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Abstract. Let G, be the subgroup of GL(n, Z,) that stabilizes {x € Z} :
|x| < t}. We determine G,,; explicitly: For 1 <t <n -2, G,, = S, when
t is odd and G,; = (S,, A) when ¢ is even, where S, < GL(n, Z,) is the
symmetric group of degree n and A € GL(n, Z,) is a particular involution.
Let R, ; be the set of all binary ¢-resilient functions defined on Z35. We show
that the subgroup Z5 % (G, ; U G, ,—1—) < AGL(n, Z,) acts on R,, ;/Z>. We
determine the representatives and sizes of the conjugacy classes of Z; % S,, and
Zh % (S,, A). These results allow us to compute the number of orbits of R, ;/Z»
under the above group action for (n, t) = (5, 1) and (6, 2).

Keywords: General linear group, Affine linear group, Resilient function.

1 Introduction

The problem considered in this paper originated from binary resilient functions.
Let P, be the set of all functions from Zj to Z,. The Hamming weight of a
function f € P,, denoted by | f], is the cardinality of f~!(1). The Hamming
weight of a binary vector, row or column, is also denoted by | - |. We use (-, -)
to denote the usual dot product in Z5. Thus for s € Z5, (s,-) € P, is the
linear function defined by x — (s, x) (x € Z%). A function f € P, is called
t-resilient if

If + (s, )] = 2" " forall s € Z2 with |s| < 1. (1.1)

(If (1.1) holds for all s € Z5 with 1 < |s| < ¢, f is called tth order cor-
relation-immune.) Resilient functions and correlation-immune functions were
introduced by Chor et al [3], Bennett et al [1] and Siegenthaler [6] for applica-
tions in several areas of cryptography. The applications include random string
generation, fault-tolerant distributed computing and resistance against correla-
tion attack.
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This paper is a treatment of binary resilient functions from an algebraic
point of view; our attempt is to understand the classification of such functions.
Let R, ; be the set of all ¢-resilient functions in P,. Since f € R, , if and only
if f+1 e R,,, itsuffices to consider R, ; = R,,;/Z», i.e., R,; modulo the
constant functions. It also suffices to assume 1 < ¢ < n — 4 since ‘R, ¢ consists
of balanced functions and R, ; is completely known for ¢t > n — 3 ([2], [4]).
The first step towards the classification of R, ; is to identify a group action
on R, ;. Obviously, the subgroup Z of translations of the affine linear group
AGL(n, Z3) acts on R, ;. The general linear group GL(n, Z,) does not act on
R,.: unless t = 0. However, if we let G, ; be the subgroup of GL(n, Z,) that
stabilizes the Hamming sphere {x € Z; : |x| < t} C Z3, then G, acts on
R,.:. We will see that G, ,_1_, also acts on R, ; in an indirect way. As it turns
out below, either G,;, C G, —1-; or G, O G, ,—1—;. Hence the semidirect
product Z5x (G, U Gy n—1—) < AGL(n, Z,) acts on R, ;.

In Section 2, we determine the group G, explicitly. For 1 <t <n — 2,
G,; = S, when ¢ is odd and G, , = (S,, A) when ¢ is even, where S, <
GL(n, Z,) is the symmetric group of degree n and

11---1

1
A= N (1.2)

1

We describe the action of Z5 x(G,,; U G, n—1—¢) on R, ; in Section 3.

We are interested in the number of orbits in R, , under the action of
Z5%(Gyy U Gy p—1-¢), where the group is either Z5 xS, or Z5x(S,, A). To
compute this number using the Burnside lemma, we need to determine the rep-
resentatives and sizes of the conjugacy classes of Z5 xS, and Z) x(S,, A). We
answer these questions in Section 4, which is the technical portion of the paper.

In Section 5, we use the results of Section 4 to compute the number of
Zhx(Gy U Gy_i—)-orbits in R, ; for (n,t) = (5, 1) and (6, 2).

2 The Group G,,,

Recall that
Gn: ={A € GL(n, Z,) : |Ax| <t forall x € Z; with |x| < t}. 2.1

Elements in G, ; are matrices A € GL(n, Z,) such that any sum of < ¢ columns
of A has weight < ¢ and any sum of > ¢ columns of A has weight > ¢. Clearly,
G,: = GL(n,Z) fort = 0orn. Whent = n —1, G,,—1 < GL(n, Z,)
is the stabilizer of [1,---,1]7 € Z5. Gy -1 is conjugate to the stabilizer of
[1,0,---,0]" and the latter is

{[(1) Z} 1B € GL(n — 1, Zz)} =AGL(n — 1, Zy). (2.2)
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Let S, < GL(n, Z;) be the subgroup of permutation matrices. Then S, C
G, Let A € GL(n, Z;) be as in (1.2). It is also easy to see that A € G, ;
when ¢ is even. The main result of this section is the following theorem.

Theorem 2.1. For1 <t <n — 2, we have

Sns ift is odd,
G = Jii 2.3)
(Sn, A), ift is even.

We first prove a lemma.

Lemma2.2. Let1 <t <n—2and A € G,,. Then all columns of A have
weight < 2.

Proof. Assume the contrary and write

A= [0,1,2 ’Zi ’Z:i] , w=3, b el el (2.4)
where 1, is the all 1 column vector of length u and 0,_,, is the all 0 column
vector of length n — . We also assume that u is the smallest among the column
weights of A which are > 3.

First assume that t — 1 < n — u. Since rank[cq, - ,¢c,_1] = n — W,
there are s < ¢t — 1 columns from [cy, --- , ¢,—1], say, ci, - - - , ¢s, such that
ey 4+ -+ 4+ ¢g| =t — 1. It follows that one of

o] = () Bob
C1 Cs Ol’l—/L Cl Cg

has weight > ¢, which is a contradiction to the fact A € G, ;.

Next assume thatt — 1 >n —pubutt <n — % Then [cy, ---, c,—1] has
s <n— ucolumns, say, cy, - - - , ¢s, such that |c; + - - - +¢;| > n — u. We have
bl bs ll,L bl bs
max” +-- 4+ ) + R }
€1 Cs On—u. C1 Cs
Zn—,u—l—ﬁzn—ﬁ>t, (2.5

2 2

which is again a contradiction.
Now assume thatt > n — % Since u < t, we have t > %n. Observe that A
stabilizes {x € Z) : |x| > t 4 1} and that

n n n
x € Zi:|x| =1+ 1} =<t+1)> (t+2)+...+(n)

=x eZl:|x| >1+2). (2.6)
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(In (2.6), we used the fact that r > %n.) Thus there exists an x € Z such that
|Ax| = |x| =t + 1. Therefore we may assume that the sum of the first # 4 1
columns of A has weight # 4 1. Write

A= [d] dn:| . die th+1, ¢; € Zg—(t-&-l)’ .7
el - ey
where
d1+"'+dt+1:1[+17 €1+"‘+el+1:0- (2'8)
Since
}|:d1i| 4t |:d’+1:| + |:dii|‘ >t+1forallt+1<i <n, 2.9)
el €r+1 i

we have |d;| < |e;| and consequently,

1]

By our assumption on the minimality of x, we must have

<2lel =2(n—@+1D) <p, t+1<i=<n. (2.10)

‘[‘j] —1lor2, fort+1<i<n. 2.11)
1
We claim that ¢, - - - , e, are linearly independent. Otherwise,
o402+ -+ aye, =0 (2.12)
forsome 0 # (42, - ,®,) € Zg_(tJrl).Itfollows thato, od; o+ - -+a,d, #
0 and
‘[dl] ot [df“] + o [d’“] +o [d”] <t, (2.13)
€] €+ +2 €n
which is a contradiction.
We further claim that e; = --- = ¢,41 = 0. Otherwise, say e; # 0. Since
rank[e; 4o, - ,e,] =n — (¢t + 1), thereisani > ¢ + 1 such that e; - ¢; # 0,

where e; - e; is the coordinate wise product of e¢; and e;. Note from (2.11) that
|d;| < 1if |e;| = 1 and that |d;| = 0 if |e;| = 2. In either case,

[+l = e ] 4

2 €r41 €; n—t—1 €1 €;

< ‘[ Lev ] [ ‘]‘ = [dz] +o [df“}‘ <1, (2.14)
0,1 €l €

€r+1
which is a contradiction.
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Since A has at least one column with weight > 3 and since the lastn — (¢ 41)
columns of A have weight < 2 ((2.11)),one of dy, - - - , d;11, say, d1, has weight
> 3. We then have

‘ dy || | | ‘ _ ‘ L di |, [di+2 ‘
()nftf] 0;17;71 €112 n —1 n i—1 )
<t+1-3+2=1, (2.15)

which is again a contradiction. O

Proof of Theorem 2.1. Let A € G, ;. We want to show that A € S, when ¢ is
odd and A € (S,, A) when ¢ is even. By Lemma 2.2, all columns of A have
weight < 2. If all columns of A have weight 1, then A € S, and we are done.
So we assume that A has at least one column with weight 2.

We first claim that if A has two columns a; and a, with |a;| = |ax| = 2,
then the coordinate wise product a; - a, # 0. Otherwise, write
1o _
10y
A=|0, , b€l el (2.16)
B O Ccp - Cn—2_
Note that rank[c;, - - ,¢c,2] =n —4.Ift — 1 <n —4,thereares <t —1
columns of [cy, -+, cy—2], say, ¢, -+ ,cg, such that |cy + -+ - +¢5| >t — 1.
Then one of
1
b b I b b
Joe] | 3 |-E1
C1 Cy C1 Cs
L 0
0n—4

On 4
has weight > ¢ + 1, which is a contradiction. If t = n — 2, one of
1 0
1 0
I R e R R R e
Cq Cpn—2 (1 Cn—2
0 1
0n74 0n74

has weight <2+ |c; + -+ ¢,—2| <n —2 =1t, which is also a contradiction.
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If A has 3 columns ay, a», a3 with |a;| = |ax| = |az| = 2, then their
coordinate wise product a; - a, - a3 # 0. Otherwise, we would have

1017
110

011
l[ataxazl= {000 (2.17)

1000
and ay, ay, a3 would be linearly dependent.
Based on the claim so far, we can write

A= (2.18)

where B is of size (s + 1) x (n — s) and all columns of [2] have weight 1. In
order for A to be invertible, up to a suitable permutation of the columns, we
must have

1---1 *
1 *
s+1
A= 1 * =la - a,], |a,|=1. (2.19)
1 0

If s < n — 1, let u be the largest odd integer < min{¢, s}. Observe that |a; +
---+a,=u+1landthatt —u <n —1—s.Thus

|al+"'+au+as+l+"'+as+t7u|=t+1a (2.20)

which is a contradiction. Therefore we must have s = n — 1. Then one can
easily see that the fact A € G, forces a, = [1,0, --- ,0]7. Hence after a
permutation of columns, A becomes A. When ¢ is even, we have A € (S,, A);
when ¢ is odd, we have a contradiction since A ¢ G, ;. The proof of the theorem
is now complete. O
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The group (S,, A) has a familiar structure. For each 1 <i < n, put

Ar= |11l | =T+ [T 101---1 | 2.21)

1

Then every element in (S,,, A) can be uniquely written as P or A; P for some
P € S,,1 < i < n. Throughout the paper, elements in S, are viewed as
permutation matrices as well as permutations on {1, - - - , n}.

Proposition 2.3. Let S, be the symmetric group on {0, 1, - - - , n}. Define

¢Sy, A — S,q1
P +— P for P € S, (2.22)
AP +— (0,i)P forPeS,andl <i <n.

Then ¢ is a group isomorphism.

Proof. Direct computation shows that in (S, A),
PA; =ApyP, 1<i<n, PeS,, (2.23)
and
A=A ), L<ij<n i#] (2.24)
The same relations hold in S, ; with (0, i) in place of A;. Consequently, the
map ¢ in (2.22) is an isomorphism. m|
3 Group Actions on R,
The Z,-algebra P, can be written as
P =TolX1, - Xal/(XT = X1, X = Xo) (3.1)

and the affine linear group AGL(n, Z,) can be written as
AGL(n, Z,) = {[2 1] A eGL(0n, L), a € Zg} <GLn+1,Zy). (3.2)

The group of translations of AGL(n, Z,) is

Zgz{[é 1} caen). (3.3)
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For each subgroup G < GL(n, Z,), the semidirect product of Z; and G is
Zi%G = {[2 1] :AeG,an';} < AGL(n, Z»). (3.4)

There is a left AGL(n, Z») action on P,:

AGL(n, Zz) X P, — P,

(0, (X)) —> o(f(X)) = f(XA +a) (3-5)

where
A
o= |:a 1] € AGL(n, Zy) and X = (X4, --- , X,). 3.6)
Consequently, AGL(n, Z,) acts on P, /Z,; the latter contains R, ;. However,

Ry.; 1s not AGL(n, Zy)-invariant unless ¢ = 0. In general, R, ; is acted on only
by a certain subgroup of AGL(n, Z;).

Proposition 3.1. If f(X) € R, and A € G, ,, then f(XA) € R, ;.

Proof. For each s € Zj with |s| <, we have
|f(XA) + XsT| = f(X)+ XA sT| =2 (3.7)

since |A~'sT| < t. o

Proposition 3.2. Let f(X) € R,, and A € G, ,—,— and let 1 be the all 1
column vector of length n. Then

fF(XA)+XA+D1eR,, (3.8)

Proof. For each s € Z) with |s| < t, we have
‘f(XA) FX(A+ D1+ XsT‘
— ‘f(X) FXAT(A+ D1+ XA_lsT‘

= |00+ X(1+ a7 A+sD)|. (3.9)

Since |1+ 57| > n —t and since A € G,,,_,_1, we have |[A~'(1 + sT)| >
n —t,hence |1 + A~'(1 +s7)| < t. Consequently,

)f(X)+X(1+A‘1(1+sT))‘ =l (3.10)

and the proof is complete. O
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In fact, Proposition 3.2 is the result of the following indirect action of
Gn,n—t—l on mn,t:

EGn,n—t—l

Ros > F(X) — £+ X157 £(XA) + X AL

— f(XA)+ XA1+ X1 e R, (3.11)

Assume 1 < t < n — 2. If either n is odd or both n and ¢ are even, one
can see from Theorem 2.1 that G, ,—,—; C G, and that the function in (3.8)
is simply f(XA). Thus in these cases, the indirect action of G, ,—;—; on R, ;
is a subgroup action of G, ; on R, ;. However, when n is even and ¢ is odd,
Gn: = Su, Gpn—i—1 = {Sp, A) and the action of G, , on %R, ; is a subgroup
action of the indirect action of G, ,_,—; on R, ;. Of course, all these group
actions on R, ; can be combined with the action of the translation subgroup
Z5 on R, ;. The following is a summary of the largest group action on R, ; we
obtained in each case.

(i) When O <t <n —2andtiseven, Z;x(S,, A) acts on R, ;:

(ZgN(Sn, A)) X SRn,t — %n,t

(|:A ] f(X)> — f(XA+a) (3.12)

al
(ii)) When O <t <n — 2 and both n and ¢ are odd, Z; xS, acts on R, ;:

(ngsn) X %n,t — 9%n,t

(131] r0) = rxasa 19

al

(iii) When O <t <n —2,nisevenbutr is odd, Z; x(S,, A) acts on R,, ;:
(Z5x(Sp, A)) x Ry —> Rus

([31]: ro0) = rxa+a v xasm

al

(3.14)

The classification of R, ;, whose meaning was not clear until now, can be
defined as the classification of 2R, ; under the group actions in (3.12) — (3.14).

4 Conjugacy Classes of 75 xS, and 75> (S,, A)

We are interested in computing the number of orbits in R, ; (1 <t <n — 3)
under the group actions in (3.12) — (3.14) using the Burnside lemma. To this
end, we need representatives and sizes of the conjugacy classes of each acting
group, which is either Z5 xS, or Z5 % (S, A).
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In general, for any subgroup G of GL(n, Z;), representatives of conjugacy
classes of Z;5 xG can be found as follows. (We refer the reader to [5] for the
details.) Let A be a system of representatives of conjugacy classes of G. For
each A € A, let cents (A) be the centralizer of A in G and letRow(A+1) C Z)
be the row space of A+ 1. Then cent (A) actson Z /Row(A+1).LetCy C 7
such that the images of elements of C4 in Z5/Row(A + I) form a system of
centg (A)-orbit representatives. Then

U{[g 1]:aeCA} 4.1)

AcA

form a system of representatives of conjugacy classes of Z5 xG. Moreover,

A
e[ 1))

= NATD TP € centg(A) :aP =A (mod Row(A +1)}|. (4.2)

We first introduce some notation. For each partition A = (A1, Ay, -+ -) F n,
where A; > O and ) ,_,i}; =n, let

AR =[(1) -+ (xl)][(x1 F 42O 20— 1,0+ 2x2)] €S,
4.3)

which is a canonical permutation on {1, - - - , n} of cycle type A. Similarly, for
eachn = (i, m, -+ ) Fn+ 1, let

A = [(0)---(m — D]

om0 20 = D 20 = D 1)) e S,
(4.4)

which is a canonical permutation on {0, 1, - -- , n} of cycle type n. For n =
(M1, m2,++-) En+1withn > 0, wedefinen’ = (y — 1,m2,7m3, -+ +) = n.
For A = (A, A2, ---)Fnand o = (a1, atp, - -+ ) with O < o; < A, let

a)\(ot) = (all’ Al py s, A21, 0t A2 0, " ) S Z; (45)
be any vector such that a;; € Z) and

1 (mod?2), forl<j<q,

) 4.6)
0 (mod 2), forw; < j <A,

la;;| =
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m—1
—— .
forall i. Forn = (0, ---,0, 0y, Nmat,---) Fn+1withm > 2 and 5, > 0,
and B = (B, Bu+1,---) with0 < B; < n;, let
br](,B) = (bm,l’ e abm,nm’ bm+],l’ e aberl,)]mH’ o ) € Zg (47)

be any vector such that b, | € ZE”_I, bij € Zé for all other (i, j), and

1 (mod?2), forl<j<§g,

|bij| = .
0 (mod 2), forp; <j=<n,

4.8)

foralli.

We now consider the conjugacy classes of the group 7/ xS,. Conjugacy
classes of S, are represented by A(A), A = n. The centralizer centg, (A(A))
is generated by two types of elements: a swap between the corresponding ele-
ments of two cycles of same length in A(A) and a cyclic shift of elements within
a cycle of A()). Note that for A = (A1, Ay, ---) F n,

Row(AA) + 1) = { (e, o+ X5 %20, 0, Xo5 0 0)
€ 75 : xij € Zb, |x;jleven}. 4.9)

Hence the cents, (A()))-orbits in Zj /Row (A (%) + I) are represented by a; ()
where o = (a1, @2, --+), 0 < o; < A;. Moreover,

|{P € cents,(A(V)) : @ (@) P = a; () (mod Row(A(L) + 1))}

= [ Jlew! i — e)ti]. (4.10)

i>1

To summarize, we have the following proposition

Proposition 4.1. The conjugacy classes of 75X S, are represented by

{[Ci((i)) 1} A= G da ) b o= (@), 0 o < .
(4.11)

Moreover,

’centzgmn([A(/\) })’ = [{leit i —ent@i*]. @.12)

(o) 1 11

Note that (4.12) follows from (4.2), (4.10) and the fact that Null(A(A)+1) =
Mot
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Next, we consider the conjugacy classes of the group Z5x(S,, A). We
use the isomorphism in Proposition 2.3 to identify (S,, A) with the symmetric
group S,4+10n{0, 1, - - - , n}. Conjugacy classes of S, are represented by A(n),
n = n+ 1. However, the action of centg,, (A(n)) on ZZ/ROW(A(n) + I) is not
necessarily permutation of coordinates. In particular, the action of (0, 1) € S,4;
on x € Zj gives xA. To find the representatives and sizes of centg,, (A(n))-
orbits in Zj /Row(A(n) + I), we consider different types of 7.

Lemma 4.2. Assume thatn = (1,02, 13, - - -) & n+1. Thenthe cents,, (A(n))-
orbitsin 7 /Row(A(n) + I) are represented by a,y (o) where o = (a2, a3, -+ +),
0 < «; < n;. Furthermore,

[{P € cents,, , (A() : ay(@)P = ay(a) (mod Row(A(n) + 1))}

= [ [les! @i —e)ti]. (4.13)

i>2

Proof. In this case, A(n) = A(n') € S, and cents,, (A(n)) = cents, (A(n)).
Thus the results follow from Proposition 4.1. O

Lemma 4.3. Assume that n = (91,02, ---) B n+ 1 withn, > 2. Then the
centg, | (A(n))—orbits of ZS/ROW(A(n) + I) are represented by a, (o) where
o = (a,02,---), 0 <o) < —1,0 <o <un fori > 2 and the first
term in (¢;); odd ROt equal to n; /2 is < n; /2, i.e., (¢¢;)i odd < (Ni/2); odd in the
lexicographic order. Furthermore,

[{P € cents,, , (A() : ay(@)P = ay(a) (mod Row(A(n) + 1))}
H[di!(ﬁi —a)li"], i ()i oad F (0i/2)i odas
= { =l 4.14
21_[[015!(771' —a)li"], i ()i oad = (0i/2)i oda- 19

i>1

Proof. In this case A(n) = A(n') € S, but centg, (A(n)) is generated by
centg, (A(1')) and (0, 1) = A. Since

Row(A(m) + 1) = {(x12, -+ X1 5 %21, 0+ 4 Xogys oo 0)

€ 7 : xjj € L, |xij| even}, (4.15)
we have an isomorphism
. —l+ni+n2+--
Iy 25 /Row(A(n) + 1) — Z, T
(X12, = X1 X201, o0 s X205 o) > (xaal, - x5 Ixatl, -+ x5 -+ )

(4.16)



Group Actions on Binary Resilient Functions 109

The action of centg, (A(n)) on 7Zj /Row(A(n) + 1 ) induces an action of
cents,,, (A7) on Z, " through the isomorphism p. To describe the
first action, it suffices to describe the second. The induced action of an ele-
ment P € cents,., (A(7)) on an element € € Z; ' "+ will be denoted by
e”. The induced action of cents, (A(n)) on Z, It is easy to describe:
If o € centg, (A(n’ )) is a cyclic shift within a cycle of A(#’), it acts trivially
on Zz_l+"‘+"2+"'; if o € cents, (A(n')) is a swap between two cycles of A(n'),
its induced action on Z, """ is a transposition of the two coordinates
of Z, Tt corresponding to the two cycles of A(n’). To see the action
of A on Zz_l+"‘+"2+"', observe that for (x12, -+, X1.p,5 X215+ s X2} *++) €
75 /Row(A(n) + 1) (x;j € Zb),

(x12a e s-xl,m;x215 7-x2,772; )A
- (x127 e 7x1,771;x217 7x2,172; ) + |x12|(07 17 Ty 1)
= (Y12, 5 Vi Y2l s Yo ot )s (4.17)
where
lx12|  (mod 2), if (i, j) = (1,2),
lyijl = . e (4.18)
lxij| +ilx12]  (mod 2), if (i, j) # (1,2).
Hence the induced action of A on (€2, -, €1 5€0, ", €5 ") €
Z;1+"1+”2+"' gives
(€12, -+ , €15 €21, -, €23 o)A
= (6127 ael,r)];eZlv ’62,1’)2; )
n-2 n m
—_— I —— ———
+ep0, 1, -+, 1;0, -+, 0; 1, ---, 15 -0, 4.19)

From the induced action of centg, (A(n)) onZ, Hm+mt qescribed above, it
is clear that the centg, ,, (A(n))-orbits of Zj /Row(A () + I) are represented by
ay (o) where o = (aty, 2,--+), 0 <a; <n —1,0 <a; <, fori > 2 and
()i odd < (Mi/2)i oaq in the lexicographic order.

To prove (4.14), observe that each elementin centg, , | (A (n)) can be uniquely
written in the form o or Ay where o € cents, (A(1)), Ay = (0,k) € Sy
and 1 <k <n; — 1. Write p(anr(a)) = (€12, " ,€1p €2, " , € ") E
Zy; "M The number of o € cents, (A(n)) such that

(612"" ,61,771;6215 762,772; )U = (6127"' 761,771;6217". 562,172; )
(4.20)
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is
oal(m — 1 —ap)! ]_[[a,-!(m —a)i"]. 4.21)
i>2
Meanwhile, p(a, (a))AW = p(ay (@)) if and only if
—1
(612’ T ael,nl; €21, ", 62,)72; o ')J
= (6127 Tty Gl,m; €21, 62,7’]2; t ')Ak
= (6127 Tt 761,7’“; €21, " 962,)’]2; )
m—1 m g
—
+e (-, 1,01, 1;0,---,0;1, -+, 15+ -0). (4.22)
—— —’

(The last equality in (4k.22) follows from the proof of (4.19).) When
(o1, 03,005, - -+ ) #= (1 /2,1m3/2,15/2, - -+ ), (4.22) holds only if €] 1 = O, 1.e.,
a1 +1 < k < n; — 1. For each such k, the number of o € centg, (A(n’)) satisfy-
ing (4.22) is given by (4.21). When (o, o3, a5, ---) = (01/2,13/2,1n5/2, - - ),
foreach 1 < k < n; — 1, the number of o € centg, (A(n/)) satisfying (4.22)
is given by (4.21). From these observations, we have the total number of
P € centg,,, (A(n)) such that ,o(an/(a))P = p(ay (@), ie., ay(@)P = ay ()
(mod Row(A(n) + I)). O

m—1

——
Lemma 4.4. Assume thatn = (0, ---,0, 0y, Nut1, -~ ) o+ 1withm > 2
and n,, > 0. Then the centg, (A(n))—orbits ong/Row(A(n) + I) are repre-
sented by b, (B), defined in (4.7), where B = (B, Bm+1, ), 0 < Bi < n; and
(Bi)iodd < (Mi/2)ioda in the lexicographic order. Furthermore,

[{P € cents,,, (A(m)) : b,(B)P = b,(B) (mod Row(A(n) + 1)}
1_[[,31‘!(771' — BN, i Y ioaa i = 00r (B)ioda # (0i/2)iodds

T 2180 = B0 i Siaa i > 0 and (Bioas = (0i/2)i o
- (4.23)
Proof. Since A(n) = 0,1,--- ,m — D(m,---)--- = O, DA, ---,m —1)
m,---,)---=Al,--- ,m—=1)(m,---)---, we see that

Row(A(n) + 1)
= {(xm,la s Xy XmA1,1 0 s Xm g s ) € Zg :
Xm1 € Z’2"_1, Xij € Zé for all other (i, j), |x;;| even for all (i, j)}

+(0,1,---,1)). (4.24)
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Thus there is an isomorphism

Nm Nm+1
m T Nm1 ——
P :Zg/Row(A(n) + I) — Z;’ AT - mymAL e mAL )
(xmly et sxm,nm; Xm+1,15 " 7xm+1,r)m+|; o )
> (|xm1|7 Tty |-xm,77,,,|; |xm+1,1|’ B |xm+1,n,,,+1 |7 o )

(4.25)

We use H(n) to denote the target space of p. The centg, (A(n))—action on
Z5/Row(A(n) + I) induces a cents,,, (A(n))-action on H(n) through the
isomorphism p. The induced action can be described as follows: If P €
cents,,, (A(n)) is a cyclic shift within a cycle of A(1), P acts trivially on H (1));
if P € centg, (A(n)) is a swap between two cycles of the same length in A(n),
the action of P on H (n) is a transposition of the two coordinates of H () corre-
sponding to the two cycles of A (7). We omit the proofs of these claims since they
are routine computations. Using the induced action of centg, (A(n)) on H(n),
it is clear that the centg, , (A(n))—orbits of Z5 /Row (A(n) +1 ) are represented
by b, (B) where B = (B, Buy1,--+), 0 < Bi < m;i and (Bi)i odd < (1:/2)i o0dd
in the lexicographic order. Equation (4.23) also follows easily from the induced
centg, ., (A(n))—action on H(n). O

Combining Lemmas 4.2 — 4.4 and using (4.2), we have the following prop-
osition.

Proposition 4.5. The representatives of the conjugacy classes of 75 % (S,, A)
and the sizes of the centralizers of the representatives are as follows:

| A _ _
(l) [an/(a) 1}7 77—(1»772, 773’)|_”+1’ a_(a2va37"')9
0<a =<m, (4.26)

‘Centngsn,A)([ AGn) })’ = [lestmi —at@i™]. @27)

/ 1
ay(a) 22

.. A
(”) [an/(()zx)) 1:| » = (771, n2, ) Fn+ 1’ n = 27

a=(a,a--), 0<ay <m—1,0=<o; <nfori>2,

()i odd < (N;i/2)i 0dd in the lexicographic order,
(4.28)
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|Centzg X (Sp,A) ( [alj,((};)) 1] ) ‘

1
5 [l n = 1@ ], if (@) oaa # 11/ oo
i>1

[ Jlei! i = e)! @], if (@i)i oda = (1:/2)i oda-

i>1

(4.29)
m—1
——
(iii) [A(n) ],nz(O,‘--,0,nm,nm+1,‘--)Fn+1,m22, Nm > 0,

by(B) 1
13 = (ﬁm’ﬁm+la )’ 0 =< ﬂi =< i,
(Bi)iodd < (1:/2)i oaa in the lexicographic order,

(4.30)
‘centzgx(sn,A>(|:2((2)) 1])‘
% H[ﬂi!(m — B2, if (B)i oaa # (0i/2)i 0das
B l_ﬁl;i!(ni —BN2D™], i (Bi)i oaa = 0i/2)i oda-
izm (4.31)

In order to obtain (4.31) in Case (iii) in Proposition 4.5, we used the fact that

—1+77m+77m+1+"', ifzioddni>0,

. 4.32)
M+ Mmt1 + -+ leioddni=O-

Null(A(p) + 1) = {

5 Numbers of Orbits in R5,; and R, >

Using Propositions 4.1 and 4.5, we are able to compute the numbers of Z3 x Ss-
orbits in Rs,; and the Z§x(Ss, A)-orbits in Re» with a computer. The results
are given in the following tables. When searching through elements in fRs
and g >, we used an obvious reductive property of resilient functions to re-
duce the amount of computation: If F(Xy,---,X,) = f(Xy, -+, Xu—1) +
Xng(le B Xn—l) € S)%n,tv then f(le ] Xn—l) € 9{n—l,z‘—l-

Now that the numbers of orbits in fRs ; and PRe » are known to be 256 and
131, the problem of classifying fRs ; and PR » becomes finding the right number
of elements in s | and Re » that are pairwise nonequivalent under the group
actions. Using a reasonable amount of computer time, we have found the orbit
representatives in s | and g », but the results are too lengthy to be included
in the paper.
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Table 1. Z3xSs acting on Rs |

—[A® 1. H
o= [ . 1]. representatives

of conj. classes of Z3 x Ss

|centZ§ x5 (0)]

{f €Rsy:0(f)= S}

A a
(&) 00000 5123 403,990
(10000) 4123 6,546
(11000) 213123 2,774
(11100) 213125 1,810
(11110 4123 2,774
(r1111 512° 6,546
3.1 00000 3123 3,436
00010 3123 132
(10000) 2123 1,932
(10010) 2123 44
(11000) 2123 1,260
(11010) 212° 36
(11100) 3123 1,932
(11110 3123 44
(2,0,1) 00000 2123.3 49
00100 2123.3 37
(10000) 23.3 21
(10100) 23.3 17
(11000) 2123.3 17
(11100) 2123.3 21
(1,2) 00000 2123 978
01000 23 54
01010 2123 146
(10000) 212° 870
(11000) 23 26
(11010) 2123 70
(1,0,0,1) 00000 24 6
01000 24 10
(10000) 24 42
(11000) 24 6
0,1,1) 00000 23.3 13
00100 2.3 9
(10000) 23.3 9
(10100) 23.3 5
(0,0,0,0,1) 00000 2.5 5
(10000) 2. 1

Number of Z3 x Ss-orbits in Rs,; = 256

113
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Table 2. Z$x(Ss, A) acting on Re

o= [A(a") l]: representatives |centZ§>4(S&A>(J)| Hf € Rear:0(f) = [
of conj. classes of Z§x (S, A)
n a
@) 000000) 7126 8,375,430
(100000) 6!12° 404,266
(110000) 215126 32,482
(111000) 314126 30,446
5,1 000000) 5126 31,030
000010 5126 6,440
(100000) 4126 17,726
(100010 4126 240
(110000) 213126 9,410
(110010) 213126 276
(4,0,1) 000000) 4124.3 342
000100) 4124.3 326
(100000) 3124.3 58
(100100) 3124.3 50
(110000) 212124.3 46
(3,2) 000000) 312126 4,862
001000) 3120 412
001010 312126 722
(100000) 212126 7,130
(101000) 2120 200
101010 212126 398
(3,0,0,1) (000000 312’ 14
001000) 3123 38
(100000) 2123 106
(101000) 2123 18
2,1,1) 000000) 2124.3 64
000100) 2124.3 56
010000) 2124.3 20
010100) 2124.3 12
(100000) 24.3 32
(110000) 24.3 12
(2,0,0,0,1) 000000) 2122.5 10
010000) 2122.5 2
(100000) 22.5 6
(1,3) 000000) 3120 1,054
(100000) 2126 136
(101000) 2126 306
101010 3120 28
(1,1,0,1) (000000) 2’ 6
001000) 23 18
(100000) 23 48

(101000) 23 36
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Table 2 (Continued)

o= [Ag’) , |: representatives |centzs sq (s,.a) (@) Hf € Rear:0(f) = f)
of conj. classes of Z$x(Ss, A)

n a
(1,0,2) 000000 212232 249
(100000 2232 35

(100100 212232 85

(1,0,0,0,0,1) 000000 22.3 1
(100000 22.3 1

0,2,1) 000000 2124.3 2
(100000 24.3 10

(110000) 2124.3 2

(0,1,0,0,1) 000000 22.5 0
(100000 22.5 0

(0,0,1,1) 000000 23.3 2
001000) 23.3 2

(0,0,0,0,0,0,1) (000000 7 0

Number of Z$x (Ss, A)-orbits in R, = 131
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