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Summary. In an election without a Condorcet winner, Dodgson’s Method is
designed to find the candidate that is “closest” to being a Condorcet winner. In
this paper, we show that the winner from Dodgson’s Method can occur at any
position in the ranking obtained from the Borda Count, the plurality method, or
any other positional voting procedure. In addition, we demonstrate that Dodgson’s
Method does not satisfy the Independence of Irrelevant Alternatives axiom.
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1 Introduction

The Condorcet criterion appears to be the most natural and reasonable criterion
to apply to an election: if there is a single candidate that beats every other
candidate in head-to-head elections then that candidate should be declared the
winner. There is, however, the well-known problem that there are elections where
a Condorcet winner may not exist. In 1874, Charles Dodgson (aka Lewis Carroll)
proposed a voting method to extend the Condorcet criterion to elections without
a Condorcet winner [1]. In essence, Dodgson’s Method (DM) finds the candidate
that is closest to being the Condorcet winner.

At first glance, DM appears quite similar to Kemeny’s Rule. The major
distinction is that Kemeny’s Rule finds the closest complete transitive ranking of
candidates whereas Dodgson’s Method picks a single winner and allows there
to be a cycle among the other candidates. This gives us enough leeway to show
that with four or more candidates there is no connection between the DM winner
and Kemeny’s Rule. That is, the DM winner can occur at any position in the
Kemeny ranking [7].
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Given that Dodgson’s Method is based on the Condorcet criterion, we should
not be surprised that there can also be conflict between Dodgson’s Method and
the Borda Count. It is known that the Condorcet winner can never be ranked
last in the Borda Count [4]. We will show that there is not even this level
of consistency with Dodgson’s Method: with four or more candidates, the DM
winner can appear at any position in the Borda Count.

Further, the examples we generate also show that the DM winner can appear
at any location in the ranking of any positional voting method, including plurality
(where each voter gives 1 point to their top ranked candidate and 0 to all others),
anti-plurality (where each voter gives 1 point to every candidate except their
last ranked candidate who receives 0 points), and other variations on the Borda
Count. These results highlight the need for extreme care when extending any
criterion, no matter how reasonable it appears, to cases where the rule does not
initially apply.

In Section 2, we give a simple example with four candidates to illustrate DM
and to show how DM can differ from the Borda Count. In Section 3, we use
Saari’s decompositions of a voting profile [4] to show how to create four can-
didate profiles that generate conflict between DM and all positional procedures,
and we explain why the example in Section 2 behaves as it does. Section 4 gives
some geometric insight into why DM differs from the Borda Count. Section 5
gives an example to illustrate that DM does not satisfy Independence of Irrele-
vant Alternatives, and Section 6 contains the proof of our main result for more
than four candidates.

2 Dodgson’s Method

To illustrate Dodgson’s Method, consider the voting profile in Table 1 among
four candidatesA,B,C , D with 30 voters whereA � B means thatA is preferred
to B. The head-to-head results are given in Table 2.

Table 1. An election with 30 voters

Number Ranking

10 A � B � C � D (1)

7 C � D � B � A (2)

3 A � D � C � B (3)

3 D � C � A � B (4)

7 B � D � A � C (5)

Notice there is no Condorcet winner since the first four head-to-head elections
determine a cycle where every candidate loses at least one election. The intuition
behind DM is thatB is the closest to being the Condorcet winner since it loses a
single election (toA) by two votes while every other candidate loses at least one
election by four or more votes. Thus, if two voters with preference (1) change
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Table 2. Head-to-head results from the example in Table 1

Tally Margin

A � B 16,14 2

B � C 17,13 4

C � D 17,13 4

D � A 17,13 4

A � C 20,10 10

B � D 17,13 4
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to B � A � C � D , thenB will become the Condorcet winner, but any other
candidate will require more than two voters to change their rankings.

2.1 Precise statement of Dodgson’s method

In our example, all four candidates are contained in the cycle. However, this may
not always be the case as there may be a majority cycle where each candidate
in the cycle is preferred to every candidate not in the cycle. In this situation,
Dodgson restricts his attention to the majority cycle. We can state Dodgson’s
Method as follows:

1. If there is a Condorcet winner, then that is the Dodgson winner.
2. If not, there will be a majority cycle. For each candidate in the majority cycle,

determine the number of adjacent switches in the voters’ preferences that are
necessary to make the candidate the Condorcet winner. The candidate in the
majority cycle with the fewest required switches is the Dodgson winner.

Applying this to our example, Table 3 shows thatB is the DM winner.

Table 3. Switches required for the example in Table 1

Candidate Election Lost Margin Switches Ranking Total

A D � A 4 3 (5) 3

B A � B 2 2 (1) 2

C B � C 4 3 (1)

A � C 10 6 (5) 9

D C � D 4 3 (2)

B � D 4 3 (5) 6

2.2 Comparison with Borda Count

Using the standard weights for the Borda Count with four candidates (3, 2, 1, and
0 points for first, second, third, and fourth place, respectively), Table 4 shows
that A is the Borda Count winner and that the DM winner,B, places second.
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Table 4. Borda count tallies for the example in Table 1

Candidate First Second Third Fourth Borda Total

A 13 0 10 7 49

B 7 10 7 6 48

C 7 3 13 7 40

D 3 17 0 10 43

This illustrates our main result.

Theorem 1. If there are four or more candidates, then there is no connection
between the Dodgson winner and the Borda Count. That is, the Dodgson winner
may occur at any position in the Borda Count ranking.

Further, there is no connection between the Dodgson winner and any po-
sitional voting method, including plurality, anti-plurality, and variations on the
Borda Count.

Notice that our example is not sufficient to illustrate the general case of the
Theorem sinceB is the anti-plurality winner with a tally of 24 whereA, C , and
D have tallies of 23, 23, and 20, respectively.

We also note that with three candidates, DM is identical to Kemeny’s rule
and Saari and Merlin’s analysis show that the Kemeny winner cannot be ranked
last in the Borda Count [6], but can appear in either first or second place.

Intuitively, we should not be surprised that there can be conflict between the
DM winner and the Borda Count. It is well known that the Borda Count for a
candidateA depends only on the margins of all pairwise elections forA, including
both wins and losses. However, DM depends on only the pairwise losses ofA
and not the pairwise wins ofA. While A’s margin of victory affects the DM
calculations for the losing candidate (and thus helpsA compared to the loser),
this margin does not helpA in comparison with other candidates. That is, ifA � B
by a large margin, then this helpsA compared toB in the DM calculations, but it
does not aidA when comparing to other candidates. In contrast, this large margin
of victory will help A in the Borda Count compared to all other candidates.

3 Decomposition of profiles

In order to understand how Dodgson’s Method can differ from the Borda Count,
we need to introduce a decomposition of profiles defined by Saari [4] into fun-
damental components. Our goal is to create a profile whereA is the Dodgson
winner but all positional procedures give a ranking ofB � A � C � D . To do
this, we will create a profile that consists entirely of

– a largeCondorcet componentthat has no impact on any positional method
but determines the DM winner to beA
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– a smallBasic componentwhere all position methods give a ranking ofB �
A � C � D and whose impact on the DM winner is overshadowed by the
Condorcet component

– A Kernel componentthat has no impact on any method but guarantees we
have a non-negative number of voters (see below for the justification of this
component)

By modifying the Basic component, we will be able to change the ranking given
by the positional methods without affecting the DM winner. We note that our
example from Section 2 contains an additional component that generates conflict
among the positional procedures (Recall that the Borda Count and antiplurality
outcomes differed).

Definition 2. The Kernel profile K contains one voter for each of the n! rankings
of the n candidates.

Definition 3. In an n candidate election, the Basic profile for the candidate Ai ,
denoted BAi , assigns one voter for each ranking where Ai is top-ranked and−1
voters for each ranking where Ai is bottom-ranked.

For example, with four candidates BA is the profile

1 A � B � C � D −1 D � C � B � A

1 A � B � D � C −1 C � D � B � A

1 A � C � B � D −1 D � B � C � A

1 A � C � D � B −1 B � D � C � A

1 A � D � B � C −1 C � B � D � A

1 A � D � C � B −1 B � C � D � A

The Basic profiles contain negative voters, but this does not cause a problem
when computing the election outcomes. The Kernel profileK gives a complete
tie for all positional procedures and all pairwise votes. By adding a sufficiently
large multiple ofK to a profile with negative entries, we obtain a profile with
non-negative voters and exactly the same election outcomes. Further, when con-
structing examples, the Kernel allows us to avoid a problem in Dodgson’s Method
of adjacency switches (See [7] for details). Notice that the pairwise margins in
the n candidate Basic profileBAi are

2(n − 1)! forAi � Aj , i /= j , 0 for all others

The following definition for a Condorcet profile is only for a four candidate
election, but it can clearly be generalized ton candidates.

Definition 4. Given the ranking r= A � B � C � D, define the Condorcet
profile Cr to have one vote for each ranking consistent with the cycle A� B �
C � D � A and −1 vote for each ranking consistent with the reverse cycle
D � C � B � A � D, as shown in Table 5.
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Table 5. The Condorcet profileCr and associated cycle

# Ranking # Ranking

1 A � B � C � D −1 D � C � B � A

1 B � C � D � A −1 C � B � A � D

1 C � D � A � B −1 B � A � D � C

1 D � A � B � C −1 A � D � C � B
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Table 6. The Condorcet componentC = 4Cr1 + 2Cr2 + Cr3

# Ranking # Ranking

4 A � B � C � D −1 C � A � B � D

−1 A � B � D � C 2 C � A � D � B

2 A � D � B � C 4 C � D � A � B

−4 A � D � C � B 1 C � D � B � A

1 A � C � D � B −2 C � B � D � A

−2 A � C � B � D −4 C � B � A � D

1 B � A � C � D 4 D � A � B � C

−4 B � A � D � C −2 D � A � C � B

−2 B � D � A � C −1 D � C � A � B

−1 B � D � C � A −4 D � C � B � A

4 B � C � D � A 2 D � B � C � A

2 B � C � A � D 1 D � B � A � C
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Saari [5] proves that the Condorcet and Basic profiles have the fundamen-
tal properties we desire: All positional methods agree on linear combinations
of the Basic profiles, and all positional methods give a complete tie on lin-
ear combinations of the Condorcet profiles. In particular,BA gives a ranking of
A � B ∼ C ∼ D for all positional methods, whereB ∼ C means thatB andC
are tied. We now have the tools to generate a profile whereA is the DM winner,
but every positional method gives a ranking ofB � A � C � D .

3.1 The Condorcet component

Let r1 = A � B � C � D , r2 = B � C � A � D , and r3 = B � A � C � D .
Consider the Condorcet componentC = 4Cr1 + 2Cr2 + Cr3 given in Table 6.

Notice that each candidate is in the majority cycle and thatA is the DM winner
requiring 8 switches whereasB, C , andD require 14, 13, and 11 switches, re-
spectively. A straightforward calculation shows that every candidate has a Borda
Count tally of 0 giving a complete tie, as we expect.
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To understand whyC behaves as it does with respect to Dodgson’s Method,
consider the pairwise outcomes of the Condorcet profiles 4Cr1, 2Cr2, and Cr3

shown in Figure 1, where a dashed line indicates a tie. The idea is to begin
with the profile 4Cr1 that includes each candidate in the majority cycle and add
profiles that will maintain the majority cycle while decreasingA’s total margin
of loss and increasing the total margin of loss of every other candidate. We add
2Cr2 to increaseB andC ’s total margins of loss while not affecting eitherA or
D ’s total margins. We add the profileCr3 to increaseD ’s total margin, decrease
A’s and not affect eitherB or C ’s margin. In particular, notice that the combined
profile 2Cr2 + Cr3 will not disrupt the majority cycle. The case with more than
four candidates is similar and is given in Section 6.
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Figure 1. Pairwise outcomes for 4Cr1, 2Cr2, andCr3

After determining the Basic componentB , we will scaleC sufficiently large
to guarantee that the Basic component will not impact the DM winner.

3.2 The basic component

As previously noted, all positional methods give the rankingA � B ∼ C ∼ D
on the Basic profileBA. Then the Basic profileB = 3BB + 2BA + BC given in
Table 7 will give a ranking ofB � A � C � D for all position methods.

For example, the Borda Count tallies areA : 12, B : 36, C : −12, D : −36.
Notice that if we simply add the Basic componentB to the Condorcet component
C , then we will reverse some of the pairwise outcomes and, therefore, affect the
DM winner. For example, theD � A outcome inC becomesA � D in C +B .
Thus, we need to scale the Condorcet component large enough to overcome the
effect of the Basic component.

Consider the profile 5C + B given in Table 8. ClearlyA is the DM winner
for this profile. Thus, the profile 5C + B will have a DM winner ofA and a
positional outcome ofB � A � C � D . The final piece is to add the component
22K to give a non-negative number of voters for each ranking so that our desired
profile is 5C + B + 22K .
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Table 7. The basic componentB = 3BB + 2BA + BC

# Ranking # Ranking

2 A � B � C � D 1 C � A � B � D

1 A � B � D � C −2 C � A � D � B

1 A � D � B � C −2 C � D � A � B

−1 A � D � C � B −1 C � D � B � A

−1 A � C � D � B −1 C � B � D � A

2 A � C � B � D 1 C � B � A � D

3 B � A � C � D −1 D � A � B � C

2 B � A � D � C −3 D � A � C � B

2 B � D � A � C −3 D � C � A � B

1 B � D � C � A −2 D � C � B � A

1 B � C � D � A −2 D � B � C � A

3 B � C � A � D −1 D � B � A � C
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Also note that we can easily modifyB to obtain any positional ranking
without affecting the DM winner. For example, 3BD + 2BC + BB will give a
positional ranking ofD � C � B � A, and we then add a sufficiently large
multiple of C to guarantee that we do not reverse the pairwise outcomes and
inadvertently change the DM winner.

4 Geometric comparison of the methods

We can gain additional insight into the conflict between Dodgson’s Method and
the Borda Count by understanding the geometric behavior of these methods for
elections withn candidates.

4.1 Geometric framework

We will use the geometric model developed by Saari [4, 5]. Each voter profile
specifies the number of voters who prefer each of then! rankings of the candi-
dates. Withn candidatesA1, A2, . . . , An, the profile defines a point inRn! space.
For each of the

(n
2

)
= n(n−1)

2 pairwise elections, pick an ordering of the pairwise
electionsAi � Aj , and letaij denote the margin by whichAi is preferred toAj in
the pairwise vote (ifAj is preferred toAi , thenaij will be negative). Therefore,
the pairwise votes define a point inR(n

2) where the sign of any component indi-
cates which candidate won the corresponding election (a zero value indicates a
tie).

For example, the profile from Table 1 defines a point in the profile space
R24 (where 19 of the components are zero), and the corresponding point in
the pairwise spaceR6 is (2, 10,−4, 4, 4, 4) with the pairwise elections ordered
(A � B, A � C , A � D , B � C , B � D , C � D).
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Table 8. The profile 5C + B and pairwise tallies

# Ranking # Ranking

22 A � B � C � D −4 C � A � B � D

−4 A � B � D � C 8 C � A � D � B

11 A � D � B � C 18 C � D � A � B

−21 A � D � C � B 4 C � D � B � A

4 A � C � D � B −11 C � B � D � A

−8 A � C � B � D −19 C � B � A � D

8 B � A � C � D 19 D � A � B � C

−18 B � A � D � C −13 D � A � C � B

−8 B � D � A � C −8 D � C � A � B

−4 B � D � C � A −22 D � C � B � A

21 B � C � D � A 8 D � B � C � A

13 B � C � A � D 4 D � B � A � C
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4.2 Geometry of Dodgson’s method and the Borda count

Note that each orthant inR(n
2) determines a ranking, possibly with cycles. In

comparing how voting methods based on the pairwise votes treat cycles, the real
issue is understanding how each method moves from an orthant representing
a cycle (or cycles) to an orthant representing a transitive ranking (in the case
of the positional methods) or a Condorcet winner (in the case of Dodgson’s
method). DM is closely related to finding the orthant representing the ranking
with a Condorcet winner that has the closest�1 distance to the profile’s point
in pairwise space. The�1 metric, also called thetaxicab or Manhattanmetric,
determines the distance between two points by summing the absolute value of
the differences between the coordinates. For example, the�1 distance between
(2,−1, 3) and (1, 4,−2) is |2−1|+ |−1−4|+ |3− (−2)| = 11. Intuitively, we can
think of this metric as the shortest driving distance between the points where we
are allowed to travel only east-west and/or north-south. Notice that the shortest
�1 distance to an orthant withAi as the Condorcet winner is found by summing
the margins of loss ofAi in the pairwise elections. Thus, the�1 winner is the
candidate with the smallest total margin of loss in the pairwise outcomes.

Although the�1 winner and the DM winner may differ for a profileP, if all
candidates are included in the majority cycle, then for sufficiently large scalarsc,
the �1 winner and the DM winner agree oncP [7]. In contrast, the Borda Count
behaves as a projection onto thetransitivity planespanned by the images of the
Basic vectors in pairwise space. A key factor is that the images of the Condorcet
profiles are orthogonal to the transitivity plane in pairwise space and therefore
have no impact on the Borda Count.

Thus, our Condorcet componentC is a large vector in an orthant defining a
cycle that is close in�1 distance to an orthant whereA is the Condorcet winner.
Further, the orthogonal projection ofC onto the transitivity plane lands at the
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origin since the Borda Count gives a complete tie onC . A small tweak toC

by adding the Basic componentB does not change the closest orthant withA
as the Condorcet winner, but does change the orthogonal projection onto the
transitivity plane to an orthant withA in the desired position.

5 Dodgson’s method and the independence of irrelevant alternatives

In this section we will show that Dodgson’s Method does not satisfy the Inde-
pendence of Irrelevant Alternatives axiom.

Definition 5. Let P1 and P2 be two profiles for candidates A1, . . . , An with the
same set of voters. Suppose that the exact same set of voters prefer Ai to Aj in
both profiles P1 and P2. Then a social welfare function satisfies the Independence
of Irrelevant Alternatives (IIA) property if the outcome of the function on the two
profiles with respect to Ai and Aj is the same. That is, either Ai � Aj for both
profiles, Aj � Ai for both profiles, or Ai ∼ Aj for both profiles.

Consider the profileP1 given in Table 9 whose head-to-head results are
given in Table 10. To determine the DM winner, we restrict our attention to
the majority cycle consisting of candidatesA, B, andC . ThenA is the Dogdson
winner, requiring 5 voters with preference (6) to switch their preference toA � C ,
whereas bothB andC will require at least 6 switches.

Table 9. The profileP1

# Ranking

6 A � B � C � E � D (1)

5 A � C � E � B � D (2)

5 A � B � E � D � C (3)

5 B � C � A � E � D (4)

5 B � C � E � A � D (5)

10 D � E � C � A � B (6)

5 D � E � B � C � A (7)

Now consider the profileP2 given in Table 11 that is obtained fromP1 by
having one voter with preference (5) switch the location of candidatesC andD .
Notice that in these profiles, no voter has changed their preference with respect
to the candidatesA and E. As demonstrated in Table 12, theC � D result
has changed, and thus all candidates are included in the majority cycle. As a
consequence, we see thatE is the DM winner, requiring only one voter with
ranking (4) to switch theirA � E preference and one voter with ranking (3) to
switch theirB � E preference. Since every other candidate loses an election by
a margin of at least 7, we know thatE is the DM winner.

Thus, we have two profilesP1 andP2 where all voters have the same prefer-
ence with respect to candidatesA andE, but in one profile,A is the DM winner,
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Table 10.Head-to-head results from Table 9

Margin

A � B 11

B � C 11

C � A 9

A � D 11

A � E 1

B � D 11

B � E 1

C � D 1

C � E 1

E � D 1
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and in the other,E is the DM winner. Thus, DM does not satisfy Independence
of Irrelevant Alternatives.

Table 11.The profileP2

# Ranking

6 A � B � C � E � D (1)

5 A � C � E � B � D (2)

5 A � B � E � D � C (3)

5 B � C � A � E � D (4)

4 B � C � E � A � D (5a)

1 B � D � E � A � C (5b)

10 D � E � C � A � B (6)

5 D � E � B � C � A (7)

Table 12.Head-to-head results from Table 11

Margin

A � B 11

B � C 11

C � A 7

A � D 13

A � E 1

B � D 11

B � E 1

D � C 1

E � C 1

E � D 13
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6 Proof of Theorem 1

Suppose that our candidates areA1, A2, . . . , An. We will construct profiles where
A1 is the Dodgson winner, butA1 can appear at any position in the ranking given
by any positional method.

The construction will mimic that of our example from Section 3. We will
construct a Condorcet componentC from three Condorcet profiles that gives an
�1 winner of A1 and scaleC sufficiently so that we can add a Basic component
B to create conflict with any positional method without affecting the�1 winner.
Then we scale this profile sufficiently large to guarantee thatA1 is the DM winner
as well as the�1 winner. To construct the Condorcet componentC , it is easiest
to deal with the cases ofn odd andn even separately.

6.1 The Condorcet component for n odd

Consider the Condorcet profilesCr1, Cr2, andCr3 defined by the rankings

r1 = A1 � A2 � A3 � · · · � Aq−1 � Aq � Aq+1 � · · · � An

r2 = Aq � A2 � A3 � · · · � Aq−1 � A1 � Aq+1 � · · · � An

r3 = A2 � Aq � A3 � · · · � Aq−1 � A1 � Aq+1 � · · · � An

whereq = n+1
2 . The cycles associated withCr1, Cr2, andCr3 are shown in Figure 2.

In Theorem 8 of [5], Saari shows that ifAi is rankeds candidates aboveAj in
a cycle, then the pairwise tallies for the corresponding Condorcet profile are

Ai : n − 2s Aj : 2s − n

Thus, the largest margin of victory is 2n − 4 (whens = 1) and the smallest is 2
(whens = q). For example, the pairwise margins involvingA1 are

2n − 4s for A1 � Ai , 1 < i ≤ q, 4s − 2n for Aj � A1, q < j ≤ n

In other words, candidateAi beatsAj in the pairwise election whenAj is within
q candidates ofAi moving clockwise around the cycle fromAi , and otherwise,
Aj beatsAi . Notice that the margin decreases as the distance betweenAi andAj

increases.
Our plan is to form a linear combinationC of Cr1, Cr2, and Cr3 where

the pairwise outcomes ofC agree with those ofCr1 (so that every candidate
is included in the majority cycle) but we useCr2 and Cr3 to manipulate the
pairwise margins so thatA1 has the smallest total margin of defeat, and thus is
the �1 winner.

Consider the profileC ′ = nCr1 +Cr2. Notice that the smallest pairwise election
margin innCr1 is 2n and the largest inCr2 is 2n−4. Thus, we are guaranteed that
the pairwise outcomes inC ′ agree with those ofCr1, although theCr2 component
will affect the margins. In particular, by switching the locations ofA1 and Aq,
both A1 and Aq reduce their margin of loss for every pairwise election lost in
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Figure 2. The cycles forCr1, Cr2, andCr3, n odd

Cr1. For example, theAq+1 � A1 margin is reduced by 2n − 4, theAq+2 � A1

margin is reduced by 2n − 8, etc. Table 13 summarizes the effects ofCr2 on the
pairwise results ofCr1.

Table 13.Effects ofCr2 on theCr1 pairwise margins of loss

Margin Decreased Margin Increased

A1 All None

Ai , 1 < i < q A1 � Ai All others

Aq All None

Aj , q < j ≤ n Aq � Aj All others

Note thatA1 andAq have allq − 1 pairwise losses reduced by the maximum
amount since they are ranked immediately ahead of theq − 1 candidates they
lose to inCr1. Since every other candidate has at least one loss reinforced, the
cumulative effect is to reduce the total margin of loss ofA1 and Aq more than
any other candidate. ThusA1 andAq are tied as�1 winners inC ′. We now need
to add a component to break this tie and makeA1 the �1 winner.

Now considerC = nC′ + Cr3 = n2Cr1 + nCr2 + Cr3. The same argument as
above shows that the pairwise outcomes ofC agree with those ofC ′, and hence
with those ofCr1. Table 14 summarizes the effects ofCr3 on the pairwise results
of Cr1. As above,Cr3 reduces the pairwise losses ofA1 by the maximum amount,
but every other candidate, includingAq, has at least one loss reinforced.

Thus, the cumulative effect ofC on the pairwise losses ofCr1 is to reduce the
losses ofA1 at each stage while every other candidate has at least one pairwise
loss reinforced at one stage. Thus,A1 is the�1 winner of C .
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Table 14.Effects ofCr3 on theCr1 pairwise margins of loss

Margin decreased Margin increased

A1 All None

Ai , 1 < i < q A1 � Ai All others

Aq All others A2 � Aq

Aq+1 A2 � Aq+1 All others

Aj , q + 1 < j ≤ n Aq � Aj All others

6.2 The Condorcet component for n even

Whenn is even, letq = n
2 + 1 and definer1, r2, Cr1, andCr2 as in the odd case.

However, we now define

r3 = An � A2 � · · · � Aq−1 � A1 � Aq+1 � · · · � Aq

andCr3 as the corresponding Condorcet profile. The cycles for these profiles are
shown in Figure 3. Saari’s results for the pairwise margins still hold, but now
whenAi is rankeds = q candidates ahead ofAj in a cycle, the pairwise outcome
gives a complete tie. Although we will use the same construction as before of

C = n2Cr1 + nCr2 + Cr3,

the introduction of ties requires slightly more care in the argument since we
introduce two pairwise outcomes inC (A1 � Aq and An � Aq−1) that are ties
in Cr1.

A1

��
An

66

A2

��
An�1

OO

A3

���
�

�

Aq+1

OO�
�

�

Aq�1

vv
Aq

ZZ

Cr1

Aq

��
An

66

A2

��
An�1

OO

A3

���
�

�

Aq+1

OO�
�

�

Aq�1

vv
A1

[[

Cr2

An

��
Aq

66

A2

��
An�1

OO

A3

���
�

�

Aq+1

OO�
�

�

Aq�1

vv
A1

[[

Cr3

Figure 3. The cycles forCr1, Cr2, andCr3, n even

As above, defineC ′ = nCr1 + Cr2 and note thatCr2 will not reverse any
pairwise outcome fromCr1 nor will it break any of the pairwise ties existing in
Cr1. The effects ofCr2 on the pairwise losses is identical to that in Table 13, and
thusA1 andAq are tied as�1 winners inC ′.
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As before, letC = nC ′ + Cr3. Then theCr3 component will not reverse any
pairwise preferences fromCr1, although it does change the tiesA1 ∼ Aq and
An ∼ Aq−1 to A1 � Aq and An � Aq−1. Now consider the impact thatCr3 has
on the pairwise losses ofCr1.

First notice thatA1 reducesq−3 of its q−2 pairwise losses by the maximum
possible amount sinceA1 is ranked immediately ahead ofAq+1, . . . , An−1 in Cr3.
Further,Cr3 has no impactA1’s other loss (toAn) but does break theA1 ∼ Aq tie
in A1’s favor. Thus the only ways for another candidate to have its total margin
of loss reduced as much asA1’s is to either decrease allq − 2 of its pairwise
losses or to decreaseq − 3 of its pairwise losses by the maximum amount and
have no negative impact on its remaining loss or tie.

Clearly A2, . . . , Aq−1 and Aq+1, . . . , An have at least two pairwise losses in-
creased and thus cannot haveq − 3 of their losses reduced. AlthoughAq does
reduceq − 3 of its pairwise losses (toA2, . . . , Aq−2), it is not by the maximum
amount sinceAq is not ranked immediately beforeA2, . . . , Aq−2 in Cr3. Further,
Cr3 changes theA1 ∼ Aq tie to A1 � Aq so thatAq does not have its total margin
of loss reduced as much asA1. Thus,A1 is the�1 winner in C .

6.3 The basic component

We can easily placeA1 in the i th position using any positional voting procedure
by taking an appropriate linear combination of Basic profilesBAi . For example,
to placeA1 in the third position, we can form

B = (n − 1)BA2 + (n − 2)BA3 + (n − 3)BA1 + (n − 4)BA4 + (n − 5)BA5 + · · · + BAn−1

Then every positional method will give the outcomeA2 � A3 � A1 � A4 �
· · · � An.

Recall that the pairwise margins forBAi are

2(n − 1)! forAi � Aj , i /= j , 0 for all others

Thus, the largest margin inB is 2(n − 1)! (n − 1), which occurs for the first
place candidate over the last. Since each candidate is involved inn − 1 pairwise
elections, an upper bound for the impact ofB on the pairwise outcomes for
any candidate is 2(n − 1)!(n − 1) · (n − 1) = 2(n − 1)!(n − 1)2. Notice that since
n > 4, we have 2(n − 1)!(n − 1)2 < 2(n + 1)!.

Therefore, if we scaleC by 2(n + 1)!, we guarantee thatA1 is the�1 winner
by a margin of at least 2(n + 1)! in 2(n + 1)!C , and the additionalB component
in 2(n+1)!C +B will not affect the�1 winner. Now we can scale 2(n+1)!C +B

sufficiently large to ensure thatA1 is the DM winner as well as the�1 winner. By
adding the appropriate multiple ofK , we obtain a profile whereA1 is the DM
winner but is located in the desired position using any positional method.
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