
AAECC (2005) 16: 113–150
DOI 10.1007/s00200-005-0173-0

Frank S. de Boer · Wieke de Vries ·
John-Jules Ch. Meyer · Rogier M. van Eijk ·
Wiebe van der Hoek

Process algebra and constraint programming
for modeling interactions in MAS

Received: 9 October 2003 / Revised: 25 June 2004 / Published online: 31 May 2005
© Springer-Verlag 2005

Abstract We show how techniques from the realm of concurrent computation
can be adapted for modeling the interactions of agents in multi-agent systems. In
particular, we introduce a general process-algebraic approach to modeling multi-
agent systems. Our approach consists of an integration of the process algebras of
Communicating Sequential Processes (CSP) and Concurrent Constraint Program-
ming (CCP) for modeling the communication, synchronization and coordination
in multiagent systems, including FIPA-style communication primitives and a pro-
gramming language for group actions in a multi-agent system.

1 Introduction

A very challenging new domain of applications in computer science concerns
the modeling and programming of complex interactions in so-called multi-agent
systems (MAS) [9,32,33]. Typically in these systems, pieces of software, called
agents [34], are working together to perform a certain task, each displaying some
autonomous and proactive behaviour, and acting together within a highly non-deter-
ministic and unpredictable environment. (Potential) applications of such systems
abound, ranging from e.g. workflow systems and information management systems
to systems for electronic commerce and social simulation ([33]). The increasing
complexity of such software requires new modeling and programming techniques
which allow a formal description of agents at a high-level of abstraction corre-
sponding with that of the application domain.
∗also at CWI, Amsterdam

F. S. de Boer∗ · W. de Vries · J.-J. Ch. Meyer (B) · R. M. van Eijk
Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands
E-mail: jj@cs.uu.nl

W. van der Hoek
Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, United Kingdom

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

114 F. S. de Boer et al.

In our approach we focus on the information-processing aspects of multiagent
systems. We view a multiagent system as set of information-processing entities
(agents) that act in a particular environment and that communicate with each other
through the exchange of information.

Each agent maintains a private store of information that it can query and update
with new information. This new information results from direct observations in the
environment (such as, for example, in an e-commerce setting, directly inspecting a
vendor’s assortment) or be the result of communication with other agents. In such
communications, agents provide answers (like for instance,“Yes, it does”) to ques-
tions they have been asked (e.g., “Does vendor X have item Y in its assortment?”).

Actions can be performed in the world by an agent itself (like for instance, a
vendor adding a particular item to its assortment), but there are also actions that
require the joint execution of more than one single agent (e.g., a transaction between
a buyer and a seller). In the latter case, agents need to coordinate their activities.
That is, they need to synchonise with each other and communicate on the condi-
tions of the joint action (e.g., the price of the item at hand, the delivery conditions
and so on). There are situations in which agents even communicate on the identity
of participants that should be involved in the joint action (like the exclusion of an
unreliable agent in a multi-party transaction).

In this paper we advocate a process-algebraic approach (in the sense of [23]) to
modeling multiagent systems, in particular the information-processing aspects of
these systems. This involves describing multiagent systems by means of processes,
i.e., terms in a formal (programming) language, together with a precise operational
semantics in the form of a formal transition system. The modelling of a multi-agent
system in terms of a process algebra forces us to lay bare the computational mech-
anisms that are essential to the information-processing in multi-agent systems. The
approach thus allows us to abstract away from implementation details. Moreover,
it enables us to give precise definitions of the operational semantics of the different
mechanisms. So our language, like most process algebra’s, allows to give abstract
specifications of multi-agent systems, and this paper focuses on the design of such
systems by a specification language that is rigorously founded by a formal oper-
ational semantics. Since we use the standard formalism of structural operational
semantics we may also import and apply to multi-agent systems the various con-
cepts that are defined and studied in concurrency theory, like equivalences based
on bisimulation or refinement notions based on trace inclusion, but we will not
pursue this issue further in this paper. Finally, we benefit from the modularity of
the approach: we start with a basic framework on top of which more elaborate
features and refinements can be built in possible further extensions.

In more detail, in our framework, an agent is modelled as a computational entity
that operates with respect to a private store of information. One part of this store
represents the beliefs of the agent about its environment (its belief base) and the
other part of this store represent the conditions the agent has on joint actions. Both
beliefs and conditions are modelled by so-called ‘constraints’.

A constraint is an abstract piece of information that constrains the interpretation
of variables. Example of constraints are Number(x), I tem(y), Price(x, y) and
x < 25 which denote pieces of information expressing that x is a number, y is an
item, x is the price of y and x is less than 25, respectively. When taken together

Process algebra and constraint programming for modeling interactions in MAS 115

these constraints express the information that the price of a particular item is less
than 25.

Additionally, the agents interact with each other via a synchronous commu-
nication mechanism, in which they either bilaterally exchange information in the
form of a question/answer pair or multilaterally communicate with respect to the
execution of a particular joint action. In the latter case, the constraints on the action
that each of the involved participants has constructed for itself are accumulated,
and this overall accumulation can be inspected by each of the participants in turn.
If the individual pieces indeed add up to a consistent overall constraint the par-
ticipants might decide to subsequently start with the execution of the joint action.
If not, they might reconsider their individual constraints and repeat the proce-
dure. The underlying constraint solver [28] which will be used to find consistent
assignments of the variables satisfying the constraints produced by the negotia-
tions, is not explicitly described in our approach but regarded as a parameter of
it.

It is important to note that, as a language for coordinating negotiation pro-
cesses, our proposal abstracts from the particular negotation policies followed by
the participating agents. In general, the goal of coordination is to manage the
interaction among concurrent processes or agents. Coordination abstracts away
the details of computation. Coordination is relevant in the design, development,
debugging, maintenance, and reuse of all concurrent systems.A number of software
platforms and libraries are presently popular for easing the development of con-
current applications. Such systems, e.g., PVM, MPI, CORBA, etc., are sometimes
called middleware. Coordination languages can be thought of as their linguistic
counterpart [13,32,33].

This paper is organized as follows. In the next section we discuss our pro-
cess-algebraic approach, in particular the (two) sources of inspiration that we have
found in the literature of concurrency semantics that we will adapt and combine
for our purposes. We give the general idea of using transition systems to provide
a formal operational semantics to programming language constructs that we will
use throughout the paper. In Section 3 we give a concise treatment of bilateral
synchronous agent communication in the process algebra ACPL, preparing us for
the next step. Then in Section 4 we turn to the main topic of this paper, viz. agent
coordination, involving group communication, formation, negotiation and collab-
oration. To this end we introduce the process algebra GrAPL, of which the syntax
is described in Section 5 and the semantics is investigated thoroughly in Section 6.
In section 7 we provide two examples to further illustrate the mechanisms of the
framwork. In section 8 we wrap up.

2 Our approach: blending CSP and CCP

The starting points of our approach are the well-known process algebras of Com-
municating Sequential Processes ([20]) and Concurrent Constraint Programming
([27]). These process algebras provide different models of the communication and
synchronization in concurrent systems.

CSP models the interaction between concurrent processes in terms of a mecha-
nism for the synchronous communication of values along channels which connect

116 F. S. de Boer et al.

the processes. These values are stored in variables which are local to the processes.
On the other hand, constraint programming is based on the notion of comput-
ing with systems of partial information: in CCP processes interact via a global
store which constrains the values of the global variables. This global store can
be updated by so-called ‘tell’ operations which consist of adding a constraint and
thereby constraining further the values of the global variables. The global store
can also be queried by ‘ask’ operations which can be executed only if the current
store is strong enough to entail a specified constraint. If this is not the case, then
the process suspends (waiting for the store to accumulate more information by the
contributions of the other processes). The execution of an ask itself leaves the store
unchanged. Hence both the tell and ask actions are monotonic, in the sense that
after their execution the store contains the same or more information. Therefore the
store evolves monotonically during the computation, i.e. the set of possible values
for the variables shrinks.

In the remainder of this paper, we will elaborate the further details of the agent
communication mechanisms that we discussed in the introduction, using ideas and
techniques from CSP and CCP. We will do this in terms of two process algebras:
ACPL and GrAPL. In the language ACPL, we focus on the bilateral communca-
tion mechanism of exchanging information through question/answer pairs. In the
language GrAPL, we generalise this basic framework to a multilateral communica-
tion mechanism for the coordination of joint actions. We define the syntax of these
algebras and provide a structural operational semantics in terms of a transition
system.

To get a more concrete picture we elaborate on this a little further. Our general
methodology for modeling multiagent systems is based on the use of constraint
systems for representing the information state (e.g., its ‘beliefs’ [34]) of an agent.
Such a constraint system also defines an entailment relation which thus captures
the reasoning capabilities of an agent. Each agent has its own private store of
constraints which represent its current beliefs. Agents can update and query their
beliefs by the CCP operations of ask and tell. On the other hand, following CSP,
agents interact only by communicating their beliefs synchronously along CSP-like
channels. However, agent communication generalizes CSP-like communication of
simple values because it involves a communication of beliefs (rather than just val-
ues) in the context of a dialogue: the sent constraint is interpreted as an answer to
the query posed by the receiving agent. For this integration of CSP and CCP for
agent communication we introduce a formal process algebra called ACPL.

As to the issue of agent coordination: in this paper we introduce a coordination
language GrAPL for managing the interaction between negotiating agents. The
basic idea underlying GrAPL is to model the process of negotiation in terms of
communication and synchronization via a kind of global constraint store (effec-
tively realized by a collection of local stores) which represents the result of the
negotiation reached sofar. The act of introducing a new proposal (or bid) is mod-
eled in GrAPL by a communication act which consists of adding a new proposal in
the form of a constraint to the current global constraint store. Such a new proposal
thus restricts the domain of possible values of the variables of the store which
form the subject of negotiation. However, such an update requires an agreement
among the agents involved in the negotiation. In GrAPL we model the basic mech-

Process algebra and constraint programming for modeling interactions in MAS 117

anisms of accepting and refusing new proposals by means of a powerful dynamic
synchronization mechanism of the agents involved in the negotation.

In GrAPL we again employ synchronous communication for the following
important reason. Synchronous communication in the specification of multi-agent
systems allows one to model at a high-level of abstraction the commitment and
mutual agreement in the formation of groups. It allows to focus on the dynamics
of group formation itself and to abstract from implementation details of the under-
lying protocols, which may, for instance, involve some central control such as a
blackbord system.

2.1 Structural operational semantics: transition systems

In the sequel we will emphasize the (formal) semantics of the language constructs
that we will introduce. To this end we employ the familiar SOS (Structural Oper-
ational Semantics)-style introduced by Plotkin [26,18], where a formal axiomatic
transition system is used to give a precise definition of the semantics of language
constructs at hand.

Here we give the basic idea. We start out from the abstract notion of a program
configuration, which in applications will take a concrete form, but typically is a
pair of a syntactic and a semantic entity (or a set of these), the former represent-
ing the program that (still) has to be executed and the latter representing a state
of the computation comprising the semantic elements of concern (e.g. a program
state assigning values to programming variables). Next, we consider transitions of
configurations induced by program execution. The possible transitions are given
by an axiomatic system. Axioms in this system take the form c −→ c′, indicating
that a transition may take place from configuration c to c′. Rules have the form:

c1 −→ c′1
c2 −→ c′2

. . .
ck −→ c′k
c −→ c′

Such a rule expresses that if the premises have been derived already also the conclu-
sion transition may be derived. Sometimes, we write transition rules with several
transitions below the line. They are used to abbreviate a collection of rules each
having one of these transitions as its conclusion. A transition is derivable if it is
either an axiom or can be derived by a rule from previously derived transitions. In
the sequel we will, in fact, use labelled transitions. In general, the additional label
will record certain information about the specific nature of the transition.

3 Agent communication: ACPL

In [8] we have demonstrated how agent communication can be described in a
process-algebraic fashion, in particular by employing a generalisation of the syn-
chronous handshaking communication mechanism of Communicating Sequential

118 F. S. de Boer et al.

Processes (CSP) [20], integrating elements from the paradigm of Concurrent Con-
straint Programming (CCP) [27] into the approach. The latter enabled us to treat the
exchange of information, i.e. constraints, rather than simple values as in the original
CSP. This again forms the basis for the semantics of (FIPA-style) communication
primitives that are typical for agents [10,11].

We illustrate the idea by looking at (a fragment of) the process algebra ACPL
(Agent Communication Programming Language) introduced in [7,8] to investigate
semantics of some of the basic constructs. (To keep things simple we have left out
constructs such as local variable declarations, encapsulation operators, repetition,
and recursive procedure calls.) In this section we furthermore suppress the defini-
tion of formal syntax as much as possible in order to concentrate on the main ideas.
(For a more complete treatment, also dealing with other constructs, we refer to [8,
7,4].)

Suppose we are given a constraint system C, that is, a tuple (C,�,∧, true, false),
whereC (the set of constraints, with typical element ϕ) is a set ordered with respect
to �, ∧ is the least upperbound (lub) operation, and true, false are the least and
greatest elements of C, respectively.

A constraint system is an abstract model of information. It consists of a set
of basic pieces of information, which can be combined to form more complex
constraints by means of a conjunction (= lub) operator “∧”. For instance, con-
straints can be formulas from propositional logic, like p and p → q. Constraints
are ordered by means of an information ordering. That is, ϕ � ψ denotes that ϕ
contains less or equal information than ψ . For instance, q contains less informa-
tion than p ∧ (p → q). Usually, the reverse of the information ordering is used,
which is called the entailment relation, denoted as “ �”. For instance, we have
p ∧ (p → q) � q.

In the context of this section we will extend a constraint system to a belief sys-
tem, in order to use the system for dealing with the information (‘beliefs’) handled
by agents. To this end we augment the constraint system by an update operator
◦: ϕ ◦ψ stands for the update of the information ϕ by the information ψ according
to some particular information updating procedure (studied in the realm of belief
/ theory revision / updating [12]). We assume a particular belief system B to be
given.

We now proceed with presenting the elements of the agent communication
language ACPL, along with their semantics.

In this context a (local) configuration takes the form 〈S, ϕ〉, where S is a (com-
plex) program statement (representing the program still to be executed), which is
either a basic action (see below) or a composition of these by action prefixing, par-
allel composition and nondeterministic choice, and ϕ is a constraint, representing
the information available.

We assume a given set Chan of (unidirectional) communication channels, with
typical element c. The basic actions we consider are the following:

• c!ϕ: The execution of an output action consists of sending the information
ϕ along the channel c, which has to synchronise with a corresponding input
c?ψ , for some ψ with ϕ � ψ . In other words, the information ϕ can be sent
along a channel c only if some information entailed by ϕ is anticipated to be
received.

Process algebra and constraint programming for modeling interactions in MAS 119

• c?ϕ: The execution of an input action, which consists of anticipating the receipt
of the information ϕ along the channel c, also has to synchronise with a corre-
sponding output action c!ψ , for some ψ with ψ � ϕ.

• ?ϕ: The execution of a basic action ?ϕ by an agent consists of checking whether
the private store of the agent entails ϕ.

• !ϕ: The execution of !ϕ consists of updating the belief base with ϕ.

A labelled (local) transition now takes the form

〈S, ϕ〉 l−→ 〈S′, ψ〉
where either l equals τ in case of an internal computation step, that is, a compu-
tation step which consists of the execution of a basic action of the form ?ϕ or !ϕ,
or l is of the form c!ϕ or c?ϕ, in case of a communication step. We employ the
symbol

√
to denote successful termination, using identifications a · √ ≡ a and

S &
√ ≡ √

& S ≡ S, where the operator & is introduced below.
To give semantics to the basic actions we can use the following axioms:

〈?ϕ,ψ〉 τ−→ 〈√, ψ〉 if ψ � ϕ
〈!ϕ,ψ〉 τ−→ 〈√, ψ ◦ ϕ〉
〈c!ϕ,ψ〉 c!ϕ−→ 〈√, ψ〉
〈c?ϕ,ψ〉 c?ϕ−→ 〈√, ψ〉

By means of transition rules we can now proceed and give semantics to imper-
ative programming constructs in (complex) statements such as prefixing a · S
(a followed by S), (internal) parallelism S1 & S2, and nondeterministic choice
S1 + S2, respectively:

〈a,ψ〉 l−→ 〈√, ψ ′〉
〈a · S,ψ〉 l−→ 〈S,ψ ′〉

〈S1, ψ〉 l−→ 〈S′
1, ψ

′〉
〈S1 & S2, ψ〉 l−→ 〈S′

1 & S2, ψ
′〉

〈S2 & S1, ψ〉 l−→ 〈S2 & S′
1, ψ

′〉

〈S1, ψ〉 l−→ 〈S′
1, ψ

′〉
〈S1 + S2, ψ〉 l−→ 〈S′

1, ψ
′〉

〈S2 + S1, ψ〉 l−→ 〈S′
1, ψ

′〉
Defining an agent system as a parallel composition of (local) configurations,

we can give semantics to these agent systems by means of labelled (global) tran-

sitions of the form A
l−→ A′, where A and A′ stand for agent systems that

may be either local configurations or parallel compositions of agent (sub)systems.

120 F. S. de Boer et al.

An interleaving semantics (as in CSP and other process algebras) is then given by
the following rule:

A1
l−→ A′

1

A1 ‖ A2
l−→ A′

1 ‖ A2

A2 ‖ A1
l−→ A2 ‖ A′

1

Here the operator ‖ is used to denote the parallel composition of agent (sub)sys-
tems (which is to be distinguished from the operator & that is used to indicate
parallel execution within an agent!).

In order to describe the synchronisation between agents we introduce a synchro-
nisation predicate |, which is defined as follows. For all c ∈ Chan and ϕ,ψ ∈ B,
if ϕ � ψ then

(c!ϕ | c?ψ) and (c?ψ | c!ϕ).
In all other cases, the predicate | yields the boolean value false. We then have the
following synchronisation rule:

A1
l1−→ A′

1 A2
l2−→ A′

2

A1 ‖ A2
τ−→ A′

1 ‖ A′
2

if l1 | l2

This rule shows that an action of the form c?ψ only matches with an action of
the form c!ϕ in case ψ is entailed by ϕ. In all other cases, the predicate | yields
false and therefore no communication can take place. This rule is a direct analogue
of the synchronous communication in CSP, tailored to our setting of information
exchange.

Here we end our brief exposition of ACPL comprising FIPA-style agent com-
munication, meant to show how a combination of the process algebras CSP and
CCS can be adapted to treat this kind of agent communication in a formal way. In
the next section we will generalize from bilateral communication to group com-
munication for the purpose of coordinating task execution in a multi-agent setting.

4 Agent coordination: GrAPL

In this section we show how we can treat agent coordination, and group communi-
cation, formation and collaboration in particular. A process-algebraic language for
this purpose was introduced in [31,30]. Here we go into more depth, concentrating
mainly on the semantical issues, not covered by the latter paper. The language is
called GrAPL, which abbreviates Group Agent Programming Language. Groups
in GrAPL are dynamic, and can be created at runtime. Coordination and cooper-
ation, which are crucial notions in multi-agent systems, are modelled in GrAPL
by means of formally defined primitives for dynamic group communication and
synchronisation.

We first give an informal explanation of the main ideas underlying the new
features of the programming language GrAPL. The basic idea of GrAPL is that
agents synchronously communicate in order to dynamically form groups which

Process algebra and constraint programming for modeling interactions in MAS 121

synchronously perform certain actions. In fact, a group is defined in terms of the
agents which are involved in a synchronous communication. This is a dynamic
notion, which cannot be determined statically. (So we do not consider ‘pre-exist-
ing’groups that engage in communication!) The agents negotiate about constraints
on these group actions. The constraints are logical formulas, prescribing properties
of the action parameters, e.g., the time and place of a meeting, and the group of par-
ticipants of the meeting. Subsequently, several agents can synchronously execute
the action, obeying the constraints associated with the action.

The programming language GrAPL is again based on a blend of the paradigms
of constraint-based reasoning and CSP. As to the former aspect: GrAPL incorpo-
rates ideas from constraint programming [27] to enable agents to produce and query
constraints about the parameters of the group actions, and can be implemented on
top of a constraint solver [28], which finds a consistent assignment of the action
parameters satisfying the constraints of a group of agents.

As to the CSP aspect in GrAPL : like in ACPL, synchronous communication is
used to communicate information. However, contrary to what is the case in ACPL,
communication is not bilateral but multilateral. We opt for synchronous commu-
nication instead of asynchronous communication, because it allows us to model
the commitment to the new constraints communicated in the negotiation process
at a high level of abstraction. Moreover, synchronous communication implicitly
involves a protocol which controls access to the negotiation process.

More specifically, the communication and coordination process which should
lead to the synchronous execution of an action by a group of agents, distinguishes
two phases. During the first phase, called the negotiation phase, groups of agents
negotiate about the constraints they impose on a certain group action a by synchro-
nously communicating their constraints on the action parameters. All actions have
an implicit parameter which denotes the group involved. By means of this param-
eter agents may express their constraints on the composition of the group. Group
communication updates the constraints of the participating agents on the action a
to be the conjunction of the individually proposed constraints. Subsequently, this
resulting formula constrains each execution of a for each agent that has participated
in the communication, until the constraint on the action a is changed again. In this
second phase, called the execution phase, a group of agents tries to synchronously
execute a group action which was the subject of negotiation. If the actual param-
eters of all agents in the group are compatible, and the constraints of the agents
allow these actual parameters, the action is executed by the group. Otherwise, group
action execution fails. The constraints thus monitor the execution of the action.

By definition in our set-up, a computation step which describes a synchronous
communication only involves agents communicating about the same action. The
non-determinism in the semantics described in the sequel in fact abstracts from
the scheduling of the group communications and the corresponding actions. So
agents which want to communicate some information about an action which is not
scheduled simply have to wait.

Finally in this informal introduction to our approach, we remark that agents
may be involved in different groups. Although in each computation step only one
group communication can take place, an agent can participate in different com-
putation steps, which in general will involve different groups of communicating
agents.

122 F. S. de Boer et al.

4.1 Language features

Before plunging into the formal details of the syntax and semantics of the program-
ming language, we will give an intuitive sketch of the new features of the language.
As stated before, the focus of this work is group formation, group communication
and group action. First, agents synchronously communicate with each other in
order to form groups that are committed to performing group actions together.
The agents communicate about constraints on the action they might do together.
Subsequently, several agents can synchronously execute the action, obeying the
constraints associated with the action. Not all actions need to be constrained, but if
a set of constraints is associated with an action, then action execution has to obey
the constraints, which can specify demands on the parameters of the action and the
group of agents participating in the action. In other words, the constraints monitor
the execution. To facilitate this, there are three special statements in the program-
ming language. The first two implement group communication (CommGroupAdd
and CommGroupReset) and the third implements (group) action execution (simply
a(t1, . . . , tn), where a is an action and t1, . . . , tn are the actual parameters of the
action). The ‘CommGroup-type’ actions may be viewed as multi-lateral general-
isations of the bilateral communication primitives c!ϕ and c?ϕ from the previous
section: by the synchronous execution of the latter two information is communi-
cated from the one agent to the other along some channel, whereas the synchro-
nous execution of the CommGroup-type actions by agents in a group results in the
communication of information (viz. constraints pertaining to actions / tasks to be
performed) across this group. However, regarding the aspect of updating as a result
of the communication the present setting is more primitive than in that of the previ-
ous section: there we used an update operator ◦ which we did not specify but might
involve some sophisticated form of belief revision ([12]). The communication due
to the CommGroup-type action of the current section involves just a very primi-
tive form of updating, viz. adding constraints (‘expansion’). Since this may easily
result in inconsistencies we also introduce the ‘reset’variant (CommGroupReset) to
enable the agents to start over coordinating / negotiating when these inconsistencies
occur.

Actions in GrAPL are parameterised. Each action has a certain arity, which
is the number of parameters it needs. An example of an action of arity two is
PlayGame(v1, v2), where the first parameter v1 is the particular game to be played
and v2 is the starting time of the game. Apart from these explicit parameters, each
action has one implicit parameter, which is the group of agents which execute the
action. This group is always denoted by the special variable g.

Earlier, we mentioned the two phases of the coordination process for a group
action. In the first phase, the negotiation phase, the agents interested in estab-
lishing conditions for execution of a group action a perform CommGroupAdd and
CommGroupReset statements, thereby exchanging proposals for constraints on the
action a. As the name of the statements already suggests, CommGroup statements
(both kinds) are synchronously performed by a group of agents. The constraints the
agents communicate about in GrAPL are constraints on the explicit and implicit
parameters of a. So, agents talk about the details of the action and about the group
which is going to perform the action.

Process algebra and constraint programming for modeling interactions in MAS 123

Each agent has a private, local constraint store, where it keeps the present con-
straint on each action. We could also have opted for a global constraint store for
each action, in which agents communicating about the action write their constraints.
Local constraint stores have several advantages over global stores:

• They fit better with the concept of autonomous agents. The intuitive idea of an
agent is that it reasons about its own motivations and the circumstances in its
environment, and then decides to do certain actions, by itself or in cooperation
with other agents. All information the agent needs for this is stored locally (in
its mental state) or is received from the environment (through observation and
communication).

• They allow multiple groups of agents to discuss and execute the same action.
When two disjoint groups of agents negotiate on an action a, then the local
constraint stores of the agents in each group contain the constraints which the
agents in this group communicated, and no constraints coming from the agents
of the other group.

• The local constraint store of an agent represents its own view on the negotia-
tion about a certain action. During each synchronous CommGroup meeting, only
communicating agents update their local stores. So, in order to know what’s
going on, it is essential to be present in meetings, like in many real-world
organisations.

Local constraint stores thus match the intuitions associated with agents. Initially,
the local constraint stores contain the constraint �, which denotes the logical for-
mula that is always true. So, initially no agent has any demand on any action.

CommGroupAdd and CommGroupReset both take two arguments, a constraint
ϕ and an action a. The difference between CommGroupAdd (ϕ, a) and
CommGroupReset (ϕ, a) is that in the first case the agent adds ϕ to its present
constraint on a, and then proposes the conjunction, while in the second case, the
agent forgets about its current constraint on a and simply proposes ϕ. When a
group of agents is communicating about a group action, some agents in the group
may perform a CommGroupAdd action and others may perform a CommGroupReset
action. All agents in the group have to agree upon the focus of the communica-
tion, that is, the action. Each agent brings its own set of constraints, demanding
execution of the action to take place in a certain manner. The composition of the
group of communicators must satisfy the demands of each agent. If this is not so,
group communication fails. Each successful synchronous combination of group
communication actions updates the constraints of the agents communicating on
the action discussed to be the conjunction of the proposals, as this is the weakest
constraint implying all individual constraints.

After one or more synchronous executions of CommGroupAdd and
CommGroupReset statements, the second phase, the execution phase, takes place.
(In our approach, we abstract again from the precise way how this phase transi-
tion happens. One may think of an arbiter agent (or a timing device) deciding this
or of a kind of group process, for which it seems to be a necessary precondition
that all agents involved know that sufficient and consistent information about the
parameters of an action has been accumulated. One way for an agent to obtain
this knowledge is simply to try to execute the action. . .) In the execution phase, a
group of agents tries to execute the group action which was the subject of nego-
tiation. Each agent ι chooses actual parameters for the action a, named t ι1, . . . , t

ι
n

124 F. S. de Boer et al.

if the action takes n parameters. As the parameters can contain free variables, cer-
tain agents in the group can communicate actual parameters to other agents. This
implicit communication which takes place as a side-effect of action execution is
called execution-time communication. We will show how this works in the example
in the next subsection. If the actual parameters of all agents in the group are com-
patible, and the constraints of the agents allow these actual parameters, the action
is executed by the group. So, the second ‘new’ element in our language (next to
group communication) is group action execution. As can be seen above and in the
example below, the syntax of action execution is conventional; it’s the semantics
that is different. Whenever an action a(t1, . . . , tn) is to be executed by an agent,
the abstract interpreter of our language checks whether there is a constraint bound
to this action. This is done for all agents about to perform the action. There must
be no conflicts in the actual parameters and all constraints in constraint stores of
agents participating have to be satisfied. If so, the action can be done. Otherwise,
group action execution fails.

Each agent has its own belief base, which it uses to store information. The
beliefs of an agent can influence the decision making of the agent, for example
about the constraints the agent imposes on some action. In this paper, we reserve
the term constraint store for sets of formulas which describe demands on param-
eters of certain actions. In constraint programming languages, like for example
CCP ([27]), this term covers all information stores. Our use of the term is different;
in our view, belief bases need not be constraint stores. Belief bases can be con-
straints, describing the partial information of the agents about certain world features
(represented by variables), or they can be sets of closed formulas, describing the
information which the agents hold true of the world state. Because we choose for
the second option in this paper (which isn’t a principled choice in any way), we
only refer to constraints on actions with the phrase ‘constraint store’.

4.2 Example

As an example of the constructs of GrAPL, we return to the game playing action.
Suppose we have agents with names Gabriël, Jan-Ybo, Martha and Jantina. It is a
boring Sunday afternoon, and the agents are talking about playing a game. Ini-
tially, all four agents have the empty constraint (�) on PlayGame in their local
store. They enter the negotiation phase. The four agents synchronously perform a
CommGroupReset(ϕid , PlayGame) action. Here, ϕid is the constraint of the agent
named id, as shown below. Recall that the action PlayGame, introduced above,
needs two parameters, which we refer to as v1 and v2. As will be explained later, in
constraints all agents always use formal parameter vi to refer to the ith parameter
of some action. Each of the agents proposes a different constraint:

ϕJantina equals v1 = Rummikub ∧ v2 < 16.00. So, the only game Jantina is
prepared to play is Rummikub, and she wants to start before four o’clock. Jantina
has no demands on the composition of the group playing the game. ϕGabriël is this
constraint: v1 = Rummikub → Martha ∈ g. So, Gabriël is willing to play any
game at any time, but if the game is to be Rummikub, he wants Martha to play along.
ϕJan-Ybo is the constraint v2 > 14.30. His belief base contains the information
that his favourite TV-show is on from 13.30 till 14.30 and that he has to do his
homework up to 13.30. So, Jan-Ybo has other things on his mind until half past

Process algebra and constraint programming for modeling interactions in MAS 125

two. Only at some later time he is prepared to play a game. ϕMartha = �. Martha is
a very easy agent. She doesn’t have any constraints.

These four constraints are consistent; the conjunction of the constraints is equiv-
alent to v1 = Rummikub ∧ 14.30 < v2 < 16.00 ∧ Martha ∈ g. Consequently, the
four individual local constraints are replaced by the constraint just mentioned.

Now, after the negotiation phase, which in this case consists of only one syn-
chronous group communication action, the four agents can actually play the game.
They enter the execution phase. Each of the four agents executes a PlayGame action.
The actual parameters for this action may differ, as long as they can be unified and
they obey the constraints agreed upon. The agents can test their constraint stores
for Rummikub to find out which demands the other agents communicated, and to
choose appropriate actual parameters. We don’t go into this now.

Some actual action parameters can be free local variables. This way, execution
time communication about action parameters is possible. This form of communi-
cation is a side-effect of action execution. Suppose this is what the four agents try
to do:

• Jantina: PlayGame(Rummikub, t1). So, Jantina doesn’t provide a value for the
starting time of the game. Instead, she uses a free local variable, denoting that
she doesn’t want to be the one to choose the definite time, even though she
initiated the constraint that the game has to start before 16.00.

• Gabriël: PlayGame(p1, t2). Gabriël is open to anything (as long as the constraints
are satisfied). He simply uses two free local variables as actual parameters.

• Jan-Ybo: PlayGame(Rummikub, 15.00). So, Jan-Ybo sets the time at which the
game will start.

• Martha: PlayGame(p2, t3). Martha still is a very easy agent. She is prepared to
adjust herself fully to the other agents, as long as the constraints communicated
to her in the first phase are respected.

An attempt to synchronously execute this group action will succeed, as the
concrete parameters of the four agents can be unified, and the resulting action
parameters satisfy the constraints. Jantina and Jan-Ybo agree on the first parameter
of the action, and they communicate Rummikub to the other agents. The second
parameter in picked by Jan-Ybo to be 15.00, and implicitly communicated to the
others. These two actual parameters satisfy the demands made on the formal param-
eters v1 and v2 in the (now identical) constraint stores of the agents. Also, Martha
is part of the group playing the game, and so the demand on the group composition
(Martha ∈ g) also holds.

But in case Jantina would have demanded the time 14.45 as the second par-
ameter, the group action would have failed. In this case, there are two agents in the
group who don’t agree on a parameter and execution time communication fails. A
group action can also fail when the agents agree on the actual parameters. This hap-
pens when the unified parameters resulting from execution time communication
conflict with the constraints of the participants. For example, Jan-Ybo can choose
the second actual parameter of PlayGame to be 17.00, and tell this to the other
agents using execution time communication. Agent Jan-Ybo then chooses to ignore
the constraint on PlayGame that the agents agreed upon in the negotiation phase. As
the other agents use a free local variable for the second parameter, execution time
communication succeeds, but the action can’t succeed, as the time 17.00 doesn’t
obey the constraint on PlayGame. When a group action fails, the agents can wait

126 F. S. de Boer et al.

until the action can be successfully executed, or they can choose to continue doing
other actions from their programs.

The picture sketched above just gives a general impression of the features of
the programming language. There are many subtle issues and different interesting
options for the precise meaning of group communication and coordination in this
language. We will elaborate on this later on in this paper.

5 GrAPL: syntax

5.1 Basic definitions

The programming language we are about to define is based on the principles of
constraint programming. The sets underlying GrAPL are:

• A = the set of atomic actions. Typical elements are a and b. Each action has an
arity, which is the number of parameters it takes.

• I = the set of agent identities. Typical elements are ι and κ .
• V = the set of variables. There are two kinds of variables; V = LV ∪GV . Here,

LV are local variables. Each agent has its own local variables, so the set of
local variables is the disjoint union of sets of agent-specific local variables. GV
contains the global (system) variables, defined as GV = {vk|k ∈ N} ∪ {g}.

• D = the value domain. Elements of this set are used as constants and can be
bound to variables. Two subsets of D are I and ℘(I).
Local variables are used for processing information only relevant to one agent,

such as testing the local constraint store and specifying formulas to be inserted into
the belief base. For this last purpose, the programmer must make sure that free local
variables are instantiated with ground values at the time the insertion is executed,
as the belief base is a closed formula. Local variables are also used to specify
actual action parameters, when an agent doesn’t care about the precise value of
certain formal parameters.Above, we attributed disjoint sets of local variables to all
agents. These disjoint sets make it impossible for two agents in a system to use the
same local variable name. This prevents name clashes, which could occur during
synchronised action. In group action execution, the local variables of a number of
agents meet when there is execution-time communication.

So, for example, when two agents ag1 and ag2 attempt a group action a, having
three parameters, when ag1’s program contains the statement a(x, 4, 58.3) and ag2
has the statement a(1, x, 58.3), then there is no global substitution unifying the
actual action, whereas it is clear that the intended group action, viz. a(1, 4, 58.3),
can be executed successfully. In order to prevent these name clashes, we define the
sets of local variables in such a way that each agent uses different local variables.

GV is the set of all variables vi and g. We use these variables to specify the
formal parameters of actions. We adopt the practice to refer to these parameters in a
uniform manner. We call the formal parameters of an action a v1, v2, . . . , vk if the
arity of a is k. The implicit formal parameter for the group performing the action
is g. In GrAPL-programs, these formal action parameters occur in constraints on
actions and in formulas tested on the constraint stores. All agents use the same
set of global variables to refer to formal parameters of the whole range of actions.
Constraints are always specified relative to an action, so the global variables have

Process algebra and constraint programming for modeling interactions in MAS 127

an unambiguous meaning. Thus, the set GV exactly contains the variables needed
to work with constraints. To avoid confusion, global variables are only allowed
in conjunction with constraints. Also, global variables are never bound to values.
Even if v1 = 7 is a demand on an action a, v1 is not bound to 7; the constraint just
means: “The first parameters of a must be 7”, and not that the variable v1 always has
the value 7. We do not generate bindings to global variables because they are used
in constraints on different actions, and it is undesirable that a constraint like v1 = 7
on one action demands the first formal parameter of every action to be 7. Because
global variables are not bound to values, there can be no value clashes between
agents involving global variables. We chose to introduce special global constraint
variables because it simplifies communicating about action parameters by groups
of agents. Each agent uses the convention of referring to the ith parameter by vi .
So, no unification is necessary and programs become more clear.

GrAPL makes use of a multi-sorted predicate logical language L. Each agent
possesses a belief base; this contains closed formulas (no free variables) from L.
The constraints on actions are also formulas from L, prescribing properties of action
parameters. Each agent locally stores the present constraint for each action. More
precisely, L is a multi-sorted predicate logic. The set of variables of the logical lan-
guage is V and the set of constants is D. The logic includes set theoretic predicates
and functions, such as ∈,⊆,∪ and ∩, to express properties of the composition
of groups of agents, as well as predicates and functions to describe properties of
action parameters. We use ϕ and ψ to denote arbitrary formulas from L and � and
⊥ to denote the formulas that are always true and false, respectively. We denote the
set of free variables in an expression, term, formula, program, or other syntactic
form w by free(w) and the set of all variables by var(w). We assume the logic L
is equipped with an entailment relation, denoted by |=.

As an example of the use of L for formulating constraints, we give some con-
straints on the action MoveObject(v1, v2, v3). Here, the first formal parameter is
the object to be moved, the second parameter is the original location of the object
and the third parameter is the location to which the object has to be moved. A
very simple constraint is: v1 = table. If an agent has this constraint on action
MoveObject(v1, v2, v3), then it is only willing to move the table; any attempt of this
agent to move something else will fail. If the predicate logic contains a function
distance which takes two locations and yields the distance between these two loca-
tions, then another simple constraint is distance(v2, v3) < 10. An agent having this
constraint associated with the MoveObject action, is not prepared to move some-
thing over a distance which is 10 or greater. A last example of a simple constraint
is James ∈ g. This means that the agent having this constraint is only prepared to
move things when James is part of the group performing the MoveObject action.

By using logical operators, more complex constraints are obtained.An example
is the constraint distance(v2, v3) ≥ 20 → (v2 = Utrecht ∧ Max /∈ g) ∨ #(g) > 5,
which states that when the distance an object has to moved over is 20 or more, the
agent having this constraint only agrees to help if there are at least five agents coop-
erating or if the moving starts in Utrecht and the agent doesn’t have to cooperate
with Max.

If a certain constraint is associated with an action a, then this constraint mon-
itors future executions of a. Agents can repeatedly communicate with each other,
using CommGroupAdd(ϕ, a) and CommGroupReset(ϕ, a). By doing this, the agents

128 F. S. de Boer et al.

define the parameter space of the actual parameters of a. When agents perform
CommGroupReset statements, then their local constraint stores are re-initialised
with fresh constraints, and when agents add constraints using CommGroupAdd,
they narrow down the possible values for the formal parameters of the action.

Actions are primitive notions; their meaning and effects are laid down in seman-
tic functions. Nevertheless the agent program can influence the meaning of actions,
because agents can constrain the set of permissible actual parameters by group
communication.

5.2 Programs

We denote the set of agent programs by P . In order to define this set, we first define
the set of basic statements S.

Definition 1 (Basic statements)
The set S of basic statements is the smallest set containing:

• skip
• ?ϕ, where ϕ ∈ L and var(ϕ) ∩ GV = ∅.
• ?(ϕ, a), where ϕ ∈ L and a ∈ A.
• !ϕ, where ϕ ∈ L and var(ϕ) ∩ GV = ∅.
• CommGroupAdd(ϕ, a), where a ∈ A and ϕ ∈ L.
• CommGroupReset(ϕ, a), where a ∈ A and ϕ ∈ L.
• a(t1, . . . , tk), where a ∈ A, the arity of a is k and all ti are terms of L, such that

for all i ∈ {1, . . . , k} : var(ti) ∩ GV = ∅.

The language includes a statement for doing nothing, skip.
There are two kinds of tests, namely tests of the belief base (simply denoted ?ϕ)

and tests of the constraint bound to an action (denoted by ?(ϕ, a)). These tests
check whether the formula ϕ is logically entailed by the belief base or the current
constraint on a, respectively. Both kinds of tests can yield bindings of values to
variables, but these variables never are global variables. For tests of the belief base,
this is achieved syntactically, by forbidding global variables in the formula tested.
Because global variables are used by all agents to refer to the formal parameters of
all actions, it would be unpractical to generate bindings to global variables. Besides
the practical reason of making no bindings to global variables, there also is a con-
ceptual reason for excluding global variables from some statements. This is that
we introduced global variables specifically for constraint handling. Therefore, they
are forbidden in formulas tested on and inserted into the belief base, and also in
actual action parameters. This way, we maintain a clear separation between global
and local processing, which adds clarity and elegance.

In tests of actions, we do allow global variables, as the constraint on the action
can contain global variables. For example, suppose an agent has the constraint
v1 ≤ 10 on action a, meaning that the first parameter of a must not be larger than
10. The test ?(v1 = 10, a) tests whether the constraint on a implies that the first
parameter of a is 10. As this is not a logical consequence of v1 ≤ 10, the test
fails. In case the current constraint on a would have been v1 = 10, then the test
succeeds. The semantics of GrAPL is defined such that this successful test doesn’t
result in a binding of the value 10 to the global variable v1. In case we would

Process algebra and constraint programming for modeling interactions in MAS 129

perform ?(v1 = x, a), where x is a local variable, and the constraint on a implies
that v1 = 10, then only the local variable x is bound to 10.

Roughly speaking, the statement !ϕ adds the information ϕ to the belief base.
(Actually, we will see that in our semantics this is done in a more refined way,
involving some kind of belief revision.) As mentioned above, we want global vari-
ables only to be used in conjunction with constraint stores, so we forbid them to
occur in new belief base formulas. Another issue is that free local variables are not
allowed in new belief formulas, as the belief base has to be a set of closed formulas.
But we won’t demand that free(ϕ) = ∅, because this would mean that each belief
inserted into the belief base must already be completely specified at compile time.
So, we allow free local variables in the new belief formula ϕ, but we demand that
each free variable is guarded by a preceding test or action execution, which yields
a value for this variable. (Note that action execution can generate bindings, through
execution time communication.) Here is a simple example to make matters clear:

Example 1 (Guarded statements)

?(Book(x) ∧Desirable(x));
GetPrice(x,p);
!(P rice(x) = p)

In this peculiar program, the agent inspects his beliefs for a desirable book, goes to
check its price and then adds the price found to its beliefs, regarding that particular
book. So, the execution of the !-statement is guarded.

The most novel statements of the programming language are CommGroup-
Add(ϕ, a) and CommGroupReset(ϕ, a). Here, a is the action the agent communi-
cates about andϕ is a constraint stating demands of the agent on future executions of
the action a. Using these statements, agents synchronously communicate about the
details of the action and about the group which is going to perform the action. Each
agent in a group of communicators executes either a CommGroupAdd-statement or
a CommGroupReset-statement. Arbitrary combinations of these two statements are
allowed. Group communication succeeds if every agent in the group of communi-
cators approves of the presence of all communicators. Thus, group communication
posits demands on the group of agents that communicates as well as on the group
of agents that executes the action later on. The global variable g refers to both these
groups.

If an agent executes CommGroupAdd(ϕ, a), then it proposes its previously
accumulated constraint on action a strengthened with ϕ. If an agent executes
CommGroupReset(ϕ, a), then it erases its present constraint on a and offers ϕ as
a fresh proposal. In both cases, the resulting constraint on a will be the conjunc-
tion of the proposals of all communicators. The local bindings of a are updated
accordingly. If the agents disagree, the resulting constraint will be ⊥. We allow
this because ⊥ in a constraint store indicates that group communication has failed,
and agents can test their constraint stores to find out whether this is the case. Sub-
sequently, the resulting formula constrains each execution of a for each agent that
has participated in the group communication, until the constraint on the action a
is changed again. As the constraints are local and communication is synchronous,
it is impossible for one agent to alter the constraints of another agent, without
communicating with the other agent.

130 F. S. de Boer et al.

The syntax allows free local variables in CommGroupAdd statements and Com-
mGroupReset statements. For these variables, we make the same restriction as we
did for the free local variables in !-statements; they must be guarded, as a constraint
containing a free local variable doesn’t buy you much. When the free local vari-
ables in new constraints are guarded, they act as place-holders, lying in the scope
of a binding statement (tests or action executions). This implies that at runtime, the
local variables are instantiated with ground terms.

The last basic statement is action execution, denoted by a(t1, . . . , tk) (some-
times abbreviated to a(t̄)). We use this statement both for individual action and
group action. The constraints associated with the action in the local states of agents
trying to perform the action determine how many agents are needed, and some-
times make demands on their identities. If a group of agents (possibly consisting of
only one member) tries to synchronously execute an action, the constraints of the
agents on this action have to be consistent with each other and the actual parameters
(the terms t1, . . . , tk) and the group composition have to satisfy all constraints. In
implementations of GrAPL, a constraint solver has to be plugged in to check this.

Another aspect of action execution is execution time communication. If one
or more agents use a free variable in an actual parameter, and at least one agent
specifies a definite value for this parameter, then the last agent communicates the
value to the other agent(s). This form of communication generates bindings to the
free variables used by the listening agents.

Example 2 (Jogging agents) Two agents, James and Clare, arrange to go jogging.
They discuss and subsequently execute Jog(v1, v2), where v1 and v2 are the formal
parameters of the action, denoting the starting time and the distance to be jogged,
respectively. Each agent has a constraint it wants to impose on the parameters of Jog.
In these constraints, the agents use the formal parameters v1 and v2 to refer to the ex-
plicit parameters of the action. Each action also has one implicit parameter, denoted
by g, which is the group composition. These are the constraints of Clare and James:

James: ϕ : v1 > 19.00 ∧ (v2 = 7 ∨ v2 = 8) ∧ Clare ∈ g
Clare: ψ : v1 < 20.00 ∧ (v2 = 8 ∨ v2 = 9) ∧

(v1 > 19.00 → James ∈ g)
So, James wants to start jogging after 19.00 o’clock, he wants to run 7 or 8 km, and
he wants Clare to join him. Clare on the other hand only wants James to jog with
her when she leaves after 19.00 o’clock, she wants to start before 20.00 o’clock,
and she wants to run 8 or 9 km.

They synchronously communicate:

James: CommGroupReset(ϕ, Jog)

Clare: CommGroupReset(ψ, Jog)

The result of this synchronous communication is a new constraint, which holds for
future executions of Jog of both agents:

19.00 < v1 < 20.00 ∧ v2 = 8 ∧ James ∈ g ∧ Clare ∈ g
Next, the agents synchronously execute:

James: Jog(19.30, 8)

Clare: Jog(x, 8)

Process algebra and constraint programming for modeling interactions in MAS 131

Note that there is execution-time communication here. James communicates the
time 19.30 to Clare; Clare uses a free variable as first actual parameter, thereby
indicating she is expecting James to pick the definite time. The constraint solver
checks whether the actual parameters satisfy the constraints of James and Clare.
This is the case, so the action is successful. In case James had performed Jog(y, 8)
instead of Jog(19.30, 8), there would have been multiple possibilities for the first
parameter. We come back to this issue later.

Having defined the set S of basic statements, we now define the programs of
GrAPL.

Definition 2 (Agent programs) The set P of valid single-agent programs is the
smallest set containing the following programs:

• α, where α ∈ S.
• if ϕ then π1 else π2, where ϕ ∈ L, var(ϕ) ∩ GV = ∅ and π1, π2 ∈ P .
• if ϕ for a then π1else π2, where ϕ ∈ L, a ∈ A and π1, π2 ∈ P .
• π1;π2, where π1, π2 ∈ P .
• π1 + π2, where π1, π2 ∈ P .

We defined programs for single agents here. A multi-agent system simply is a set
of single agent programs. These will be executed in parallel.

More complex programs can be formed using the if–then–else constructs, sequen-
tial composition and non-deterministic choice. The composed statement ifϕ thenπ1
else π2 first checks whether ϕ can be inferred from the belief base of the agent. If
this is the case,π1 is executed, and if not,π2. The statement ifϕ for a thenπ1 elseπ2 is
similar, except that this statement tests the constraint bound to the action a. Inclu-
sion of these statements is useful, because it enables testing whether something
can’t be inferred, which is not possible with the test statements ?ϕ and ?(ϕ, a).
In particular, we can use the statement if ⊥ for a then π1 else π2, which checks
whether the constraint on a has become inconsistent (because of group communi-
cation), and chooses an appropriate course of action. Statements like these allows
the programmer to explicitly encode backtracking mechanisms in negotiation.

6 GrAPL: semantics

6.1 Basic definitions

To define the semantics of an agent system in GrAPL — consisting of a number
of agent programs in parallel — we first have to provide some definitions.

First, we have to define the nature of agent configurations.
Each agent has a local configuration, which is a quadruple 〈µ, δ, ι, π〉. The first

element of the configuration is µ, which stores the constraints bound to actions.
These bindings are local to the agent. This way, it is possible for two agents to
have different constraints for some action. This happens when the agents are part
of separate groups which have communicated about the action independently. The
constraints contain no free local variables. The function µ is total, as each action
is initially bound to � (no constraints). When the constraint on a certain action a is
updated, we use the notation µ[ψ/a], which denotes the function which is equal to
µ except for the constraint on a, which has become ψ . The second configuration

132 F. S. de Boer et al.

element is the belief base of the agent, denoted by δ. We don’t allow free variables
in the belief base. Finally, ι ∈ I is the identity of the agent and π is the agent
program fragment still to be executed.

Definition 3 (Agent configuration)
A local agent configuration Aι is a quadruple 〈µ, δ, ι, π〉. Here,

• µ : A → L where for all a ∈ A : free(µ(a)) ∩ LV = ∅.
• δ ⊆ L, free(δ) = ∅, and var(δ) ∩ GV = ∅.
• ι ∈ I
• π ∈ P

A multi-agent system consists of a number of agents executing in parallel. A
global system configuration simply is a set of local agent configurations of all
agents present in the system. The set of agents present in a system is fixed. So, we
just as well assume that I is exactly the set of all agents in the system. Then, we
have:

Definition 4 (System configuration) A global system configuration is a set
{Aι|ι ∈ I} of local agent configurations.

As seen above, we use µ to store the bindings to actions. But local variables
can also be bound to values, for example when the belief base is tested. In our
semantics we use ground substitutions to implement this. A substitution is ground
if it binds variables to terms without variables in them.

Definition 5 (Substitution)

• A substitution θ is a finite set of pairs (also called bindings) of the form xi := ti ,
where xi ∈ LV and ti is a term of L, xi �= xj for every i �= j , and xi /∈ free(tj)
for every i and j .

• A ground substitution θ is a substitution such that for every pair x := t ∈ θ the
term t is ground, i.e. free(t) = ∅.

• The domain of a substitution θ , denoted by dom(θ), is the set of variables x for
which θ contains a pair x := t .

By definition, substitutions can only bind local variables. Global variables can
be used as formal parameters for different actions and in many constraint stores.
Creating a binding to a constraint variable thus could potentially influence the
meaning of many constraint stores, and so we don’t allow it.

We define application of a substitution only informally, as it is a well-known
notion and a complete formal definition would involve a lot of notational clutter.

Definition 6 (Application of a substitution) Let e be any syntactic expression, be
it from L or P , and let θ be a substitution. Then eθ denotes the expression where
all free variables x in e for which x := t ∈ θ are simultaneously replaced by t .

We sometimes use substitutions to unify different sets of terms. We need some
definitions for the notions of unifier and most general unifier.

Process algebra and constraint programming for modeling interactions in MAS 133

Definition 7 (Unifiers and most general unifiers)

• Let θ and η be two substitutions. Then, the composition θη is the substitution
{(x := (xθ)η)|x ∈ dom(θ) or x ∈ dom(η)}.

• Let{ei |i = 1, . . . , n} be a set of expressions. A substitution θ is a unifier of
these expressions if ∀i, j ∈ {1, . . . , n} : eiθ = ej θ .

• Let {ei |i = 1, . . . , n} be a set of expressions. A substitution θ is a most general
unifier of these expressions if θ is a unifier of {ei |i = 1, . . . , n} and for all other
unifiers ζ it holds that ζ = θη, for some substitution η.

So, the application of the composed substitution θη means that first θ is applied,
and then η. A unifier of a set of expressions is a substitution such that the expres-
sions are all equal after application of the substitution, and a most general unifier
is a unifier that keeps the expressions as general as possible.

The semantics of GrAPL we will give in the next two subsections is defined on
two different levels, the local agent level and the global system level, like in the
case of ACPL. Each agent can perform social actions (group communication and
action execution) and individual actions (the other statements). Individual actions
don’t depend on or influence the other agents. The meaning of these actions can
be defined locally. The transitions of these actions are labelled with the symbol τ .
At the global system level, these actions simply are interleaved with the actions of
other agents. The outcome of social actions depends on the behaviour of the other
agents. The meaning of these actions can only be defined at the global system
level. Nevertheless, at the local level, a dummy local transition step is generated
for social actions, labelled with the action details necessary to define the semantics
of the social action globally.

6.2 Local semantics

In general, a local transition looks like 〈µ, δ, ι, π〉 l−→θ 〈µ′, δ′, ι, π ′〉. We use
labelled transitions, because sometimes information present in the local level is
needed to synchronously execute certain statements at the global level. We use the
label τ for marking internal individual agent steps, resulting from local reasoning.
When the statement locally executed is group communication or group action
execution other labels are used to represent information necessary for the global
semantics, as explained later on. The transition arrow is subscripted with a substi-
tution, which contains bindings created by tests or communication that have to be
passed on to the rest of the agent’s program.

First, we give the transition rules for the basic statements. These are followed
by the transition rules for composite programs. We again use the symbol

√
to

denote the empty program remainder; this results if there are no more statements
left to be executed.

The first transition rule we give is for doing nothing, that is, execution of skip.

〈µ, δ, ι, skip〉 τ−→∅ 〈µ, δ, ι,√〉
As expected, skip doesn’t affect anything, except the program to be done next.

134 F. S. de Boer et al.

We continue with tests of the belief base and actions, respectively. Testing gen-
erally yields values for the free variables in the formula tested, that is, substitutions.
For example, if the belief base contains the formula Birthday(Wieke, 12-12), then
performing the test ?Birthday(Wieke, d) yields the value 12-12 for the variable d.
The only difference between the two test statements is the domain of the substitu-
tion yielded. As there can occur global variables in formulas tested on constraints
of actions, and bindings to global variables are undesirable, we exclude these from
the domain of the substitution.

Let θ be a ground substitution
such that dom(θ) = free(ϕ).

δ � ϕθ
〈µ, δ, ι, ?ϕ〉 τ−→θ 〈µ, δ, ι,√〉

Let θ be a ground substitution
such that dom(θ) = f ree(ϕ) \
GV .

µ(a) � ϕθ
〈µ, δ, ι, ?(ϕ, a)〉 τ−→θ 〈µ, δ, ι,√〉

So, if tests are successful, they always yields ground terms for all free local
variables in the tested formula. This doesn’t have to mean that the belief base or
constraint store uniquely determines a value for each variable. In case this is not
so, there are multiple possible outcomes (substitutions yielded) for the test.

In the transition resulting from the transition rule, the obtained values are stored
in the substitution attached to the arrow. In the transition rules for the composite
programs, these values will be substituted throughout the rest of the program. In
case no suitable substitution can be found, there is no transition generated; the test
fails.

Inserting something into the belief base causes a belief revision. As in the pre-
vious section, we abstract from the belief revision process, by supposing a belief
revision function ρ : ℘(L) × L → ℘(℘(L)). This function takes the old belief
base and a formula to be inserted, and yields the set of new belief bases that could
result from belief revision. One of these is non-deterministically chosen. Then, this
is the transition rule for insertion into the belief base:

δ′ ∈ ρ(δ, ϕ)
〈µ, δ, ι, !ϕ〉 τ−→∅ 〈µ, δ′, ι,√〉

The condition of this transition rule formalises the process of belief revision. As
insertion of a belief formula doesn’t yield new values for variables, the substitution
yielded is the empty one. Note that we stipulated that free variables occurring in
formulas inserted into the belief base are guarded. This means that when these
insertions are executed, the free variables have been replaced by ground values
from the domain D. This is necessary as the belief base is defined to be a set of
closed formulas.

Next are the CommGroup-statements, CommGroupAdd and CommGroupReset.
Locally the resulting set of constraints cannot be found, as this is also determined
by the other communicators. Therefore, the update of bindings to actions takes
place globally. The local transition is a dummy transition, which has the purpose
to deliver information on the particulars of the CommGroup-statement, in the label
of the transition arrow, to prepare a transition step of the whole system.

〈µ, δ, ι,CommGroupReset(a, ϕ)〉 a::ϕ−→∅ 〈µ, δ, ι,√〉

Process algebra and constraint programming for modeling interactions in MAS 135

〈µ, δ, ι,CommGroupAdd(a, ϕ)〉 a::µ(a)∧ϕ−→ ∅ 〈µ, δ, ι,√〉

As these rules yield dummy transitions, the resulting configuration is not computed
locally. So, the resulting configuration 〈µ, δ, ι,√〉 at the right hand sides of the
transition arrows isn’t the actual local configuration resulting from group com-
munication. More specifically, in the rules above the constraint store component
doesn’t seem to be affected by the CommGroup, while we know that group com-
munication updates the constraint stores. This update is computed globally, and
overwrites the unchanged constraint store function µ. The only relevant informa-
tion in the resulting configurations is the program component, which will be built
up by a bottom-up application of the local transition rules.

The label a :: ψ above the transition reads “I propose to do a under the con-
straint ψ .” In case of a CommGroupAdd-statement, ψ is the conjunction of the
stored constraint on a and ϕ, meaning that the agent strengthens its present con-
straint with ϕ. In case of a CommGroupReset-statement, ψ is ϕ, meaning that the
agent overwrites its stored constraints and offers the fresh proposal ϕ.

Note that group communication doesn’t yield any bindings to local variables;
the resulting substitution is ∅. The only thing communicated are constraints on
global variables; local variables are not involved in this form of communication.

Group action execution is influenced by all group members, so local semantics
also yields a dummy transition labelled with action details, which serves to prepare
a global transition step. Action execution can be done individually or groupwise.
There is no real difference between these two options. Individual actions simply
are group actions where the group only has one member. Locally, an agent tries
to execute a(t̄). The terms t̄ , which are the actual parameters of the action a, may
contain free variables, indicating that the agent hasn’t chosen a specific value for
some formal parameters. In the global semantics, a substitution for these free vari-
ables is generated. Also globally, the local belief base is updated to reflect changes
in information on the state of the world after the action has been done. Now, this
is the local transition rule:

〈µ, δ, ι, a(t̄)〉 a(t̄)−→∅ 〈µ, δ, ι,√〉

We use the label a(t̄), which indicates that the agent intends to perform a with
actual parameters t̄ .Again, the fact that in the resulting configuration the belief base
hasn’t changed doesn’t mean anything, as the change to the beliefs is computed
globally.

Now, we arrive at the program constructors. We employ the convention that√;π equals π .
First, we define the semantics of the if–then–else-statements. These come in

two variants, one which tests the belief base and one which tests the constraint on
an action. The semantics of both variants is similar. There are two transition rules
for each variant, one for a succeeding test and one for a failing test.

We start with if–then–else-statements that test the belief base. In the following
transition rules, let � be the set of ground substitutions θ such that dom(θ) =
free(ϕ).

136 F. S. de Boer et al.

θ ∈ �, δ � ϕθ
〈µ, δ, ι, if ϕ then π1 else π2〉 τ−→θ 〈µ, δ, ι, π1〉

� ∃θ ∈ � : δ � ϕθ
〈µ, δ, ι, if ϕ then π1 else π2〉 τ−→∅ 〈µ, δ, ι, π2〉

Note that if the test fails, there is no substitution to propagate. These rules give the
semantics of the test in the if–then–else statement, and the choice made between
the two programs. It isn’t surprising that these transition rules resemble those of
?ϕ and ?(ϕ,a).

For testing the constraint on a, we have the following two rules, in which � is
the set of ground substitutions θ such that dom(θ) = free(ϕ) \ GV .

θ ∈ �,µ(a) � ϕθ
〈µ, δ, ι, if ϕ for a then π1 else π2〉 τ−→θ 〈µ, δ, ι, π1〉

� ∃θ ∈ � : µ(a) � ϕθ
〈µ, δ, ι, if ϕ for a then π1 else π2〉 τ−→∅ 〈µ, δ, ι, π2〉

For sequential composition, the rule is entirely conventional, except for substi-
tution propagation.A substitution resulting from testing or communicating must be
applied to the remainder of the program left to be executed. If we have π1;π2 and
executing the first statement of π1 yields a substitution θ and a remaining program
π ′

1, then this substitution has to be applied to π2 when the sequential composition
is executed.

〈µ, δ, ι, π1〉 l−→θ 〈µ′, δ′, ι, π ′
1〉

〈µ, δ, ι, π1;π2〉 l−→θ 〈µ′, δ′, ι, π ′
1;π2θ〉

Note that the substitution isn’t applied to π ′
1 in this rule. This is not necessary,

because the transition in the antecedent of the rule takes care of this. The transition
in the consequent of the rule still carries the substitution θ , as there might be other
parts of the program not mentioned in the rule, to which the substitution still has
to be applied.

Next are the rules for non-deterministic choice.

〈µ, δ, ι, π1〉 l−→θ 〈µ′, δ′, ι, π ′
1〉

〈µ, δ, ι, π1 + π2〉 l−→θ 〈µ′, δ′, ι, π ′
1〉

〈µ, δ, ι, π2〉 l−→θ 〈µ′, δ′, ι, π ′
2〉

(σ, δ, ι, π1 + π2)
l−→θ (σ ′, δ′, ι, π ′

2)

Again, the substitution has already been processed on the non-deterministic alter-
native chosen, and it only needs to be propagated.

Process algebra and constraint programming for modeling interactions in MAS 137

6.3 Global semantics

To obtain the semantics of a multi-agent program, we use an interleaving seman-
tics with a handshaking mechanism for synchronisation. Group communication
and group action need to shake hands; the other basic statements are interleaved.
All local transitions of these statements are labelled with the symbol τ . So, let
ι ∈ I be some agent taking a local execution step, let Aκ = 〈µκ, δκ, κ, πκ〉 and
A′
κ = 〈µ′

κ , δ
′
κ , κ, π

′
κ〉, where κ is some element of I.

Aι
τ−→θ A

′
ι

{Aκ |κ ∈ I} −→ {A′
ι} ∪ {Aκ |κ ∈ I \ {ι}}

One agent program is executed for one transition step, while the configurations of
the other agents don’t change.

6.3.1 Group communication

We now continue with group communication. When a group communicates about
an action, the local constraints of the agents communicating are updated to be the
conjunction of the proposed constraints. This might be an inconsistent formula,
if the agents have conflicting interests. The resulting constraints can control the
participation of agents in the future execution of the action communicated about,
but we also want to control the group of agents that takes part in the group commu-
nication itself. If, for example, one or more agents demand that agent Jane should
be excluded from the group doing the action discussed, it could be useful to for-
bid this agent to be part of the group negotiating the constraints on the execution
of the action. So, we demand that agents may only participate in communication
about the details of a future group action as long as presence of these agents is
not inconsistent with the demands of each agent on the group composition. If the
group communicating violates the demands of (at least) one group member, then
the group communication fails, in the sense that no global transition is generated.
Of course, the demands on the group composition must also hold when the action
is to be executed by some group.

We need only one transition rule to cater for both CommGroupAdd and
CommGroupReset statements, as the only difference between them is the proposed
constraint (either a strengthening of the current constraint or a completely fresh
proposal). We dealt with this locally; the label of the local transition contains the
constraint proposed. Now, this is the transition rule for group communication:

Let J ⊆ I be a set of agent names and let Aι = 〈µι, δι, ι, πι〉.

for all ι ∈ J : Aι a::ψι−→∅ 〈µι, δι, ι, π ′
ι 〉

{Aι|ι ∈ I} −→ {〈µ′
ι, δι, ι, π

′
ι 〉|ι ∈ J } ∪ {Aι|ι ∈ I \ J }

where µ′
ι = µι[∧ι∈J ψι/a] and the following condition holds:

for each ι ∈ J it holds that g = J ∧ ψι �� ⊥
The antecedent of this transition rule consists of (dummy) local transitions for
group communication. The labels above the arrows have to match on a, the action

138 F. S. de Boer et al.

discussed. Each agent ι brings its own constraint,ψι. As a result, a is constrained by∧
ι∈J ψι in the new constraint stores µ′

ι. Note that this globally computed update
of the constraint stores overwrites the resulting constraint stores from the dummy
local transitions (which are still µι, like in the configurations before execution
of the group communication). The group communication takes place in a syn-
chronised execution step. In this respect, CommGroup execution is similar to the
synchronous communication primitives in (for example) CSP [20]. For the agents
not participating in the communicative action, the local state stays the same.

The condition that for each ι ∈ J it holds that g = J ∧ ψι �� ⊥ controls the
composition of the group of agents communicating about the action. The formula
g = J , stating that g is the group of communicating agents, should be consistent
with the constraints of the agents. If the constraint of one of the communicating
agents implies that there have to be at least three agents involved in the action,
then each group communicating about this action must also contain at least three
agents. As another example, if the constraint of one the agents (say ι1) implies that
agents ι3 and ι6 have to participate in the group action, then group communication
with ι1 in the group can’t succeed if these agents don’t put in a word.

Note that the transition rule and the associated condition don’t demand that
the constraints of the communicating agents are consistent, that is, that ⊥ can’t be
inferred from

∧
ι∈J ψι. As long as the group of communicators is consistent with

the constraints of the agents, the group communication succeeds. In case the agents
have conflicting demands on action details, the constraint on a will become ⊥ in
the constraint stores of the agents. The reason for this choice, which may seem
strange, is that ⊥ in a constraint store has a signalling function. The agent can test
its constraint store, and when it turns out that the constraint is ⊥, the agent knows
that there was disagreement in an earlier negotiation round. Subsequently, the agent
can try to re-initiate the communication about the group action by performing a
CommGroupReset, which will remove ⊥ from the constraint store if the constraints
of the agents communicating in this new negotiation round aren’t inconsistent. It
is worthwhile to observe that an agent cannot execute a CommGroupAdd statement
if its own corresponding constraint store is inconsistent. In such a case it can only
participate in the negotation process by a CommGroupReset statement.

We also like to point out the highly dynamic nature of our model of the negoti-
ation process which allows for the run-time formation of different groups of agents
participating to the negotiation. Moreover, each agent has its own local view of the
negotiation which will be updated by the execution of the CommGroup statements.
As an example, an agent whose local constraint store is inconsistent may return to
an earlier stage of the negotiation by the execution of a CommGroupReset state-
ment which involves communication with agents whose local stores record such
an earlier stage.

It is important to note that group communication essentially is non-determinis-
tic. The resulting constraint store is fixed, being the conjunction of the constraints
of the communicators, so this is not the non-deterministic element. But the group of
agents communicating allows many possibilities, as long as the constraints are not
too strong. It is possible to limit this kind of non-determinism by adding another
demand to the transition rule for group communication. For instance, we could
demand the communicating group to be maximal or minimal with respect to set
inclusion.

Process algebra and constraint programming for modeling interactions in MAS 139

6.3.2 Group action execution

The transition rule for action execution poses a dilemma. We have to decide in
which way actual parameters of an action can be determined when the agents
executing the action are not specific about them.

Example 3 (Jogging Agents, ctd) We revisit agents James and Clare, that have
negotiated about jogging in the park together. They have agreed upon constraints
on these parameters, so their constraint stores associated with Jog are the same.
They contain the constraint: g = {James, Clare} ∧ v1 = 19.00 ∧ 8 ≤ v2 ≤ 10.
These constraints are not decisive; there are still three possibilities for v2 (assuming
the value is a natural number). So, what happens when the agent try to jog together?
There are a number of cases:

(a) James and Clare both try to execute Jog(19.00, 8). So, their action parameters
agree and satisfy the constraints. The action will take place.

(b) James tries Jog(x1, 8) and Clare tries Jog(19.00, y2), where both x1 and y2 are
free (local) variables. This implements execution time communication: James
tells Clare that they will run 8 km., and Clare communicates that they will
start at 19.00. All parameters are determined and satisfy the constraints, so the
action Jog(19.00, 8) will be jointly executed.

(c) James tries Jog(x1, 8) and Clare doesn’t feel like making any decisions, so
she tries Jog(y1, y2). The outcome of this is not immediately clear. It is clear
that James communicates the distance parameter to Clare. The first parameter
is not talked about, and seen mathematically, this is not necessary either, as
the value of v1 is fixed by the constraints agreed upon. So, one choice is to
let the above group action succeed; Jog(19.00, 8) is synchronously executed.
The other choice is to let this group action fail, because there is no run-time
agreement on all action parameters. There is something to say for both options.

(d) James tries Jog(19.00, x2) and Clare tries Jog(19.00, y2). It seems intuitively
justified that this group action has to fail, as there is no clarity about the dis-
tance to be jogged, neither in the action parameters of the agents nor in the
constraints. But another view is that the value space for the second parame-
ter still contains three possible values, and therefore there are three possible
executions of the above statement, in which James and Clare jog 8, 9 or 10
kilometres, respectively.

Thus, it is not immediately clear what is the right semantics for group action exe-
cution. In this paper, we create three alternative semantics. Before presenting these
options, we will pinpoint the subtle semantical issues at hand.

In group formation and group action, there are two types of communication.
There is communication during the negotiation phase, performed through one or
more CommGroup-statements. Also, there is execution time communication, which
takes place if some agents participating in the actual group action don’t instantiate
all action parameters with ground values, but use free local variables for these.
Typically, during the negotiation phase each agent will make sure all its important
demands on the action are incorporated into the set of constraints agreed upon. An
agent might be willing to drop some of its less important demands, if this is the only
way to form a group, but it will usually hold on to its major constraints. After group
formation, the constraint stores of the agents need not be decisive on each action

140 F. S. de Boer et al.

parameter. Often, there will still be a parameter space from which each choice is
perfectly acceptable to all agents involved. The choice from this parameter space
can be made during the execution phase. An agent can pick a value for an action
parameter from the set of values allowed by the constraint on the action, and use
this value for the parameter.

The combination of execution time communication and negotiation phase com-
munication makes matters opaque here. For ease of formulation, we introduce a
new term. We call a formal parameter of an action a definite for a group of agents
J if the conjunction of the constraints associated with a by the agents in J allows
only one value for that parameter. This is the formal definition:

Definition 8 (Definite action parameters) Let J ⊆ I be a set of agent identities,
and let 〈µι, δι, ι, πι〉 be the local configuration of agent ι. A formal parameter vk of
an action a is definite for J if there exists a value d ∈ D, such that

∧
ι∈J µι(a) �� ⊥

and
∧
ι∈J µι(a) � vk = d.

We will sometimes be sloppy, and call action parameters definite without refer-
ring to an agent group. In the above definition,

∧
ι∈J µι(a) is the joint constraint

of the agents in J on action a. If this constraint implies that the formal parameter
vk must have a certain ground value d, then this parameter is definite. We need to
exclude the case that the joint constraint is inconsistent, as then everything can be
derived from it, and the constraint thus determines nothing.

In (c) of the jogging example, the essential action parameter is the first one,
the time James and Clare will go jogging. This parameter is definite for the agents;
their constraint stores fix the time at 19.00. So, group communication about the
constraints on Jog has settled on a value. Now we focus solely on execution time
communication. During execution time communication, both agents use a free
variable for the first parameter, thereby indicating that they are willing to let the
other agent determine the value of the first parameter. But as none of the agents
supplies a value, execution time communication alone can’t fix the first parameter.
Still focusing only on execution time communication, we can choose between two
possible scenarios: the communication could succeed where the value is non-deter-
ministically chosen from the domain of the first parameter, or the communication,
and thereby the overall group action, could fail. In the former case, the constraints
of both agents will single out the only possible group action parameter.

In (d) of the same example, the second parameter is the essential one. This
parameter is not definite; the constraints still allow three possible values. This is
the only difference between (c) and (d). Both agents again use a free variable for
the parameter in their action call, so run-time communication could fail or yield
success with a non-deterministic outcome. In case we choose the second option, the
range of possible values for the second parameter will be considerably narrowed
by the constraint stores, yielding three possible action executions.

So it seems that there are two options for the semantics of group action. In the
first, execution time communication doesn’t have to be conclusive to yield action
success. If it isn’t, then actual action parameters are chosen in a non-deterministic
manner. In the second option, we demand run-time communication to be conclu-
sive, and the action will fail if this isn’t the case. There is still a third option, which
lies in between these two alternatives.

Although there are three options for the semantics, we don’t need three different
transition rules. The difference will be made in the subtle choices in the conditions

Process algebra and constraint programming for modeling interactions in MAS 141

associated with the rule. First, we will present the transition rule with the most
permissive conditions, formalising the semantics where run-time communication
need not be conclusive.

Group action execution has a synchronised semantics, just like group com-
munication. Action execution can be done individually or group-wise. Individual
actions simply are group actions where the group has only one member. There are
two conditions associated with action execution. First, the actual action parameters
of all agents in the group have to be compatible. We model this by requiring the
parameters to be unifiable. So, if for example one agent in the group tries the value 5
for the first action parameter, and another group member tries 6, then no successful
group action is possible. Secondly, the constraints of all agents in the group on the
action have to be obeyed. This is the monitoring of the action execution; the group
action has to be executed according to the agreements made by the agents prior to
the action.

Action execution might change the belief base of the agent. We assume that
for each agent ι we have a belief revision function ξι, which models this change.
This function takes an action with definite parameters and the old belief base, and
returns the set of belief bases that could result from a revision of the belief base with
the effects of the action. One of these candidates is non-deterministically chosen.
By introducing the function ξι, we abstract from details of belief revision; again,
see [12] for details.

For the global transition for action synchronisation, we use the same conven-
tions as in the previous transition rule. So, let J ⊆ I be a set of agent names, let
Aι = 〈µι, δι, ι, πι〉, let θ be a ground substitution and let a be an action with formal
parameters v̄.

for all ι ∈ J : Aι a(t̄ι)−→∅ 〈µι, δι, ι, π ′
ι 〉

{Aι|ι ∈ I} −→ {〈µι, δ′ι, ι, π ′
ι θ〉|ι ∈ J } ∪ {Aι|ι ∈ I \ J }

where δ′ι ∈ ξι(a(t̄ιθ), δι) and the following conditions hold:

• dom(θ) =
⋃
ι∈J free(t̄ι) and θ is a unifier of {t̄ι|ι ∈ J }

• ∧
ι∈J µι(a) ∧ v̄ = c̄ ∧ g = J �� ⊥, where c̄ = t̄ιθ for any ι ∈ J

The first condition above demands that the substitution θ provides a ground value
for the free variables in the actual action parameters of all agents. Moreover, it
states that θ has to be a unifier of the actual parameter settings of all agents in the
group; this means that t̄ιθ = t̄κ θ for each ι, κ ∈ J . This explains why the definition
of c̄ (a shorthand for the unified actual parameters) in the second condition ends
with ‘for any ι ∈ J ’. The substitution θ instantiates all free variables in the action
parameters of the agents in the group in such a way, that all agents use the same
set of actual parameters. Only this way, the action can be done in a coordinated
manner.

The action with the unified actual parameters constitutes an input to the belief
update function. Also, the substitution θ is applied to the programs left to be exe-
cuted, because in general action execution generates bindings to free variables
which have to be passed on to the remainders of the programs. Both these updates
overwrite elements in the resulting configurations of the dummy local transitions.

The second condition states that the actual values of the parameters of the group
action and the composition of the group have to be consistent with the constraints of

142 F. S. de Boer et al.

all participating agents. We explain this formula in detail. The formula
∧
ι∈J µι(a)

is the result of adding up the constraints that the participating agents associated
with a. To this formula, two conjuncts are added. The first formula, v̄ = c̄, states
the unified actual values of the formal parameters. The second formula, g = J ,
states the actual composition of the group about to perform the action. If there is a
clash between the constraints of the agents and the actual action parameters, then
an inconsistency can be derived, resulting in failure of the execution.

In an implementation of the language, a constraint solver can check consistency.
Sometimes, a group action execution allows more than one possible unifier θ . In
this semantic variant, we leave this non-determinism unresolved; alternatively, it
could give rise to failure, as is the case in the semantic variant we will present later
on.

Example 4 (Jogging agents, ctd) Going back to the jogging example, this choice
of conditions implements the case that both the (c) and (d) succeed: The constraint
on Jog is g = {James, Clare} ∧ v1 = 19.00 ∧ 8 ≤ v2 ≤ 10. We revisit the third
and fourth case of the orgininal example:

(c) James tries Jog(x1, 8) and Clare tries Jog(y1, y2). As the free variables in the
actual parameters are {x1, y1, y2}, this is the domain of θ . The substitution θ
must be a ground substitution, and a unifier of {(x1, 8), (y1, y2)}. It is clear
that y2θ must be 8. Furthermore, x1θ = y1θ = t , where t can be any time
point according to the first condition of the global transition rule. The second
condition demands that the unified actual parameters obey the constraint on
Jog, which means that the only legitimate value for t is 19.00. The instantiated
action Jog(19.00, 8) is executed.

(d) James tries Jog(19.00, x2) and Clare tries Jog(19.00, y2). Now, dom(θ) =
{x2, y2}.The ground substitution θ must be a unifier of {(19.00, x2), (19.00, y2)}.
In order to unify x2 and y2, any distance can be assigned to them, but as the
constraint on the distance must be obeyed there are three options: x2θ = y2θ =
8, x2θ = y2θ = 9 and x2θ = y2θ = 10. One of these options is randomly
picked, and the Jog action takes place accordingly.

So, with these conditions, run-time communication need not be conclusive. This
happens if all agents in the group J use a variable for a particular parameter of a.
The substitution θ , being ground, fixes a value for this parameter in an arbitrary
manner. The second condition of the transition rule checks this value against the
aggregate constraints of the agents. If the parameter is definite (that is, completely
determined by the constraints), then the range of values that θ can assign to the
parameter is reduced to one possibility. If the parameter is not definite, then multiple
substitutions are possible, yielding a non-deterministic action execution.

If we want to implement the option for the semantics where execution time
communication has to be conclusive in order to successfully execute the group
action, we have to replace the first demand with this one:

• dom(θ) =
⋃
ι∈J free(t̄ι) and θ is the most general unifier of {t̄ι|ι ∈ J }

With this demand, there is only one permittable ground substitution θ , namely the
most general unifier of the actual action parameters of all agents. In case there are
one or more action parameters for which none of the agents determines a domain
value, then the most general unifier will not be a ground substitution, and the group

Process algebra and constraint programming for modeling interactions in MAS 143

action can’t be successful. Only if a value for each action parameter is fixed solely
through run-time communication (without looking at the constraints), this variant
of the semantics will yield action success.

Example 5 (Jogging agents, ctd) We look at the third and fourth case again:

(c) James and Clare try to execute Jog(x1, 8) and Jog(y1, y2), respectively. The
most general unifier of these action parameters is {x1 := w, y1 := w, y2 := 8},
where w is some variable, which isn’t a ground substitution. So, this group
action won’t generate a global transition step.

(d) James and Clare attempt Jog(19.00, x2) and Jog(19.00, y2), respectively. The
most general unifier of the parameter tuples is {x2 := u, y2 := u}, where u
is a variable. Again, this isn’t a ground substitution, so no global transition
results.

There is a third option for the semantics. In this variant, group action execution is
successful if each formal action parameter is definite for the group attempting the
action or run-time communication is conclusive about its actual value. If this is so,
there is only one unifying substitution that yields actual parameters satisfying the
constraints of the agents. For this semantical variant, we add an extra condition to
the two original conditions, resulting in these conditions:

• dom(θ) =
⋃
ι∈J free(t̄ι) and θ is a unifier of {t̄ι|ι ∈ J }

• ∧
ι∈J µι(a) ∧ v̄ = c̄ ∧ g = J �� ⊥, where c̄ = t̄ιθ for any ι ∈ J

• There is only one ground substitution θ that satisfies the two conditions above.

It might very well be possible to devise more, also interesting, variants of the global
semantics for group action.

7 GrAPL: examples

To illustrate the mechanisms of the semantics and show the usefulness of our lan-
guage, we give two additional examples. The first example is very simple in nature,
and we use it to explain the functioning of the two-layered semantics.

7.1 Arranging a meeting

Dr. A and Prof. B are two scientists who would like to cooperate with each other. So,
they want to make an appointment for a meeting which lasts a day. They communi-
cate with each other about the action Meet. This action has one explicit parameter,
the date of the meeting. These are the programs they employ:

Program of A:
CommGroupReset(g = {A, B}∧

(v1 = 26–1 ∨ v1 = 29–1 ∨ v1 = 30–1),Meet);
if v1 = x for Meet
then Meet(x)
else CommGroupAdd(v1 = 26–1 ∨ v1 = 29–1,Meet); Meet(y)

144 F. S. de Boer et al.

Program of B:
CommGroupAdd(g = {A, B} ∧

(v1 = 29–1 ∨ v1 = 30–1 ∨ v1 = 31–1),Meet);
if v1 = w for Meet
then Meet(w)
else CommGroupAdd(�,Meet); Meet(z)

Both A and B have the demand that the group which meets has to consist of the
two of them. Also, they both initially propose three possible dates for the meeting.
Note that two of these dates are possible to both scientists. They communicate
with each other, which succeeds because the group communicating {A, B} satis-
fies the constraints of both agents. If another agent would have tried to join in the
negotiation, this would not have succeeded. A uses a CommGroupReset statement
and B uses a CommGroupAdd statement in the first group communication. As we
assume that the constraint on Meet for both agents is � before execution of the
program, it doesn’t matter which of both CommGroup statements the agents use in
the first communication round, as the resulting demand proposed turns out the same
(ϕ = �∧ϕ). The updated constraint stores of both agents then contain the formula
g = {A, B} ∧ (v1 = 29–1 ∨ v1 = 30–1) as the new constraint on Meet. Then, both
agents test whether their constraints fix one date for the action parameter, using the
test in the if–then–else statement (we explain this test later on). If this would be so,
they would meet at this date. But in this case, there are still two dates possible. So,
B leaves it up to A to strengthen her preferences, as he adds the empty constraint
� to his present constraint. A then narrows down her possible dates to two, and
the scientists communicate for the second time. Now, their constraint stores allow
only one date, which is 29–1. So, they meet then.

We now look at how the interplay of local and global semantics yields a trace
of this system. Each global trace represents an actual computation of the system.
Local transitions play an auxiliary role in the construction of global traces. To build
a system trace, we alternately apply local and global transition rules. Local tran-
sitions of individual actions are interleaved in the global trace, and dummy local
transitions for group actions lead to one synchronised global transition.

We start with the local semantics of the first CommGroup statements in both
programs. The local transition rule for CommGroupReset yields a dummy transition

for A, with labelled arrow
Meet::ϕ1−→ ∅, where ϕ1 ≡ g = {A, B} ∧ (v1 = 26–1 ∨ v1 =

29–1 ∨ v1 = 30–1). Similarly, the local transition rule for CommGroupAdd yields

a dummy local transition for B, with labelled arrow
Meet::ψ1−→ ∅, where ψ1 ≡ g =

{A, B} ∧ (v1 = 29–1 ∨ v1 = 30–1 ∨ v1 = 31–1). The global transition rule for
group communication checks whether the group of communicators satisfies the
demands of both agents, and as this is the case, updates the constraints of both
agents on Meet to be the conjunction of the proposals, which is (equivalent to)
g = {A, B} ∧ (v1 = 29–1 ∨ v1 = 30–1).

Now, both agents locally test their constraint on Meet, as part of the if–then–else
statements. We focus at the test of A; the test of B is analogous. The formula
tested is v1 = x, where x is a free local variable. We look at the local tran-
sition rule for if–then–else statements that test the constraint stores. If µ is the
present constraint store function of A, then a ground substitution θ is sought with

Process algebra and constraint programming for modeling interactions in MAS 145

dom(θ) = free(v1 = x) \ GV = {v1, x} \ GV = {x}, such that (v1 = x)θ follows
from the constraint µ(Meet). As the current constraint on Meet still allows two
values for v1 (v1 = 29–1 ∨ v1 = 30–1), such a substitution can’t be found. The
test for definiteness thus fails, and the second transition rule for the if–then–else
statement is used, which results in A taking the else branch. In case the constraint
would have been v1 = 29–1, then the test would have succeeded, yielding the sub-
stitution {x := 29–1}. This substitution then would have been applied to the rest
of the program of A, resulting next in an execution of Meet(29–1). Like A, B also
tests the constraint on Meet and takes the else branch. As these tests are individual
actions, the global semantics interleaves them.

Both agents again arrive at a group communication statement, a CommGroupAdd
in both cases. B chooses not to strengthen the current constraint on Meet; he adds

�, resulting in a transition
Meet::ψ2−→ ∅, where ψ2 ≡ g = {A, B} ∧ (v1 = 29–1 ∨ v1 =

30–1). A adds the constraint v1 = 26–1 ∨ v1 = 29–1, resulting in a dummy local

transition with arrow
Meet::ϕ2−→ ∅, where ϕ2 ≡ g = {A, B} ∧ v1 = 29–1. The global

transition rule combines these dummy local steps into a synchronous global step,
in which the constraint on Meet of both agents is updated to be ϕ2. Now, the date
has been agreed upon.

Finally, both agents try a Meet-action, where the actual parameter of
A is the free local variable y and the actual parameter of B is the free local vari-
able z. The local transition rule for action execution generates two dummy local

transition, with arrows
Meet(y)−→ ∅ and

Meet(z)−→ ∅, respectively. The global transition rule
will find a substitution unifying the two free variables y and z. Whether these two
local transitions combine into an actual synchronised Meet action depends on the
semantic variant employed for the global transition rule for action execution. Recall
that we introduced three variants in the previous section. Suppose we use the third
variant. Then, according to the first condition, the domain of the ground substitu-
tion θ associated with the global transition rule must be the set of free variables
in the actual parameters of the actuators, which in this case is the set {y, z}. This
condition also states that θ is a unifier of the actual parameters. As both agents use
a free local variable, many unifiers are possible. A unifier of the action parameters
is {y := d, z := d}, where d is any specific date. The second condition of the tran-
sition rule for group action execution states that the actual action parameter after
substitution has to satisfy the aggregate constraints of both agents. To be specific,
if the date substituted for y and z is d, then the second condition in this specific
situation is:

(g = {A, B} ∧ v1 = 29–1) ∧ (v1 = d) ∧ (g = {A, B}) �� ⊥.
The only value for d which satisfies this, is 29–1. So, there is only one substitution
θ possible, namely the substitution {y := 29–1, z := 29–1}. The third condition
of the global transition rule (uniqueness of the unifier) is also satisfied. This means
that the agents meet on 29–1.

The Meeting will also take place in the first semantic variant of group action
execution; in the second variant, it won’t.

The above programs are oversimplified, for expository reasons. For example, if
the agents initially have inconsistent demands, then their resulting constraint stores
will contain ⊥ for Meet. But as every formula is a logical consequence of ⊥, the

146 F. S. de Boer et al.

test v1 = x (or v1 = w) would succeed for any value for x (or w, respectively).
So, the agents should test for ⊥ first, in a realistic multi-agent program where the
agents have no foreknowledge of the demands the other agent is going to make.

The reader might wonder how the negotiation phase is programmed in a real-
istic agent system, as in the example above both agents seem to ‘know’ which
communication steps are expected. As agents are supposed to be autonomous, it
might seem strange that agents anticipate each others communication moves. To be
specific, when the agents A and B start their negotiation phase, they synchronously
execute their CommGroup statements, with the action Meet as the action discussed.
Only if both agents synchronously perform CommGroups about the same action,
the negotiation can start. There isn’t an initiator of the conversation; both agents
act simultaneously. It all seems a bit too symmetrical to be realistic.

There are several responses to these questions. In the first place, GrAPL is an
abstract programming language for group coordination. Thus, the statements for
communication and action execution are on a high abstraction level. In an imple-
mentation of GrAPL, the synchronous primitives are likely to be implemented using
a series of asynchronous communication primitives. So, on a lower abstraction
level, the agents send messages to and fro according to a lower-level communi-
cation protocol which has an initiating agent and isn’t symmetrical. The imple-
mentation underlying CommGroupAdd and CommGroupReset statements might be
like this: the first agent arriving at a CommGroup statement on a certain action a
broadcasts its initial demands to all agents that aren’t excluded from the group of
communicators by its own constraints. If there are agents in this group of potential
negotiation partners which are willing to communicate about this action (which
means that they also have a CommGroup statement with the action a as second
parameter), then these agents all send their constraint on the parameters of a to
the initiating agent. This agent waits for incoming messages with demands on a
until enough agents have reacted to form a group of communicators for this com-
munication round which satisfies the demands of all members of this group. Then,
the initiating agent sends a message to the agents in this communicating group
containing the resulting constraint (which is the conjunction of the constraints of
the communicators).

The advantage of using the abstract synchronous statements of GrAPL over
the asynchronous statements of the underlying communication protocols is that
the program code for multi-lateral negotiation and group action execution can be
more compact. The agent metaphor has been claimed to provide powerful abstract
notions that can aid in the construction of the complex software needed nowadays,
and GrAPL is an agent programming language in this spirit.

7.2 Negotiation

Returning to the abstraction level of GrAPL, we go into the use of the coordina-
tion primitives of GrAPL to construct program code for negotiation. In general,
there are two ways to do this. The programmer can write negotiation protocols in
GrAPL, or he can choose for ad hoc negotiation.

In the second case, it is unclear how the conversation between negotiating agents
will take place, so the agent program should contain many branches to take care of
the different scenarios. When an agent reaches a CommGroup statement, it tries to

Process algebra and constraint programming for modeling interactions in MAS 147

execute it, but if there is no suitable group of communicators which synchronises
with the agent, then the agent waits until such a group does arrive (see the global
transition rule for group communication; if there is no suitable group of commu-
nicators, no global transition is yielded and execution stalls for this branch of the
agent program). During the negotiation phase, the agents can test the constraint on
the action, to find out whether the negotiation has already converged to definite
action parameters or whether the negotiation has led to conflicting demands on the
action. Depending on the outcome of these tests, the agents decide whether they
will try to communicate again and in which way (weaker or stronger demands), or
to stop negotiating and start the execution phase.

In case the agents use negotiation protocols, then the program code is less
messy. As all agents are assumed to use the same protocol, each agent knows
which synchronisation points to expect, and thus less branching is required. We
will show an example of a coordination protocol for a group action next. In order
to write down the protocol, we assume GrAPL includes recursive procedures.

We give a negotiation protocol, for groups of benevolent agents discussing a
future group action. We first show the protocol, and then explain it:
NegotiationProtocol(a, ψ(g), ϕmin(v̄), ϕsat (v̄), ϕopt (v̄)) :
CommGroupReset(ψ(g) ∧ ϕmin(v̄),a);
if ⊥ for a
then (ψ ′(g) := Adjust(ψ(g));

NegotiationProtocol(a, ψ ′(g), ϕmin(v̄), ϕsat (v̄), ϕopt (v̄)))
else (CommGroupAdd(ϕsat (v̄),a);

if ⊥ for a
then CommGroupReset(ψ(g) ∧ ϕmin(v̄),a)
else (CommGroupAdd(ϕopt (v̄),a);

if ⊥ for a
then CommGroupReset(ψ(g) ∧ ϕmin(v̄) ∧ ϕsat (v̄),a)
else skip));

The negotiation procedure takes five parameters, namely the action discussed (a), a
demand on the group composition (ψ(g)), the minimal demand of the agent on the
formal action parameters v1, v2, . . . , vk , where k is the arity of the action (ϕmin(v̄)),
a demand on the formal parameters that formalises what the agent would like best
(ϕopt (v̄)) and a demand on these parameters that formalises a satisfactory inter-
mediate solution (ϕsat (v̄)). The agent first tries to find a group satisfying its group
demand ψ(g), which agrees with its minimal demand on the action parameters.
The agent waits until it can communicate with a group satisfyingψ(g). If this group
doesn’t agree with the minimal demand on the action parameters, then the first test
for ⊥ succeeds, and the agent alters its constraint on the group composition (we
don’t go into details of the procedure Adjust). The recursive call to Negotiation-
Protocol results in an attempt to agree on the minimal parameter demands with a
new group. As soon as there is a group that agrees with the minimal demands (and
has minimal demands that this agent agrees with), then the agent tries to constrain
the action parameters further according to its preferences. It starts carefully, by
adding ϕsat (v̄). If the others don’t agree with this (⊥ for a), then the agent resets
the constraint to the previous parameter constraint, on which the agents agreed. As
the other agents do the same thing, this group communication will always succeed,

148 F. S. de Boer et al.

and the protocol is finished. If there is agreement in this round, the agent tries
strengthening the constraint on a by adding ϕopt (v̄). The other agents also follow
the protocol, so they do the same. If this succeeds, then the protocol is finished;
otherwise, the agents reset the constraint to their previous agreement.

Note that we assume that the group of agents negotiating is fixed during exe-
cution of one call of NegotiationProtocol. This can be achieved by always using a
ψ(g) of the form g = J , with J a set of agent names.

8 Related work and conclusion

Process algebra was developed in the 80s for describing distributed/concurrent
computations. Seminal work on this topic includes Hoare’s Communicating Sequen-
tial Processes (CSP) [20,5], Milner’s Calculus of Communicating Systems (CCS)
[22], Hennessy’sAlgebraic Theory of Processes (ATP) [16], and Bergstra & Klop’s
Algebra of Communicating Processes (ACP,ACP1) [3].

Structural Operational Semantics (SOS) was introduced by Plotkin and He-
nessy [17,26,18] to give a structured, rigorous treatment of the operational seman-
tics of a programming language, based on a formal system for deriving transitions.
Later this has become the predominant approach to giving operational semantics,
particularly so in concurrency semantics (cf. [1]).

Recently process-algebraic techniques and SOS have found their way to AI and
agent research in particular. We mention a few examples excluding our own work.

Chen and De Giacomo [6] propose a process-algebraic approach to reasoning
about action, which in its turn influenced the work on the programming language
ConGolog (see [14], where De Giacomo et al. define the semantics of this language
ConGolog in an SOS-like style).

Kinny [21] proposes an process-algebraic language to describe the complex
behaviour of agent architectures like PRS [15]. Furthermore, an algebraic approach
coupled with an SOS-style semantics is employed by Omicini et al. to describe
particularly the issue of coordination within (multi-) agent systems [29,25].

Directly related to our work is that on the agent programming language Agent-
Speak by Bordini et al. [24], where an operational semantics is given for the (speech
act-based) communication primitives in this language.

In this paper we have illustrated the use of process-algebraic concepts and
techniques for dealing with multi-agent systems. In particular, we have shown how
blending the algebras CSP and CCP can be fruitfully employed for modeling and
programming agent communication and coordination.

After having briefly illustrated the main idea for the relatively simple case of
bilateral synchronous communication of information, we turned to the more gen-
eral case of multilateral agent communication and task coordination.

We proposed a constraint programming language for agents with novel prim-
itives for group communication and group cooperation. The statements for group
communication are very expressive and allow groups of agents to negotiate over the
conditions of execution of future group actions. These conditions are constraints
on the composition of the group of participants and the parameters of the action.
Communication is synchronous, allowing the dynamic formation of groups. In
a language with only bilateral communication, programming a negotiation phase
would be much more involved than in the language introduced here. If agreement is

Process algebra and constraint programming for modeling interactions in MAS 149

reached in the negotiation phase, the constraints agreed upon monitor the execution
of the action discussed. The agents have to stick to their word; only then, group
action can be successful. This way, social cohesion is enforced. Action execution
is also synchronous, which is an intuitive manner to implement group action.

Our programming language only provides primitive means for negotiation.
More sophisticated negotiation protocols or mechanisms can be programmed in
GrAPL.

Many coordination problems in agent systems are about finding a solution on
which all agents agree in some solution space; constraint solving is especially
apt for this. A successful application of constraint-based approaches in artificial
intelligence depends on suitably encoding the problems into constraints. But prov-
ing that this is possible for any coordination issue agents could encounter doesn’t
yield a practical coordination language. As we want to focus at applicability, and
constraint programming and solving have proven their practical worth, we believe
GrAPL is a significant contribution.

We provided the language with a well-defined operational semantics, built in
a similar manner as the languages ACPL and 3APL [19]. This gives the language
a clear and unambiguous meaning, and offers a solid basis for building an imple-
mentation. Such an implementation involves the development of suitable constraint
solvers which is one of the main topics of future research.

Acknowledgements We like to express our gratitude to the editors of this volume and the four
anonymous referees for their valuable comments and suggestions to improve this paper.

References

1. de Bakker, J.W., de Vink, E.P.: Control flow semantics. MIT Press, Cambridge, MA (1996)
2. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information

and Control 60, 109–137 (1984)
3. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction. Theoret.

Comput. Sci. 37(1), 77–121 (1985)
4. de Boer, F.S., van Eijk, R.M., van der Hoek, W., Meyer, J.-J.Ch.: ‘Fully-Abstract model for

the exchange of information in multi-agent systems. Theoretical Computer Science 290(3),
1753–1773 (2003)

5. Brookes, S.D., Hoare, C.A.R., Roscoe, W.: A theory of communicating sequential processes.
J. ACM 31, 499–560 (1984)

6. Chen, X.J., De Giacomo, G.: Reasoning about nondeterministic and concurrent actions: a
process algebra approach. Artif. Intell. 107(1), 63–98 (1999)

7. van Eijk, R.M.: Programming languages for agent communication. Ph.D. Thesis, Utrecht
University (2000)

8. van Eijk, R.M., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.: Process algebra for agent
communication: a general semantic approach. In: M.-Ph. Huget (ed.) Communication in
Multiagent Systems Agent Communication Languages and Conversation Policies LNCS
2650, pp. 113–128, Springer, Berlin Heidelberg New York (2003)

9. Ferber, J.: Multi-Agent systems. Addison-Wesley, Harlow (1999)
10. Finin, T., McKay, D., Fritzson, R., McEntire, R.: ‘KQML: an information and knowledge

exchange protocol’. In: K. Fuchi, T.Yokoi (eds.) Knowledge Building and Knowledge Shar-
ing, Ohmsa and IOS Press (1994)

11. FIPA. Foundation for intelligent physical agents. Communicative act library specification.
http://www.fipa.org, 2000.

12. Gärdenfors, P., Rott, H.: Belief revision. In: D.M. Gabbay et al. (eds.) Handbook of Logic in
Artificial Intelligence and Logic Programming, vol 4, pp. 36–132, Clarendon Press, Oxford
(1995)

150 F. S. de Boer et al.

13. Gelernter, D., Carriero, N.: Coordination languages and their significance. Comm. ACM
35(2), 97–107 (1992)

14. De Giacomo, G., Lespérance, Y., Levesque, H.J., ConGolog : A concurrent programming
language based on the situation calculus. Artificial Intelligence 121, 109–169 (2000)

15. Georgeff, M.P., Ingrand, F.: Decision-Making in an Embedded Reasoning System. Proc.
IJCAI-89, pp. 972–978, Detroit, MI (1989)

16. Hennessy, M.: Algebraic theory of processes. MIT Press, Cambridge, MA (1988)
17. Hennessy, M., Plotkin, G.D.: Full abstraction for a simple parallel programming language.

In: Proc. MFCS’79, LNCS 74, pp. 108–120, Springer, Berlin Heidelberg New York (1979)
18. Hennessy, M.: The Semantics of Programming Languages: An Elementary Introduction

Using Structural Operational Semantics. Wiley, New York (1990)
19. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.Ch.: Agent programming in

3APL. Autonomous Agents and Multi-Agent Syst. 2, 357–401 (1999)
20. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Englewood Cliffs, NJ

(1985)
21. Kinny, D.: The� calculus: an algebraic agent language. In: J.-J. Ch. Meyer, M. Tambe (eds.)

Intelligent Agents VIII LNAI 2333, pp. 32–50, Springer, Berlin Heidelberg NewYork (2002)
22. Milner, R.: A calculus of communicating systems. LNCS 92, Springer, Berlin (1980)
23. Milner, R.: Operational and algebraic semantics of concurrent processes. In: J. van Leeuwen

(ed.) Handbook of Theoretical Computer Science, pp. 1201–1242, Elsevier/ The MIT Press,
Amsterdam/Cambridge(Mass.) (1990)

24. Moreira, A.F., Vieira, R., Bordini, R.H.: Operational semantics of speech-act based com-
munication in agentspeak. In: M. d’Inverno, C. Sierra, F. Zambonelli, (eds.) Proc. EUMAS
2003 Oxford (2003)

25. Omicini, A., Ricci, A., Viroli, M.: Formal Specification and Enactment of Security Policies
throughAgent Coordination Contexts. In: M. d’Inverno, C. Sierra, F. Zambonelli (eds.) Proc.
EUMAS 2003, Oxford (2003)

26. Plotkin, G.: A structural approach to operational semantics. Techn. Report DAIMI FN-19,
Aarhus University, Aarhus (1981)

27. Saraswat, V.A.: Concurrent constraint programming. The MIT Press, Cambridge, Massa-
chusetts (1993)

28. Tsang, E.P.K.: Foundations of constraint satisfaction. Academic Press, London and San
Diego, 1993, ISBN 0-12-701610-4

29. Viroli, M., Omicini, A.: Specifying Agent Observable Behaviour. In: C. Casterfranchi,
W.L. Johnson, (eds.) Proc. AAMAS 2002 Bologna, pp. 712–720, ACM Press (2002)

30. de Vries, W.: Agent interaction: abstract approaches to modelling, programming and
Verifying Multi-Agent Systems, Ph.D. Thesis, Utrecht University (2002)

31. deVries, W., de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.-J.Ch.:A programming
language for coordinating group actions. In: B. Dunin-Kȩplicz, E. Nawarecki (eds.) From
Theory to Practice in Multi-Agent Systems, Proceedings of the 2nd International Work-
shop of Central and Eastern Europe on Multi-Agent Systems (CEEMAS’01), LNAI 2296,
pp. 313–321, Springer, Berlin Heidleberg New York (2002)

32. Weiss, G. (ed.): Multiagent systems. The MIT Press, Cambridge, Massachusetts (1999)
33. Wooldridge, M.J.: An introduction to multiagent systems. Wiley, Chichester (2002)
34. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: theory and practice. The Knowl. Eng.

Review 10(2), (1995)

