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Abstract. Let Gn,t be the subgroup of GL(n, Z2) that stabilizes {x ∈ Z
n
2 :

|x| ≤ t}. We determine Gn,t explicitly: For 1 ≤ t ≤ n − 2, Gn,t = Sn when
t is odd and Gn,t = 〈Sn, �〉 when t is even, where Sn < GL(n, Z2) is the
symmetric group of degree n and � ∈ GL(n, Z2) is a particular involution.
Let Rn,t be the set of all binary t-resilient functions defined on Z

n
2. We show

that the subgroup Z
n
2�(Gn,t ∪ Gn,n−1−t ) < AGL(n, Z2) acts on Rn,t /Z2. We

determine the representatives and sizes of the conjugacy classes of Z
n
2�Sn and

Z
n
2�〈Sn, �〉. These results allow us to compute the number of orbits of Rn,t /Z2

under the above group action for (n, t) = (5, 1) and (6, 2).

Keywords: General linear group, Affine linear group, Resilient function.

1 Introduction

The problem considered in this paper originated from binary resilient functions.
Let Pn be the set of all functions from Z

n
2 to Z2. The Hamming weight of a

function f ∈ Pn, denoted by |f |, is the cardinality of f −1(1). The Hamming
weight of a binary vector, row or column, is also denoted by | · |. We use 〈·, ·〉
to denote the usual dot product in Z

n
2. Thus for s ∈ Z

n
2, 〈s, ·〉 ∈ Pn is the

linear function defined by x �→ 〈s, x〉 (x ∈ Z
n
2). A function f ∈ Pn is called

t-resilient if

|f + 〈s, ·〉| = 2n−1 for all s ∈ Z
n
2 with |s| ≤ t. (1.1)

(If (1.1) holds for all s ∈ Z
n
2 with 1 ≤ |s| ≤ t , f is called t th order cor-

relation-immune.) Resilient functions and correlation-immune functions were
introduced by Chor et al [3], Bennett et al [1] and Siegenthaler [6] for applica-
tions in several areas of cryptography. The applications include random string
generation, fault-tolerant distributed computing and resistance against correla-
tion attack.
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This paper is a treatment of binary resilient functions from an algebraic
point of view; our attempt is to understand the classification of such functions.
Let Rn,t be the set of all t-resilient functions in Pn. Since f ∈ Rn,t if and only
if f + 1 ∈ Rn,t , it suffices to consider Rn,t = Rn,t /Z2, i.e., Rn,t modulo the
constant functions. It also suffices to assume 1 ≤ t ≤ n− 4 since Rn,0 consists
of balanced functions and Rn,t is completely known for t ≥ n − 3 ([2], [4]).
The first step towards the classification of Rn,t is to identify a group action
on Rn,t . Obviously, the subgroup Z

n
2 of translations of the affine linear group

AGL(n, Z2) acts on Rn,t . The general linear group GL(n, Zn) does not act on
Rn,t unless t = 0. However, if we let Gn,t be the subgroup of GL(n, Z2) that
stabilizes the Hamming sphere {x ∈ Z

n
2 : |x| ≤ t} ⊂ Z

n
2, then Gn,t acts on

Rn,t . We will see that Gn,n−1−t also acts on Rn,t in an indirect way. As it turns
out below, either Gn,t ⊂ Gn,n−1−t or Gn,t ⊃ Gn,n−1−t . Hence the semidirect
product Z

n
2�(Gn,t ∪ Gn,n−1−t ) < AGL(n, Z2) acts on Rn,t .

In Section 2, we determine the group Gn,t explicitly. For 1 ≤ t ≤ n − 2,
Gn,t = Sn when t is odd and Gn,t = 〈Sn, �〉 when t is even, where Sn <

GL(n, Z2) is the symmetric group of degree n and

� =




1 1 · · · 1
1

. . .

1


 . (1.2)

We describe the action of Z
n
2�(Gn,t ∪ Gn,n−1−t ) on Rn,t in Section 3.

We are interested in the number of orbits in Rn,t under the action of
Z

n
2�(Gn,t ∪ Gn,n−1−t ), where the group is either Z

n
2�Sn or Z

n
2�〈Sn, �〉. To

compute this number using the Burnside lemma, we need to determine the rep-
resentatives and sizes of the conjugacy classes of Z

n
2�Sn and Z

n
2�〈Sn, �〉. We

answer these questions in Section 4, which is the technical portion of the paper.
In Section 5, we use the results of Section 4 to compute the number of

Z
n
2�(Gn,t ∪ Gn−1−t,t )-orbits in Rn,t for (n, t) = (5, 1) and (6, 2).

2 The Group Gn, t

Recall that

Gn,t = {A ∈ GL(n, Z2) : |Ax| ≤ t for all x ∈ Z
n
2 with |x| ≤ t}. (2.1)

Elements in Gn,t are matrices A ∈ GL(n, Z2) such that any sum of ≤ t columns
of A has weight ≤ t and any sum of > t columns of A has weight > t . Clearly,
Gn,t = GL(n, Z2) for t = 0 or n. When t = n − 1, Gn,n−1 < GL(n, Z2)

is the stabilizer of [1, · · · , 1]T ∈ Z
n
2. Gn,n−1 is conjugate to the stabilizer of

[1, 0, · · · , 0]T and the latter is
{[1 ∗

0 B

]
: B ∈ GL(n − 1, Z2)

} ∼= AGL(n − 1, Z2). (2.2)
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Let Sn < GL(n, Z2) be the subgroup of permutation matrices. Then Sn ⊂
Gn,t . Let � ∈ GL(n, Z2) be as in (1.2). It is also easy to see that � ∈ Gn,t

when t is even. The main result of this section is the following theorem.

Theorem 2.1. For 1 ≤ t ≤ n − 2, we have

Gn,t =
{

Sn, if t is odd,

〈Sn, �〉, if t is even.
(2.3)

We first prove a lemma.

Lemma 2.2. Let 1 ≤ t ≤ n − 2 and A ∈ Gn,t . Then all columns of A have
weight ≤ 2.

Proof. Assume the contrary and write

A =
[

1µ b1 · · · bn−1

0n−µ c1 · · · cn−1

]
, µ ≥ 3, bi ∈ Z

µ
2 , ci ∈ Z

n−µ
2 , (2.4)

where 1µ is the all 1 column vector of length µ and 0n−µ is the all 0 column
vector of length n−µ. We also assume that µ is the smallest among the column
weights of A which are ≥ 3.

First assume that t − 1 ≤ n − µ. Since rank[c1, · · · , cn−1] = n − µ,
there are s ≤ t − 1 columns from [c1, · · · , cn−1], say, c1, · · · , cs , such that
|c1 + · · · + cs | ≥ t − 1. It follows that one of

[
b1

c1

]
+ · · · +

[
bs

cs

]
and

[
1µ

0n−µ

]
+
[
b1

c1

]
+ · · · +

[
bs

cs

]

has weight > t , which is a contradiction to the fact A ∈ Gn,t .
Next assume that t − 1 > n − µ but t < n − µ

2 . Then [c1, · · · , cn−1] has
s ≤ n−µ columns, say, c1, · · · , cs , such that |c1 +· · ·+ cs | ≥ n−µ. We have

max
{∣∣∣
[
b1

c1

]
+ · · · +

[
bs

cs

]∣∣∣,
∣∣∣
[

1µ

0n−µ

]
+
[
b1

c1

]
+ · · · +

[
bs

cs

]∣∣∣
}

≥ n − µ + µ

2
= n − µ

2
> t, (2.5)

which is again a contradiction.
Now assume that t ≥ n − µ

2 . Since µ ≤ t , we have t ≥ 2
3n. Observe that A

stabilizes {x ∈ Z
n
2 : |x| ≥ t + 1} and that

|{x ∈ Z
n
2 : |x| = t + 1}| =

(
n

t + 1

)
>

(
n

t + 2

)
+ · · · +

(
n

n

)

= |{x ∈ Z
n
2 : |x| ≥ t + 2}|. (2.6)
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(In (2.6), we used the fact that t ≥ 2
3n.) Thus there exists an x ∈ Z

n
2 such that

|Ax| = |x| = t + 1. Therefore we may assume that the sum of the first t + 1
columns of A has weight t + 1. Write

A =
[
d1 · · · dn

e1 · · · en

]
, di ∈ Z

t+1
2 , ei ∈ Z

n−(t+1)
2 , (2.7)

where

d1 + · · · + dt+1 = 1t+1, e1 + · · · + et+1 = 0. (2.8)

Since
∣∣∣
[
d1

e1

]
+ · · · +

[
dt+1

et+1

]
+
[
di

ei

]∣∣∣ ≥ t + 1 for all t + 1 < i ≤ n, (2.9)

we have |di | ≤ |ei | and consequently,

∣∣∣
[
di

ei

]∣∣∣ ≤ 2|ei | ≤ 2
(
n − (t + 1)

)
< µ, t + 1 < i ≤ n. (2.10)

By our assumption on the minimality of µ, we must have

∣∣∣
[
di

ei

]∣∣∣ = 1 or 2, for t + 1 < i ≤ n. (2.11)

We claim that et+2, · · · , en are linearly independent. Otherwise,

αt+2et+2 + · · · + αnen = 0 (2.12)

for some 0 = (αt+2, · · · , αn) ∈ Z
n−(t+1)
2 . It follows that αt+2dt+2+· · ·+αndn =

0 and
∣∣∣
[
d1

e1

]
+ · · · +

[
dt+1

et+1

]
+ αt+2

[
dt+2

et+2

]
+ · · · + αn

[
dn

en

]∣∣∣ ≤ t, (2.13)

which is a contradiction.
We further claim that e1 = · · · = et+1 = 0. Otherwise, say e1 = 0. Since

rank[et+2, · · · , en] = n − (t + 1), there is an i > t + 1 such that ei · e1 = 0,
where ei · e1 is the coordinate wise product of ei and e1. Note from (2.11) that
|di | ≤ 1 if |ei | = 1 and that |di | = 0 if |ei | = 2. In either case,

∣∣∣
[
d2

e2

]
+ · · · +

[
dt+1

et+1

]
+
[
di

ei

]∣∣∣ =
∣∣∣
[

1t+1

0n−t−1

]
+
[
d1

e1

]
+
[
di

ei

]∣∣∣

≤
∣∣∣
[

1t+1

0n−t−1

]
+
[
d1

e1

]∣∣∣ =
∣∣∣
[
d2

e2

]
+ · · · +

[
dt+1

et+1

]∣∣∣ ≤ t, (2.14)

which is a contradiction.
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Since A has at least one column with weight ≥ 3 and since the last n−(t+1)

columns of A have weight ≤ 2 ((2.11)), one of d1, · · · , dt+1, say, d1, has weight
≥ 3. We then have∣∣∣
[

d2

0n−t−1

]
+ · · · +

[
dt+1

0n−t−1

]
+
[
dt+2

et+2

]∣∣∣ =
∣∣∣
[

1t+1

0n−t−1

]
+
[

d1

0n−t−1

]
+
[
dt+2

et+2

]∣∣∣
≤ t + 1 − 3 + 2 = t, (2.15)

which is again a contradiction. ��

Proof of Theorem 2.1. Let A ∈ Gn,t . We want to show that A ∈ Sn when t is
odd and A ∈ 〈Sn, �〉 when t is even. By Lemma 2.2, all columns of A have
weight ≤ 2. If all columns of A have weight 1, then A ∈ Sn and we are done.
So we assume that A has at least one column with weight 2.

We first claim that if A has two columns a1 and a2 with |a1| = |a2| = 2,
then the coordinate wise product a1 · a2 = 0. Otherwise, write

A =




1 0
1 0
0 1
0 1

b1 · · · bn−2

0 c1 · · · cn−2




, bi ∈ Z
4
2, ci ∈ Z

n−4
2 . (2.16)

Note that rank[c1, · · · , cn−2] = n − 4. If t − 1 ≤ n − 4, there are s ≤ t − 1
columns of [c1, · · · , cn−2], say, c1, · · · , cs , such that |c1 + · · · + cs | ≥ t − 1.
Then one of

[
b1

c1

]
+ · · · +

[
bs

cs

]
,




1
1
0
0

0n−4




+
[
b1

c1

]
+ · · · +

[
bs

cs

]
,




0
0
1
1

0n−4




+
[
b1

c1

]
+ · · · +

[
bs

cs

]

has weight ≥ t + 1, which is a contradiction. If t = n − 2, one of


1
1
0
0

0n−4




+
[
b1

c1

]
+ · · · +

[
bn−2

cn−2

]
and




0
0
1
1

0n−4




+
[
b1

c1

]
+ · · · +

[
bn−2

cn−2

]

has weight ≤ 2 + |c1 + · · · + cn−2| ≤ n − 2 = t , which is also a contradiction.
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If A has 3 columns a1, a2, a3 with |a1| = |a2| = |a3| = 2, then their
coordinate wise product a1 · a2 · a3 = 0. Otherwise, we would have

[a1 a2 a3] =




1 0 1
1 1 0
0 1 1
0 0 0
...

...
...

0 0 0




(2.17)

and a1, a2, a3 would be linearly dependent.
Based on the claim so far, we can write

A =




1 · · · 1
1

. . .

1

B

0 C




(2.18)

where B is of size (s + 1) × (n − s) and all columns of
[

B

C

]
have weight 1. In

order for A to be invertible, up to a suitable permutation of the columns, we
must have

A =




1 · · · 1
1

. . .

1

∗
∗
...

∗




s+1

1
. . .

1

0
...

0




= [a1 · · · an], |an| = 1. (2.19)

If s < n − 1, let u be the largest odd integer ≤ min{t, s}. Observe that |a1 +
· · · + au| = u + 1 and that t − u ≤ n − 1 − s. Thus

|a1 + · · · + au + as+1 + · · · + as+t−u| = t + 1, (2.20)

which is a contradiction. Therefore we must have s = n − 1. Then one can
easily see that the fact A ∈ Gn,t forces an = [1, 0, · · · , 0]T . Hence after a
permutation of columns, A becomes �. When t is even, we have A ∈ 〈Sn, �〉;
when t is odd, we have a contradiction since � /∈ Gn,t . The proof of the theorem
is now complete. ��
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The group 〈Sn, �〉 has a familiar structure. For each 1 ≤ i ≤ n, put

�i =




1
. . .

1 · · · 1 · · · 1
. . .

1




= I +




i︷ ︸︸ ︷
1 · · · 1 0 1 · · · 1 i




(2.21)

Then every element in 〈Sn, �〉 can be uniquely written as P or �iP for some
P ∈ Sn, 1 ≤ i ≤ n. Throughout the paper, elements in Sn are viewed as
permutation matrices as well as permutations on {1, · · · , n}.

Proposition 2.3. Let Sn+1 be the symmetric group on {0, 1, · · · , n}. Define

φ : 〈Sn, �〉 −→ Sn+1

P �−→ P for P ∈ Sn,

�iP �−→ (0, i)P for P ∈ Sn and 1 ≤ i ≤ n.

(2.22)

Then φ is a group isomorphism.

Proof. Direct computation shows that in 〈Sn, �〉,
P�i = �P(i)P , 1 ≤ i ≤ n, P ∈ Sn, (2.23)

and

�i�j = �j(i, j), 1 ≤ i, j ≤ n, i = j. (2.24)

The same relations hold in Sn+1 with (0, i) in place of �i . Consequently, the
map φ in (2.22) is an isomorphism. ��

3 Group Actions on Rn, t

The Z2-algebra Pn can be written as

Pn = Z2[X1, · · · , Xn]/(X2
1 − X1, · · · , X2

n − Xn) (3.1)

and the affine linear group AGL(n, Z2) can be written as

AGL(n, Z2) =
{[

A

a 1

]
: A ∈ GL(n, Z2), a ∈ Z

n
2

}
< GL(n + 1, Z2). (3.2)

The group of translations of AGL(n, Zn) is

Z
n
2

∼=
{ [

I

a 1

]
: a ∈ Z

n
2

}
. (3.3)
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For each subgroup G < GL(n, Z2), the semidirect product of Z
n
2 and G is

Z
n
2�G =

{[
A

a 1

]
: A ∈ G, a ∈ Z

n
2

}
< AGL(n, Z2). (3.4)

There is a left AGL(n, Z2) action on Pn:

AGL(n, Z2) × Pn −→ Pn

(σ, f (X)) �−→ σ(f (X)) = f (XA + a)
(3.5)

where

σ =
[
A

a 1

]
∈ AGL(n, Z2) and X = (X1, · · · , Xn). (3.6)

Consequently, AGL(n, Z2) acts on Pn/Z2; the latter contains Rn,t . However,
Rn,t is not AGL(n, Z2)-invariant unless t = 0. In general, Rn,t is acted on only
by a certain subgroup of AGL(n, Z2).

Proposition 3.1. If f (X) ∈ Rn,t and A ∈ Gn,t , then f (XA) ∈ Rn,t .

Proof. For each s ∈ Z
n
2 with |s| ≤ t , we have

|f (XA) + XsT | = |f (X) + XA−1sT | = 2n−1 (3.7)

since |A−1sT | ≤ t . ��

Proposition 3.2. Let f (X) ∈ Rn,t and A ∈ Gn,n−t−1 and let 1 be the all 1
column vector of length n. Then

f (XA) + X(A + I )1 ∈ Rn,t (3.8)

Proof. For each s ∈ Z
n
2 with |s| ≤ t , we have∣∣∣f (XA) + X(A + I )1 + XsT

∣∣∣
=
∣∣∣f (X) + XA−1(A + I )1 + XA−1sT

∣∣∣
=
∣∣∣f (X) + X

(
1 + A−1(1 + sT )

)∣∣∣. (3.9)

Since |1 + sT | ≥ n − t and since A ∈ Gn,n−t−1, we have |A−1(1 + sT )| ≥
n − t , hence |1 + A−1(1 + sT )| ≤ t . Consequently,

∣∣∣f (X) + X
(
1 + A−1(1 + sT )

)∣∣∣ = 2n−1, (3.10)

and the proof is complete. ��
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In fact, Proposition 3.2 is the result of the following indirect action of
Gn,n−t−1 on Rn,t :

Rn,t � f (X) �−→ f (X) + X1
A∈Gn,n−t−1�−→ f (XA) + XA1

�−→ f (XA) + XA1 + X1 ∈ Rn,t (3.11)

Assume 1 ≤ t ≤ n − 2. If either n is odd or both n and t are even, one
can see from Theorem 2.1 that Gn,n−t−1 ⊂ Gn,t and that the function in (3.8)
is simply f (XA). Thus in these cases, the indirect action of Gn,n−t−1 on Rn,t

is a subgroup action of Gn,t on Rn,t . However, when n is even and t is odd,
Gn,t = Sn, Gn,n−t−1 = 〈Sn, �〉 and the action of Gn,t on Rn,t is a subgroup
action of the indirect action of Gn,n−t−1 on Rn,t . Of course, all these group
actions on Rn,t can be combined with the action of the translation subgroup
Z

n
2 on Rn,t . The following is a summary of the largest group action on Rn,t we

obtained in each case.

(i) When 0 < t ≤ n − 2 and t is even, Z
n
2�〈Sn, �〉 acts on Rn,t :

(
Z

n
2�〈Sn, �〉)× Rn,t −→ Rn,t([

A

a 1

]
, f (X)

)
−→ f (XA + a)

(3.12)

(ii) When 0 < t ≤ n − 2 and both n and t are odd, Z
n
2�Sn acts on Rn,t :

(Zn
2�Sn) × Rn,t −→ Rn,t([
A

a 1

]
, f (X)

)
−→ f (XA + a)

(3.13)

(iii) When 0 < t ≤ n − 2, n is even but t is odd, Z
n
2�〈Sn, �〉 acts on Rn,t :

(
Z

n
2�〈Sn, �〉)× Rn,t −→ Rn,t([

A

a 1

]
, f (X)

)
−→ f (XA + a) + X(A + I )1

(3.14)

The classification of Rn,t , whose meaning was not clear until now, can be
defined as the classification of Rn,t under the group actions in (3.12) – (3.14).

4 Conjugacy Classes of Z
n
2�Sn and Z

n
2�〈Sn, �〉

We are interested in computing the number of orbits in Rn,t (1 ≤ t ≤ n − 3)
under the group actions in (3.12) – (3.14) using the Burnside lemma. To this
end, we need representatives and sizes of the conjugacy classes of each acting
group, which is either Z

n
2�Sn or Z

n
2�〈Sn, �〉.
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In general, for any subgroup G of GL(n, Z2), representatives of conjugacy
classes of Z

n
2�G can be found as follows. (We refer the reader to [5] for the

details.) Let A be a system of representatives of conjugacy classes of G. For
each A ∈ A, let centG(A) be the centralizer of A in G and let Row(A+I ) ⊂ Z

n
2

be the row space of A+I . Then centG(A) acts on Z
n
2/Row(A+I ). Let CA ⊂ Z

n
2

such that the images of elements of CA in Z
n
2/Row(A + I ) form a system of

centG(A)-orbit representatives. Then

⋃
A∈A

{[
A

a 1

]
: a ∈ CA

}
(4.1)

form a system of representatives of conjugacy classes of Z
n
2�G. Moreover,

∣∣∣centZn
2�G

([
A

a 1

])∣∣∣
= 2Null(A+I ) · ∣∣{P ∈ centG(A) : aP ≡ A (mod Row(A + I ))

}∣∣. (4.2)

We first introduce some notation. For each partition λ = (λ1, λ2, · · · ) � n,
where λi ≥ 0 and

∑
i≥1 iλi = n, let

A(λ)=[(1) · · · (λ1)
][

(λ1 + 1, λ1 + 2) · · · (λ1 + 2λ2 − 1, λ1 + 2λ2)
]
· · · ∈ Sn,

(4.3)

which is a canonical permutation on {1, · · · , n} of cycle type λ. Similarly, for
each η = (η1, η2, · · · ) � n + 1, let

A(η) = [(0) · · · (η1 − 1)
]

·
[
(η1, η1 + 1) · · · (η1 + 2(η2 − 1), η1 + 2(η2 − 1) + 1

)] · · ·∈Sn+1,

(4.4)

which is a canonical permutation on {0, 1, · · · , n} of cycle type η. For η =
(η1, η2, · · · ) � n + 1 with η1 > 0, we define η′ = (η1 − 1, η2, η3, · · · ) � n.

For λ = (λ1, λ2, · · · ) � n and α = (α1, α2, · · · ) with 0 ≤ αi ≤ λi , let

aλ(α) = (a11, · · · , a1,λ1, a21, · · · , a2,λ2, · · · ) ∈ Z
n
2 (4.5)

be any vector such that aij ∈ Z
i
2 and

|aij | ≡
{

1 (mod 2), for 1 ≤ j ≤ αi,

0 (mod 2), for αi < j ≤ λi,
(4.6)
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for all i. For η = (

m−1︷ ︸︸ ︷
0, · · · , 0, ηm, ηm+1, · · · ) � n + 1 with m ≥ 2 and ηm > 0,

and β = (βm, βm+1, · · · ) with 0 ≤ βi ≤ ηi , let

bη(β) = (bm,1, · · · , bm,ηm
, bm+1,1, · · · , bm+1,ηm+1, · · · ) ∈ Z

n
2 (4.7)

be any vector such that bm,1 ∈ Z
m−1
2 , bij ∈ Z

i
2 for all other (i, j), and

|bij | ≡
{

1 (mod 2), for 1 ≤ j ≤ βi,

0 (mod 2), for βi < j ≤ ηi,
(4.8)

for all i.
We now consider the conjugacy classes of the group Z

n
2�Sn. Conjugacy

classes of Sn are represented by A(λ), λ � n. The centralizer centSn

(
A(λ)
)

is generated by two types of elements: a swap between the corresponding ele-
ments of two cycles of same length in A(λ) and a cyclic shift of elements within
a cycle of A(λ). Note that for λ = (λ1, λ2, · · · ) � n,

Row
(
A(λ) + I

) = {(x11, · · · , x1,λ1; x21, · · · , x2,λ2; · · · )
∈ Z

n
2 : xij ∈ Z

i
2, |xij |even

}
. (4.9)

Hence the centSn

(
A(λ)
)
-orbits in Z

n
2/Row

(
A(λ)+ I

)
are represented by aλ(α)

where α = (α1, α2, · · · ), 0 ≤ αi ≤ λi . Moreover,

∣∣{P ∈ centSn

(
A(λ)
)

: aλ(α)P ≡ aλ(α) (mod Row(A(λ) + I ))
}∣∣

=
∏
i≥1

[
αi!(λi − αi)!i

λi
]
. (4.10)

To summarize, we have the following proposition

Proposition 4.1. The conjugacy classes of Z
n
2�Sn are represented by

{[
A(λ)

aλ(α) 1

]
: λ = (λ1, λ2, · · · ) � n, α = (α1, α2, · · · ), 0 ≤ αi ≤ λi

}
.

(4.11)

Moreover,

∣∣∣centZn
2�Sn

([
A(λ)

aλ(α) 1

])∣∣∣ =
∏
i≥1

[
αi!(λi − αi)!(2i)λi

]
. (4.12)

Note that (4.12) follows from (4.2), (4.10) and the fact that Null
(
A(λ)+I

) =
λ1 + λ2 + · · · .
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Next, we consider the conjugacy classes of the group Z
n
2�〈Sn, �〉. We

use the isomorphism in Proposition 2.3 to identify 〈Sn, �〉 with the symmetric
groupSn+1 on {0, 1, · · · , n}. Conjugacy classes ofSn+1 are represented byA(η),
η � n+ 1. However, the action of centSn+1

(
A(η)
)

on Z
n
2/Row

(
A(η)+ I

)
is not

necessarily permutation of coordinates. In particular, the action of (0, 1) ∈ Sn+1

on x ∈ Z
n
2 gives x�. To find the representatives and sizes of centSn+1

(
A(η)
)
-

orbits in Z
n
2/Row

(
A(η) + I

)
, we consider different types of η.

Lemma 4.2. Assume thatη = (1, η2, η3, · · · ) � n+1. Then the centSn+1

(
A(η)
)
-

orbits in Z
n
2/Row

(
A(η)+I

)
are represented by aη′(α) where α = (α2, α3, · · · ),

0 ≤ αi ≤ ηi . Furthermore,
∣∣{P ∈ centSn+1

(
A(η)
)

: aη′(α)P ≡ aη′(α) (mod Row(A(η) + I ))
}∣∣

=
∏
i≥2

[
αi!(ηi − αi)!i

ηi
]
. (4.13)

Proof. In this case, A(η) = A(η′) ∈ Sn and centSn+1

(
A(η)
) = centSn

(
A(η′)

)
.

Thus the results follow from Proposition 4.1. ��

Lemma 4.3. Assume that η = (η1, η2, · · · ) � n + 1 with η1 ≥ 2. Then the
centSn+1

(
A(η)
)
-orbits of Z

n
2/Row

(
A(η) + I

)
are represented by aη′(α) where

α = (α1, α2, · · · ), 0 ≤ α1 ≤ η1 − 1, 0 ≤ αi ≤ ηi for i ≥ 2 and the first
term in (αi)i odd not equal to ηi/2 is < ηi/2, i.e., (αi)i odd ≤ (ηi/2)i odd in the
lexicographic order. Furthermore,

∣∣{P ∈ centSn+1

(
A(η)
)

: aη′(α)P ≡ aη′(α) (mod Row(A(η) + I ))
}∣∣

=




∏
i≥1

[
αi!(ηi − αi)!i

ηi
]
, if (αi)i odd = (ηi/2)i odd,

2
∏
i≥1

[
αi!(ηi − αi)!i

ηi
]
, if (αi)i odd = (ηi/2)i odd.

(4.14)

Proof. In this case A(η) = A(η′) ∈ Sn but centSn+1

(
A(η)
)

is generated by
centSn

(
A(η′)

)
and (0, 1) = �. Since

Row
(
A(η) + I

) = {(x12, · · · , x1,η1; x21, · · · , x2,η2; · · · )
∈ Z

n
2 : xij ∈ Z

i
2, |xij | even}, (4.15)

we have an isomorphism

ρ : Z
n
2/Row

(
A(η) + I

) −→ Z
−1+η1+η2+···
2

(x12, · · · , x1,η1; x21, · · · , x2,η2; · · · ) �−→(|x12|, · · · , |x1,η1 |; |x21|, · · · , |x2,η2 |; · · · )
(4.16)
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The action of centSn+1

(
A(η)
)

on Z
n
2/Row

(
A(η) + I

)
induces an action of

centSn+1

(
A(η)
)

on Z
−1+η1+η2+···
2 through the isomorphism ρ. To describe the

first action, it suffices to describe the second. The induced action of an ele-
ment P ∈ centSn+1

(
A(η)
)

on an element ε ∈ Z
−1+η1+η2+···
2 will be denoted by

εP . The induced action of centSn

(
A(η′)

)
on Z

−1+η1+η2+···
2 is easy to describe:

If σ ∈ centSn

(
A(η′)

)
is a cyclic shift within a cycle of A(η′), it acts trivially

on Z
−1+η1+η2+···
2 ; if σ ∈ centSn

(
A(η′)

)
is a swap between two cycles of A(η′),

its induced action on Z
−1+η1+η2+···
2 is a transposition of the two coordinates

of Z
−1+η1+η2+···
2 corresponding to the two cycles of A(η′). To see the action

of � on Z
−1+η1+η2+···
2 , observe that for (x12, · · · , x1,η1; x21, · · · , x2,η2; · · · ) ∈

Z
n
2/Row

(
A(η) + I

)
(xij ∈ Z

i
2),

(x12, · · · , x1,η1; x21, · · · , x2,η2; · · · )�
= (x12, · · · , x1,η1; x21, · · · , x2,η2; · · · ) + |x12|(0, 1, · · · , 1)

= (y12, · · · , y1,η1; y21, · · · , y2,η2; · · · ), (4.17)

where

|yij | ≡
{

|x12| (mod 2), if (i, j) = (1, 2),

|xij | + i|x12| (mod 2), if (i, j) = (1, 2).
(4.18)

Hence the induced action of � on (ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · ) ∈
Z

−1+η1+η2+···
2 gives

(ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · )�

= (ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · )

+ ε12(0,

η1−2︷ ︸︸ ︷
1, · · · , 1;

η2︷ ︸︸ ︷
0, · · · , 0;

η3︷ ︸︸ ︷
1, · · · , 1; · · · ). (4.19)

From the induced action of centSn+1

(
A(η)
)

on Z
−1+η1+η2+···
2 described above, it

is clear that the centSn+1

(
A(η)
)
-orbits of Z

n
2/Row

(
A(η)+ I

)
are represented by

aη′(α) where α = (α1, α2, · · · ), 0 ≤ α1 ≤ η1 − 1, 0 ≤ αi ≤ ηi for i ≥ 2 and
(αi)i odd ≤ (ηi/2)i odd in the lexicographic order.

To prove (4.14), observe that each element in centSn+1

(
A(η)
)

can be uniquely
written in the form σ or �kσ where σ ∈ centSn

(
A(η′)

)
, �k = (0, k) ∈ Sn+1

and 1 ≤ k ≤ η1 − 1. Write ρ
(
aη′(α)

) = (ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · ) ∈
Z

−1+η1+η2+···
2 . The number of σ ∈ centSn

(
A(η′)

)
such that

(ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · )σ = (ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · )
(4.20)
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is

α1!(η1 − 1 − α1)!
∏
i≥2

[
αi!(ηi − αi)!i

ηi
]
. (4.21)

Meanwhile, ρ
(
aη′(α)

)�kσ = ρ
(
aη′(α)

)
if and only if

(ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · )σ−1

= (ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · )�k

= (ε12, · · · , ε1,η1; ε21, · · · , ε2,η2; · · · )

+ ε1,k+1(

η1−1︷ ︸︸ ︷
1, · · · , 1, 0︸ ︷︷ ︸

k

, 1, · · · , 1;
η2︷ ︸︸ ︷

0, · · · , 0;
η3︷ ︸︸ ︷

1, · · · , 1; · · · ). (4.22)

(The last equality in (4.22) follows from the proof of (4.19).) When
(α1, α3, α5, · · · ) = (η1/2, η3/2, η5/2, · · · ), (4.22) holds only if ε1,k+1 = 0, i.e.,
α1 +1 ≤ k ≤ η1 −1. For each such k, the number of σ ∈ centSn

(
A(η′)

)
satisfy-

ing (4.22) is given by (4.21). When (α1, α3, α5, · · · ) = (η1/2, η3/2, η5/2, · · · ),
for each 1 ≤ k ≤ η1 − 1, the number of σ ∈ centSn

(
A(η′)

)
satisfying (4.22)

is given by (4.21). From these observations, we have the total number of
P ∈ centSn+1

(
A(η)
)

such that ρ
(
aη′(α)

)P = ρ
(
aη′(α)

)
, i.e., aη′(α)P ≡ aη′(α)

(mod Row(A(η) + I )). ��

Lemma 4.4. Assume that η = (

m−1︷ ︸︸ ︷
0, · · · , 0, ηm, ηm+1, · · · ) � n + 1 with m ≥ 2

and ηm > 0. Then the centSn+1

(
A(η)
)
-orbits of Z

n
2/Row

(
A(η) + I

)
are repre-

sented by bη(β), defined in (4.7), where β = (βm, βm+1, · · · ), 0 ≤ βi ≤ ηi and
(βi)iodd ≤ (ηi/2)iodd in the lexicographic order. Furthermore,∣∣{P ∈ centSn+1

(
A(η)
)

: bη(β)P ≡ bη(β) (mod Row(A(η) + I ))
}∣∣

=




∏
i≥m

[
βi!(ηi − βi)!i

ηi
]
, if

∑
i odd ηi = 0 or (βi)i odd = (ηi/2)i odd,

2
∏
i≥m

[
βi!(ηi − βi)!i

ηi
]
, if

∑
i odd ηi > 0 and (βi)i odd = (ηi/2)i odd.

(4.23)

Proof. Since A(η) = (0, 1, · · · , m − 1)(m, · · · ) · · · = (0, 1)(1, · · · , m − 1)

(m, · · · , ) · · · = �(1, · · · , m − 1)(m, · · · ) · · · , we see that

Row
(
A(η) + I

)

= {(xm,1, · · · , xm,ηm
; xm+1,1, · · · , xm+1,ηm+1; · · · ) ∈ Z

n
2 :

xm,1 ∈ Z
m−1
2 , xij ∈ Z

i
2 for all other (i, j), |xij | even for all (i, j)

}

+ 〈(0, 1, · · · , 1)〉. (4.24)
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Thus there is an isomorphism

ρ :Zn
2/Row

(
A(η) + I

) −→ Z
ηm+ηm+1+···
2 /〈(

ηm︷ ︸︸ ︷
m, · · · , m;

ηm+1︷ ︸︸ ︷
m+1, · · · , m+1; · · · )〉

(xm1, · · · , xm,ηm
; xm+1,1, · · · , xm+1,ηm+1; · · · )

�−→ (|xm1|, · · · , |xm,ηm
|; |xm+1,1|, · · · , |xm+1,ηm+1 |; · · · )

(4.25)

We use H(η) to denote the target space of ρ. The centSn+1

(
A(η)
)
-action on

Z
n
2/Row

(
A(η) + I

)
induces a centSn+1

(
A(η)
)
-action on H(η) through the

isomorphism ρ. The induced action can be described as follows: If P ∈
centSn+1

(
A(η)
)

is a cyclic shift within a cycle of A(η), P acts trivially on H(η);
if P ∈ centSn+1

(
A(η)
)

is a swap between two cycles of the same length in A(η),
the action of P on H(η) is a transposition of the two coordinates of H(η) corre-
sponding to the two cycles of A(η).We omit the proofs of these claims since they
are routine computations. Using the induced action of centSn+1

(
A(η)
)

on H(η),
it is clear that the centSn+1

(
A(η)
)
-orbits of Z

n
2/Row

(
A(η) + I

)
are represented

by bη(β) where β = (βm, βm+1, · · · ), 0 ≤ βi ≤ ηi and (βi)i odd ≤ (ηi/2)i odd

in the lexicographic order. Equation (4.23) also follows easily from the induced
centSn+1

(
A(η)
)
-action on H(η). ��

Combining Lemmas 4.2 – 4.4 and using (4.2), we have the following prop-
osition.

Proposition 4.5. The representatives of the conjugacy classes of Z
n
2�〈Sn, �〉

and the sizes of the centralizers of the representatives are as follows:

(i)

[
A(η)

aη′(α) 1

]
, η = (1, η2, η3, · · · ) � n + 1, α = (α2, α3, · · · ),

0 ≤ αi ≤ ηi, (4.26)

∣∣∣centZn
2�〈Sn,�〉

([
A(η)

aη′(α) 1

])∣∣∣ =
∏
i≥2

[
αi!(ηi − αi)!(2i)ηi

]
. (4.27)

(ii)

[
A(η)

aη′(α) 1

]
, η = (η1, η2, · · · ) � n + 1, η1 ≥ 2,

α = (α1, α2, · · · ), 0 ≤ α1 ≤ η1 − 1, 0 ≤ αi ≤ ηi for i ≥ 2,

(αi)i odd ≤ (ηi/2)i odd in the lexicographic order,
(4.28)
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∣∣∣centZn
2�〈Sn,�〉

([
A(η)

aη′(α) 1

])∣∣∣

=




1

2

∏
i≥1

[
αi!(ηi − αi)!(2i)ηi

]
, if (αi)i odd = (ηi/2)i odd,

∏
i≥1

[
αi!(ηi − αi)!(2i)ηi

]
, if (αi)i odd = (ηi/2)i odd.

(4.29)

(iii)

[
A(η)

bη(β) 1

]
, η = (

m−1︷ ︸︸ ︷
0, · · · , 0, ηm, ηm+1, · · · ) � n + 1, m ≥ 2, ηm > 0,

β = (βm, βm+1, · · · ), 0 ≤ βi ≤ ηi,

(βi)i odd ≤ (ηi/2)i odd in the lexicographic order,
(4.30)∣∣∣centZn

2�〈Sn,�〉
([

A(η)

bη(β) 1

])∣∣∣

=




1

2

∏
i≥m

[
βi!(ηi − βi)!(2i)ηi

]
, if (βi)i odd = (ηi/2)i odd,

∏
i≥m

[
βi!(ηi − βi)!(2i)ηi

]
, if (βi)i odd = (ηi/2)i odd.

(4.31)

In order to obtain (4.31) in Case (iii) in Proposition 4.5, we used the fact that

Null
(
A(η) + I

) =
{

−1 + ηm + ηm+1 + · · · , if
∑

i odd ηi > 0,

ηm + ηm+1 + · · · , if
∑

i odd ηi = 0.
(4.32)

5 Numbers of Orbits in R5, 1 and R6, 2

Using Propositions 4.1 and 4.5, we are able to compute the numbers of Z
5
2�S5-

orbits in R5,1 and the Z
6
2�〈S6, �〉-orbits in R6,2 with a computer. The results

are given in the following tables. When searching through elements in R5,1

and R6,2, we used an obvious reductive property of resilient functions to re-
duce the amount of computation: If F(X1, · · · , Xn) = f (X1, · · · , Xn−1) +
Xng(X1, · · · , Xn−1) ∈ Rn,t , then f (X1, · · · , Xn−1) ∈ Rn−1,t−1.

Now that the numbers of orbits in R5,1 and R6,2 are known to be 256 and
131, the problem of classifying R5,1 and R6,2 becomes finding the right number
of elements in R5,1 and R6,2 that are pairwise nonequivalent under the group
actions. Using a reasonable amount of computer time, we have found the orbit
representatives in R5,1 and R6,2, but the results are too lengthy to be included
in the paper.
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Table 1. Z
5
2�S5 acting on R5,1

σ = [A(λ)

a 1

]
: representatives |cent

Z
5
2�S5

(σ )| |{f ∈ R5,1 : σ(f ) = f }|
of conj. classes of Z

5
2�S5

λ a

(5) (0 0 0 0 0) 5!25 403,990
(1 0 0 0 0) 4!25 6,546
(1 1 0 0 0) 2!3!25 2,774
(1 1 1 0 0) 2!3!25 1,810
(1 1 1 1 0) 4!25 2,774
(1 1 1 1 1) 5!25 6,546

(3,1) (0 0 0 0 0) 3!25 3,436
(0 0 0 1 0) 3!25 132
(1 0 0 0 0) 2!25 1,932
(1 0 0 1 0) 2!25 44
(1 1 0 0 0) 2!25 1,260
(1 1 0 1 0) 2!25 36
(1 1 1 0 0) 3!25 1,932
(1 1 1 1 0) 3!25 44

(2,0,1) (0 0 0 0 0) 2!23 · 3 49
(0 0 1 0 0) 2!23 · 3 37
(1 0 0 0 0) 23 · 3 21
(1 0 1 0 0) 23 · 3 17
(1 1 0 0 0) 2!23 · 3 17
(1 1 1 0 0) 2!23 · 3 21

(1,2) (0 0 0 0 0) 2!25 978
(0 1 0 0 0) 25 54
(0 1 0 1 0) 2!25 146
(1 0 0 0 0) 2!25 870
(1 1 0 0 0) 25 26
(1 1 0 1 0) 2!25 70

(1,0,0,1) (0 0 0 0 0) 24 6
(0 1 0 0 0) 24 10
(1 0 0 0 0) 24 42
(1 1 0 0 0) 24 6

(0,1,1) (0 0 0 0 0) 23 · 3 13
(0 0 1 0 0) 23 · 3 9
(1 0 0 0 0) 23 · 3 9
(1 0 1 0 0) 23 · 3 5

(0,0,0,0,1) (0 0 0 0 0) 2 · 5 5
(1 0 0 0 0) 2 · 5 1

Number of Z
5
2�S5-orbits in R5,1 = 256
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Table 2. Z
6
2�〈S6, �〉 acting on R6,2

σ = [A(η)

a 1

]
: representatives |cent

Z
5
2�〈S6,�〉(σ )| |{f ∈ R6,2 : σ(f ) = f }|

of conj. classes of Z
6
2�〈S6, �〉

η a

(7) (0 0 0 0 0 0) 7!26 8,375,430
(1 0 0 0 0 0) 6!26 404,266
(1 1 0 0 0 0) 2!5!26 32,482
(1 1 1 0 0 0) 3!4!26 30,446

(5,1) (0 0 0 0 0 0) 5!26 31,030
(0 0 0 0 1 0) 5!26 6,440
(1 0 0 0 0 0) 4!26 17,726
(1 0 0 0 1 0) 4!26 240
(1 1 0 0 0 0) 2!3!26 9,410
(1 1 0 0 1 0) 2!3!26 276

(4,0,1) (0 0 0 0 0 0) 4!24 · 3 342
(0 0 0 1 0 0) 4!24 · 3 326
(1 0 0 0 0 0) 3!24 · 3 58
(1 0 0 1 0 0) 3!24 · 3 50
(1 1 0 0 0 0) 2!2!24 · 3 46

(3,2) (0 0 0 0 0 0) 3!2!26 4,862
(0 0 1 0 0 0) 3!26 412
(0 0 1 0 1 0) 3!2!26 722
(1 0 0 0 0 0) 2!2!26 7,130
(1 0 1 0 0 0) 2!26 200
(1 0 1 0 1 0) 2!2!26 398

(3,0,0,1) (0 0 0 0 0 0) 3!25 14
(0 0 1 0 0 0) 3!25 38
(1 0 0 0 0 0) 2!25 106
(1 0 1 0 0 0) 2!25 18

(2,1,1) (0 0 0 0 0 0) 2!24 · 3 64
(0 0 0 1 0 0) 2!24 · 3 56
(0 1 0 0 0 0) 2!24 · 3 20
(0 1 0 1 0 0) 2!24 · 3 12
(1 0 0 0 0 0) 24 · 3 32
(1 1 0 0 0 0) 24 · 3 12

(2,0,0,0,1) (0 0 0 0 0 0) 2!22 · 5 10
(0 1 0 0 0 0) 2!22 · 5 2
(1 0 0 0 0 0) 22 · 5 6

(1,3) (0 0 0 0 0 0) 3!26 1,054
(1 0 0 0 0 0) 2!26 136
(1 0 1 0 0 0) 2!26 306
(1 0 1 0 1 0) 3!26 28

(1,1,0,1) (0 0 0 0 0 0) 25 6
(0 0 1 0 0 0) 25 18
(1 0 0 0 0 0) 25 48
(1 0 1 0 0 0) 25 36
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Table 2 (Continued)

σ = [A(η)

a 1

]
: representatives |cent

Z
5
2�〈S6,�〉(σ )| |{f ∈ R6,2 : σ(f ) = f }|

of conj. classes of Z
6
2�〈S6, �〉

η a

(1,0,2) (0 0 0 0 0 0) 2!2232 249
(1 0 0 0 0 0) 2232 35
(1 0 0 1 0 0) 2!2232 85

(1,0,0,0,0,1) (0 0 0 0 0 0) 22 · 3 1
(1 0 0 0 0 0) 22 · 3 1

(0,2,1) (0 0 0 0 0 0) 2!24 · 3 2
(1 0 0 0 0 0) 24 · 3 10
(1 1 0 0 0 0) 2!24 · 3 2

(0,1,0,0,1) (0 0 0 0 0 0) 22 · 5 0
(1 0 0 0 0 0) 22 · 5 0

(0,0,1,1) (0 0 0 0 0 0) 23 · 3 2
(0 0 1 0 0 0) 23 · 3 2

(0,0,0,0,0,0,1) (0 0 0 0 0 0) 7 0

Number of Z
6
2�〈S6, �〉-orbits in R6,2 = 131
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