,
an agent action, an ACC – as well as their mutual relationships. Subsequently, in
Subsection 4.2, the semantics of RBAC-MAS is formalised through a number of
transition rules defining the admissible evolutions of a RBAC-MAS system.

4.1 Notation, syntax & ontology

As a general notation convention, in the following we let Greek letters α, β, . . .
identify meta-variables over actions, ranging over sets denoted by notation Set(α),
Set(β), and so on. Non-capitalised letters a, b, . . . represent meta-variables over
identifiers of different kinds, ranging over sets denoted by notation Set(a), Set(b),
and so on. In particular, n ranges over the set of natural numbers and infinite (n ∈
N∪{∞}). Capitalised letters A, B, . . . are instead used as meta-variables for system
components and abstractions of various sorts, ranging over sets denoted by symbols
A, B, . . . . Accordingly, the basic items of our framework are denoted as follows:

– c ranges over the set of the agent classes,
– a ranges over the set of the agent identifiers,
– r ranges over the set of the role identifiers,
– p ranges over the set of the policy identifiers,
– ε ranges over the set of the environment actions.

The sets Set(c), Set(a), Set(r), Set(p) and Set(ε) ranged over by the above vari-
ables are specific to any given MAS organisation: so, no further hypothesis are
made on their structure.

If we denote the union of the above sets with T , ranged over by variable τ ,
a notion of substitution can be introduced for terms τ . We name substitution a
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total function σ ∈ � from terms to terms, where � ⊆ T 
→ T . Notation στ
denotes a substitution σ applied to a term τ , and symbol ◦ is used for composition
of substitutions – which is assumed to be a closed operator over �. As usual, this
notation is often abused by allowing a substitution to be applied to elements of any
syntactic category: the meaning is that any term τ occurring inside the elements
gets correspondingly substituted. For instance, if we consider the expression term
τ‖τ ′; τ ′′, we let σ(τ‖τ ′; τ ′′) be syntactically equal to (στ)‖(στ ′); (στ ′′).

It is worth noticing that substitutions introduce a (pre)order relation over terms
– a relation which is reflexive and transitive. We say that τ is more specific than τ ′ –
written as τ 
 τ ′ – iff there exists at least one substitution σ ∈ � such that στ = τ ′.

For any of the above meta-variables, say it is x, we let x̃ to range over bound
values, that is, values such that for any substitution σ we have σ x̃ = x̃.

4.1.1 MAS configuration

At any given time a MAS is denoted by its configuration, which captures an instant
of the MAS evolution over time. As summarised by Fig. 4, a MAS is conceived
here as composed by three parts – agents, organisation, and environment. Corre-
spondingly, in our framework, a MAS configuration is composed by three sets:

Agent configuration — X is the agent configuration of a MAS, that is, at any given
time, the set of the agents currently belonging to the MAS. Every agent x ∈ X
is either an active or an inert agent. An active agent is an agent that has already
entered the organisation – so, it has an ACC assigned yet –, which is denoted
by a term 〈a, (C)A〉, where a is the agent identifier, A the agent action config-
uration and C its ACC configuration. An inert agent is an agent that has not yet

S ::= X‖O‖E MAS configuration

X ::= 0 agent configuration
| 〈a, A〉 inert agent
| 〈a, (C)A〉 active agent
| X‖X agents

O ::= K‖V organisation configuration

K ::= 0 structure configuration
| {c(n)}C agent class (with cardinality)
| {c, r}CR class role
| {r, p}RP role policy
| {p := P }P policy definition
| {[RS] + r}SD separation of duty constraint
| K‖K control structures

RS ::= 0 | r | RS‖RS roleset

V ::= 0 activity configuration
| [a, c]A active agent class
| [a, r]AR active agent role
| V ‖V activity controls

Fig. 4 MAS configuration
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entered the organisation – so, it has no ACC assigned yet –, which is denoted
by a term 〈a, A〉.

Organisation configuration — O is the organisation configuration of a MAS, that
is, the set of the organisation structures that shape the MAS at any given time.
In turn, organisation configuration is conceptually divided in two parts. The
structure configuration K includes information on the control structures that
define the organisation, that is, recognised agent classes, roles, permissions,
separation of duty constraints, and their relationships. In particular, {c(n)}C

means the organisation recognises agent class c with cardinality n, {c, r}CR

that role identifier r is associated to agent class c, {r, R}RP that R is the role
specification associated to r , {p := P }P that P is the policy specification asso-
ciated to identifier p, and finally {[RS] + r}SD is the separation of duty rule
saying that an agent having activated the roleset RS cannot activate role r .
The activity configuration V instead keeps track of the status of the controls
enforced on agents, namely, the class c of each active agent a by [a, c]A, and
by [c, r]AR that an agent with class c is playing role r .

Environment configuration — E is the environment configuration of a MAS, that
is the set of the elements – such as information sources, physical devices, arti-
facts of various kinds [26] – which altogether constitute the MAS environment.
Environment configurations E ∈ E will not be described in their syntax and
semantics in the following, since they are peculiar to any specific MAS, so not
easily generalised.

4.1.2 Agent behaviour & actions

As it deals with the control of interactions between the components of a system,
RBAC is not concerned with the internal structure of the components, but only
with their interactive behaviour. Analogously, our framework makes no hypothesis
on the agent architecture and inner dynamics, and focuses instead on modelling
the agent observable behaviour. As a consequence, an agent evolution over time is
represented here through its agent action configuration A, expressed in terms of
the agent actions – actions on the environment, the control structures and the ACC,
as reported in Fig. 5 and pictorially summarised in Fig. 6.

More precisely, variable ε (as previously discussed) ranges over actions on the
environment – upon which we do not make any hypothesis. Variable ω ranges over
actions on the organisation, which are used to read or adapt static control struc-
tures – adding, removing, and updating users, roles, policies, separation of duty
constraints. Variable φ ranges over actions on either the environment or the orga-
nisation. Finally, variable ν ranges over actions handling ACC and its structure,
including entering and leaving theACC, as well as activating and deactivating a role.

Actions φ over the environment and the organisation by an agent are the ones
directly perceived by the rest of the MAS: as such, they are actually enabled and
controlled by the ACC according to the roles the agent is playing and its associated
policies, hence an agent executes them by qualifying role and policy identifier
(r : p : φ). Instead, ACC actions ν have no direct effect on the MAS, but should
also be handled and recorded globally at the infrastructure level: correspondingly,
ι represents the actions for ACC negotiation or change as perceived by the rest of
the MAS, that is, an action ν qualified by the agent identifier a.
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A ::= 0 | α.A | A + A agent action configuration

α ::= r : p : φ | ν agent actions

φ ::= ε | ω environment / organisation actions

ω ::= organisation actions
+K control structure addition

| −K control structure removal
| K 
→ K control structure update
| ?K control structure reading

ν ::= ACC actions
↓ ACC entry

| ↑ ACC exit
| +r : R role activation
| −r role deactivation

ι ::= aν negotiation actions

Fig. 5 Agent behaviour & actions

4.1.3 ACC configuration & policies

An ACC enforces and controls agent actions within an organisation. Every ACC
is associated with an active agent, and its state, called ACC configuration, evolves
along with the evolution of the agent behaviour. Re-reading notation in Fig. 4,
an active agent 〈a, (C)A〉 has agent identifier a, agent action configuration A and
ACC configuration C.

According to Fig. 7, ACC configurations are a parallel composition of roles R
– for an agent concurrently playing more than one role – each specified by its own
role identifier r . Since it is possibly characterised by more than one policy, a role
is itself a composition of policies P , each with its own policy identifier p. As a

ENVIRONMENTORGANISATION
LAYER

αααα r:p:φφφφ
εεεε

ωωωω

νννν

Agent
Actions

ACC
Actions

Env.
Actions

Org.
Actions

Fig. 6 Structures of agent actions
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C ::= 0 ACC configuration
| r : R active role
| C‖C ACCs

R ::= 0 role
| p : P active policy
| R‖R roles

P ::= 0 policy
| π controlled action
| P ; P sequence
| P + P choice
| P ‖P interleaving
| D (recursive) definition call

π ::= φ | � policy actions

Fig. 7 ACC configuration

result, an active policy is identified by qualifying the role identifier and the policy
identifier (r : p : P ).

ACCs control actions π through policies (policy actions in Fig. 7), express-
ing constraints on the occurrences of actions φ, as well as of the escape action
�, used to leave a policy. Such constraints are imposed through the operators for
sequential composition “;”, choice “+”, parallel composition “||”, and (recursive)
definitions “D”.

4.2 Operational semantics

In the following, we provide a specification of RBAC-MAS in terms of the admis-
sible evolutions of a MAS configuration, modelled in terms of transition systems
over the process algebraic approach described above.

4.2.1 Agent behaviour & actions

The semantics of the agent behaviour is modelled by a transition system 〈A,−→A,
Set (α)〉 denoting the evolution over time of agent action configurations. As shown
in the formal syntax, we adopt a process algebraic approach in the definition of A,
modelling continuation and non-deterministic choice. As usual, we introduce the
following congruence relation, stating basic properties of choice

A + 0 ≡ A A + A′ ≡ A′ + A (A + A′) + A′′ ≡ A + (A′ + A′′)

and define the operational rules:

A
α−→A A′′

A + A′ α−→A A′′ [A-CHO]

−
α.A

σα−→A σA
[A-SEQ]
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Rule [A-CHO] provides the usual semantics to the choice operator: as an alterna-
tive is selected for executing an action, the other choice is discarded. Rule [A-SEQ]
instead deals with action execution and continuation: as the agent intends to exe-
cute action α, the more specific version σα can actually be executed, in which case
substitution σ is applied to the continuation A.

4.2.2 Policy

A main difference between RBAC and RBAC-MAS is grounded in the notion of
policy, which actually differs from that of permission. While permissions simply
define a set of allowed operations over objects, we rely here on the stronger notion
of protocol: a policy is an admissible protocol of actions over environment and
organisation, possibility featuring non-determinism, interleaved sub-policies, and
recursive behaviours. Moreover, at any given time a policy could allow for a more
specific action than it is actually prescribed; furthermore, the environment which
the action is executed over could constrain the action to be even more specific. We
tackle this aspect by let substitutions make into actions. As the actions controlled /
enforced by a policy are ranged over by π , we define

π ::= σ � π

An interaction σ � π means that a further substitution σ is actually externally
imposed to the allowed action π . Therefore, the transition system for policies is
defined by the triple 〈P,−→P, Set (π)〉. Similarly to the case of agent action con-
figurations, we introduce the congruence rules

0 + P ≡ P P + P ′ ≡ P ′ + P (P + P ′) + P ′′ ≡ P + (P ′ + P ′′)
0‖P ≡ P P ‖P ′ ≡ P ′‖P (P ‖P ′)‖P ′′ ≡ P ‖(P ′‖P ′′)

0; P ≡ P ; 0 ≡ P P ; (P ′; P ′′) ≡ (P ; P ′); P ′′
(P + P ′); P ′′ ≡ (P ; P ′′) + (P ′; P ′′)

and the operational rules:

−
π; P

σ ′�σπ−−−→P σ ′σP
[P-ACT]

D := P P
π−→P P ′

D π−→P P ′
[P-DEF]

P
σ�π−−→ P P ′

(P ‖P ′′); P ′′′ σ�π−−→ P (P ′‖σP ′′); σP ′′′
[P-PAR]

P
π−→P P ′

P + P ′′ π−→P P ′
[P-CHO]

Rule [P-ACT] defines the crucial aspect of policy interactions; as action π is spec-
ified in the policy, any more specific version σπ can be executed which can be
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further constrained by external imposition of substitution σ ′ (by the environment):
in this case, σ ◦ σ ′ is actually applied to the policy continuation. Rule [P-DEF]
handles (recursive) definitions; a definition symbol D behaves as the policy P it
is associated with. Rule [P-PAR] defines the semantics of parallel composition: if
policy P , in parallel with P ′′ and followed by P ′′′, allows for action π and substi-
tution σ , then this substitution is to be applied both to P ′′ and P ′′′. Rule [P-CHO]
is the standard rule for the choice operator.

4.2.3 Agent coordination context

The ACC and its relationship with an agent is expressed by the two kinds of admis-
sible agent configurations X, which can be either of the kind 〈a, A〉 (inert agent)
or 〈a, (C)A〉 (active agent) according to Fig. 4. By controlling / enforcing actions
of an agent through its ACC, an agent configuration X evolves by two kinds of
actions: (i) by an action φ of an agent over either the environment or the organisa-
tion, which is amenable of substitutions (hence we define φ ::= σ � φ), or (ii) by
a negotiation action ι. Accordingly, the transition system that models the evolution
of agent configurations is then of the kind 〈X, −→X, Set (φ) ∪ Set (ι)〉.

In particular, the operational rule for actions φ is as follows:

A
r:p:σφ−−−→A A′ P

σ�φ−−→P P ′

〈a, (C‖r : (R‖p : P))A〉 σ�φ−−→X 〈a, (C‖r : (R‖p : P ′))A′〉
[ACT]

An agent playing a role r can perform an action φ (or a more specific one) if
there exists a corresponding policy p that allows for it. Also, action execution may
require action specialisation by substitution (σ in the rule above), which is to be
applied to both policy P and agent action configuration A, and makes them evolve
to a new state.

Substitutions of this kind are actually sufficiently expressive to model a number
of narrowing / widening scenarios. Suppose that actions φ are terms of the kind
f (t1, .., tn), where elements ti are either variables v or integer values n, and that
the selected policy specifies action f (v, 1). As a first scenario, assume the current
action α in the agent action configuration is of the kind f (v′, v′′); the ACC allows
the more specific action φ = f (v, 1) – the environment could either accept it, or
accept the more specific version f(2,1) by substitution σ = v 
→ 2. As a second
scenario, assume the current action α in the agent configuration is of the kind
f (2, 1); the ACC allows the action φ = f (2, 1) – the environment directly accepts
it with identity substitution.

Operational rules dealing with negotiation actions are somehow more articu-
lated. First of all, one should notice that the ACC does not exert any actual control
over negotiation actions, since they are always admissible and potentially execut-
able. This derives from the fact that such actions are not directly observable, since
they affect the ACC configuration, and have no direct effect on the agent envi-
ronment. However, since negotiation actions are exposed in the transition relation
−→X, they execution can actually be controlled by the outside – by the infrastructure
in particular: in fact, as shown in the following, the organisation controls them in
order to enforce the required access control policies.
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A
↓−→A A′

〈a, A〉 a↓−→X 〈a, (0)A′〉
[ENTER]

A
↑−→A A′

〈a, (0)A〉 a↑−→X 〈a, A′〉
[QUIT]

A
+r:R−−→A A′

〈a, (C)A〉 a+r:R−−−→X 〈a, (C‖r : R)A′〉
[ACTIVATE]

〈a, (C‖r : R)A〉 a−r−−→X 〈a, (C)A′〉
(
P

σ��−−→P P ′ or P �→P

)

〈a, (C‖r : (R‖p : P))A〉 a−r−−→X 〈a, (C)A′〉
[DEACT-REC]

A
−r−→A A′

〈a, (C‖r : 0)A〉 a−r−−→X 〈a, (C)A′〉
[DEACT-FIX]

Rule [ENTER] initially provides an agent entering an ACC with the void context,
while rule [QUIT] is used to let an agent in a void context to leave the ACC –
and the organisation as well. Rule [ACTIVATE] makes an agent activate a role r
with specification R – which is actually imposed/checked by the organisation –;
activation simply adds to the context. Finally, rules [DEACT-REC] and [DEACT-
FIX] handle the recursive deactivation of a role, policy by policy. A policy can
be removed whenever it allows for the escape action � or it reaches a deadlock
state (i.e., it is terminated); when no more policies occur for the role, this can be
removed from the context.

4.2.4 MAS operational semantics

Once the evolution over time of the agent and of the organisation components
have been operationally defined above, it is now possible to formally describe the
dynamics of a MAS as a whole in our framework. The global operational semantics

of a MAS is specified via an unlabelled transition system 〈S,
S−→, {}〉, where MAS

configurations evolve by the execution of three different actions, according to the
following operational rules:

X
σ�ε−−→X X′ E

ε�σ−−→E E′

X‖E‖S −→S X′‖E′‖S
[S-E]

X
σ�ω−−→X X′ O

ω�σ−−→O O ′

X‖O‖S −→S X′‖O ′‖S
[S-O]

X
ι̃−→X X′ O

ι̃−→O O ′

X‖O‖S −→S X′‖O ′‖S
[S-N]

Rule [S-E] handles the interaction of an agent with the environment. This occurs
if one of the components of the environment (E) can execute the requested action ε.
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As a result of action execution, such a component can actually enforce a substi-
tution σ (ε � σ ) which is then applied to the agent configuration as previously
seen. As discussed above, we do not elaborate further upon a model for the envi-
ronment, as this is out of the scope of the RBAC-MAS model – correspondingly,
a transition system over E is not defined here. As shown in [26], yet, the schema
action-substitution adopted is sufficiently expressive to account for bi-directional
communication with other agents, as well as for interaction with artifacts of vari-
ous sorts. Rule [S-O] similarly deals with organisation actions, used to access and
manage the organisation control structures. If organisation action ω is admissible,
the organisation could be in need (for instance, to ground the agent request) to
enforce a substitution σ (ω � σ ), which is then applied to the agent configuration.
Finally, rule [S-N] describes the execution of negotiations actions ι̃, which affects
the organisation as shown in the following.

4.2.5 Organisation

In order to complete the specification of the RBAC-MAS formal model, it is now
sufficient to describe the organisational aspects – that is, how the organisation han-
dles negotiation and organisation management actions – in terms of a transition
system over O.

Negotiation For the transition system 〈O, −→O, Set (ι)〉, the rules dealing with
negotiation actions aν are as follows:

[a, c]A /∈ O

O‖{c(n)}C

a↓−→O O‖{c(n − 1)}C‖[a, c]A

[O-ENTER]

−
O‖{c(n)}C‖[a, c]A

a↑−→O O‖{c(n + 1)}C

[O-LEAVE]

O‖ a+r−−→O O ′‖[a, r 
→ R]AP

O‖{r, p}RP‖{p := P }P

a+r−−→O

O ′‖{r, p}RP‖{p := P }P‖[a, r 
→ R‖p : P ]AP

[O-ACT-REC]

r �= r ′ {r, p}RP /∈ O

O‖{[RS] + r}SD

a+r−−→O O ′‖{[RS] + r}SD

O‖[a, r ′]AR‖{[RS‖r ′] + r}SD

a+r−−→O

O ′‖[a, r ′]AR‖{[RS‖r ′] + r}SD

[O-ACT-SD]

[a, r]AR /∈ O [a, r ′]AR /∈ O
r �= r ′ {r, p}RP /∈ O

O‖{c, r}CR

a+r−−→O

O‖{c, r}CR‖[a, r]AR‖[a, r 
→ 0]AP

[O-ACT-FIX]

−
O‖[a, r]AR

a−r−−→O O
[O-DEACT]
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Rule [O-ENTER] states that an agent is allowed to enter an ACC only if the organ-
isation recognises its class c and the cardinality constraint is satisfied – namely,
{c(n)}C occurs in the organisation configuration (with n > 0, which means that
another agent of class c can enter the organisation). Correspondingly, the term
[a, c]A is added to the organisation configuration and the cardinality is correspond-
ingly decreased, so as to track the agent presence within the organisation. Dually,
rule [O-LEAVE] handles agent quitting the ACC, by removing the term [a, c]A and
correspondingly increasing cardinality.

The three rules [O-ACT-*] describe role activation, which is obtained through
two consecutive recursions. The first ([O-ACT-REC]) is used to construct the
context-role R to be activated, defined by term [a, r 
→ R]AP. The second
([O-ACT-SD]) checks whether separation of duty is satisfied, namely, if corre-
spondingly to the activated roleset RS (or any of its subsets) there is a SD rule
{[RS] + r}SD. The fixpoint rule ([O-ACT-FIX]) additionally checks if the agent is
actually allowed to play that role (by occurrence of {c, r}CR) and if that role is not
already activated for him (by absence of [a, r]AR). Finally, rule [O-DEACT] deals
with agent deactivation, which is simply obtained by removing term [a, r]AR.

Organisation management As a first approximation, the operational rules dealing
with organisation actions ω could be easily described as follows:

K /∈ O

O
+K−→O O‖K

[ADD]

−
O‖K −K−→O O

[REM]

K ′ /∈ O

O‖K K 
→K ′−−−→O O‖K ′ [UPD]

−
O‖σK

σ�?K−−−→O O‖σK
[RD]

These rules are respectively used to add, remove, update, and read a structure
configuration K from the organisation. However, such rules do not deal with con-
sistency: for instance, a policy definition could be removed while an agent is still
allowed to use it, thus possibly leading the MAS configuration to get stuck when
the agent activates a new role using that policy. Whenever these constraints are of
some concern, one has to rely on the following refinement of the above rules:

Agent class

{c(n′)}C /∈ O

O
+{c(n)}C−−−−→O O‖{c(n)}C

[O-ADD-C]

{c, r}CR, [a, c]A /∈ O

O‖{c(n)}C

−{c(n)}C−−−−→O O
[O-REM-C]

−
O‖{c(n)}C

{c(n)}C 
→{c(n′)}C−−−−−−−−−→O O‖{c(n′)}C

[O-UPD-C]
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Rule [O-ADD-C] adds (the structure for) an agent class {c(n)}C provided another
one for c is not already occurring. Rule [O-REM-C] removes (the structure for)
an agent class {c(n)}C provided no role is assigned to c ({c, r}CR /∈ O), and no
agent of that class is currently active ([a, c]A /∈ O). Finally, rule [O-UPD-C] allows
for updating the structure of an agent class only by changing its cardinality (from
n to n′).

Class-role

{c, r}CR /∈ O

O
+{c,r}CR−−−−→O O‖{c, r}CR

[O-ADD-CR]

{r, p}RP, {[RS‖r] + r ′}SD, {[RS] + r}SD, [a, r]AR /∈ O

O‖{c, r}CR

−{c,r}CR−−−−→O O
[O-REM-CR]

Rule [O-ADD-CR] is used to add a class role {c, r}CR, which is allowed only if it is
not already occurring. Then, by rule [O-REM-CR], the class role can be removed
only if the role has no associated policy ({r, p}RP /∈ O), if it involves no separation
of duty rule ({[RS‖r] + r ′}SD, {[RS] + r}SD /∈ O), and if no agent has currently
activated that role ([a, r]AR /∈ O).

Role-policy

{r, p}RP /∈ O

O
+{r,p}RP−−−−→O {r, p}RP

[O-ADD-RP]

[a, r]AR /∈ O

O‖{r, p}RP

−{r,p}RP−−−−→O O
[O-REM-RP]

Similarly to class roles, by rules [O-ADD-RP] and [O-REM-RP] a role policy can
be added only if not already occurring, and can be removed if no agent has currently
activated that role.

Policy-definition

{p := P ′}P /∈ O

O
+{p:=P }P−−−−−→O O‖{p := P }P

[O-ADD-P]

{r, p}RP /∈ O

O‖{p := P }P

−{p:=P }P−−−−−→O O
[O-REM-P]

−
O‖{p := P }P

{p:=P }P 
→{p:=P ′}P−−−−−−−−−−→O O‖{p := P ′}P

[O-UPD-P]

By rule [O-ADD-P] a policy definition can be added if not already occurring, as
usual. By rule [O-REM-P], a policy definition can be removed if it is assigned to
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no role. Finally, rule [O-UPD-P] allows for directly updating a policy definition,
changing the defined policy from P to P ′.

Separation of duty

{[RS] + r}SD /∈ O {c, r}CR /∈ O
(r ′ ∈ RS:{c, r ′}CR /∈ O) r /∈ RS

O
+{[RS]+r}SD−−−−−−−→O O‖{[RS] + r}SD

[O-ADD-SD]

−
O‖{[RS] + r}SD

−{[RS]+r}SD−−−−−−−→O O
[O-REM-SD]

A new separation of duty rule {[RS] + r}SD can be added by [O-ADD-SD] if it
is not already occurring, and if the roles it specifies are assigned to some class.
Finally, rule [O-REM-SD] allows for removing any separation of duty rule.

5 Related works and conclusion

In this paper, we defined a uniform conceptual framework for coordination, secu-
rity and organisation aspects in MAS, and formalised it through a process-algebraic
approach. Such a framework, called RBAC-MAS, is rooted in the role-based access
control approaches, and exploits the notion of ACC (agent coordination context)
as its basic brick. In particular, the ACC is an organisational abstraction where
standard process algebra techniques are used to define a language for both spec-
ifying and enacting security / coordination policies within MAS. As discussed in
[27], adopting an RBAC-like approach makes it possible to gain all the benefits
of RBAC in engineering security inside complex MAS organisations, mainly in
terms of encapsulation of the security policies, and flexibility in their management.
There, the notion of ACC is the key for integrating coordination, organisation and
security in a coherent way.

To the authors’ knowledge, ours is the first work bringing RBAC to MAS.
Abundant literature exists about role-based approaches for MAS analysis and
design [37,9,15], and on the role concept and formalisation in open agent societies
[21]. With respect to ours, these approaches focus on the organisation issues, and
take in no account – at a model and engineering level – the integration with security,
access control and coordination. Also, according to the authors knowledge, this is
the first work adopting an algebraic approach to formally describe RBAC architec-
tures. Other formal descriptions have been adopted for RBAC outside the context
of MAS, based on set theory [10], Z formal language [16], and temporal logics [7].

In [38], a RBAC-like approach is used to implement a policy-enforcement
coordination model based on tuple spaces. In particular, Proxies are used for both
applying role-based access control on agents interactions – including inter-agent
communication and agent-tuple space interaction –, and enforcing coordination
policies on tuple spaces. While the ACC abstraction shares some features with
the Proxy entity (it is the run-time abstraction responsible of enforcing role-based
access control on agent actions), unlike a Proxy, an ACC is negotiated, created and
released dynamically to a specific agent, not shared among agents. Also, the ACC
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is primarily an organisation abstraction: it is used to rule agent actions (protocols)
according to its role(s), and not to enforce global coordination policy as in the case
of Proxy. Even more, the ACC is meant to specify and enforce not only single
actions, but policies, as patterns of actions (protocols).

The ACC framework shares some visions and objectives with policy-driven
architectures [8], developed mostly in the context of distributed systems. These
approaches typically make it possible to explicitly define organisation policies –
typically role-based – ruling objects interaction and process access to resources
inside a distributed system. In this context, the notion of ACC is similar to the
notion of controller as found in the Law Governed Interaction (LGI) model [19].
Generally speaking, LGI is a message-exchange mechanism that allows an open
group of distributed agents to engage in a mode of interaction governed by an
explicitly specified and strictly enforced policy – the interaction law of the group.
Law enforcement is decentralised, and carried out by a distributed set of controllers,
one for each member of the community. As the LGI controller, the ACC enforces
rules constraining the action/perception space of the agent exploiting it, enabling
the enactment of policy that are local to the agent. With respect to our approach, LGI
on the one side is more general, since it is not linked to any specific organisational
model – role-based models can be simulated by suitably configuring controllers –;
on the other side, in LGI it is not clear how to support dynamism concerning agent
organisations, for instance dynamic activation and deactivation of roles.

In the MASs literature, electronic institutions (e-Institutions) currently rep-
resent the most complete work (from an engineering point of view) concerning
the definition and enforcement of institutional rules and norms governing multi-
agent societies and organisations [20,36]. Typically such approaches enforce norms
through middle agents, which mediates the communication between the individ-
ual agent and the rest of the organisation, without taking into account social rules
involving the state of a group of agents/roles. Instead, our approach is rooted on the
notion of infrastructure, which we believe can more coherently deal with global
system rules (such as role-role relationship) and norms, and with their enforcement
as well. In this perspective, the ACC notion can be considered (and exploited) as a
run-time embodiment of the notion of contract that appeared in some work in the
e-Institution and agents & law context [36], or to enforce roles as in [5].

Future work will be devoted to investigate the possibility to integrate research
issues about roles, institutions and access-control theory developed in the context
of multi-agent organisation within our RBAC-MAS framework – in particular as
far as the notions of obligation and normative system are concerned [3]. To this
end, the research presented in this paper will soon result in the release of a new ver-
sion of the TuCSoN infrastructure for MAS coordination [30] fully implementing
ACCs and RBAC-MAS.
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