Group Actions on Binary Resilient Functions

Xiang-Dong Hou

Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435, USA (e-mail: xhou@euler.math.wright.edu)

Received: November 20, 2001; revised version: April 18, 2003

Abstract. Let $G_{n,t}$ be the subgroup of $GL(n, \mathbb{Z}_2)$ that stabilizes $\{x \in \mathbb{Z}_2^n : |x| \le t\}$. We determine $G_{n,t}$ explicitly: For $1 \le t \le n-2$, $G_{n,t} = S_n$ when t is odd and $G_{n,t} = \langle S_n, \Delta \rangle$ when t is even, where $S_n < GL(n, \mathbb{Z}_2)$ is the symmetric group of degree n and $\Delta \in GL(n, \mathbb{Z}_2)$ is a particular involution. Let $\mathcal{R}_{n,t}$ be the set of all binary t-resilient functions defined on \mathbb{Z}_2^n . We show that the subgroup $\mathbb{Z}_2^n \rtimes (G_{n,t} \cup G_{n,n-1-t}) < AGL(n, \mathbb{Z}_2)$ acts on $\mathcal{R}_{n,t}/\mathbb{Z}_2$. We determine the representatives and sizes of the conjugacy classes of $\mathbb{Z}_2^n \rtimes S_n$ and $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$. These results allow us to compute the number of orbits of $\mathcal{R}_{n,t}/\mathbb{Z}_2$ under the above group action for (n, t) = (5, 1) and (6, 2).

Keywords: General linear group, Affine linear group, Resilient function.

1 Introduction

The problem considered in this paper originated from binary resilient functions. Let \mathcal{P}_n be the set of all functions from \mathbb{Z}_2^n to \mathbb{Z}_2 . The Hamming weight of a function $f \in \mathcal{P}_n$, denoted by |f|, is the cardinality of $f^{-1}(1)$. The Hamming weight of a binary vector, row or column, is also denoted by $|\cdot|$. We use $\langle \cdot, \cdot \rangle$ to denote the usual dot product in \mathbb{Z}_2^n . Thus for $s \in \mathbb{Z}_2^n$, $\langle s, \cdot \rangle \in \mathcal{P}_n$ is the linear function defined by $x \mapsto \langle s, x \rangle$ ($x \in \mathbb{Z}_2^n$). A function $f \in \mathcal{P}_n$ is called *t*-resilient if

$$|f + \langle s, \cdot \rangle| = 2^{n-1} \text{ for all } s \in \mathbb{Z}_2^n \text{ with } |s| \le t.$$
(1.1)

(If (1.1) holds for all $s \in \mathbb{Z}_2^n$ with $1 \le |s| \le t$, f is called *t*th order correlation-immune.) Resilient functions and correlation-immune functions were introduced by Chor et al [3], Bennett et al [1] and Siegenthaler [6] for applications in several areas of cryptography. The applications include random string generation, fault-tolerant distributed computing and resistance against correlation attack.

This paper is a treatment of binary resilient functions from an algebraic point of view; our attempt is to understand the classification of such functions. Let $\mathcal{R}_{n,t}$ be the set of all *t*-resilient functions in \mathcal{P}_n . Since $f \in \mathcal{R}_{n,t}$ if and only if $f + 1 \in \mathcal{R}_{n,t}$, it suffices to consider $\mathfrak{R}_{n,t} = \mathcal{R}_{n,t}/\mathbb{Z}_2$, i.e., $\mathcal{R}_{n,t}$ modulo the constant functions. It also suffices to assume $1 \le t \le n - 4$ since $\mathfrak{R}_{n,0}$ consists of balanced functions and $\mathfrak{R}_{n,t}$ is completely known for $t \ge n - 3$ ([2], [4]). The first step towards the classification of $\mathfrak{R}_{n,t}$ is to identify a group action on $\mathfrak{R}_{n,t}$. Obviously, the subgroup \mathbb{Z}_2^n of translations of the affine linear group AGL (n, \mathbb{Z}_2) acts on $\mathfrak{R}_{n,t}$. The general linear group GL (n, \mathbb{Z}_n) does not act on $\mathfrak{R}_{n,t}$ unless t = 0. However, if we let $G_{n,t}$ be the subgroup of GL (n, \mathbb{Z}_2) that stabilizes the Hamming sphere $\{x \in \mathbb{Z}_2^n : |x| \le t\} \subset \mathbb{Z}_2^n$, then $G_{n,t}$ acts on $\mathfrak{R}_{n,t}$. We will see that $G_{n,n-1-t}$ also acts on $\mathfrak{R}_{n,t}$ in an indirect way. As it turns out below, either $G_{n,t} \subset G_{n,n-1-t}$ or $G_{n,t} \supset G_{n,n-1-t}$. Hence the semidirect product $\mathbb{Z}_2^n \rtimes (G_{n,t} \cup G_{n,n-1-t}) < \operatorname{AGL}(n, \mathbb{Z}_2)$ acts on $\mathfrak{R}_{n,t}$.

In Section 2, we determine the group $G_{n,t}$ explicitly. For $1 \le t \le n-2$, $G_{n,t} = S_n$ when t is odd and $G_{n,t} = \langle S_n, \Delta \rangle$ when t is even, where $S_n < GL(n, \mathbb{Z}_2)$ is the symmetric group of degree n and

$$\Delta = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & & \\ & \ddots & \\ & & & 1 \end{bmatrix}.$$
(1.2)

We describe the action of $\mathbb{Z}_2^n \rtimes (G_{n,t} \cup G_{n,n-1-t})$ on $\mathfrak{R}_{n,t}$ in Section 3.

We are interested in the number of orbits in $\mathfrak{R}_{n,t}$ under the action of $\mathbb{Z}_2^n \rtimes (G_{n,t} \cup G_{n,n-1-t})$, where the group is either $\mathbb{Z}_2^n \rtimes S_n$ or $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$. To compute this number using the Burnside lemma, we need to determine the representatives and sizes of the conjugacy classes of $\mathbb{Z}_2^n \rtimes S_n$ and $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$. We answer these questions in Section 4, which is the technical portion of the paper.

In Section 5, we use the results of Section 4 to compute the number of $\mathbb{Z}_2^n \rtimes (G_{n,t} \cup G_{n-1-t,t})$ -orbits in $\mathfrak{R}_{n,t}$ for (n, t) = (5, 1) and (6, 2).

2 The Group $G_{n,t}$

Recall that

$$G_{n,t} = \{A \in \operatorname{GL}(n, \mathbb{Z}_2) : |Ax| \le t \text{ for all } x \in \mathbb{Z}_2^n \text{ with } |x| \le t\}.$$
(2.1)

Elements in $G_{n,t}$ are matrices $A \in GL(n, \mathbb{Z}_2)$ such that any sum of $\leq t$ columns of A has weight $\leq t$ and any sum of > t columns of A has weight > t. Clearly, $G_{n,t} = GL(n, \mathbb{Z}_2)$ for t = 0 or n. When t = n - 1, $G_{n,n-1} < GL(n, \mathbb{Z}_2)$ is the stabilizer of $[1, \dots, 1]^T \in \mathbb{Z}_2^n$. $G_{n,n-1}$ is conjugate to the stabilizer of $[1, 0, \dots, 0]^T$ and the latter is

$$\left\{ \begin{bmatrix} 1 & * \\ 0 & B \end{bmatrix} : B \in \operatorname{GL}(n-1, \mathbb{Z}_2) \right\} \cong \operatorname{AGL}(n-1, \mathbb{Z}_2).$$
(2.2)

Let $S_n < \operatorname{GL}(n, \mathbb{Z}_2)$ be the subgroup of permutation matrices. Then $S_n \subset G_{n,t}$. Let $\Delta \in \operatorname{GL}(n, \mathbb{Z}_2)$ be as in (1.2). It is also easy to see that $\Delta \in G_{n,t}$ when *t* is even. The main result of this section is the following theorem.

Theorem 2.1. For $1 \le t \le n-2$, we have

$$G_{n,t} = \begin{cases} S_n, & \text{if } t \text{ is odd,} \\ \langle S_n, \Delta \rangle, & \text{if } t \text{ is even.} \end{cases}$$
(2.3)

We first prove a lemma.

Lemma 2.2. Let $1 \le t \le n-2$ and $A \in G_{n,t}$. Then all columns of A have weight ≤ 2 .

Proof. Assume the contrary and write

$$A = \begin{bmatrix} \mathbf{1}_{\mu} & b_1 \cdots b_{n-1} \\ \mathbf{0}_{n-\mu} & c_1 \cdots c_{n-1} \end{bmatrix}, \quad \mu \ge 3, \ b_i \in \mathbb{Z}_2^{\mu}, \ c_i \in \mathbb{Z}_2^{n-\mu},$$
(2.4)

where $\mathbf{1}_{\mu}$ is the all 1 column vector of length μ and $\mathbf{0}_{n-\mu}$ is the all 0 column vector of length $n - \mu$. We also assume that μ is the smallest among the column weights of *A* which are ≥ 3 .

First assume that $t - 1 \le n - \mu$. Since $\operatorname{rank}[c_1, \dots, c_{n-1}] = n - \mu$, there are $s \le t - 1$ columns from $[c_1, \dots, c_{n-1}]$, say, c_1, \dots, c_s , such that $|c_1 + \dots + c_s| \ge t - 1$. It follows that one of

$$\begin{bmatrix} b_1 \\ c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_s \\ c_s \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{1}_{\mu} \\ \mathbf{0}_{n-\mu} \end{bmatrix} + \begin{bmatrix} b_1 \\ c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_s \\ c_s \end{bmatrix}$

has weight > t, which is a contradiction to the fact $A \in G_{n,t}$.

Next assume that $t - 1 > n - \mu$ but $t < n - \frac{\mu}{2}$. Then $[c_1, \dots, c_{n-1}]$ has $s \le n - \mu$ columns, say, c_1, \dots, c_s , such that $|c_1 + \dots + c_s| \ge n - \mu$. We have

$$\max\left\{ \left| \begin{bmatrix} b_1 \\ c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_s \\ c_s \end{bmatrix} \right|, \left| \begin{bmatrix} \mathbf{1}_{\mu} \\ \mathbf{0}_{n-\mu} \end{bmatrix} + \begin{bmatrix} b_1 \\ c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_s \\ c_s \end{bmatrix} \right| \right\}$$

$$\geq n - \mu + \frac{\mu}{2} = n - \frac{\mu}{2} > t, \qquad (2.5)$$

which is again a contradiction.

Now assume that $t \ge n - \frac{\mu}{2}$. Since $\mu \le t$, we have $t \ge \frac{2}{3}n$. Observe that A stabilizes $\{x \in \mathbb{Z}_2^n : |x| \ge t + 1\}$ and that

$$|\{x \in \mathbb{Z}_{2}^{n} : |x| = t+1\}| = \binom{n}{t+1} > \binom{n}{t+2} + \dots + \binom{n}{n} = |\{x \in \mathbb{Z}_{2}^{n} : |x| \ge t+2\}|.$$
(2.6)

(In (2.6), we used the fact that $t \ge \frac{2}{3}n$.) Thus there exists an $x \in \mathbb{Z}_2^n$ such that |Ax| = |x| = t + 1. Therefore we may assume that the sum of the first t + 1 columns of A has weight t + 1. Write

$$A = \begin{bmatrix} d_1 \cdots d_n \\ e_1 \cdots e_n \end{bmatrix}, \quad d_i \in \mathbb{Z}_2^{t+1}, \ e_i \in \mathbb{Z}_2^{n-(t+1)},$$
(2.7)

where

$$d_1 + \dots + d_{t+1} = \mathbf{1}_{t+1}, \quad e_1 + \dots + e_{t+1} = 0.$$
 (2.8)

Since

$$\left| \begin{bmatrix} d_1 \\ e_1 \end{bmatrix} + \dots + \begin{bmatrix} d_{t+1} \\ e_{t+1} \end{bmatrix} + \begin{bmatrix} d_i \\ e_i \end{bmatrix} \right| \ge t+1 \text{ for all } t+1 < i \le n,$$
(2.9)

we have $|d_i| \leq |e_i|$ and consequently,

$$\left| \begin{bmatrix} d_i \\ e_i \end{bmatrix} \right| \le 2|e_i| \le 2\left(n - (t+1)\right) < \mu, \quad t+1 < i \le n.$$

$$(2.10)$$

By our assumption on the minimality of μ , we must have

$$\left| \begin{bmatrix} d_i \\ e_i \end{bmatrix} \right| = 1 \text{ or } 2, \text{ for } t+1 < i \le n.$$
(2.11)

We claim that e_{t+2}, \dots, e_n are linearly independent. Otherwise,

$$\alpha_{t+2}e_{t+2} + \dots + \alpha_n e_n = 0 \tag{2.12}$$

for some $0 \neq (\alpha_{t+2}, \dots, \alpha_n) \in \mathbb{Z}_2^{n-(t+1)}$. It follows that $\alpha_{t+2}d_{t+2} + \dots + \alpha_n d_n \neq 0$ and

$$\left| \begin{bmatrix} d_1 \\ e_1 \end{bmatrix} + \dots + \begin{bmatrix} d_{t+1} \\ e_{t+1} \end{bmatrix} + \alpha_{t+2} \begin{bmatrix} d_{t+2} \\ e_{t+2} \end{bmatrix} + \dots + \alpha_n \begin{bmatrix} d_n \\ e_n \end{bmatrix} \right| \le t, \quad (2.13)$$

which is a contradiction.

We further claim that $e_1 = \cdots = e_{t+1} = 0$. Otherwise, say $e_1 \neq 0$. Since rank $[e_{t+2}, \cdots, e_n] = n - (t+1)$, there is an i > t+1 such that $e_i \cdot e_1 \neq 0$, where $e_i \cdot e_1$ is the coordinate wise product of e_i and e_1 . Note from (2.11) that $|d_i| \le 1$ if $|e_i| = 1$ and that $|d_i| = 0$ if $|e_i| = 2$. In either case,

$$\begin{vmatrix} \begin{bmatrix} d_2 \\ e_2 \end{bmatrix} + \dots + \begin{bmatrix} d_{t+1} \\ e_{t+1} \end{bmatrix} + \begin{bmatrix} d_i \\ e_i \end{bmatrix} = \begin{vmatrix} \begin{bmatrix} \mathbf{1}_{t+1} \\ \mathbf{0}_{n-t-1} \end{bmatrix} + \begin{bmatrix} d_1 \\ e_1 \end{bmatrix} + \begin{bmatrix} d_i \\ e_i \end{bmatrix} \\ \leq \begin{vmatrix} \begin{bmatrix} \mathbf{1}_{t+1} \\ \mathbf{0}_{n-t-1} \end{bmatrix} + \begin{bmatrix} d_1 \\ e_1 \end{bmatrix} = \begin{vmatrix} \begin{bmatrix} d_2 \\ e_2 \end{bmatrix} + \dots + \begin{bmatrix} d_{t+1} \\ e_{t+1} \end{bmatrix} \leq t, \quad (2.14)$$

which is a contradiction.

Since *A* has at least one column with weight ≥ 3 and since the last n - (t+1) columns of *A* have weight ≤ 2 ((2.11)), one of d_1, \dots, d_{t+1} , say, d_1 , has weight ≥ 3 . We then have

$$\begin{vmatrix} d_2 \\ \mathbf{0}_{n-t-1} \end{vmatrix} + \dots + \begin{bmatrix} d_{t+1} \\ \mathbf{0}_{n-t-1} \end{bmatrix} + \begin{bmatrix} d_{t+2} \\ e_{t+2} \end{bmatrix} \end{vmatrix} = \begin{vmatrix} \mathbf{1}_{t+1} \\ \mathbf{0}_{n-t-1} \end{bmatrix} + \begin{bmatrix} d_1 \\ \mathbf{0}_{n-t-1} \end{bmatrix} + \begin{bmatrix} d_{t+2} \\ e_{t+2} \end{bmatrix} \end{vmatrix}$$
$$\leq t+1-3+2 = t, \qquad (2.15)$$

which is again a contradiction.

Proof of Theorem 2.1. Let $A \in G_{n,t}$. We want to show that $A \in S_n$ when *t* is odd and $A \in \langle S_n, \Delta \rangle$ when *t* is even. By Lemma 2.2, all columns of *A* have weight ≤ 2 . If all columns of *A* have weight 1, then $A \in S_n$ and we are done. So we assume that *A* has at least one column with weight 2.

We first claim that if A has two columns a_1 and a_2 with $|a_1| = |a_2| = 2$, then the coordinate wise product $a_1 \cdot a_2 \neq 0$. Otherwise, write

$$A = \begin{bmatrix} 1 & 0 & & \\ 1 & 0 & b_1 & \cdots & b_{n-2} \\ 0 & 1 & & & \\ 0 & c_1 & \cdots & c_{n-2} \end{bmatrix}, \quad b_i \in \mathbb{Z}_2^4, \ c_i \in \mathbb{Z}_2^{n-4}.$$
(2.16)

Note that rank $[c_1, \dots, c_{n-2}] = n - 4$. If $t - 1 \le n - 4$, there are $s \le t - 1$ columns of $[c_1, \dots, c_{n-2}]$, say, c_1, \dots, c_s , such that $|c_1 + \dots + c_s| \ge t - 1$. Then one of

$$\begin{bmatrix} b_1 \\ c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_s \\ c_s \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0_{n-4} \end{bmatrix} + \begin{bmatrix} b_1 \\ c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_s \\ c_s \end{bmatrix},$$
$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0_{n-4} \end{bmatrix} + \begin{bmatrix} b_1 \\ c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_s \\ c_s \end{bmatrix}$$

has weight $\geq t + 1$, which is a contradiction. If t = n - 2, one of

$$\begin{bmatrix} 1\\1\\0\\0\\\mathbf{0}_{n-4} \end{bmatrix} + \begin{bmatrix} b_1\\c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_{n-2}\\c_{n-2} \end{bmatrix} \text{ and } \begin{bmatrix} 0\\0\\1\\1\\\mathbf{0}_{n-4} \end{bmatrix} + \begin{bmatrix} b_1\\c_1 \end{bmatrix} + \dots + \begin{bmatrix} b_{n-2}\\c_{n-2} \end{bmatrix}$$

has weight $\leq 2 + |c_1 + \cdots + c_{n-2}| \leq n-2 = t$, which is also a contradiction.

If A has 3 columns a_1, a_2, a_3 with $|a_1| = |a_2| = |a_3| = 2$, then their coordinate wise product $a_1 \cdot a_2 \cdot a_3 \neq 0$. Otherwise, we would have

$$[a_1 \ a_2 \ a_3] = \begin{bmatrix} 1 \ 0 \ 1 \\ 1 \ 1 \ 0 \\ 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \\ \vdots \ \vdots \ \vdots \\ 0 \ 0 \ 0 \end{bmatrix}$$
(2.17)

and a_1, a_2, a_3 would be linearly dependent.

Based on the claim so far, we can write

$$A = \begin{bmatrix} 1 & \cdots & 1 & \\ 1 & & & \\ & \ddots & B \\ & & 1 & \\ & & 0 & C \end{bmatrix}$$
(2.18)

where *B* is of size $(s + 1) \times (n - s)$ and all columns of $\begin{bmatrix} B \\ C \end{bmatrix}$ have weight 1. In order for *A* to be invertible, up to a suitable permutation of the columns, we must have

$$A = \begin{bmatrix} 1 \cdots 1 & * \\ 1 & * \\ \ddots & \vdots \\ 1 & * \\ & 1 & 0 \\ & \ddots & \vdots \\ & & & 1 & 0 \end{bmatrix}^{s+1} = [a_1 \cdots a_n], \quad |a_n| = 1.$$
(2.19)

If s < n - 1, let u be the largest odd integer $\le \min\{t, s\}$. Observe that $|a_1 + \cdots + a_u| = u + 1$ and that $t - u \le n - 1 - s$. Thus

$$|a_1 + \dots + a_u + a_{s+1} + \dots + a_{s+t-u}| = t + 1,$$
(2.20)

which is a contradiction. Therefore we must have s = n - 1. Then one can easily see that the fact $A \in G_{n,t}$ forces $a_n = [1, 0, \dots, 0]^T$. Hence after a permutation of columns, A becomes Δ . When t is even, we have $A \in \langle S_n, \Delta \rangle$; when t is odd, we have a contradiction since $\Delta \notin G_{n,t}$. The proof of the theorem is now complete. The group $\langle S_n, \Delta \rangle$ has a familiar structure. For each $1 \le i \le n$, put

$$\Delta_{i} = \begin{bmatrix} 1 & & \\ \ddots & & \\ 1 \cdots 1 \cdots 1 & \\ & \ddots & \\ & & 1 \end{bmatrix} = I + \begin{bmatrix} i & & \\ 1 \cdots 1 & 1 & 1 & \\ & & 1 \end{bmatrix}_{i}$$
(2.21)

Then every element in (S_n, Δ) can be uniquely written as P or $\Delta_i P$ for some $P \in S_n$, $1 \le i \le n$. Throughout the paper, elements in S_n are viewed as permutation matrices as well as permutations on $\{1, \dots, n\}$.

Proposition 2.3. Let S_{n+1} be the symmetric group on $\{0, 1, \dots, n\}$. Define

$$\begin{aligned} \phi : \langle S_n, \Delta \rangle &\longrightarrow S_{n+1} \\ P &\longmapsto P & \text{for } P \in S_n, \\ \Delta_i P &\longmapsto (0, i) P & \text{for } P \in S_n \text{ and } 1 \leq i \leq n. \end{aligned}$$

$$(2.22)$$

Then ϕ is a group isomorphism.

Proof. Direct computation shows that in $\langle S_n, \Delta \rangle$,

$$P\Delta_i = \Delta_{P(i)}P, \quad 1 \le i \le n, \ P \in S_n, \tag{2.23}$$

and

$$\Delta_i \Delta_j = \Delta_j(i, j), \quad 1 \le i, j \le n, \ i \ne j.$$
(2.24)

The same relations hold in S_{n+1} with (0, i) in place of Δ_i . Consequently, the map ϕ in (2.22) is an isomorphism.

3 Group Actions on $\mathfrak{R}_{n,t}$

The \mathbb{Z}_2 -algebra \mathcal{P}_n can be written as

$$\mathcal{P}_n = \mathbb{Z}_2[X_1, \cdots, X_n] / (X_1^2 - X_1, \cdots, X_n^2 - X_n)$$
(3.1)

and the affine linear group $AGL(n, \mathbb{Z}_2)$ can be written as

$$\operatorname{AGL}(n, \mathbb{Z}_2) = \left\{ \begin{bmatrix} A \\ a \end{bmatrix} : A \in \operatorname{GL}(n, \mathbb{Z}_2), a \in \mathbb{Z}_2^n \right\} < \operatorname{GL}(n+1, \mathbb{Z}_2). \quad (3.2)$$

The group of translations of $AGL(n, \mathbb{Z}_n)$ is

$$\mathbb{Z}_2^n \cong \left\{ \begin{bmatrix} I \\ a \ 1 \end{bmatrix} : a \in \mathbb{Z}_2^n \right\}.$$
(3.3)

For each subgroup $G < GL(n, \mathbb{Z}_2)$, the semidirect product of \mathbb{Z}_2^n and G is

$$\mathbb{Z}_{2}^{n} \rtimes G = \left\{ \begin{bmatrix} A \\ a & 1 \end{bmatrix} : A \in G, a \in \mathbb{Z}_{2}^{n} \right\} < \operatorname{AGL}(n, \mathbb{Z}_{2}).$$
(3.4)

There is a left AGL (n, \mathbb{Z}_2) action on \mathcal{P}_n :

$$\begin{array}{l} \operatorname{AGL}(n,\mathbb{Z}_2) \times \mathcal{P}_n \longrightarrow \mathcal{P}_n\\ (\sigma, f(X)) \longmapsto \sigma(f(X)) = f(XA + a) \end{array} \tag{3.5}$$

where

$$\sigma = \begin{bmatrix} A \\ a \end{bmatrix} \in \operatorname{AGL}(n, \mathbb{Z}_2) \text{ and } X = (X_1, \cdots, X_n).$$
(3.6)

Consequently, AGL (n, \mathbb{Z}_2) acts on $\mathcal{P}_n/\mathbb{Z}_2$; the latter contains $\mathfrak{R}_{n,t}$. However, $\mathfrak{R}_{n,t}$ is not AGL (n, \mathbb{Z}_2) -invariant unless t = 0. In general, $\mathfrak{R}_{n,t}$ is acted on only by a certain subgroup of AGL (n, \mathbb{Z}_2) .

Proposition 3.1. If $f(X) \in \mathfrak{R}_{n,t}$ and $A \in G_{n,t}$, then $f(XA) \in \mathfrak{R}_{n,t}$.

Proof. For each $s \in \mathbb{Z}_2^n$ with $|s| \le t$, we have

$$|f(XA) + Xs^{T}| = |f(X) + XA^{-1}s^{T}| = 2^{n-1}$$
(3.7)

since $|A^{-1}s^T| \le t$.

Proposition 3.2. Let $f(X) \in \mathfrak{R}_{n,t}$ and $A \in G_{n,n-t-1}$ and let **1** be the all 1 column vector of length n. Then

$$f(XA) + X(A+I)\mathbf{1} \in \mathfrak{R}_{n,t}$$
(3.8)

Proof. For each $s \in \mathbb{Z}_2^n$ with $|s| \le t$, we have

$$\left| f(XA) + X(A+I)\mathbf{1} + Xs^{T} \right|$$

= $\left| f(X) + XA^{-1}(A+I)\mathbf{1} + XA^{-1}s^{T} \right|$
= $\left| f(X) + X(\mathbf{1} + A^{-1}(\mathbf{1} + s^{T})) \right|.$ (3.9)

Since $|\mathbf{1} + s^T| \ge n - t$ and since $A \in G_{n,n-t-1}$, we have $|A^{-1}(\mathbf{1} + s^T)| \ge n - t$, hence $|\mathbf{1} + A^{-1}(\mathbf{1} + s^T)| \le t$. Consequently,

$$\left| f(X) + X \left(\mathbf{1} + A^{-1} (\mathbf{1} + s^{T}) \right) \right| = 2^{n-1},$$
 (3.10)

and the proof is complete.

In fact, Proposition 3.2 is the result of the following indirect action of $G_{n,n-t-1}$ on $\mathfrak{R}_{n,t}$:

$$\mathfrak{R}_{n,t} \ni f(X) \longmapsto f(X) + X\mathbf{1} \stackrel{A \in G_{n,n^{-t-1}}}{\longmapsto} f(XA) + XA\mathbf{1}$$
$$\longmapsto f(XA) + XA\mathbf{1} + X\mathbf{1} \in \mathfrak{R}_{n,t}$$
(3.11)

Assume $1 \le t \le n-2$. If either *n* is odd or both *n* and *t* are even, one can see from Theorem 2.1 that $G_{n,n-t-1} \subset G_{n,t}$ and that the function in (3.8) is simply f(XA). Thus in these cases, the indirect action of $G_{n,n-t-1}$ on $\mathfrak{R}_{n,t}$ is a subgroup action of $G_{n,t}$ on $\mathfrak{R}_{n,t}$. However, when *n* is even and *t* is odd, $G_{n,t} = S_n, G_{n,n-t-1} = \langle S_n, \Delta \rangle$ and the action of $G_{n,t}$ on $\mathfrak{R}_{n,t}$ is a subgroup action of the indirect action of $G_{n,n-t-1}$ on $\mathfrak{R}_{n,t}$. Of course, all these group actions on $\mathfrak{R}_{n,t}$ can be combined with the action of the translation subgroup \mathbb{Z}_2^n on $\mathfrak{R}_{n,t}$. The following is a summary of the largest group action on $\mathfrak{R}_{n,t}$ we obtained in each case.

(i) When $0 < t \le n - 2$ and t is even, $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$ acts on $\mathfrak{R}_{n,t}$:

$$\begin{pmatrix} \mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle \end{pmatrix} \times \mathfrak{R}_{n,t} \longrightarrow \mathfrak{R}_{n,t} \\ \begin{pmatrix} \begin{bmatrix} A \\ a & 1 \end{bmatrix}, f(X) \end{pmatrix} \longrightarrow f(XA + a)$$
 (3.12)

(ii) When $0 < t \le n - 2$ and both *n* and *t* are odd, $\mathbb{Z}_2^n \rtimes S_n$ acts on $\mathfrak{R}_{n,t}$:

$$\begin{pmatrix} \mathbb{Z}_2^n \rtimes S_n \end{pmatrix} \times \mathfrak{R}_{n,t} \longrightarrow \mathfrak{R}_{n,t} \\ \begin{pmatrix} \begin{bmatrix} A \\ a \end{bmatrix}, f(X) \end{pmatrix} \longrightarrow f(XA+a)$$
 (3.13)

(iii) When $0 < t \le n - 2$, *n* is even but *t* is odd, $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$ acts on $\mathfrak{R}_{n,t}$:

$$\begin{pmatrix} \mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle \end{pmatrix} \times \mathfrak{R}_{n,t} \longrightarrow \mathfrak{R}_{n,t} \\ \begin{pmatrix} \begin{bmatrix} A \\ a & 1 \end{bmatrix}, f(X) \end{pmatrix} \longrightarrow f(XA+a) + X(A+I)\mathbf{1}$$
(3.14)

The classification of $\Re_{n,t}$, whose meaning was not clear until now, can be defined as the classification of $\Re_{n,t}$ under the group actions in (3.12) – (3.14).

4 Conjugacy Classes of $\mathbb{Z}_2^n \rtimes S_n$ and $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$

We are interested in computing the number of orbits in $\mathfrak{R}_{n,t}$ $(1 \le t \le n-3)$ under the group actions in (3.12) – (3.14) using the Burnside lemma. To this end, we need representatives and sizes of the conjugacy classes of each acting group, which is either $\mathbb{Z}_2^n \rtimes S_n$ or $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$. In general, for any subgroup *G* of $GL(n, \mathbb{Z}_2)$, representatives of conjugacy classes of $\mathbb{Z}_2^n \rtimes G$ can be found as follows. (We refer the reader to [5] for the details.) Let \mathcal{A} be a system of representatives of conjugacy classes of *G*. For each $A \in \mathcal{A}$, let cent_{*G*}(*A*) be the centralizer of *A* in *G* and let $Row(A+I) \subset \mathbb{Z}_2^n$ be the row space of A+I. Then cent_{*G*}(*A*) acts on $\mathbb{Z}_2^n/Row(A+I)$. Let $\mathcal{C}_A \subset \mathbb{Z}_2^n$ such that the images of elements of \mathcal{C}_A in $\mathbb{Z}_2^n/Row(A+I)$ form a system of cent_{*G*}(*A*)-orbit representatives. Then

$$\bigcup_{A \in \mathcal{A}} \left\{ \begin{bmatrix} A \\ a \end{bmatrix} : a \in \mathcal{C}_A \right\}$$
(4.1)

form a system of representatives of conjugacy classes of $\mathbb{Z}_2^n \rtimes G$. Moreover,

$$\left| \operatorname{cent}_{\mathbb{Z}_{2}^{n} \rtimes G} \left(\begin{bmatrix} A \\ a & 1 \end{bmatrix} \right) \right|$$

= 2^{Null(A+I)} · $\left| \left\{ P \in \operatorname{cent}_{G}(A) : aP \equiv A \pmod{\operatorname{Row}(A+I)} \right\} \right|.$ (4.2)

We first introduce some notation. For each partition $\lambda = (\lambda_1, \lambda_2, \dots) \vdash n$, where $\lambda_i \ge 0$ and $\sum_{i>1} i\lambda_i = n$, let

$$A(\lambda) = [(1)\cdots(\lambda_1)] [(\lambda_1+1,\lambda_1+2)\cdots(\lambda_1+2\lambda_2-1,\lambda_1+2\lambda_2)]\cdots \in S_n,$$
(4.3)

which is a canonical permutation on $\{1, \dots, n\}$ of cycle type λ . Similarly, for each $\eta = (\eta_1, \eta_2, \dots) \vdash n + 1$, let

$$A(\eta) = \left[(0) \cdots (\eta_1 - 1) \right] \\ \cdot \left[(\eta_1, \eta_1 + 1) \cdots (\eta_1 + 2(\eta_2 - 1), \eta_1 + 2(\eta_2 - 1) + 1) \right] \cdots \in S_{n+1},$$

$$(4.4)$$

which is a canonical permutation on $\{0, 1, \dots, n\}$ of cycle type η . For $\eta = (\eta_1, \eta_2, \dots) \vdash n + 1$ with $\eta_1 > 0$, we define $\eta' = (\eta_1 - 1, \eta_2, \eta_3, \dots) \vdash n$. For $\lambda = (\lambda_1, \lambda_2, \dots) \vdash n$ and $\alpha = (\alpha_1, \alpha_2, \dots)$ with $0 \le \alpha_i \le \lambda_i$, let

$$a_{\lambda}(\alpha) = (a_{11}, \cdots, a_{1,\lambda_1}, a_{21}, \cdots, a_{2,\lambda_2}, \cdots) \in \mathbb{Z}_2^n$$
 (4.5)

be any vector such that $a_{ij} \in \mathbb{Z}_2^i$ and

$$|a_{ij}| \equiv \begin{cases} 1 \pmod{2}, & \text{for } 1 \le j \le \alpha_i, \\ 0 \pmod{2}, & \text{for } \alpha_i < j \le \lambda_i, \end{cases}$$
(4.6)

Group Actions on Binary Resilient Functions

$$m-1$$

for all *i*. For $\eta = (0, \dots, 0, \eta_m, \eta_{m+1}, \dots) \vdash n + 1$ with $m \ge 2$ and $\eta_m > 0$, and $\beta = (\beta_m, \beta_{m+1}, \dots)$ with $0 \le \beta_i \le \eta_i$, let

$$b_{\eta}(\beta) = (b_{m,1}, \cdots, b_{m,\eta_m}, b_{m+1,1}, \cdots, b_{m+1,\eta_{m+1}}, \cdots) \in \mathbb{Z}_2^n$$
(4.7)

be any vector such that $b_{m,1} \in \mathbb{Z}_2^{m-1}$, $b_{ij} \in \mathbb{Z}_2^i$ for all other (i, j), and

$$|b_{ij}| \equiv \begin{cases} 1 \pmod{2}, & \text{for } 1 \le j \le \beta_i, \\ 0 \pmod{2}, & \text{for } \beta_i < j \le \eta_i, \end{cases}$$
(4.8)

for all *i*.

We now consider the conjugacy classes of the group $\mathbb{Z}_2^n \rtimes S_n$. Conjugacy classes of S_n are represented by $A(\lambda)$, $\lambda \vdash n$. The centralizer cent_{Sn} $(A(\lambda))$ is generated by two types of elements: a swap between the corresponding elements of two cycles of same length in $A(\lambda)$ and a cyclic shift of elements within a cycle of $A(\lambda)$. Note that for $\lambda = (\lambda_1, \lambda_2, \cdots) \vdash n$,

$$\operatorname{Row}(A(\lambda) + I) = \{(x_{11}, \cdots, x_{1,\lambda_1}; x_{21}, \cdots, x_{2,\lambda_2}; \cdots) \\ \in \mathbb{Z}_2^n : x_{ij} \in \mathbb{Z}_2^i, \ |x_{ij}| \text{even}\}.$$

$$(4.9)$$

Hence the cent_{*S_n*($A(\lambda)$)-orbits in $\mathbb{Z}_2^n/\text{Row}(A(\lambda) + I)$ are represented by $a_{\lambda}(\alpha)$ where $\alpha = (\alpha_1, \alpha_2, \cdots), 0 \le \alpha_i \le \lambda_i$. Moreover,}

$$\left| \left\{ P \in \operatorname{cent}_{S_n} (A(\lambda)) : a_{\lambda}(\alpha) P \equiv a_{\lambda}(\alpha) \pmod{\operatorname{Row}(A(\lambda) + I)} \right\} \right|$$

=
$$\prod_{i \ge 1} \left[\alpha_i ! (\lambda_i - \alpha_i) ! i^{\lambda_i} \right].$$
(4.10)

To summarize, we have the following proposition

Proposition 4.1. The conjugacy classes of $\mathbb{Z}_2^n \rtimes S_n$ are represented by

$$\left\{ \begin{bmatrix} A(\lambda) \\ a_{\lambda}(\alpha) \end{bmatrix} : \lambda = (\lambda_1, \lambda_2, \cdots) \vdash n, \ \alpha = (\alpha_1, \alpha_2, \cdots), \ 0 \le \alpha_i \le \lambda_i \right\}.$$
(4.11)

Moreover,

$$\left|\operatorname{cent}_{\mathbb{Z}_{2}^{n} \rtimes S_{n}}\left(\begin{bmatrix}A(\lambda)\\a_{\lambda}(\alpha) \end{bmatrix}\right)\right| = \prod_{i \ge 1} [\alpha_{i}!(\lambda_{i} - \alpha_{i})!(2i)^{\lambda_{i}}].$$
(4.12)

Note that (4.12) follows from (4.2), (4.10) and the fact that $\text{Null}(A(\lambda)+I) = \lambda_1 + \lambda_2 + \cdots$.

Next, we consider the conjugacy classes of the group $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$. We use the isomorphism in Proposition 2.3 to identify $\langle S_n, \Delta \rangle$ with the symmetric group S_{n+1} on $\{0, 1, \dots, n\}$. Conjugacy classes of S_{n+1} are represented by $A(\eta)$, $\eta \vdash n+1$. However, the action of $\operatorname{cent}_{S_{n+1}}(A(\eta))$ on $\mathbb{Z}_2^n/\operatorname{Row}(A(\eta)+I)$ is not necessarily permutation of coordinates. In particular, the action of $(0, 1) \in S_{n+1}$ on $x \in \mathbb{Z}_2^n$ gives $x\Delta$. To find the representatives and sizes of $\operatorname{cent}_{S_{n+1}}(A(\eta))$ -orbits in $\mathbb{Z}_2^n/\operatorname{Row}(A(\eta)+I)$, we consider different types of η .

Lemma 4.2. Assume that $\eta = (1, \eta_2, \eta_3, \dots) \vdash n+1$. Then the cent_{Sn+1} $(A(\eta))$ -orbits in $\mathbb{Z}_2^n/\text{Row}(A(\eta)+I)$ are represented by $a_{\eta'}(\alpha)$ where $\alpha = (\alpha_2, \alpha_3, \dots)$, $0 \le \alpha_i \le \eta_i$. Furthermore,

$$\left| \left\{ P \in \operatorname{cent}_{S_{n+1}} \left(A(\eta) \right) : a_{\eta'}(\alpha) P \equiv a_{\eta'}(\alpha) \pmod{\operatorname{Row}(A(\eta) + I)} \right\} \right|$$
$$= \prod_{i \ge 2} \left[\alpha_i ! (\eta_i - \alpha_i) ! i^{\eta_i} \right].$$
(4.13)

Proof. In this case, $A(\eta) = A(\eta') \in S_n$ and $\operatorname{cent}_{S_{n+1}}(A(\eta)) = \operatorname{cent}_{S_n}(A(\eta'))$. Thus the results follow from Proposition 4.1.

Lemma 4.3. Assume that $\eta = (\eta_1, \eta_2, \dots) \vdash n + 1$ with $\eta_1 \ge 2$. Then the cent_{*S_{n+1}*(*A*(η))-orbits of \mathbb{Z}_2^n /Row(*A*(η) + *I*) are represented by $a_{\eta'}(\alpha)$ where $\alpha = (\alpha_1, \alpha_2, \dots), 0 \le \alpha_1 \le \eta_1 - 1, 0 \le \alpha_i \le \eta_i$ for $i \ge 2$ and the first term in $(\alpha_i)_i$ odd not equal to $\eta_i/2$ is $< \eta_i/2$, i.e., $(\alpha_i)_i$ odd $\le (\eta_i/2)_i$ odd in the lexicographic order. Furthermore,}

$$\left| \left\{ P \in \operatorname{cent}_{S_{n+1}} \left(A(\eta) \right) : a_{\eta'}(\alpha) P \equiv a_{\eta'}(\alpha) \pmod{\operatorname{Row}(A(\eta) + I)} \right\} \right|$$
$$= \begin{cases} \prod_{i \ge 1} \left[\alpha_i ! (\eta_i - \alpha_i) ! i^{\eta_i} \right], & \text{if } (\alpha_i)_i \text{ odd} \neq (\eta_i/2)_i \text{ odd}, \\ 2 \prod_{i \ge 1} \left[\alpha_i ! (\eta_i - \alpha_i) ! i^{\eta_i} \right], & \text{if } (\alpha_i)_i \text{ odd} = (\eta_i/2)_i \text{ odd}. \end{cases}$$
(4.14)

Proof. In this case $A(\eta) = A(\eta') \in S_n$ but $\operatorname{cent}_{S_{n+1}}(A(\eta))$ is generated by $\operatorname{cent}_{S_n}(A(\eta'))$ and $(0, 1) = \Delta$. Since

$$\operatorname{Row}(A(\eta) + I) = \{(x_{12}, \cdots, x_{1,\eta_1}; x_{21}, \cdots, x_{2,\eta_2}; \cdots) \\ \in \mathbb{Z}_2^n : x_{ij} \in \mathbb{Z}_2^i, \ |x_{ij}| \text{ even}\},$$
(4.15)

we have an isomorphism

$$\rho: \mathbb{Z}_{2}^{n}/\text{Row}(A(\eta)+I) \longrightarrow \mathbb{Z}_{2}^{-1+\eta_{1}+\eta_{2}+\cdots} (x_{12}, \cdots, x_{1,\eta_{1}}; x_{21}, \cdots, x_{2,\eta_{2}}; \cdots) \longmapsto (|x_{12}|, \cdots, |x_{1,\eta_{1}}|; |x_{21}|, \cdots, |x_{2,\eta_{2}}|; \cdots)$$
(4.16)

The action of $\operatorname{cent}_{S_{n+1}}(A(\eta))$ on $\mathbb{Z}_2^n/\operatorname{Row}(A(\eta) + I)$ induces an action of $\operatorname{cent}_{S_{n+1}}(A(\eta))$ on $\mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$ through the isomorphism ρ . To describe the first action, it suffices to describe the second. The induced action of an element $P \in \operatorname{cent}_{S_{n+1}}(A(\eta))$ on an element $\epsilon \in \mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$ will be denoted by ϵ^P . The induced action of $\operatorname{cent}_{S_n}(A(\eta'))$ on $\mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$ is easy to describe: If $\sigma \in \operatorname{cent}_{S_n}(A(\eta'))$ is a cyclic shift within a cycle of $A(\eta')$, it acts trivially on $\mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$; if $\sigma \in \operatorname{cent}_{S_n}(A(\eta'))$ is a swap between two cycles of $A(\eta')$, its induced action on $\mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$ is a transposition of the two coordinates of $\mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$ corresponding to the two cycles of $A(\eta')$. To see the action of Δ on $\mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$, observe that for $(x_{12}, \cdots, x_{1,\eta_1}; x_{21}, \cdots, x_{2,\eta_2}; \cdots) \in \mathbb{Z}_2^n/\operatorname{Row}(A(\eta) + I)$ $(x_{ij} \in \mathbb{Z}_2^i)$,

$$(x_{12}, \cdots, x_{1,\eta_1}; x_{21}, \cdots, x_{2,\eta_2}; \cdots) \Delta$$

= $(x_{12}, \cdots, x_{1,\eta_1}; x_{21}, \cdots, x_{2,\eta_2}; \cdots) + |x_{12}|(0, 1, \cdots, 1)$
= $(y_{12}, \cdots, y_{1,\eta_1}; y_{21}, \cdots, y_{2,\eta_2}; \cdots),$ (4.17)

where

$$|y_{ij}| \equiv \begin{cases} |x_{12}| \pmod{2}, & \text{if } (i, j) = (1, 2), \\ |x_{ij}| + i |x_{12}| \pmod{2}, & \text{if } (i, j) \neq (1, 2). \end{cases}$$
(4.18)

Hence the induced action of Δ on $(\epsilon_{12}, \dots, \epsilon_{1,\eta_1}; \epsilon_{21}, \dots, \epsilon_{2,\eta_2}; \dots) \in \mathbb{Z}_2^{-1+\eta_1+\eta_2+\dots}$ gives

$$(\epsilon_{12}, \cdots, \epsilon_{1,\eta_1}; \epsilon_{21}, \cdots, \epsilon_{2,\eta_2}; \cdots)^{\Delta} = (\epsilon_{12}, \cdots, \epsilon_{1,\eta_1}; \epsilon_{21}, \cdots, \epsilon_{2,\eta_2}; \cdots) + \epsilon_{12}(0, \overbrace{1, \cdots, 1}^{\eta_1 - 2}; \overbrace{0, \cdots, 0}^{\eta_2}; \overbrace{1, \cdots, 1}^{\eta_3}; \cdots).$$
(4.19)

From the induced action of $\operatorname{cent}_{S_{n+1}}(A(\eta))$ on $\mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$ described above, it is clear that the $\operatorname{cent}_{S_{n+1}}(A(\eta))$ -orbits of $\mathbb{Z}_2^n/\operatorname{Row}(A(\eta)+I)$ are represented by $a_{\eta'}(\alpha)$ where $\alpha = (\alpha_1, \alpha_2, \cdots), 0 \le \alpha_1 \le \eta_1 - 1, 0 \le \alpha_i \le \eta_i$ for $i \ge 2$ and $(\alpha_i)_i \text{ odd } \le (\eta_i/2)_i \text{ odd}$ in the lexicographic order.

To prove (4.14), observe that each element in $\operatorname{cent}_{S_{n+1}}(A(\eta))$ can be uniquely written in the form σ or $\Delta_k \sigma$ where $\sigma \in \operatorname{cent}_{S_n}(A(\eta'))$, $\Delta_k = (0, k) \in S_{n+1}$ and $1 \le k \le \eta_1 - 1$. Write $\rho(a_{\eta'}(\alpha)) = (\epsilon_{12}, \cdots, \epsilon_{1,\eta_1}; \epsilon_{21}, \cdots, \epsilon_{2,\eta_2}; \cdots) \in \mathbb{Z}_2^{-1+\eta_1+\eta_2+\cdots}$. The number of $\sigma \in \operatorname{cent}_{S_n}(A(\eta'))$ such that

$$(\epsilon_{12},\cdots,\epsilon_{1,\eta_1};\epsilon_{21},\cdots,\epsilon_{2,\eta_2};\cdots)^{\sigma} = (\epsilon_{12},\cdots,\epsilon_{1,\eta_1};\epsilon_{21},\cdots,\epsilon_{2,\eta_2};\cdots)$$
(4.20)

is

110

$$\alpha_1!(\eta_1 - 1 - \alpha_1)! \prod_{i \ge 2} [\alpha_i!(\eta_i - \alpha_i)!i^{\eta_i}].$$
(4.21)

Meanwhile, $\rho(a_{\eta'}(\alpha))^{\Delta_k \sigma} = \rho(a_{\eta'}(\alpha))$ if and only if $(\epsilon_{12}, \dots, \epsilon_{1,\eta_1}; \epsilon_{21}, \dots, \epsilon_{2,\eta_2}; \dots)^{\sigma^{-1}}$

$$= (\epsilon_{12}, \cdots, \epsilon_{1,\eta_1}; \epsilon_{21}, \cdots, \epsilon_{2,\eta_2}; \cdots)^{\Delta_k}$$

= $(\epsilon_{12}, \cdots, \epsilon_{1,\eta_1}; \epsilon_{21}, \cdots, \epsilon_{2,\eta_2}; \cdots)$
+ $\epsilon_{1,k+1}(\underbrace{1, \cdots, 1, 0}_{\eta_1, \eta_2, \eta_2}, \underbrace{\eta_3}_{\eta_3, \eta_3, \eta_3, \eta_3}, \cdots, \eta_1; \cdots).$ (4.22)

(The last equality in $(\stackrel{k}{4.22})$ follows from the proof of (4.19).) When $(\alpha_1, \alpha_3, \alpha_5, \cdots) \neq (\eta_1/2, \eta_3/2, \eta_5/2, \cdots), (4.22)$ holds only if $\epsilon_{1,k+1} = 0$, i.e., $\alpha_1 + 1 \leq k \leq \eta_1 - 1$. For each such *k*, the number of $\sigma \in \operatorname{cent}_{S_n}(A(\eta'))$ satisfying (4.22) is given by (4.21). When $(\alpha_1, \alpha_3, \alpha_5, \cdots) = (\eta_1/2, \eta_3/2, \eta_5/2, \cdots),$ for each $1 \leq k \leq \eta_1 - 1$, the number of $\sigma \in \operatorname{cent}_{S_n}(A(\eta'))$ satisfying (4.22) is given by (4.21). From these observations, we have the total number of $P \in \operatorname{cent}_{S_{n+1}}(A(\eta))$ such that $\rho(a_{\eta'}(\alpha))^P = \rho(a_{\eta'}(\alpha))$, i.e., $a_{\eta'}(\alpha)P \equiv a_{\eta'}(\alpha)$ (mod Row $(A(\eta) + I)$).

Lemma 4.4. Assume that $\eta = (0, \dots, 0, \eta_m, \eta_{m+1}, \dots) \vdash n+1$ with $m \ge 2$ and $\eta_m > 0$. Then the cent_{S_{n+1}}($A(\eta)$)-orbits of \mathbb{Z}_2^n /Row($A(\eta) + I$) are represented by $b_{\eta}(\beta)$, defined in (4.7), where $\beta = (\beta_m, \beta_{m+1}, \dots), 0 \le \beta_i \le \eta_i$ and $(\beta_i)_{iodd} \le (\eta_i/2)_{iodd}$ in the lexicographic order. Furthermore, $|\{P \in \text{cent}_{S_{n+1}}(A(\eta)) : b_{\eta}(\beta)P \equiv b_{\eta}(\beta) \pmod{\text{Row}(A(\eta) + I)}\}|$ $= \int_{i\ge m} [\beta_i!(\eta_i - \beta_i)!i^{\eta_i}], \quad \text{if } \sum_{i \text{ odd}} \eta_i = 0 \text{ or } (\beta_i)_{i \text{ odd}} \ne (\eta_i/2)_{i \text{ odd}},$

$$- \left[2 \prod_{i \ge m} \left[\beta_i! (\eta_i - \beta_i)! i^{\eta_i} \right], \quad if \sum_{i \text{ odd}} \eta_i > 0 \text{ and } (\beta_i)_{i \text{ odd}} = (\eta_i/2)_{i \text{ odd}}. \right]$$

$$(4.23)$$

Proof. Since $A(\eta) = (0, 1, \dots, m-1)(m, \dots) \dots = (0, 1)(1, \dots, m-1)$ $(m, \dots,) \dots = \Delta(1, \dots, m-1)(m, \dots) \dots$, we see that $\operatorname{Row}(A(\eta) + I)$

$$= \{ (x_{m,1}, \cdots, x_{m,\eta_m}; x_{m+1,1}, \cdots, x_{m+1,\eta_{m+1}}; \cdots) \in \mathbb{Z}_2^n : \\ x_{m,1} \in \mathbb{Z}_2^{m-1}, \ x_{ij} \in \mathbb{Z}_2^i \text{ for all other } (i, j), \ |x_{ij}| \text{ even for all } (i, j) \} \\ + \langle (0, 1, \cdots, 1) \rangle.$$
(4.24)

Thus there is an isomorphism

$$\rho: \mathbb{Z}_{2}^{n}/\operatorname{Row}(A(\eta)+I) \longrightarrow \mathbb{Z}_{2}^{\eta_{m}+\eta_{m+1}+\cdots}/\langle (\overbrace{m,\cdots,m}^{\eta_{m}}; \overbrace{m+1,\cdots,m+1}^{\eta_{m+1}}; \cdots) \rangle$$

$$(x_{m1},\cdots,x_{m,\eta_{m}}; x_{m+1,1},\cdots,x_{m+1,\eta_{m+1}};\cdots)$$

$$\longmapsto (|x_{m1}|,\cdots,|x_{m,\eta_{m}}|; |x_{m+1,1}|,\cdots,|x_{m+1,\eta_{m+1}}|;\cdots)$$

$$(4.25)$$

We use $H(\eta)$ to denote the target space of ρ . The cent_{*S*_{n+1}}($A(\eta)$)-action on $\mathbb{Z}_2^n/\text{Row}(A(\eta) + I)$ induces a cent_{*S*_{n+1}}($A(\eta)$)-action on $H(\eta)$ through the isomorphism ρ . The induced action can be described as follows: If $P \in \text{cent}_{S_{n+1}}(A(\eta))$ is a cyclic shift within a cycle of $A(\eta)$, P acts trivially on $H(\eta)$; if $P \in \text{cent}_{S_{n+1}}(A(\eta))$ is a swap between two cycles of the same length in $A(\eta)$, the action of P on $H(\eta)$ is a transposition of the two coordinates of $H(\eta)$ corresponding to the two cycles of $A(\eta)$. We omit the proofs of these claims since they are routine computations. Using the induced action of cent_{*S*_{n+1}}($A(\eta)$) on $H(\eta)$, it is clear that the cent_{*S*_{n+1}}($A(\eta)$)-orbits of $\mathbb{Z}_2^n/\text{Row}(A(\eta) + I)$ are represented by $b_{\eta}(\beta)$ where $\beta = (\beta_m, \beta_{m+1}, \cdots), 0 \le \beta_i \le \eta_i$ and $(\beta_i)_i$ odd $\le (\eta_i/2)_i$ odd in the lexicographic order. Equation (4.23) also follows easily from the induced cent_{*S*_{n+1}}($A(\eta)$)-action on $H(\eta)$.

Combining Lemmas 4.2 - 4.4 and using (4.2), we have the following proposition.

Proposition 4.5. The representatives of the conjugacy classes of $\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle$ and the sizes of the centralizers of the representatives are as follows:

(i)
$$\begin{bmatrix} A(\eta) \\ a_{\eta'}(\alpha) \end{bmatrix}, \ \eta = (1, \eta_2, \eta_3, \cdots) \vdash n+1, \ \alpha = (\alpha_2, \alpha_3, \cdots),$$
$$0 \le \alpha_i \le \eta_i, \tag{4.26}$$

$$\left|\operatorname{cent}_{\mathbb{Z}_{2}^{n}\rtimes\langle S_{n},\Delta\rangle}\left(\begin{bmatrix}A(\eta)\\a_{\eta'}(\alpha)&1\end{bmatrix}\right)\right|=\prod_{i\geq 2}[\alpha_{i}!(\eta_{i}-\alpha_{i})!(2i)^{\eta_{i}}].$$
 (4.27)

(*ii*)
$$\begin{bmatrix} A(\eta) \\ a_{\eta'}(\alpha) \end{bmatrix}, \eta = (\eta_1, \eta_2, \dots) \vdash n+1, \ \eta_1 \ge 2,$$
$$\alpha = (\alpha_1, \alpha_2, \dots), \ 0 \le \alpha_1 \le \eta_1 - 1, \ 0 \le \alpha_i \le \eta_i \ for \ i \ge 2,$$
$$(\alpha_i)_{i \text{ odd}} \le (\eta_i/2)_{i \text{ odd}} \ in \ the \ lexicographic \ order,$$
(4.28)

$$\begin{vmatrix} \operatorname{cent}_{\mathbb{Z}_{2}^{n} \rtimes \langle S_{n}, \Delta \rangle} \left(\begin{bmatrix} A(\eta) \\ a_{\eta'}(\alpha) & 1 \end{bmatrix} \right) \end{vmatrix}$$
$$= \begin{cases} \frac{1}{2} \prod_{i \geq 1} \left[\alpha_{i} ! (\eta_{i} - \alpha_{i}) ! (2i)^{\eta_{i}} \right], & \text{if } (\alpha_{i})_{i} \text{ odd} \neq (\eta_{i}/2)_{i} \text{ odd}, \\ \prod_{i \geq 1} \left[\alpha_{i} ! (\eta_{i} - \alpha_{i}) ! (2i)^{\eta_{i}} \right], & \text{if } (\alpha_{i})_{i} \text{ odd} = (\eta_{i}/2)_{i} \text{ odd}. \end{cases}$$
(4.29)

$$(iii) \begin{bmatrix} A(\eta) \\ b_{\eta}(\beta) 1 \end{bmatrix}, \eta = \overbrace{(0, \cdots, 0}^{m-1}, \eta_m, \eta_{m+1}, \cdots) \vdash n+1, m \ge 2, \eta_m > 0,$$

$$\beta = (\beta_m, \beta_{m+1}, \cdots), \ 0 \le \beta_i \le \eta_i,$$

$$(\beta_i)_i \ \text{odd} \le (\eta_i/2)_i \ \text{odd} \ in \ the \ lexicographic \ order,$$

$$(4.30)$$

$$\begin{vmatrix} \operatorname{cent}_{\mathbb{Z}_2^n \rtimes \langle S_n, \Delta \rangle} \left(\begin{bmatrix} A(\eta) \\ b_{\eta}(\beta) 1 \end{bmatrix} \right) \end{vmatrix}$$

$$= \begin{cases} \frac{1}{2} \prod_{i \ge m} [\beta_i! (\eta_i - \beta_i)! (2i)^{\eta_i}], & \text{if } (\beta_i)_i \ \text{odd} \ne (\eta_i/2)_i \ \text{odd}, \\ \prod_{i \ge m} [\beta_i! (\eta_i - \beta_i)! (2i)^{\eta_i}], & \text{if } (\beta_i)_i \ \text{odd} = (\eta_i/2)_i \ \text{odd}. \end{cases}$$

$$(4.31)$$

In order to obtain (4.31) in Case (iii) in Proposition 4.5, we used the fact that

$$\operatorname{Null}(A(\eta) + I) = \begin{cases} -1 + \eta_m + \eta_{m+1} + \cdots, & \text{if } \sum_{i \text{ odd }} \eta_i > 0, \\ \eta_m + \eta_{m+1} + \cdots, & \text{if } \sum_{i \text{ odd }} \eta_i = 0. \end{cases}$$
(4.32)

5 Numbers of Orbits in $\Re_{5,1}$ and $\Re_{6,2}$

Using Propositions 4.1 and 4.5, we are able to compute the numbers of $\mathbb{Z}_2^5 \rtimes S_5$ orbits in $\mathfrak{R}_{5,1}$ and the $\mathbb{Z}_2^6 \rtimes \langle S_6, \Delta \rangle$ -orbits in $\mathfrak{R}_{6,2}$ with a computer. The results are given in the following tables. When searching through elements in $\mathfrak{R}_{5,1}$ and $\mathfrak{R}_{6,2}$, we used an obvious reductive property of resilient functions to reduce the amount of computation: If $F(X_1, \dots, X_n) = f(X_1, \dots, X_{n-1}) + X_n g(X_1, \dots, X_{n-1}) \in \mathfrak{R}_{n,t}$, then $f(X_1, \dots, X_{n-1}) \in \mathfrak{R}_{n-1,t-1}$.

Now that the numbers of orbits in $\mathfrak{R}_{5,1}$ and $\mathfrak{R}_{6,2}$ are known to be 256 and 131, the problem of classifying $\mathfrak{R}_{5,1}$ and $\mathfrak{R}_{6,2}$ becomes finding the right number of elements in $\mathfrak{R}_{5,1}$ and $\mathfrak{R}_{6,2}$ that are pairwise nonequivalent under the group actions. Using a reasonable amount of computer time, we have found the orbit representatives in $\mathfrak{R}_{5,1}$ and $\mathfrak{R}_{6,2}$, but the results are too lengthy to be included in the paper.

$\sigma = \begin{bmatrix} A(\lambda) \\ a & 1 \end{bmatrix}$: representatives of conj. classes of $\mathbb{Z}_2^5 \rtimes S_5$		$ \operatorname{cent}_{\mathbb{Z}_2^5 \rtimes S_5}(\sigma) $	$ \{f \in \mathfrak{R}_{5,1} : \sigma(f) = f\} $		
λ	а				
(5)	$(0\ 0\ 0\ 0\ 0)$	5!2 ⁵	403,990		
	$(1\ 0\ 0\ 0\ 0)$	$4!2^5$	6,546		
	$(1\ 1\ 0\ 0\ 0)$	2!3!2 ⁵	2,774		
	$(1\ 1\ 1\ 0\ 0)$	2!3!2 ⁵	1,810		
	$(1\ 1\ 1\ 1\ 0)$	4!25	2,774		
	$(1\ 1\ 1\ 1\ 1)$	5!2 ⁵	6,546		
(3,1)	$(0\ 0\ 0\ 0\ 0)$	$3!2^5$	3,436		
	$(0\ 0\ 0\ 1\ 0)$	$3!2^5$	132		
	$(1\ 0\ 0\ 0\ 0)$	2!25	1,932		
	$(1\ 0\ 0\ 1\ 0)$	$2!2^{5}$	44		
	$(1\ 1\ 0\ 0\ 0)$	$2!2^{5}$	1,260		
	$(1\ 1\ 0\ 1\ 0)$	$2!2^5$	36		
	$(1\ 1\ 1\ 0\ 0)$	3!25	1,932		
	$(1\ 1\ 1\ 1\ 0)$	3!25	44		
(2,0,1)	$(0\ 0\ 0\ 0\ 0)$	$2!2^3 \cdot 3$	49		
	$(0\ 0\ 1\ 0\ 0)$	$2!2^3 \cdot 3$	37		
	$(1\ 0\ 0\ 0\ 0)$	$2^{3} \cdot 3$	21		
	$(1\ 0\ 1\ 0\ 0)$	$2^{3} \cdot 3$	17		
	$(1\ 1\ 0\ 0\ 0)$	$2!2^3 \cdot 3$	17		
	$(1\ 1\ 1\ 0\ 0)$	$2!2^3 \cdot 3$	21		
(1,2)	$(0\ 0\ 0\ 0\ 0)$	$2!2^5$	978		
	$(0\ 1\ 0\ 0\ 0)$	2^{5}	54		
	$(0\ 1\ 0\ 1\ 0)$	$2!2^5$	146		
	$(1\ 0\ 0\ 0\ 0)$	$2!2^5$	870		
	$(1\ 1\ 0\ 0\ 0)$	2^{5}	26		
	$(1\ 1\ 0\ 1\ 0)$	$2!2^5$	70		
(1,0,0,1)	$(0\ 0\ 0\ 0\ 0)$	2^{4}	6		
	$(0\ 1\ 0\ 0\ 0)$	2^{4}	10		
	$(1\ 0\ 0\ 0\ 0)$	2^{4}	42		
	$(1\ 1\ 0\ 0\ 0)$	2^{4}	6		
(0,1,1)	$(0\ 0\ 0\ 0\ 0)$	$2^{3} \cdot 3$	13		
	$(0\ 0\ 1\ 0\ 0)$	$2^{3} \cdot 3$	9		
	$(1\ 0\ 0\ 0\ 0)$	$2^{3} \cdot 3$	9		
	$(1\ 0\ 1\ 0\ 0)$	$2^{3} \cdot 3$	5		
(0,0,0,0,1)	$(0\ 0\ 0\ 0\ 0)$	$2 \cdot 5$	5		
	$(1\ 0\ 0\ 0\ 0)$	$2 \cdot 5$	1		
Number of $\mathbb{Z}_2^5 \rtimes S_5$ -orbits in $\mathfrak{R}_{5,1} = 256$					

Table 1. $\mathbb{Z}_2^5 \rtimes S_5$ acting on $\mathfrak{R}_{5,1}$

of conj. classes of $\mathbb{Z}_2^6 \rtimes \langle S_6, \Delta \rangle$		Δ ₂ γ(3 ₆ ,Δγ) · · · ·	
η	а	-	
(7)	$(0\ 0\ 0\ 0\ 0\ 0)$	7!26	8,375,430
	$(1\ 0\ 0\ 0\ 0\ 0)$	6!26	404,266
	$(1\ 1\ 0\ 0\ 0\ 0)$	2!5!26	32,482
	$(1\ 1\ 1\ 0\ 0\ 0)$	3!4!26	30,446
(5,1)	$(0\ 0\ 0\ 0\ 0\ 0)$	$5!2^{6}$	31,030
	$(0\ 0\ 0\ 0\ 1\ 0)$	$5!2^{6}$	6,440
	$(1\ 0\ 0\ 0\ 0\ 0)$	$4!2^{6}$	17,726
	$(1\ 0\ 0\ 0\ 1\ 0)$	$4!2^{6}$	240
	$(1\ 1\ 0\ 0\ 0\ 0)$	$2!3!2^{6}$	9,410
	$(1\ 1\ 0\ 0\ 1\ 0)$	$2!3!2^{6}$	276
(4,0,1)	$(0\ 0\ 0\ 0\ 0\ 0)$	$4!2^4 \cdot 3$	342
	$(0\ 0\ 0\ 1\ 0\ 0)$	$4!2^4 \cdot 3$	326
	$(1\ 0\ 0\ 0\ 0\ 0)$	$3!2^4 \cdot 3$	58
	$(1\ 0\ 0\ 1\ 0\ 0)$	$3!2^4 \cdot 3$	50
	$(1\ 1\ 0\ 0\ 0\ 0)$	$2!2!2^{4} \cdot 3$	46
(3,2)	$(0\ 0\ 0\ 0\ 0\ 0)$	3!2!26	4,862
	$(0\ 0\ 1\ 0\ 0\ 0)$	3!26	412
	$(0\ 0\ 1\ 0\ 1\ 0)$	$3!2!2^{6}$	722
	(10000)	$2!2!2^{6}$	7,130
	(10100)	$2!2^{6}$	200
	(101010)	$2!2!2^{6}$	398
(3,0,0,1)	$(0\ 0\ 0\ 0\ 0\ 0)$	3!25	14
	$(0\ 0\ 1\ 0\ 0\ 0)$	3!25	38
	(10000)	$2!2^{5}$	106
	(10100)	2!25	18
(2.1.1)	$(0\ 0\ 0\ 0\ 0\ 0)$	$2!2^4 \cdot 3$	64
(_,_,_)	$(0\ 0\ 0\ 1\ 0\ 0)$	$2!2^4 \cdot 3$	56
	(0 1 0 0 0 0)	$2!2^4 \cdot 3$	20
	(0 1 0 1 0 0)	$2!2^4 \cdot 3$	12
	(10000)	$2^{4} \cdot 3$	32
	(110000)	$2^{4} \cdot 3$	12
(2,0,0,0,1)	(000000)	$2!2^2 \cdot 5$	10
	(0 1 0 0 0 0)	$2!2^2 \cdot 5$	2
	(10000)	$2^2 \cdot 5$	6
(1.3)	(000000)	3!26	1.054
(1,5)	(10000)	2!26	136
	(101000)	2!26	306
	(101010)	3!26	28
(1,1,0,1)	(000000)	25	6
	(001000)	$\frac{2}{2^5}$	18
	(10000)	2^{5}	48
	(100000)	25	

Table 2. $\mathbb{Z}_2^6 \rtimes \langle S_6, \Delta \rangle$ acting on $\mathfrak{R}_{6,2}$

$\sigma = \begin{bmatrix} A(\eta) \\ a & 1 \end{bmatrix}$: representatives of conj. classes of $\mathbb{Z}_2^6 \rtimes \langle S_6, \Delta \rangle$		$ \operatorname{cent}_{\mathbb{Z}_{2}^{5}\rtimes\langle S_{6},\Delta\rangle}(\sigma) $	$ \{f \in \mathfrak{R}_{6,2} : \sigma(f) = f\} $
η	а	_	
(1,0,2)	$(0\ 0\ 0\ 0\ 0\ 0) \\ (1\ 0\ 0\ 0\ 0\ 0)$	$2!2^23^2$ 2^23^2	249 35
	$(1\ 0\ 0\ 1\ 0\ 0)$	$2!2^23^2$	85
(1,0,0,0,0,1)	$(0\ 0\ 0\ 0\ 0\ 0)$	$2^2 \cdot 3$	1
	$(1\ 0\ 0\ 0\ 0\ 0)$	$2^2 \cdot 3$	1
(0,2,1)	$(0\ 0\ 0\ 0\ 0\ 0)$	$2!2^{4} \cdot 3$	2
	$(1\ 0\ 0\ 0\ 0\ 0)$	$2^4 \cdot 3$	10
	$(1\ 1\ 0\ 0\ 0\ 0)$	$2!2^{4} \cdot 3$	2
(0,1,0,0,1)	$(0\ 0\ 0\ 0\ 0\ 0)$	$2^2 \cdot 5$	0
	$(1\ 0\ 0\ 0\ 0\ 0)$	$2^2 \cdot 5$	0
(0,0,1,1)	$(0\ 0\ 0\ 0\ 0\ 0)$	$2^{3} \cdot 3$	2
	$(0\ 0\ 1\ 0\ 0\ 0)$	$2^{3} \cdot 3$	2
(0,0,0,0,0,0,1)	$(0\ 0\ 0\ 0\ 0\ 0)$	7	0
	Number of \mathbb{Z}_{2}^{n}	${}_{2}^{5} \rtimes \langle S_{6}, \Delta \rangle$ -orbits in $\mathfrak{R}_{6, \delta}$	₂ = 131

Table 2 (Continued)

References

- Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM J. Computing 17, 210–229 (1988)
- Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On correlation-immune functions. Lecture Notes in Comput. Sci. 576, New York: Springer-Verlag, 1992, pp. 86–100
- Chor, B., Goldreich, O., Hastad, J., Freidmann, J., Rudich, S., Smolensky, R.: The bit extraction problem or *t*-resilient functions. Proc. 26th IEEE Symposium on Fundations of Computer Science 396–407 (1985)
- 4. Hou, X.: On binary resilient functions. Des. Codes Cryptogr. 28, 93–112 (2003)
- 5. Hou, X.: *AGL*(*m*, 2) acting on *R*(*r*, *m*)/*R*(*s*, *m*). J. Algebra **171**, 921–938 (1995)
- Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inform. Theory 30, 776–780 (1984)