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Summary. This paper presents a general procedure for finding profiles with
the minimum number of voters required for many important paradoxes. Borda’s
and Condorcet’s classic examples are revisited as well as generalizations. Using
Saari’s procedure line, we obtain an upper bound for the minimum number of
voters needed for a profile for which the Condorcet winner is not strictly top
ranked for allw3

s weighted positional procedures. Also we give a simple upper
bound on the minimum number of voters needed for aset of prescribed voting
outcomes. In contrast to situations wherein small numbers of voters are needed,
we consider paradoxes requiring arbitrarily large numbers of voters as well as
large numbers of alternatives. Finally we indicate connections with statistical
rank based tests.
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1 Introduction

“How many voters are needed for paradoxes?” is an important question. The rele-
vance of voting paradoxes depends on their occurrence for real world numbers of
voters! We need to understand and possibly eliminate paradoxes which occur for
numbers of voters actually encountered in group decision making. Are conflicting

� This paper has benefitted from discussions with Professor Donald G. Saari, participation in
Professor Saari’sMathematics of the social sciences seminars at Northwestern University, 1996–
1998, as well as comments from two anonymous referees.
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outcomes a problem for groups regardless of size? If not, what is the threshold
committee size? Do well known paradoxes pose a problem for corporate, political
and academic committees and subcommittees? Do we need to worry only about
village elections, but not smaller committee decisions? Although both Borda and
Condorcet [1, 3, 4, 7, 12, 13, 16] were troubled by conflicting outcomes of dif-
ferent voting procedures, possibly neither considered the minimum number of
voters for which problems occur. Consequently, managing at least some para-
doxes by committee size does not appear to have been studied (although Taylor
[23] comments on committee size.)

There also is a scientific interest in necessary numbers of voters. Significant
recent work extends, explains and simplifies the existence of conflicting outcomes
and cycles. Techniques used include, among others, the geometry of voting,
profile decompositions and identification of cyclic components. [14, 15, 16, 17,
18, 19, 23, 26]. There are important simulated and theoretical relative frequencies
of agreement of different rules [5, 6, 8] as well as asymptotic relative frequencies
of election outcomes [2, 20, 22]. These recent advances, however, do not tell us
how many voters are needed for paradoxes or, arguably,real world probabilities.
Many of these discussions could appear to identify simulated and asymptotic
frequencies with real world probabilities or frequencies of agreement of certain
rules with the Condorcet procedure.

However these relative frequencies depend on the choice of distribution of
profiles. This choice often is driven by a analytical tractability rather than real-
ity. This is not meant as a criticism, but simply an observation about these well
known studies. Certainly tractability has guided our own efforts. But notice that
minimum voter requirements are robust in terms of profile frequency distribu-
tions: if a committee has fewer than the minimum number of voters required for
a paradox, then the probability or relative frequency of that paradox is zero, for
all distributions of profiles. In sum, although there are many examples with small
numbers of voters, we need an organized knowledge of the minimum number of
voters necessary and generally applicable methods. This study begins to provide
this.

We begin our effort using integer programming (“IP”, [25]) to probe exis-
tence of individual paradoxes as well as the minimum number of voters needed.
(Readers unfamiliar with IP will understand the problem statement and solution.)
Then profiles for paradoxes may be used to give upper bounds for the number
of voters needed for a set or class of possible voting outcomes.

We focus on three alternatives, the six voter types with strict preferences
(shown in Table 1), and voting procedures expressed as linear inequalities. That
is, many voting procedures are based upon rankings of tallies which are linear
functions of the numbers of each voter type. Rankings without ties are equivalent
to strict inequalities among the linear tally functions. Finding minimum integer
numbers of voters for which linear inequalities are satisfied is a problem for
which IP is usually applicable.

Consider a group ranking based on votes on three alternatives: A, B, C.
Procedures of interest are Condorcet pairwise runoffs, plurality, Borda Count,
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antiplurality, and weighted scoring procedures1 (w3
s ≡ (1, s, 0) weights for 1st,

2nd, 3rd, 0≤ s ≤ 1). Voter types are defined to have the strict preferences shown
in Table 1, below, as in [15],2 among others.

Table 1

Voter type Preference ordering

1 A > B > C

2 A > C > B

3 C > A > B

4 C > B > A

5 B > C > A

6 B > A > C

Election outcome rankings are determined by comparing tallies for the candi-
dates. The tallies may be taken all at once, as in plurality, Borda Count, antiplu-
rality and weighted scoring procedures. Or they may be done in subset runoffs
as in the Condorcet pairwise procedure.

An integer profile (p1, p2, p3, p4, p5, p6) is a list of integer counts of each
voter type.3 As examples of tallies based on a profile, Table 2 presents tallies for
the plurality and Borda Count procedures in terms of (pi).

Table 2

Candidate Plurality tally Borda Count tally

A p1 + p2 2p1 + 2p2 + p3 + p6

B p5 + p6 p1 + p4 + 2p5 + 2p6

C p3 + p4 p2 + 2p3 + 2p4 + p5

Now consider finding the minimum voter profile for which the plurality out-
come is A> B > C and the Borda Count outcome is reversed, C> B > A.
That such a profile exists is well known from the profile (0, 5, 0, 3, 4, 0) due
to Borda [16, p. 352] showing that the plurality procedure can give a reversed
Borda count ranking of three candidates. Obviously 12 voters are needed for this
example.

1 Recall that Borda count, plurality and antiplurality procedures are special cases ofw3
s procedures,

for s = 1/2, 0, and 1 respectively. (Do not confusew3
s with ws, [15] Saari, 1995, p. 105, (4.1.9)).

2 These are the voter types found in [15]. There are theoretical reasons why the voter types we
use here are preferred to what might at first appear to be another more sensible way of keeping track
of different individual rankings, namely, the lexicographic ordering: A> B > C, A > C > B, B >
A > C, B > C > A, C > A > B, C > B > A.

3 Such a list is called aninteger profile or a profile. A normalized profile shows for each voter
type its fraction of the total number of voters. Here, we focus on profiles, not normalized profiles.
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Also Theorem 4.2.1,4 p. 111, of Saari [15], assures the existence of such a
profile. But neither Borda’s example nor Theorem 4.2.1 indicate the profile with
the fewest number of voters which leads to the reversed plurality and Borda
Count outcomes, A> B > C & C > B > A. Below is an IP minimization
problem which yields such a profile, (pi).

Minimize p1 + p2 + p3 + p4 + p5 + p6 (Number of Voters)

such that

p1 + p2 − p5 − p6 ≥ 1 (P.ab)

p5 + p6 − p3 − p4 ≥ 1 (P.bc)

−p1 + p2 + 2p3 + p4 − p5 − 2p6 ≥ 1 (BC.cb)

−p1 − 2p2 − p3 + p4 + 2p5 + p6 ≥ 1 (BC.ba)

p1, p2, p3, p4, p5, p6 ≥ 0 (NonNegative)

Constraints (P.ab) and (P.bc) are equivalent to the plurality outcomes of
A > B and B> C. Constraints (BC.cb) and (BC.ba) are equivalent (after sim-
plification) to the Borda Count outcomes of C> B and B> A. An IP solution5

obtained using LINDO [21] is (pi) = (1, 3, 0, 2, 3, 0) and this proves Theorem
1, below.

Theorem 1. The minimum number of voters required for a plurality outcome of
A > B > C and a Borda Count outcome of C > B > A is 9. (A profile of 9 voters
having these outcomes is (1, 3, 0, 2, 3, 0).)

2 An example of Borda and variations

McLean, Hewitt, Urken, Saari and others [3, 4, 12, 13, 14, 15, 16, 19] discuss
historically important examples of Condorcet and Borda which highlight the
disagreements among the Condorcet pairwise, the Borda Count and plurality
election procedures. Borda used the profile (0, 5, 0, 3, 4, 0) to show that the
pairwise and Borda Count outcomes do not always agree with plurality outcomes.
Tables 3 and 4 below (obtained with IP) show profiles of the fewest voters leading
to varied combinations of outcomes. The outcomes of historical interest (in bold
face) are those of the plurality, Borda Count and Condorcet pairwise procedures.
However we can easily consider other outcomes. (Borda’s example isline 1 and
Theorem 1 is given byline 6.) Theorem 1, above, and Theorem 2, below, are
special cases of the results in Table 3.

4 Theorem 4.2.1 ([15], p. 111). “Let the voting vectorsws1 /= ws2 be given. Letβ1, β2 be any
two rankings of three candidates – the rankings may be the same or they may differ. There exists a
profile so that whenwsj is used to tally the ballots of the voters, the outcome isβj ; j = 1, 2.”

5 The IP formulations used for this research do not report all occurrences or the number of minima
due to profile symmetries. In contrast to the voting theory applications presented here, many real
world applications have unique extreme points. And when they are not unique, the multiplicity often
results from conditions other than profile symmetries present with unrestricted voter profile domains.
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Table 3. Borda’s example and variations (1770) (0, 5, 0, 3, 4, 0). Examples 2 through 16 are minimum
voter profiles; 0 & 1 are not

# vtrs BC Pl Con APl Profile Profile decomposition

1/6 (aB bB aR bR γ k)

0. 54 C> B > A A > B > C ... ... 5,18,2,9,20,0 -12 -6 36 24 0 54

1. 12 C> B > A A > B > C C > B > A C > B > A 050340 -5 -4 9 6 -4 12

2. 1 C> B > A ... ... ... 000100 -2 -1 0 -1 -1 1

3. 3 ... A > B > C ... ... 200010 3 3 1 -1 3 3

4. 1 ... ... C> B > A ... 000100 -2 -1 0 -1 -1 1

5. 3 ... ... ... C> B > A 010200 -3 -3 1 -1 -3 3

6. 9 C > B > A A > B > C ... ... 130230 -2 -1 6 3 -1 9

7. 1 C> B > A ... C > B > A ... 000100 -2 -1 0 -1 -1 1

8. 3 C> B > A ... ... C > B > A 001200 -5 -4 -1 -2 -1 3

9. 9 ... A > B > C C > B > A ... 130230 -2 -1 6 3 -1 9

10. 6 ... A> B > C ... C> B > A 120120 0 0 4 2 0 6

11. 3 ... ... C> B > A C > B > A 001200 -5 -4 -1 -2 -1 3

12. 9 C> B > A A > B > C C > B > A ... 130230 -2 -1 6 3 -1 9

13. 9 C> B > A A > B > C ... C> B > A 130230 -2 -1 6 3 -1 9

14. 3 C> B > A ... C > B > A C > B > A 001200 -5 -4 -1 -2 -1 3

15. 9 ... A> B > C C > B > A C > B > A 040230 -3 -3 7 5 -3 9

16. 9 C> B > A A > B > C C > B > A C > B > A 130230 -2 -1 6 3 -1 9

The profiles 1–16 are shown as 6 digits since all profiles have are 9 or fewer of each voter type.
Profiles# 0 & # 1 obviously are not minimum voter profiles. The 16 sets of constraints lead to seven
distinct minimum voter profiles. Also shown are the profile decompositions studied by Saari [16, 17,
18, 19], written as 1/6(6aB 6bB 6aR 6bR 6γ 6k).)

Theorem 2. The minimum number of voters with strict preferences which lead to
the same strict Borda Count, plurality, Condorcet and antiplurality outcomes as
Borda’s (0, 5, 0, 3, 4, 0) example is 9. A profile of 9 voters having these outcomes
is (1, 3, 0, 2, 3, 0).

When we enlarge our view to include outcomes of voting procedures other
than the ones for which the example was created, we find profiles with small
numbers of voters have additional interesting outcomes. In particular, the profile
with the restrictions that the plurality and Borda Count outcomes are, respec-
tively, A > B > C and C> B > A, respectively, has the same Condorcet and
antiplurality outcomes as Borda’s original example with 12 voters. Here, impos-
ing the Condorcet and antiplurality outcomes does not change the minimum voter
profile. A consideration of the procedure line suggests that we should expect this
when we require an antiplurality outcome which is the same as the BC outcome
[15].
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3 An example of Condorcet and variations

Condorcet argued against the Borda Count procedure with the profile (30, 1,
10, 1, 10, 29) of 81 voters. With this profile, no positional procedure will elect
the Condorcet winner [12, p. 137, 16, p. 352, 19, p. 117]. Table 4 gives profiles
leading to various procedure outcome combinations for Condorcet’s (30, 1, 10,
1, 10, 29) profile. (Line 7 gives the minimum voter profile with the same Borda
Count and Condorcet outcomes.) Theorem 3 below is a special case among the
results shown in Table 4.

Theorem 3. The minimum number of voters with strict preferences which lead
to the same strict Borda Count and Condorcet outcomes as Condorcet’s (30, 1,
10, 1, 10, 29) profile is five. (That is, five is the smallest number of voters for
three candidates for which the Condorcet winner is ranked second by the Borda
Count. Such a profile is (3, 0, 0, 0, 2, 0).) (Note that the Condorcet outcome A
> B > C implies that the Borda Count outcome can only be B> A > C or A
> B > C, since A cannot be Borda Count bottom ranked & C cannot be Borda
Count top ranked.)

We see from its profile decomposition [16, 17, 18, 19] that with the fewest
number of voters for which these outcomes happen, there is a cyclic component
of 5/6 which shifts the Borda Count winner, B, to Condorcet pairwise second
place. This component shows the effect of cyclic intransitivity of Condorcet
pairwise rankings with the smallest possible number of voters.

The 15 sets of constraints lead to 6 distinct minimum voter profiles.

4 Number of voters needed for possible plurality, Borda Count
and Condorcet outcomes

In the previous sections, Tables 3 and 4 present minimum voter profiles leading
to historically significant outcomes for Borda Count and plurality procedures.

Notice that Theorem 4.2.14 ([15], p. 111) involves only positional procedures.
Our knowledge of all of the outcome combinations for Condorcet and Borda
Count has been less complete, or not so easily summarized by a single general
fact such as Theorem 4.2.1 (also see [5, 6, 20, 22]). Hence we look at all the
outcome combinations for Borda Count and Condorcet procedures. Table 5 shows
the results of using IP to find the fewest number of voters for various possibilities.
This systematically elaborates upon the well known fact that a Condorcet winner
cannot be bottom ranked via Borda Count.

In contrast to profile Tables 3 and 4, all of the profiles in Table 5 necessarily
are different.

Table 5 proves Theorem 4a while Table 5 and Lemma 1a lead to or motivate
Theorems 4b, 4c, 4d, and 4e.

Theorem 4a. Each of the possible strict plurality, Borda count and Condorcet
(both noncyclic and cyclic) outcomes may occur for some voter profile of at least
three and at most 21 voters.
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Table 4. Condorcet’s example and variations (30, 1, 10, 1, 10, 29). Examples 2 through 16 are minimum voter profiles; 1 is not

# vtrs BC Pl Con APl P & 1/6 (aB bB aR bR γ k )
1. 81 B > A > C B > A > C A > B > C A ∼ B > C 30, 1, 10, 1, 10, 29 68 76 -28 -20 19 81
2. 1 B > A > C ... ... ... 000001 1 2 -1 0 -1 1
3. 3 ... B > A > C ... ... 100020 0 3 2 1 3 3
4. 1 ... ... A > B > C ... 100000 2 1 0 -1 1 1
5. 1 ... ... ... A ∼ B > C 100000 2 1 0 -1 1 1
6. 3 B > A > C B > A > C ... ... 100002 4 5 -2 -1 -1 3
7. 5 B > A > C ... A > B > C ... 300020 4 5 2 -1 5 5
8. 1 B > A > C ... ... A ∼ B > C 000001 1 2 -1 0 -1 1
9. 9 ... B > A > C A > B > C ... 302022 4 5 -2 -1 5 9

10. 3 ... B > A > C ... A ∼ B > C 00002 4 5 -2 -1 -1 3
11. 1 ... ... A > B > C A ∼ B > C 100000 2 1 0 -1 1 1
12. 9 B > A > C B > A > C A > B > C ... 302022 4 5 -2 -1 5 9
13. 3 B > A > C B > A > C ... A ∼ B > C 100002 4 5 -2 -1 -1 3
14. 9 B > A > C ... A > B > C A ∼ B > C 302022 4 5 -2 -1 5 9
15. 9 ... B > A > C A > B > C A ∼ B > C 302022 4 5 -2 -1 5 9
16. 9 B > A > C B > A > C A > B > C A ∼ B > C 302022 4 5 -2 -1 5 9
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Table 5. Minimum voter profiles for all possible Borda Count and Condorcet outcomes without ties,
when plurality outcome is A > B > C. Columns distinguish Borda count rankings; Rows distinguish
Condorcet rankings

BordaCt
Condor.

1.
A>B>C

2.
A>C>B

3.
C>A>B

4.
C>B>A

5.
B>C>A

6.
B>A>C

1.
A>B>C

3∗
110001

11
332030

NP NP NP 5
300020

2.
A>C>B

5
030002

3
020010

11
060230

NP NP NP

3.
C>A>B

NP 13
243040

9
041130

21
353370

NP NP

4.
C>B>A

NP NP 13
060340

9
130230

21
350652

NP

5.
B>C>A

NP NP NP 21
442470

9
220230

9
400230

6.
B>A>C

9
220203

NP NP NP 21
440643

9
400221

∗∗
A>B>C>A

9
312030

9
222030

15
333150

15
332250

15
422250

9
311130

∗∗
A>C>B>A

9
130212

9
040212

9
040221

15
150432

15
240432

15
240423

“NP” abbreviates “not possible”
∗- While there is no conflict when all three procedures have the same A > B > C ranking, 3 voters
are needed for the plurality ranking to distinguish B & C; otherwise B & C would be tied at zero to
zero, for just one voter with preference A > B > C.
∗∗ 1–6 are outcome types which are the same as the voter types of Table 1. The cycles A > B >
C > A and A > C > B > A are not among the 13 non cyclic numbered outcome types considered
in [15] (among others).

Proof. Table 5. ��
Saari and Zwicker [16, 17, 18, 19, 26] give theoretical clarifications of the

linear structure of cycles from which we observe that ranks of tallies of positional
procedures are not changed by augmenting a profile by (1, 0, 1, 0, 1, 0) or (0, 1,
0, 1, 0, 1). Also the net margin of winning for Condorcet’s pairwise procedure
does not change by more than one.

From Saari ([15], p. 104 (4.1.7), p. 108 4.1.4# 1) we see how equivalence
classes for voting vectors for positional procedures can be defined. Also it is clear
that the ranking outcome of any positional procedure and Condorcet’s pairwise
procedure is not changed by augmenting any profile by multiples of the kernel
profile (1, 1, 1, 1, 1, 1).6 In this context, Lemma 1a leads to an association of
numbers of voters with profiles.

Lemma 1a. Let p be a profile leading to strict rankings for Condorcet’s pairwise
procedure and any positional procedure rankings.

6 Notice that positional procedures for three alternatives have a 2 dimensional kernel: (1,0,1,0,1,0)
& (0,1,0,1,0,1) whereas the kernel for both positional and the Condorcet procedures is one dimensional
(1,1,1,1,1,1).



How many voters are needed for paradoxes? 349

Let p∗ ≡ qp + k (1, 1, 1, 1, 1, 1) + m(1, 0, 1, 0, 1, 0) + n(0, 1, 0, 1, 0, 1); wherein
q , k , m, n are integers with q ≥ 1; k , m, n ≥ 0; (q − 1) ≥ |m − n| ≥ 0.

Normalize k , m , n so that at most one of m , n is nonzero with

k∗ = k + min{m, n}
m∗ = m − min{m, n}
n∗ = n − min{m, n}

Write p∗ as

p∗ ≡ qp + k∗(1, 1, 1, 1, 1, 1) + m∗(1, 0, 1, 0, 1, 0)

or

p∗ ≡ qp + k∗(1, 1, 1, 1, 1, 1) + n∗(0, 1, 0, 1, 0, 1)

Then the profiles p and p∗ have the same ranking outcomes for Condorcet’s
pairwise procedure and all w 3

s positional voting procedures.

Proof. For all w 3
s positional procedures k∗ (1, 1, 1, 1, 1, 1) + m∗(1, 0, 1, 0, 1, 0) +

n∗(0, 1, 0, 1, 0, 1) increases all the tallies by a constant, (2k∗ +m∗ +n∗)(1+s), but
this does not change the rankings. (Although the percentage margins of victory
become smaller.) For the Condorcet pairwise procedures, strict outcomes mean
that all pairwise tallies differ by at least 1 for p and at least q for qp. Hence
(q − 1)(1, 0, 1, 0, 1, 0) or (q − 1)(0, 1, 0, 1, 0, 1) can change the tallies by at most
(q − 1), but not change rankings which have margins of q or more. ��

(Also see [16, 17, 18, 19]).

Lemma 1b. Let p be a profile with at least one tied ranking for Condorcet’s
pairwise procedure and any rankings for any w3

s positional procedure.

Let p∗ ≡ qp + k∗ (1, 1, 1, 1, 1, 1) + m∗ (1, 0, 1, 0, 1, 0) + n∗ (0, 1, 0, 1, 0, 1) as in
Lemma 1a.

Then p∗ has the same positional ranking and strict Condorcet pairwise ranking
outcomes as p, but all tied rankings change when m∗ or n∗ ≥ 1.

Proof. Similar to the proof of Lemma 1a, upon observing that Condorcet qp
tallies will differ by zero or nonzero multiples of q so that Condorcet ties for p
lead to a difference of m∗ or n∗ for p∗. ��
Theorem 4b. All of the possible strict plurality, Borda count and Condorcet
(noncyclic and cyclic) outcomes may occur with 39 voters. (And obviously with
q39 + 6k + 3m voters, for integers q > 0, k ≥ 0, (q − 1) ≥ m ≥ 0.)

Proof. We simply observe that profiles with 3, 5, 9, 11, 13, 15, and 21 voters
may be enlarged to 39 voters without changing any of the strict outcomes. Each
of the situations i, ii, iii below is an instance of Lemma 1a.
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i) 3, 13: 39 is divisible by 3 and 13, so the profiles of 3 and 13 may be
multiplied by 13 and 3 to obtain profiles of 39 voters having the same strict
outcomes.

ii) 5, 15: 39 is 9 more than 30. Each strict outcome with 5 voters will have a
margin of at least 1 so the margin will be at least 6 when a 5 voter profile
is multiplied by 6 and at least 2 when a 15 voter profile is multiplied by
2. Adding 1 of each voter type will not change any outcome or margin of
victory. Adding one each of A > B > C, B > C > A, C > A > B (or A <
B < C, B < C < A, C < A < B) will not change any margin by more than
1, so there are profiles of 39 voters with the same outcomes as for profiles
of 5 or 15 voters.

iii) 9, 11, 21: 39 is 12 more than 27, 6 more than 33 and 18 more than 21.
Consequently there are profiles of 39 voters with the same outcomes as
profiles of 9, 11 and 21 voters (by adding 2, 1 or 3 each of the six voter
types with strict preferences to qp for q = 3, 3, 1, respectively.) ��

Theorem 4c. Consider a set of K voter profiles, p j, j = 1, . . . K , of 6 voter types
with strict preferences among three candidates, A, B, C, with each profile having
nj voters. An upper bound for the minimum number of voters having ALL of the
positional and Condorcet outcomes of the individual profiles is given by

Bmin = Min

{ ⋂
j=1...K

{
qnj + 6k + 3m|q = 1, . . . ∞, k = 0, . . . ∞, 0 ≤ m ≤ (q − 1)

}}

Proof. Replicating voters leads to multiples of tallies, so rankings remain the
same. Adding kernel profiles adds a constant to all tallies, so rankings remain
the same. Adding the profiles (1,0,1,0,1) or (0,1,0,1,0,1) only changes margins of
the pairwise tallies by 1. A strict procedure outcome will have pairwise margins
of 1 or more and a q replicated profile will have margins of q or more. Hence
up to (q − 1) sets of voters of types 1, 3, 5 or sets of types 2, 4, 6 may be added
without changing the pairwise rankings. ��
(Note: Bmin < ∞ since the r.h.s. is not an empty set. The product,

∏
j=1...K nj

occurs in every intersection set (for nk, q =
∏

j=1...K nj/nk
)).

Obviously, we would like to upgrade Theorem 4c by any of the following con-
jectures.

Conjecture 4c.1. If each profile is a minimum voter profile, then Bmin is the
minimum number of voters for which there are profiles which have every outcome
of a set of profiles.

Conjecture 4c.2. If (or iff) each profile is a minimum voter profile and if {ni}
satisfy certain conditions (e.g. possibly {ni} are relatively prime, or prime), then
Bmin is the minimum number of voters for which there are profiles which have
every outcome of a set of profiles.

Theorem 4d. An upper bound for the minimum number of voters required for all
of the positional and all strict pairwise outcomes of a given profile is
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Min {p∗
1 + p∗

2 + p∗
3 + p∗

4 + p∗
5 + p∗

6 | p∗can be augmented to p

by the operations of Lemma 1a}
Proof. The set of p∗ includes p which yields a valid upper bound, p1 + p2 + p3

+ p4 + p5 + p6. All other values also are upper bounds and the smallest of these
is an upper bound. ��

The uninspiring proof of Theorem 4d hides possible utility. Consider its applica-
tion to the example of Condorcet which we have just studied: (30,1,10,1,10,29)
= 2(15,0,5,0,5,14) + (0,1,0,1,0,1). Hence all of the positional and strict pairwise
outcomes are the same for Condorcet’s example and the profile of 39 voters:
(15,0,5,0,5,14)! We must be a little intrigued that this minimum is the same as
the minimum obtained in Theorem 4b. That is, the same minimum number of
voters arises i) by combining all the profiles of Table 5 and ii) by shrinking
Condorcet’s profile as small as possible! This motivates the following result.

Theorem 4e. Consider a set of K profiles, p j, as in Theorem 4c. Consider the set
of K profiles, p∗

j , from application of Theorem 4d. An improved upper bound may
emerge from application of Theorem 4c to the profiles p∗

j obtained from Theorem
4d.

Proof. Similar to 4d, the minimum of a union of sets of numbers (of voters) is
less than or equal to the minimum of any of the individual sets. ��

Use of the procedure line with profiles shown in Table 5 allows us to obtain
theorem 5 below.

Theorem 5. For three alternatives, 9 is an upper bound for the minimum num-
ber of voters for which the Condorcet winner is not strictly top ranked by any
positional w3

s procedures.

Proof of Theorem 5 (see Saari [15], pp. 35, 179). From Table 5, the profile
(220203) with nine voters has plurality outcome of A > B > C (type 1) and
Condorcet outcome of B > A > C (type 6). Notice that the antiplurality outcome
is A ∼ B > C (type 12). Hence in the representation triangle, the procedure line
[15, pp. 35, 179] [19, p. 47] begins as a type 1 outcome and ends on the right
boundary of the type 1 outcomes, namely a type 12 outcome. Hence no w3

s pro-
cedure has a type 5, 11, or 6 outcome, and for this profile B is not top ranked
by any w3

s procedure. ��
Theorem 5 needs to be discussed in the context of Fishburn’s 1974 paper,

[6]. In that study, Fishburn simulates the relative frequency with which certain
weighted scoring rules select a Condorcet winner when one exists and refers
to this simulated relative frequency as the efficiency of the procedure. Figure 1
op. cit. estimates the efficiency of plurality with 3 alternatives to be about 92%. It
could appear that 8% of the simulated profiles which have a Condorcet winner did
not lead to the same alternative as the unique plurality winner. However Fishburn
includes in his measure of efficiency 1/2 of the number of profiles for which the
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Condorcet winner ties for top ranking with the plurality ranking procedure. It is
one half of the tied outcomes which account for this 8% inefficiency reported by
Fishburn. However, there are no profiles of three voters for which the Condorcet
winner is strictly second or lower ranked by the plurality procedure. To gain some
confidence that the upper bound of 9 might be a minimum, consider Table 6.
Table 6 presents minimum voter profiles for which the Condorcet procedure has
a strict winner while plurality outcomes advance from completely tied to a strict
ranking. Notice that our Theorem 5 deals with all positional procedures whereas
the Fishburn study [6] considers only selected positional procedures without the
insight gained from the procedure line. (Our Theorem 3 gives a profile of 5
voters for which the Condorcet winner is 2nd ranked by the Borda procedure.
However for this profile, the Condorcet winner is plurality top ranked. Also note
Table 4, profile #15.)

Table 6. More IP minimum voter profiles

Number of voters Minimum voter profile Condorcet outcome∗ Plurality outcome

3 010110 C > B, B > A, C > A∗ A ∼ B ∼ C

5 020120 C > B, B > A, C > A∗ A ∼ B > C

7 030220 C > B, B > A, C > A∗ A >B ∼ C

9 130230 C > B, B > A, C > A∗ A > B > C

∗ These could be regarded as redundant, but we want to explicitly exclude cycles, since Table 5 does
include cycles.

Note added in proof to Section 4

1. Plurality outcomes of B > A ∼ C and B > C > A would have been preferred
for lines three and four of Table 6.

2. We describe a way to improve Theorem 5 by finding the minimum number
of voters for which the Condorcet winner is second or lower ranked or not strictly
top ranked for any w3

s positional procedure. Create additional tables similar to
Table 5. Instead of plurality, as in Table 5, fix the Condorcet outcome as A > B >
C. Use rows and columns for different outcomes for two positional procedures:
plurality and antiplurality. Let these outcomes have ranking types 1–6 or 1–13
(ranking types 1–6 are identical to voter types for 1–6. Usually voters are assumed
not to have ranking types 7–13. See Saari [15] pp 35, 179). Such tables together
with the procedure line should lead to a minimum voter profile for which the
Condorcet winner is second or lower ranked for all w3

s positional procedure for 3
alternatives for the type 1–6 table. The type 1–13 table should lead to a minimum
voter profile for which the Condorcet winner is not strictly top ranked for all w3

s

procedures.

5 Paradoxes which require large numbers of voters

It could appear from our findings thus far that all paradoxes occur for relatively
small numbers of voters. This certainly is not the case. Theorems 6 and 7 present
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two well known situations wherein arbitrarily large numbers of voters are neces-
sary. For Theorem 6, as before, a positional procedure w3

s has weights of (1, s, 0)
for first, second and third ranked alternatives, with 0 ≤ s ≤ 1. For s = 1/2, w3

s

yields the rankings given by the Borda Count procedure for three alternatives
[16, 17, 18, 19].

Theorem 6. There is no upper bound on the minimum number of voters necessary
for a Condorcet winner to be w3

s bottom ranked for s ε [0, 1/2) or s ε (1/2, 1].

Proof. As s → 1/2, the IP minimum grows arbitrarily large. For s = 1/2, the LP is
not feasible. ��
Theorem 7. There is no upper bound on the minimum number of voters required
for a super majority cycle among 3 candidates as the fraction of voters required
for a super majority pairwise winner approaches 1.

Proof. As the fraction of votes required for a super majority, φ, approaches 1,
less than unanimous votes for arbitrarily large numbers of voters will not equal
or exceed φ unless the number of voters, V, is arbitrarily large. That is, since
Condorcet cycles cannot occur when any alternative wins unanimously against
all others, we need:

(V − 1)/V ≥ φ ⇔ V ≥ 1/(1 − φ). ��

6 The number of candidates needed for paradoxes

Since the number of voter types depends on the number of candidates, IP may
not be as readily applicable to the consideration of the relationship of the number
of candidates to the existence of voting paradoxes. But we present the following
quick result, since, interestingly, we obtain the same lower bound for the number
of alternatives as for the number of voters in Theorem 7.

Theorem 8. There is no upper bound on the minimum number, A, of alternatives
required for a super majority cycle among V voters as the fraction of voters
required for a super majority pairwise winner approaches 1.

Proof. Let φ denote the fraction needed for a super majority pairwise winner.
From [24]7 we have

A ≥ V /(V − M ) ⇔ A ≥ V /(V − φV ) = 1/(1 − φ). ��
We have the same lower bound for both the number of voters and the number
of candidates needed for the possibility of a cycle in terms of the fraction, φ,
required for a super majority pairwise winner. This lower bound becomes large
as φ approaches 1.

7 Errata: [24]) incorrectly attributes the elementary condition, A ≥ V/(V − 1) to [9]. This error
was called to the author’s attention in a note from Professor A. K. Sen. Also notice [13, pp. 88-89]
that this condition, A ≥ V/(V − 1), [24], is similar, although not identical to Borda’s condition for
the minimum size of a plurality required to insure that a plurality winner will win all pairwise votes.
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Theorems 7 and 8 above have an intuitive consistency with the result obtained
by Balasko and Cres [2] wherein it is shown that as the number of alternatives and
universe of profiles becomes large, the probability of a super majority Condorcet
Cycle becomes a rare event if the percent required for the supermajority exceeds
53% .

7 Conclusion

We have used IP to answer questions about both the existence of paradoxes
and the necessary numbers of voters. We found the minimum numbers of voters
needed for historically important examples due to Borda and Condorcet; vari-
ous subsets of outcomes which can be associated with those examples; and the
plurality, Borda Count and Condorcet outcomes which can occur. We have pro-
vided simple upper bounds on the minimum number of voters needed for sets of
paradoxes when profiles have already been determined for each paradox. In other
reports, we expect to study minimum voter profiles for paradoxes involving four
and five alternatives.

A final afterthought is that Haunsperger has explained the connection of
voting paradoxes to the Kruskal-Wallis and related tests [10, 11]. An important
question in applied statistics is sample size. We expect that avoiding certain
statistical paradoxes discussed by Haunsperger may be approached via sample
size, using some of the tools and results presented here. Avoidance of paradoxes
via small samples may need to be balanced against larger samples for reduction
of estimation variance and decision error probabilities.
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