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Summary. This note provides a simple proof of the necessity of the transver-
sality condition for the differentiable reduced-form model. The proof uses only
an elementary perturbation argument without relying on dynamic programming.
The proof makes it clear that, contrary to common belief, the necessity of the
transversality condition can be shown in a straightforward way.
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1 Introduction

“The necessity of the transversality condition is a difficult issue,” note Stokey
and Lucas (1989, p. 102) after proving the sufficiency of the transversality condi-
tion. As a matter of fact, necessity of the transversality condition has long been
widely perceived as a difficult issue, perhaps because the classical proofs of the
necessity of the transversality condition are not easily understandable to nontech-
nical readers. What makes those proofs difficult, however, is not the difficulties
in proving the transversality condition itself but the technical arguments required
for proving the existence of support prices (Peleg, 1970; Peleg and Ryder, 1972;
Weitzman, 1973; Araujo and Scheinkman, 1983) or for proving the envelope
condition (Benveniste and Scheinkman, 1982). Though such arguments may be
necessary when one wishes to establish a characterization theorem for a general
maximization problem, they can in fact be entirely bypassed when one wishes

� I would like to thank an anonymous referee for helpful comments and suggestions. In particular,
Section 4.3 was written based on his or her suggestion.
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only to prove the necessity of the transversality condition for the differentiable
reduced-form model.

The purpose of this note is to offer a simple proof of the necessity of the
transversality condition. The result proved in this note is a more or less well-
known variant of Weitzman’s (1973) theorem. The assumptions we use that are
not assumed by Weitzman are the differentiability of the return functions and the
interiority of a given optimal path. These assumptions allow us to work directly
with derivatives, making it unnecessary to construct support prices. Another fea-
ture of our approach is that we do not use dynamic programming. Without relying
on dynamic programming, we directly prove the necessity of the transversality
condition using only an elementary perturbation argument.

While similar arguments are used in Kamihigashi (2000a, b, c), these papers
do not provide a direct proof of the necessity of the transversality condition for the
reduced-form model. Kamihigashi (2000a) focuses on Ekeland and Scheinkman’s
(1986) result. Instead of simplifying the proofs of well-known results, the other
two papers generalize well-known results as well as establish new results. We
believe that the direct proof offered in this note will benefit the profession by
demystifying the necessity of the transversality condition.

The next section presents the model and states the result. Section 3 presents
the proof. Section 4 discusses how the proof differs from those of Benveniste
and Scheinkman (1983) and Ekeland and Scheinkman (1986), how the result can
be generalized, and why the proof does not apply to the undiscounted stationary
case. Section 5 concludes the note.

2 The transversality condition

Consider the following maximization problem.



max
{xt }∞

t=0

∞∑
t=0

vt (xt , xt+1)

s.t. x0 = x0, ∀t ∈ Z+, (xt , xt+1) ∈ Xt .

(1)

Since the assumptions and definitions used here are standard, they are stated
without comment.

Assumption 2.1. ∃n ∈ N, x0 ∈ R
n
+ and∀t ∈ Z+, Xt ⊂ R

n
+ × R

n
+.

Assumption 2.2. ∀t ∈ Z+, Xt is convex and(0, 0) ∈ Xt .

Assumption 2.3. ∀t ∈ Z+, vt : Xt → R is C1 on
◦
Xt and concave.

For t ∈ Z+ and (y, z) ∈ ◦
Xt , let vt,2(y, z) denote the partial derivative ofvt

with respect toz; definevt,1(y, z) similarly.

Assumption 2.4. ∀t ∈ Z+,∀(y, z) ∈ ◦
Xt , vt,2(y, z) ≤ 0.1

1 Due to the Euler equation (5), Theorem 2.1 below holds even if this inequality is replaced by
vt,1(y, z) ≥ 0.
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We say that a path{xt}∞
t=0 is feasibleif x0 = x0 and∀t ∈ Z+, (xt , xt+1) ∈ Xt .

Assumption 2.5. For any feasible path{xt},

∞∑
t=0

vt (xt , xt+1) ≡ lim
T↑∞

T∑
t=0

vt (xt , xt+1) (2)

exists in(−∞,∞).2

We say that a feasible path{x∗
t } is optimal if for any feasible path{xt},

∞∑
t=0

vt (xt , xt+1) ≤
∞∑
t=0

vt (x
∗
t , x∗

t+1). (3)

We say that a feasible path{xt} is interior if ∀t ∈ Z+, (xt , xt+1) ∈ ◦
Xt . The

following result is proved in Section 2.1.

Theorem 2.1. Under Assumptions 2.1–2.5, for any interior optimal path{x∗
t },

lim
T↑∞

[−vT,2(x∗
T , x∗

T+1)x
∗
T+1] = 0. (4)

Theorem 2.1 is a variant of Weitzman (1973, Theorem) and a discrete-time
version of Benveniste and Scheinkman (1982, Theorem 3.A). Since an interior
optimal path{x∗

t } satisfies the Euler equation

vt,2(x∗
t , x∗

t+1) + vt+1,1(x∗
t+1, x∗

t+2) = 0 (5)

for t ∈ Z+, condition (4) can equivalently be expressed as

lim
T↑∞

vT,1(x∗
T , x∗

T+1)x
∗
T = 0. (6)

Condition (4), or the above equivalent form, is the most commonly used transver-
sality condition.

As the proof below shows, however, condition (4) is a necessary condition
regardless of validity of the Euler equation. In addition, condition (4) better
corresponds to the continuous-time version of the transversality condition.

3 Proof of Theorem 2.1

We prepare the following elementary lemma.

Lemma 3.1. Let f : [0, 1] → R∪{−∞} be a concave function with f(1) > −∞.
Then

∀γ ∈ [0, 1),∀λ ∈ [γ, 1),
f (1) − f (λ)

1 − λ
≤ f (1) − f (γ)

1 − γ
. (7)

2 Throughout this note,
∑∞

t=0
≡ limT↑∞

∑T
t=0

.
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Proof. Let λ ∈ [γ, 1) andµ = (1 − λ)/(1 − γ). By concavity,f (λ) ≥ µf (γ) +
(1 − µ)f (1) = −µ(f (1) − f (γ)) + f (1). Thus f (1) − f (λ) ≤ µ(f (1) − f (γ)); the
inequality in (7) follows. ��

Now to prove Theorem 2.1, let{x∗
t } be an interior optimal path. LetT ∈ Z+.

By interiority and Assumption 2.2, forλ ∈ [0, 1) sufficiently close to one, the
path

{x∗
0 , x∗

1 , · · · , x∗
T , λx∗

T+1, λx∗
T+2, · · ·} (8)

is feasible. Letλ ∈ [0, 1) be so close to one that the above path is feasible. By
optimality,

vT (x∗
T , λx∗

T+1) − vT (x∗
T , x∗

T+1) +
∞∑

t=T+1

[vt (λx∗
t , λx∗

t+1) − vt (x
∗
t , x∗

t+1)] ≤ 0. (9)

Dividing through by (1− λ) yields

vT (x∗
T , λx∗

T+1) − vT (x∗
T , x∗

T+1)
1 − λ

≤
∞∑

t=T+1

vt (x∗
t , x∗

t+1) − vt (λx∗
t , λx∗

t+1)
1 − λ

(10)

≤
∞∑

t=T+1

[vt (x
∗
t , x∗

t+1) − vt (0, 0)], (11)

where the last inequality holds by Assumption 2.3 and Lemma 3.1 withγ = 0.
Applying limλ↑1 to the left-hand side of (10) yields

0 ≤ −vT,2(x∗
T , x∗

T+1)x
∗
T+1 ≤

∞∑
t=T+1

[vt (x
∗
t , x∗

t+1) − vt (0, 0)], (12)

where the first inequality holds by Assumption 2.4. Applying limT↑∞ to (12)
yields

0 ≤ lim
T↑∞

[−vT,2(x∗
T , x∗

T+1)x
∗
T+1] ≤ lim

T↑∞

∞∑
t=T+1

[vt (x
∗
t , x∗

t+1) − vt (0, 0)] = 0, (13)

where the equality holds by Assumption 2.5. Condition (4) now follows.

4 Discussions

4.1 Comparison with other methods

The crucial step in the above proof is the inequality in (11). Very roughly speak-
ing, in Ekeland and Scheinkman’s (1986) proof, limλ↑1 is directly applied to both
sides of (10). Again very roughly speaking, in Benveniste and Scheinkman’s
(1982) proof, limλ↑1 is applied to the following inequality.
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vT (x∗
T , λx∗

T+1) − vT (x∗
T , x∗

T+1)
1 − λ

≤ VT+1(x∗
T+1) − VT+1(λx∗

T+1)
1 − λ

, (14)

where VT+1 is the value function for the maximization problem starting from
periodT + 1.3

Though both methods work, technical arguments are needed to apply limλ↑1

to the right-hand sides of (10) and (14), which depend onλ. In addition, both
methods eventually use inequalities like (11).4 In our proof, by contrast, the
inequality in (11) is exploited at the earliest possible opportunity. This trivializes
the process of applying limλ↑1 since the right-hand side of (11) does not involve
λ.

4.2 Generalization

All the assumptions, Assumptions 2.1–2.5, can considerably be weakened. In
fact, for the basic argument of our proof to go through, only the following three
assumptions are needed.5

Assumption 4.1. ∀T ∈ Z+, for all λ < 1 sufficiently close to one, the path
specified by (8) is feasible.

Assumption 4.2. ∀T ∈ Z+, the left-hand side of (10) has a limit asλ ↑ 1.

Assumption 4.3. There exists a sequence{BT}∞
T=0 with limT↑∞ BT = 0 such that

∀T ∈ Z+, for all λ < 1 sufficiently close to one, the right-hand side of (10) is
bounded above by BT.

Assumptions 4.1 and 4.2 are satisfied in standard models. For example, these
assumptions are implied by Assumptions 2.2 and 2.3.

The key to the necessity of the transversality condition is Assumption 4.3.6

This assumption is substantially weaker than Assumption 2.5 and is useful par-
ticularly whenvt (0, 0) = −∞, which is the case in many parametric models. In
such cases, the above proof, which does not work in its current form, can easily
be modified as follows. Assume

∞∑
t=1

[vt (x
∗
t , x∗

t+1) − vt (γx∗
t , γx∗

t+1)] (15)

exists in (−∞,∞) for someγ ∈ [0, 1). By Lemma 3.1, forλ ∈ [γ, 1),

3 To be more specific, the corresponding Bellman equation isVT (x) = maxy{vT (x, y) +
VT+1(y) | (x, y) ∈ XT}. By optimality, vT (x∗

T , λx∗
T+1) + VT+1(λx∗

T+1) ≤ vT (x∗
T , x∗

T+1) + VT+1(x∗
T+1).

This implies (14).
4 Benveniste and Scheinkman use essentially the same inequality as (11). Ekeland and Scheinkman

use a more general inequality somewhat similar to (16) below.
5 The result that can be shown under Assumptions 4.1–4.3 is not identical to Theorem 2.1. See

Kamihigashi (2000c) for general results established under minimal assumptions.
6 This assumption can be avoided in some cases, however. See Kamihigashi (2000b, c).
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∞∑
t=T+1

vt (x∗
t , x∗

t+1) − vt (λx∗
t , λx∗

t+1)
1 − λ

≤
∞∑

t=T+1

vt (x∗
t , x∗

t+1) − vt (γx∗
t , γx∗

t+1)
1 − γ

. (16)

Use this inequality in place of (11). The rest of the proof then goes through.
The above argument shows that the transversality condition is necessary as

long as expression (15) is finite for someγ ∈ [0, 1).7 This result is useful for
models with unbounded return functions since it does not require the objective
function to be finite, or even well-defined, for all feasible paths.

4.3 The undiscounted stationary case

As is well-known, the transversality condition fails to be necessary for optimality
in the undiscounted Ramsey model or, more generally, in undiscounted stationary
models in which the Turnpike Theorem (cf. Gale, 1967, Theorem 8; Becker and
Boyd, 1997, p. 188) holds.

To be more specific, assume Assumptions 2.1–2.4, and supposevt and Xt

do not depend ont ; i.e., there existv and X such that∀t ∈ Z+, vt = v and
Xt = X. Supposev is strictly concave. Let ˆx = argmaxx{v(x, x) | (x, x) ∈ X}.
Suppose ˆx � 0 andv2(x̂, x̂) < 0. Then under additional assumptions, an optimal
path {x∗

t } (optimal in the sense of Gale, p. 3) converges to ˆx by the Turnpike
Theorem. Consequently,

lim
T↑∞

[−v2(x∗
T , x∗

T+1)x
∗
T+1] = −v2(x̂, x̂)x̂ > 0, (17)

i.e., the transversality condition fails. The proof in Section 3 breaks down at the
very last step in this case since the equality in (13) no longer holds.

As is clear from Sections 3 and 4.2, optimality implies the transversality
condition if perturbing the optimal path proportionally downward results in a
finite loss. This “finite loss” condition—or, more precisely, Assumption 4.3—is
violated here since the right-hand side of (10) becomes∞ for any λ < 1.8 See
Michel (1990) and Becker and Boyd (1997) for related results and discussions.

5 Conclusion

This note proved the necessity of the transversality condition for the differentiable
reduced-form model using only an elementary perturbation argument. The proof
is short and simple because it bypasses the technical arguments required for
constructing support prices or for showing the envelope condition. We hope, and
believe, that the direct proof offered in this note will help the profession better
understand the transversality condition.

7 Results of this nature are established in Kamihigashi (2000b, c).
8 This is becausev(x̂, x̂) − v(λx̂, λx̂) > 0 by the definition of ˆx and the strict concavity ofv.
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