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Abstract. In this note, some new extremal singly-even self-dual codes of
lengths 60 and 64 are constructed using automorphisms of order 7. These codes
have weight enumerators for which no extremal self-dual codes were previously
known to exist.
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1 Introduction

A binary [n, k] code C is a k-dimensional vector subspace of GF(2)n, where
GF(2) is the field of two elements. The weight of a vector is the number of its
nonzero coordinates. An [n, k, d] code is an [n, k] code with minimum weight
d. A code C is self-dual if C = C⊥ where C⊥ is the dual code of C under the
standard inner product. A self-dual code C is doubly-even if all codewords of
C have weight divisible by four, and singly-even if there is at least one code-
word of weight ≡ 2 (mod 4). An automorphism of C is a permutation of the
coordinates of C which preserves C. The set consisting of all automorphisms
of C is called the automorphism group of C.

A singly-even self-dual code is called extremal if it has the highest minimum
weight for that length. Conway and Sloane [4] proved new upper bounds for the
minimum weights of singly-even self-dual codes and gave a list of the possible
weight enumerators of singly-even self-dual codes meeting the bounds with
equality for lengths up to 64 and length 72. For example, the highest minimum
weights of self-dual codes of lengths 60 and 64 are both equal to 12.

In this note, we study extremal singly-even self-dual codes of lengths 60 and
64 with an automorphism of order 7 using the theory developed by Huffman
and Yorgov (cf. [9] and [15]). Extremal singly-even self-dual codes of lengths
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42, 50, 52 and 54 with automorphisms of order 7 have been investigated in
[17], [10], [11] and [13], respectively. In this note, their work is extended to
lengths 60 and 64.

2 An Extremal Self-Dual [60, 30, 12] Code

The weight enumerators of extremal singly-even self-dual [60, 30, 12] codes
are known from [4] and [6]:

W60,1 = 1 + (2555 + 64β)y12 + (33600 − 384β)y14 + · · · (0 ≤ β ≤ 10),

W60,2 = 1 + 3451y12 + 24128y14 + · · · ,

where β is a parameter. For the weight enumerator W60,1, extremal self-dual
codes with β = 10 were constructed in [6]. For the weight enumerator W60,2,
an extremal self-dual code was constructed in [4]. Recently, it was announced
in [14] that an extremal self-dual code with W60,1 for β = 0, exists. In this sec-
tion, we construct an extremal singly-even self-dual [60, 30, 12] code with an
automorphism of order 7. We make use of the theory developed in [9] and [15].
Recently many new extremal self-dual codes have been constructed having an
automorphism of order 7, using the above theory (cf. [10], [11], [13] and [17]).
Hence, we only give the results instead of describing our construction in detail.

Suppose that σ is an automorphism of order 7 of an extremal singly-even
self-dual [60, 30, 12] code. As a consequence of [15, Theorem 1], σ has 8
independent 7-cycles and 4 fixed points. Hence we may assume that σ =
(1, 2, . . . , 7)(8, 9, . . . , 14) · · · (50, 51, . . . , 56). Using the theory in [9] and
[15], we found an extremal singly-even self-dual [60, 30, 12] code C60. The
code C60 has the following generator matrix

G60 =




j j 1 1
j j 1 1

j j 1 1
j j j 1

j j j j

j j j j j j

A1 A1 A1 A1 A1

A1 A1 A1

A1 A1 A2

A1 A1 A3 A2 A4

B1 B1 B1 B1 B1

B1 B3 B1

B1 B2 B1

B1 B1 B2 B4 B1




,

where j is the all-one vector of length 7, and A1, . . . , A4, B1, . . . , B4 are the
right circulant 3×7 matrices with first rows (1110100), (0111010), (0011101),
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(1010011), (1001011), (1100101), (1110010), (0101110), respectively, and the
blanks are filled up with zero’s.

The code C60 corresponds to the weight enumerator W60,1 where β = 7.
Moreover, using Magma, we verified that the automorphism group of C60 is of
order 14

Proposition 1. There exists an extremal singly-even self-dual [60, 30, 12] code
with weight enumerator W60,1 for β = 7 .

3 Extremal Self-Dual [64, 32, 12] Codes

For length 64, two possible weight enumerators of extremal singly-even self-
dual codes are given in [4]:

W64,1 =1 + (1312 + 16β)y12 + (22016 − 64β)y14 + · · · (14 ≤ β ≤ 284) and

W64,2 =1 + (1312 + 16β)y12 + (23040 − 64β)y14 + · · · (0 ≤ β ≤ 277),

where β is a parameter. For the weight enumerator W64,1, extremal self-dual
codes are known for β = 18 [12] and β = 44 [2]. For the weight enumerator
W64,2, extremal self-dual codes exist for β = 32 [4], β = 40 [3] and β = 64
[7]. Recently, an extremal self-dual code with β = 14 in W64,1 has been con-
structed in [1]. An extremal self-dual code with weight enumerator W64,2 where
β = 10 has been also found in [8].

Similarly to the previous section, we consider an extremal singly-even self-
dual [64, 32, 12] code with an automorphisms of order 7. Suppose that φ is
an automorphism of order 7 of an extremal singly-even self-dual [64, 32, 12]
code. By Lemma 5 in [16], φ has either 9 cycles of length 7 and 1 fixed point
or 8 cycles of length 7 and 8 fixed points. Note that this also follows from
Theorem 1 in [15]. In addition, by considering the decomposition structure, it is
not hard to show that φ cannot be of the second type. Hence, we may assume that
φ = (1, 2, . . . , 7)(8, 9, . . . , 14) · · · (57, 58, . . . , 63). By the method given in
[15], we found a number of examples of extremal singly-even self-dual codes
of length 64 with automorphism φ. We have found seven codes C64,i , 1 ≤ i ≤ 7
with weight enumerators W64,2 for β = 2, 9, 16, 23, 30, 37 and 44, respectively.
We verified by Magma that the automorphism groups of the codes are all of
order 7.

Proposition 2. There exist extremal singly-even self-dual [64, 32, 12] codes
with weight enumerators W64,2 for β = 2, 9, 16, 23, 30, 37 and 44.
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We now present generator matrices G64,i for these codes. Define the matrix
A as

A =




j j

j j j j

j j j j

j j j 1
j j j j


 .

Moreover, we define matrices Di , 1 ≤ i ≤ 7, respectively, as




E1 E1 E1 E1 E1
E1 E1 E1

E1 E1 E2
E1 E1 E3 E7 E5

E1 E1 E3 E6
H1 H1 H1 H1 H1 H1
H1 H3 H3 H1
H1 H7 H1
H1 H1 H2 H5 H6 H1




,




E1 E1 E1 E1 E1
E1 E1 E1

E1 E1 E2
E1 E1 E1 E3

E1 E1 E2 E2
H1 H1 H1 H1 H1 H1
H1 H2 H1
H1 H1 H2 H1
H1 H1 H2 H3 H1




,




E1 E1 E1 E1 E1
E1 E1 E1

E1 E1 E2
E1 E1 E7 E2

E1 E1 E6 E2 E7
H1 H1 H1 H1 H1 H1
H1 H6 H1
H1 H7 H2 H1
H1 H1 H2 H2 H7 H1




,




E1 E1 E1 E1 E1
E1 E1 E1

E1 E1 E2
E1 E1 E6 E6

E1 E1 E5 E3 E5
H1 H1 H1 H1 H1 H1
H1 H5 H1
H1 H6 H3 H1
H1 H1 H2 H6 H5 H1




,




E1 E1 E1 E1 E1
E1 E1 E1

E1 E1 E2
E1 E1 E1 E2 E4

E1 E1 E3 E3
H1 H1 H1 H1 H1 H1
H1 H1 H3 H1
H1 H2 H3 H1
H1 H1 H2 H4 H1




,




E1 E1 E1 E1 E1
E1 E1 E1

E1 E1 E2
E1 E1 E5 E5 E5

E1 E1 E4 E5
H1 H1 H1 H1 H1 H1
H1 H5 H4 H1
H1 H5 H5 H1
H1 H1 H2 H5 H1




,




E1 E1 E1 E1 E1
E1 E1 E1

E1 E1 E2
E1 E1 E1 E2 E4

E1 E1 E7 E6 E7
H1 H1 H1 H1 H1 H1
H1 H1 H7 H1
H1 H2 H6 H1
H1 H1 H2 H4 H7 H1




,

where E1, E2, . . . , E7, H1, H2, . . . , H7 are the right circulant 3 × 7 matri-
ces with first rows (1110100), (0111010), (0011101), (1001110), (0100111),
(1010011), (1101001), (1001011), (1100101), (1110010), (0111001),
(1011100), (0101110), (0010111), respectively. Then the generator matrix
G64,i (i = 1, 2, . . . , 7) is defined as

G64,i =




A

0

Di

.

.

.

0




.
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